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Abstract

This study evaluates the influence of aerosol processes on the particle number (PN) con-
centrations in three major European cities on the temporal scale of one hour, i.e. on the
neighborhood and city scales. We have used selected measured data of particle size distri-
butions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol5

transformation processes were evaluated using an aerosol dynamics model MAFOR, com-
bined with a simplified treatment of roadside and urban atmospheric dispersion. We have
compared the model predictions of particle number size distributions with the measured
data, and conducted sensitivity analyses regarding the influence of various model input
variables. We also present a simplified parameterization for aerosol processes, which is10

based on the more complex aerosol process computations; this simple model can easily be
implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes
considered in this study were (i) the coagulation of particles, (ii) the condensation and evap-
oration of two organic vapors, and (iii) dry deposition. The chemical transformation of gas-
phase compounds was not taken into account. By choosing concentrations and particle15

size distributions at roadside as starting point of the computations, nucleation of gas-phase
vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need
to include nucleation in the process analysis. Dry deposition and coagulation of particles
were identified to be the most important aerosol dynamic processes that control the evolu-
tion and removal of particles. The error of the contribution from dry deposition to PN losses20

due to the uncertainty of measured deposition velocities ranges from −76 % to +64 %.
The removal of nanoparticles by coagulation enhanced considerably when considering the
fractal nature of soot aggregates and the combined effect of van der Waals and viscous
interactions. The effect of condensation and evaporation of organic vapors emitted by vehi-
cles on particle numbers and on particle size distributions was examined. Under inefficient25

dispersion conditions, condensational growth might contribute to the evolution of PN from
roadside to the neighborhood scale. The simplified parameterization of aerosol processes
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can predict particle number concentrations between roadside and the urban background
with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

1 Introduction

Motor vehicle exhaust emissions constitute the major source of ultrafine particle (UFP, <
100 nm in aerodynamic diameter) pollution in urban environments (Harrison et al., 2011;5

Morawska et al., 2008; Pey et al., 2009; Johansson et al., 2007). Ultrafine particles can
contain toxic contaminants, such as transition metals, polycyclic aromatic hydrocarbons
(PAHs), and other particle-bound organic compounds, which may be responsible for initiat-
ing local lung damage, when the particles deposit on the epithelial surfaces (Lighty et al.,
2000). Biodistribution studies suggest translocations of UFP from the respiratory system to10

other organs including liver, heart and the central nervous system, in which they can cause
adverse health effects (Oberdörster et al., 2005; Kleinman et al., 2008; Kreyling et al., 2013).
In urban environments, ultrafine particles make the most significant contribution to total par-
ticle number (PN) concentrations, but only a small contribution to particulate matter (PM)
mass. Hence, reliable information on the number concentrations, together with the size dis-15

tributions, is needed to better assess the health effects of urban particulate pollution.
The exposure of the population in urban areas to particles may be assessed by modelling

the spatial distribution of particles emitted from road transport and other sources in various
micro-environments (e.g., Soares et al., 2014). Kumar et al. (2011) reviewed aerosol pro-
cess modelling on urban and smaller scales. Aerosol dynamic models (which are commonly20

Lagrangian-type process models) have been used to model the spatial and temporal evo-
lution of ultrafine particles in the initial vehicle exhaust plume during the first seconds after
emission (e.g. Vignati et al., 1999; Pohjola et al., 2003, 2007). These models can be used to
study the further evolution of the plume, if they will be coupled to an urban dispersion model.
Particles emitted from road transport, as they are transported from the emission sources,25

are subject to complex dilution processes (turbulence generated by moving traffic, atmo-
spheric turbulence) and transformation processes (nucleation, coagulation, condensation,

3
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evaporation, deposition, and heterogeneous chemical reactions), acting on different time
scales. Aerosol dynamic processes continuously change the number and size distribution,
after the particles have been released into air.

Clearly, dilution is an important process influencing PN concentrations and the spatial5

distributions in cities (e.g. Zhang et al., 2004; Pohjola et al., 2007; Keuken et al., 2012).
An exhaust parcel emitted from the tailpipe of a vehicle first experiences fast dilution by the
strong turbulence generated by moving traffic between tailpipe to roadside (Rao et al., 2002;
Zhang and Wexler, 2004). On the neighborhood scale in the city, the parcel of exhaust is
advected through a network of streets, over and around several buildings. On the city scale,10

the pollutant plume can extend vertically up to twice the average building height above
the city’s surface layer, and its dispersion becomes independent of the specific effects of
individual buildings (Kumar et al., 2011).

The main aims of the present study are (i) the quantification of the impacts of relevant
aerosol processes on the neighborhood and city scales and (ii) the derivation of a reason-15

ably accurate, simplified parameterization of the most important aerosol processes, to be
used in urban air quality models. The study is part of the European Union funded research
project TRANSPHORM (Transport related Air Pollution and Health impacts – Integrated
Methodologies for Assessing Particulate Matter). A related paper by Kukkonen et al. (2015)
presents atmospheric dispersion modelling of particle number concentrations in the five tar-20

get cities of the TRANSPHORM project, as well as on a European scale, and evaluates the
predicted results against available measured concentrations. In the present model study,
we have used the results of measurements from a campaign in Rotterdam, initiated by the
TRANSPHORM project, and those from previous campaigns in Helsinki and Oslo. Our aims
are to quantify the influence of selected individual aerosol processes for each measurement
campaign and to inter-compare the relative contribution of the processes to PN changes in
the selected campaigns and cities.

4
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2 Materials and methods

2.1 Aerosol process model MAFOR5

In order to study the relevance of aerosol dynamics on the fate of PN emitted from traffic in
urban areas, the evolution of the particle size distribution with increasing distance from the
roadside was modeled using the multicomponent aerosol dynamics model MAFOR (Karl
et al., 2011). MAFOR uses a fixed sectional grid to represent the particle size distribution
with size bins evenly distributed on a logarithmic scale. MAFOR has been evaluated against10

laboratory chamber data (Karl et al., 2012) and PN measurements at a motorway (Keuken
et al., 2012); it has also been shown to compare well with the sectional aerosol dynamics
model AEROFOR (Pirjola and Kulmala, 2001).

Aerosol processes considered in this study were condensation and evaporation of or-
ganic vapors, coagulation of particles due to Brownian motion, and dry deposition (particle15

deposition in contact with the street surface and other urban structures). In this study 120
size bins were used in the MAFOR model, to represent the aerosol size distribution ranging
from particle diameters from 1 nm to 1 µm.

Particles were assumed to be spherical and possible effects of the fractal geometry were
disregarded; the exact shape and morphology of particles was not measured in the ad-20

dressed campaigns. The various aerosol dynamical processes were treated by calculation
of the temporal variation of the particle number concentration and the mass concentrations
of each chemical component within each size section. Mass transfer of gas molecules to
particles was calculated using the Analytical Predictor of Condensation scheme (Jacobson,
1997).25

The coagulation coefficients of particles that are smaller than 50 nm in diameter might
be enhanced due to Van der Waals forces and viscous interactions; however, these were
neglected, due to the large uncertainties involved in the modelling of such processes. Fur-
ther, effects of turbulent shear on coagulation between exhaust particles can be neglected
for the time scale from roadside to ambient (Zhang and Wexler, 2004).
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Dry deposition of particles was modelled according to Kouznetsov and Sofiev (2012),
which accounts for the physical properties of both the air flow and the surface, as well as the
physical properties of the particle size. In this approach rough surfaces are characterized5

by two length scales: the aerodynamic roughness and the so-called collection scale, which
incorporates the effective size of collectors and a ratio of the airflow velocity at the top of
the roughness elements to the friction velocity. Alternatively, MAFOR provides a treatment
to calculate size-dependent deposition rates according to Schack et al. (1985) and Hussein
et al. (2012).10

The concept regarding condensation and evaporation between roadside and ambient
environment applied in this study is based on the work of Zhang and Wexler (Zhang and
Wexler, 2004; Zhang et al., 2004). The effective behavior of condensable organic vapors
from vehicular exhaust with respect to changes of the particle number concentration and
the particle size distribution was modeled by introducing two different volatility classes: the15

n-alkane C22H46 (abbreviated as C22) representing semi-volatile vapors and the n-alkane
C28H58 (abbreviated as C28) representing low-volatile vapors. Both organic compounds
can condense or evaporate to or from particles during their transport downwind from the
road. Vapor pressure of n-alkanes as function of temperature was adopted from the work
by Lemmon and Goodwin (2000).20

Carbonaceous aerosol in MAFOR is separated into (i) elemental carbon (ECp) from pri-
mary emissions, treated as a non-volatile substance, and (ii) organic carbon (OCp), treated
as a volatile substance. In this study, organic carbon is assumed to be composed of organic
acid (for background OCp) and the two n-alkanes (originated from vehicles). The organic
fraction in the nucleation mode below 10 nm diameter was composed by 100 % of C28 in25

the roadside aerosol. A density of 1200 kg m−3 (Virtanen et al., 2002) was used for ECp.
The density of OCp was calculated as the weighted average of the densities of the organic
compounds.

6



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

2.2 Modelling of the dilution of exhausts

MAFOR is a one-dimensional model; it is therefore necessary to couple it to a dispersion
model, to simulate combined atmospheric dispersion and transformation processes. In or-
der to approximate atmospheric dispersion, we used a simplified treatment of dilution of
particle numbers. This procedure implies the assumption of a well-mixed state within each5

cross-wind cross-section of the plume. The assumption of a well-mixed state may overesti-
mate the influence of the processes responsible for the temporal decrease of the PN, due
to the non-linear nature of the involved processes (condensation and coagulation). Model
runs were performed with different dispersion conditions to address the influence of aerosol
processes for a wide range of meteorological dispersion regimes.10

Emissions from traffic sources commonly contribute to particle size distributions with dis-
tinct modes, i.e. nucleation, Aitken, accumulation, and coarse mode. Formation of new liquid
particles in the exhaust by nucleation of gases, such as sulfuric acid and semi-volatile or-
ganic substances, occurs during the first milliseconds (Kittelson, 1998) after release of the
exhaust into the ambient air. On-road measurements by Rönkkö et al. (2007) confirmed15

that the nucleation mode was already present after 0.7 s residence time in the atmosphere.
Thus, it is practical to regard nucleation as a process that has already occurred, when one
considers roadside concentrations. The evolution of vehicular emissions from the engine to
the roadside concentrations were not considered in this study, as we used the particle size
distributions measured at the roadside locations as a starting point.20

Idealized scenarios were set up for the study of relevant aerosol processes (i.e. the dry
deposition, the growth by condensation of gases and the coagulation of particles) and dilu-
tion by background air (see Fig. 1).

We used a simple horizontal particle dilution parameterization, following the numerical
power function y = a×x−b = a× (Ut)−b, where x (in m) is the distance from the roadside25

and U is the horizontal wind speed perpendicular to the road. The height of the air parcel
(plume height), Hm (in m), containing the exhaust emissions, as function of time t (in s)

7
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during its travel away from the roadside at a specific wind speed was defined by:

Hm(t) =

√
H2
m,0 +

(
a× (10−3×Ut)b

)2
(1)

Where Hm,0 is the initial plume (or air parcel) height at the roadside. The particle dilution
rate for use in the aerosol model was obtained by derivation of the above mentioned nu-5

merical power function as function of time. The change of particle number concentration, N
(in particles cm−3), in size section i due to dilution with background air is:

dNi

dt

∣∣∣∣
dilution

= −b
t

(Ni−Nbg,i) (2)

Where Nbg,i is the number concentration of background particles in the same size bin. No
additional emissions of particles or vapors are collected during transport from roadside to10

ambient in this idealized scenario.
Dilution parameters a and b that are used in Eqs. (1) and (2) for moderate dispersion

conditions were derived from a fit of the modelled total number concentration to measured
number concentration in different distances (below 100 m) from a major highway in Helsinki
(LIPIKA campaign, case 10; Fig. 5 in Pohjola et al., 2007). It was assured that the PN15

change in the distance up to 100 m was solely due to dilution with background air. Best fit
was obtained with parameter values a= 40 and b= 0.5. For neutral conditions, the values
a= 86.49 and b= 0.923 were reported for dispersion downwind of a motorway (Petersen,
1980). Similar values were adopted for efficient dispersion conditions in this study (a=
80.0 and b= 0.90). For inefficient dispersion conditions, a and b were chosen to be typical20

for atmospheric situations with inversion and stagnant air. Details on the approximation of
initial plume height, Hm,0, at the roadside are provided in section S1 of the Supplementary
Materials. Table 1 provides an overview of the set of meteorological and dilution parameters
that were tested in sensitivity studies.

The model simulations were started by assuming an initial chemical composition of the25

aerosol at the respective roadside traffic site and urban background site. Chemical compo-
sition of the urban background aerosol was estimated based on the measured PM2.5 and

8
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the mass fractions of the chemical components in PM2.5. Composition of the nucleation,
Aitken, accumulation and coarse modes was estimated based on mass fractions for the
urban background of Helsinki (Pohjola et al., 2007). Then mass concentrations of the re-
spective lognormal modes were distributed over the discrete size sections of the model. The
aerosol composition of the traffic-influenced aerosol at the traffic station was approximated
by adding mass concentrations of OCp and ECp (from vehicle exhaust emissions) to the
mass concentrations of the background aerosol. Fixed modal OCp : ECp ratios were used5

(nucleation mode: 100 : 0, Aitken mode: 80 : 20, accumulation mode 1: 40 : 60, accumula-
tion mode 2: 60 : 40) based on the mass composition of vehicle exhaust particle emissions
(Pohjola et al., 2007). Finally, the initial model number size distribution was fitted to the
observed number size distribution at the traffic site for each of the campaigns, by variation
of the geometric-mean mass diameter (by ±30 %) and the geometric standard deviation10

(within the range 1.5–2.0) in each lognormal mode.
The applied aerosol dynamics model makes no assumption regarding the equilibrium

between organic vapor and the condensed phase at the roadside. If the gas-phase con-
centration of an organic compound is below the saturation concentration, the compound
will evaporate from the particles, if it is above the saturation concentration, the compound15

will condense to the particles. During the road-to-ambient process, some compounds may
continue condensing, while others begin evaporating, depending on the relative magnitude
of their vapor pressures. In addition, the vapor pressure of the model compounds C22 and
C28 is further modified by their molar fraction in the particle phase, according to Raoult’s
law, and by their molar volume and surface tension according to the Kelvin effect.20

For the included campaigns, gas-phase concentration of n-alkanes and other condens-
able organic compounds have not been measured at the roadside locations. Measurements
of n-alkane vapor concentrations in urban environments indicate typical concentrations of
5 ppt for the sum of the n-alkanes, but higher concentrations may occur (for more details
see section S2 in the Supplement). Pohjola et al. (2007) obtained best fit between modeled25

and measured particle size distribution on a distance scale of 125 m near a major road in
Helsinki when using roadside concentrations of one condensable organic vapor of the order

9
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of 1010 molecules cm−3 (ca. 0.4 ppb). Based on this, initial concentrations of 0.25 ppb C22
and 0.25 ppb C28 were used in the reference case (all campaigns and dispersion condi-
tions). The background concentration of C22 and C28 was set to zero, forcing maximum
dilution of the condensable organic vapors during travel of the air parcel away from the
roadside.

Additional sensitivity tests were carried out to address uncertainties in the modelling5

with respect to (i) dry deposition of particles to urban surfaces, (ii) assumptions about the
roadside concentrations of condensable organic vapors (represented as n-alkanes), (iii) the
fractal geometry of soot particles and (iv) the enhancement of coagulation through van der
Waals and viscous forces.

2.3 The effect of different surface types on the dry deposition of particles10

As the air parcel containing vehicle exhaust leaves street scale, it can be assumed to be
advected through a network of streets, and over and around buildings, defined as the neigh-
borhood scale with a characteristic length scale of 1–2 km. On the neighborhood scale, ge-
ometrical features dominate mean flow and mixing. Effects caused by buildings and other
structures are disregarded in this study. Instead the flow was assumed to have a long fetch15

over a statistically homogeneous surface. However, different average surface types may
have an impact on dry deposition of particles. In a series of tests the sensitivity of PN
changes were studied, caused by dry deposition on various surface types and roughness
conditions. Table 2 provides a summary of relevant parameters for dry deposition used in
the reference case (all campaigns and dispersion conditions) and in the sensitivity tests20

(selected campaigns).
The parameterization used in the reference runs is thought to represent dry deposition

to typical urban surfaces, i.e. streets and buildings (urban case). Values for friction velocity
near surface, u∗, and roughness height, z0, used in the urban case were adopted from the
work of Ketzel and Berkowicz (2004). Sensitivity tests for dry deposition were performed for25

the campaigns in Rotterdam and Oslo using the dilution parameters for moderate dispersion
conditions.

10
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The methodology by Kouznetsov and Sofiev (2012) considers Brownian diffusion, in-
terception, inertial impaction and gravitational settling as mechanisms for dry deposition to
rough surfaces. They define a collection length scale to characterize the properties of rough
surfaces. This collection length depends on the ratio Utop/u

∗ (Utop is the wind speed at top
of the canopy, i.e. at height zC) and to the effective collector size, dcol, of the canopy. The
methodology by Hussein et al. (2012) is a three-layer deposition model formulation with5

Brownian and turbulent diffusion, turbophoresis and gravitational settling as the main parti-
cle transport mechanisms to rough surfaces. Hussein et al. (2012) introduced the effective
surface roughness length F+ to relate roughness height and the peak-to-peak distance
between its roughness elements. For a hydraulically smooth surface, F+ approaches zero.
Parameters z0, zC and dcol are only used in the concept of Kouznetsov and Sofiev (2012)10

while F+ is only used in the concept of Hussein et al. (2012). Size-dependent dry deposition
velocities of particles were calculated with two different methodologies: The methodology
of Kouznetsov and Sofiev (2012) (short: KS2012) was applied in the reference case for all
simulations. In addition the methodology of Hussein et al., 2012 (short: H2012) was applied
for all cases in the sensitivity test.15

Figure 2 shows size-dependent dry deposition velocity of particles for the different cases
listed in Table 2 for the two methodologies. The curve “KS2012 Urban” (thick black line)
represents the parameterization used in the reference runs of this study. Dry deposition ve-
locities calculated by H2012 for the urban case (“H2012 Urban”) agree with “KS2012 Urban”
within a factor of 3 as function of particle diameter. Results from the KS2012 methodology20

were not sensitive to changes of friction velocity within a range (0.27–1.33 m s−1) typical for
the urban environment.

A large discrepancy between the two methodologies was found for deciduous forest
(green area with forest). H2012 closely matches measured dry deposition velocities over
a beech forest by Pryor (2006) when using F+ = 2.25. Kouznetsov and Sofiev (2012) state25

that their parameterization offsets measured data for broad-leaf forests by 2–3 orders, un-
less using a very small collector size (dcol < 0.2 cm). However, their parameterization is in
close agreement with one wind tunnel measurement for 1 µm particle deposition on natural

11
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oak branches by Reinap et al. (2009). It should be kept in mind that “KS2012 Forest” does
not necessarily represent realistic dry deposition rates to forests and was rather included
as lower limit for particle deposition from the KS2012 method in urban environments.5

2.4 Experimental data from the measurement campaigns

We have used the measured particle number size distributions at a traffic station and at
an urban background (UB) station, during campaigns in the cities Oslo, Rotterdam and
Helsinki. The included campaign datasets were:

1. Rotterdam 2011, TRANSPHORM. Traffic site Bentinckplein and urban background lo-10

cation Zwartewaalstraat (6–19 May 2011) at Rotterdam, and the regional background
station at Cabauw in the Netherlands (February–November 2011).

2. Oslo 2008, UFP-Oslo. Traffic site Smestad and urban background location Sofienberg
park (12 December 2007 to 17 April 2008).

3. Helsinki, SAPPHIRE case I. Traffic site at Herttoniemi and urban background location15

at Kumpula, Helsinki, 23–28 August 2003 (Hussein et al., 2007).

4. Helsinki, SAPPHIRE case II. Traffic site at Herttoniemi and urban background location
at Kumpula, Helsinki, 9–11 February 2004 (Hussein et al., 2007).

5. Helsinki LIPIKA. Traffic site at Herttoniemi and urban background location at
Saunalahti bay, Helsinki, 17–20 February 2003 (Pirjola et al., 2006; Pohjola et al.,20

2007).

6. Helsinki, MMEA. Traffic site at Mannerheimintie and urban background location at
Lääkärinkatu, Helsinki, 13–14 December 2010 (Pirjola et al., 2012).

The measured data for roadside and urban background in the TRANSPHORM cam-
paign at Rotterdam, in the UFP-Oslo (“Measurements of ultrafine particles in Oslo”) cam-25

paign at Oslo, and in the SAPPHIRE campaigns in Helsinki was obtained simultaneously.
12
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Whereas in the LIPIKA and the MMEA campaigns in Helsinki the measured data was ob-
tained with the mobile laboratory “Sniffer” (e.g., Pirjola et al., 2004) at various locations
during each measurement day. Quality control (QC) procedures in the measurement cam-
paigns at Helsinki are described in the cited literature. Table 3 compiles the information on
the size distribution data from the different campaigns in Rotterdam, Oslo, and Helsinki.
In order to obtain an average size distribution for the respective traffic station and urban5

background station, either median or mean of measured time series of size distributions
(dN/dlog(Dp)) were calculated, as specified in Table 3. A comparison of measured total
PN concentrations between campaigns is shown in Fig. S1 (Supplement).

In Rotterdam, particle measurements were performed at the regional background sta-
tion at Cabauw near Rotterdam and a traffic location at less than 5 m from the roadside10

(Bentinckplein) by two Scanning Mobility Particle Sizer (SMPS) instruments: one SMPS
3080 covering size diameters (Dp) 10–480 nm and a CPC 3775 (TSI Inc.) with a with
a 50 % cut-off at 4 nm, and one SMPS 3034 with Dp 10–470 nm and a CPC 3010 (TSI
Inc.) with a 50 % cut-off at 7 nm. The comparability of both SMPS was tested by paral-
lel measurements, which resulted in a correlation coefficient (r2) of 0.96. The results of15

the PNC measurements were corrected for the difference in comparability between both
instruments. Hourly averaged wind direction was used to select campaign data that was
directly influenced by the traffic emissions in the street. The traffic volume at Bentinckplein,
which is a street canyon (width: 50 m; height: 12 m) was 35 000 vehicles per 24 h with 4 %
trucks and buses. The urban background location Zwartewaalstraat in Rotterdam total PN20

concentrations were measured by a Condensation Particle Counter (TSI 3007). The entire
monitoring period at the regional background site was from February until December 2011.
QC procedures were derived from the European Supersites for Atmospheric Aerosol Re-
search (EUSAAR) project (Asmi et al., 2011). These involved inter-comparison studies of
monitoring instruments, 2-weekly checking of the sampling flow and annual calibration of25

the PN monitors by the manufacturer.
In Oslo, PN concentration and particle size distributions were measured at two stations in

the municipality of Oslo for a four month period in winter 2008, using a Grimm 565 Environ-

13
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mental Wide Range Aerosol Spectrometer system (http://www.GRIMM-Aerosol.com). This
system combines a Grimm 190 aerosol spectrometer OPC (Optical Particle Counter), and
a scanning mobility particle sizer with a condensation particle counter (SMPS+C). The en-
tire system in principle covers the range from 5 nm to 30 µm. Instruments were calibrated by
the manufacturer prior to installation on site. Weekly zero filter test and other maintenance
was carried out according to the manufacturers guide. In addition to automatic QC in the5

Grimm software, data from the two sites was compared and aligned with other air quality
data from the respective sites. For the analysis of the Oslo campaign, only data from the
SMPS was used and the smallest size bin was discarded. The traffic station (Smestad) was
at a busy road with an average daily traffic (ADT) of around 50 000 vehicles. The traffic sig-
nal at the urban background station (Sofienberg park) showed a continuous shift of the size10

distribution peak towards larger sizes with decreasing air temperature, i.e. the maximum
of the size distribution is shifted from 16 nm at 6 ◦C to 26 nm at −10 ◦C. Size distribution
data measured at −8 to −12 ◦C was used as a separate dataset, UFP-Oslo Winter. The
complete dataset from the period December 2007 to April 2008 is referred to as UFP-Oslo
Tav.15

For Helsinki, two cases from the SAPPHIRE campaign, one case from the LIPIKA cam-
paign (both at Herttoniemi), and one case at the city center from the MMEA campaign (Pir-
jola et al., 2012) were included. The roadside station near the highway Itäväylä at Hert-
toniemi is located about 6 km east of the center of Helsinki in a suburban area, with sub-
stantial local traffic. Particle measurements were performed with a differential mobility parti-20

cle sizer (DMPS) at the background station and with a twin SMPS at the traffic site. Particle
measurements during the LIPIKA campaign were conducted by Sniffer at various locations
near the highway Itäväylä (Pirjola et al., 2006). The highway consists of six lanes, three
lanes to both directions (total width of three lanes: 12 m), and a 6 m wide central grass
area between the lanes to both directions, with a speed limit of 80 km h−1. Particle size25

distributions in the range of 7 nm to 10 µm (aerodynamic diameter) were measured by Elec-
trical Low Pressure Impactor (ELPI, Dekati Ltd.; 12 channels). Nucleation mode particles
were measured with high size resolution by a Hauke type SMPS (20 channels); measured

14
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size range was 3–50 nm (mobility diameter). The study period included 14 cases of mea-
surements downwind of the highway Itäväylä from wind sector 1 (northwestern wind; Pirjola
et al., 2006). The daily traffic density varied between 32 000–54 000 vehicles per day. Based
on the traffic density information for year 2001, the vehicle fleet on the highway was com-
posed of 85 % light duty vehicles (of which 11 % were diesel), 12 % vans (of which about5

84 % diesel), and 4 % heavy duty vehicles (Hussein et al., 2007).
During the MMEA campaign (Pirjola et al., 2012) the mobile laboratory “Sniffer” was

driving along the main street Mannerheimintie (MA) at the city center of Helsinki. MA is
about 40 m wide and surrounded by 21 m tall buildings at both sides. The daily traffic flow
was 36 300 vehicles day−1 (of which ca. 10 % were heavy duty diesel vehicles). On 13–10

14 December 2010, the northeastern wind was perpendicular to MA, allowing traffic exhaust
to be diluted freely between the buildings as in open environments. During rush hours,
“Sniffer” was stopping around 10 min at 8, 28 and 56 m distances from the driving lane of
MA downwind. Particle size distribution was measured by two SMPS (size ranges: 3–60 and
10–420 nm). The urban background particles were measured while Sniffer was standing at15

Lääkärinkatu, 300 m north from the measurement sites at MA.
A summary of the meteorological and dispersion conditions for the different campaigns is

given in Table S1 in the Supplement. Measured meteorological data was not directly used in
the model study of idealized scenarios, but are considered to be important for discussing the
relevance of aerosol dynamical processes compared to dilution under real world conditions.20

3 Results

3.1 Traffic-related particle size distributions in the campaigns

Measured PN concentrations based on hourly averages or 10 min averages (in case of
the LIPIKA and MMEA campaigns) showed a wide range of PN concentrations (20 000–
100 000 particles cm−3) for the traffic sites considered, depending on the season of the year,25

traffic density, and distance from the road. Size distributions of the measured datasets at the

15
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traffic sites from all campaigns were normalized by the measured total PN concentrations
(Fig. 3). We have also calculated the average values of the size distribution curves for all
traffic sites, denoted as “mean of traffic sites” (black curve in Fig. 3). This size distribution is
considered to be representative for the traffic-influenced roadside aerosol in the considered5

cities.
The “mean of traffic sites” distribution is characterized by a fraction of ultrafine particles

(Dp: 10–100 nm) and accumulation mode (Acc) particles (Dp: 100–500 nm) of 80 and 4 %,
respectively, while 16 % of the particles were below 10 nm. SAPPHIRE Case I had the high-
est fraction of< 10 nm particles (38 %); in Rotterdam< 10 nm particles were not measured.10

For the other campaigns fraction of < 10 nm particles was in the range 6–19 %. The fraction
of ultrafine particles was 60 % for SAPPHIRE Case I and 74–87 % for all other campaigns.
The fraction of Acc particles was smallest for the SAPPHIRE campaigns (≈ 1 %), and be-
tween 4 and 9 % for the other campaigns in Helsinki and Oslo.

From a three-modal fit to the mean traffic-related size distribution with the MAFOR model15

(following the procedure described in section 2.2) three distinct modes with mean diame-
ter at 17 nm, 85 nm, and 250 nm, respectively, were obtained. The measured average size
distributions from the campaigns LIPIKA and MMEA in Helsinki, as well as UFP-Oslo Tav
exhibited a similar shape as the mean traffic-related size distribution. The distribution of
SAPPHIRE Case II also resembled the constructed distribution but did not show significant20

particle numbers with diameter > 100 nm. Ultrafine particles measured at the traffic sites
in the campaigns were most likely from fresh vehicle exhaust emissions. Particles emit-
ted from diesel engines are usually in the size range 20–130 nm (e.g., Kittelson, 1998),
somewhat larger than those emitted from gasoline engines, typically being in the range 20–
60 nm (Harris and Maricq, 2001; Ristovski et al., 2006). Comparing campaigns in Helsinki,25

MMEA size distribution peaked at 20–40 nm, while LIPIKA and SAPPHIRE size distributions
peaked at 8–25 nm. The higher fraction of heavy duty diesel vehicles at Mannerheimintie
(10 %) compared to highway Itäväylä (4 %) could be one possible reason for the peak at rel-
atively larger sizes in MMEA. Different driving conditions may also have contributed to the

16
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difference in peaks; at Mannerheimintie rush hour limited the speed to 20–25 km h−1 with
stop-and go driving, whereas at Itäväylä vehicles could drive 60–80 km h−1 very fluently.

The peak of the size distribution for UFP-Oslo Winter was below 10 nm and for Helsinki
SAPPHIRE Case II the peak was below 20 nm. Both campaigns were during winter in5

Northern Europe; ambient temperature in UFP-Oslo Winter ranged from −12 to −8 ◦C
and SAPPHIRE Case II ranged from −15 to −4 ◦C. The relative increase of nanoparti-
cle numbers in cold conditions may be the result of increased nucleation of semi-volatile
compounds post-emission and decreased saturation ratio of the condensing vapors that
tend to enhance initial particle growth. It has also been reported that particle emission from10

light duty diesel vehicles are influenced by low ambient temperatures during the vehicle
cold-start (Mathis et al., 2005). However, the primary effect of a cold environment on ve-
hicle cold-start is a number increase of semi-volatile nucleation mode particles, not of the
solid particles in the exhaust (Maricq, 2007).

Accumulation mode particles have a longer lifetime in the atmosphere, it is therefore likely15

that they are either a result from ageing processes on the urban time scale or that they are
from short-range or long-range transport of aerosols. Since the size distribution measure-
ments were carried out at traffic sites at distances of a few meters from busy roads, the
measured aerosols are expected to be mainly influenced by primary traffic emissions. How-
ever, for the campaigns at Rotterdam and Oslo, measurements were not always downwind20

from the traffic emissions, and could be influenced also by other local particle sources and
secondary pollution from local traffic.

The number size distribution at Rotterdam showed an exceptionally broad peak mode
at 30–70 nm and a large fraction of Acc particles. Other sources, such as emissions from
harbor activities and refineries situated in the harbor area, could have contributed to the25

relatively high fraction of Acc particles at Bentinckplein. Average wind direction during the
Rotterdam campaign was from southwest, from the direction of the harbor area “Nieuw
Mathenesse”. At an average wind speed of 3.6 m s−1, the travel time of particles from the
harbor and refineries to the traffic site was about 15 min. Ships emit large amounts of par-
ticles larger than 20 nm, which consist of soot and volatile material (e.g. Fridell et al. 2008;

17
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Petzold et al., 2008; Kasper et al., 2007). Number size distributions of ship emissions in the5

ports of Helsinki and Turku (Finland) measured by “Sniffer” showed peaks at around 20–30
and 80–100 nm (Pirjola et al., 2014).

Truck traffic in the harbor during loading/unloading of ships also leads to increased par-
ticle numbers (Pirjola et al., 2014). Measurements downwind of a harbor at Rotterdam
showed that 61 % of the PN concentration was in the size range 25–100 nm while it was10

48 % downwind of a motorway (Keuken et al., 2012). Condensation of vapors onto particles
emitted from ships during their transport to the traffic site might explain the relatively high
number concentration of Acc particles in the Rotterdam campaign. We note that the mea-
sured PN concentration of Acc particles in Rotterdam was similar as in Oslo but lower than
during the LIPIKA and MMEA campaigns in Helsinki.15

3.2 Comparison of the model predictions against the campaign measurements

The evolution of the particle size distribution as function of time up to one hour for all the
cases, and by definition, following increasing distance from the roadside (idealized scenario,
Sect. 2.2), was studied with the aerosol dynamics box model and compared to measured
size distributions data from the respective campaigns. Figure 4 and Fig. S2 in the Supple-20

ment show the comparison of modelled number size distributions from the idealized scenar-
ios and the measured number size distribution at the roadside and at the urban background
site for campaigns at Oslo, Rotterdam, and Helsinki. As the air parcel containing vehicle
exhaust leaves street scale it is assumed to be advected over a homogenous surface in
the neighborhood with a length scale of a few kilometers and further to the city scale. In25

the model, initial particle concentrations in all size bins were diluted with background air
containing particles with a size distribution that matched the measured size distribution at
the urban background site.

The modelled number size distribution calculated for moderate dispersion conditions af-
ter ∼ 10 min of travel time, corresponding to a distance of 3600 m from the roadside, was
generally in good agreement with the size distribution measured at the urban background
site. Dilution was the dominant process changing the size distribution between roadside
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and urban background, as shown by the continuous decrease of concentrations with time.5

For the campaigns Helsinki SAPPHIRE Case I (Fig. 4c) and Case II (Fig. S2c in the Supple-
ment), as well as Helsinki MMEA (Fig. 4d) the maximum of the particle size distribution was
moved to larger diameter. For instance, the modelled size distribution in Helsinki SAPPHIRE
Case I showed an increase of the nucleation mode peak diameter from 10 to 18 nm within
a distance of 3600 m. This behavior can be explained by dilution transforming the shape of10

the roadside distribution into the (prescribed) shape of the urban background distribution.
UFP-Oslo Winter (Fig. 4a) shows signs of growing small particles by condensation, with
peak diameter moving from ca. 5 to 8 nm.

Model simulations using different wind speed and dilution parameters, representative for
different dispersion conditions (efficient, moderate, inefficient dispersion; as given in Ta-15

ble 1), were performed for each campaign. The contribution of the various aerosol dynamic
processes to the change of total PN at a given travel time was derived by switching off the
respective aerosol process in the model calculation. The percentage PN change due to
a specific aerosol dynamic process was obtained by division of the total PN change with
the total PN change when all processes were considered (PN change defined as difference20

between initial total particle number and total particle number after a certain travel time).
Table 4 summarizes the PN change after 30 min of travel time due to each selected aerosol
process, and also to dilution, in each of the campaigns for efficient, moderate and inefficient
dispersion conditions. The considered aerosol processes accounted for PN concentration
changes of up to 20 % after 10 min and up to ∼ 30 % after 30 min (Fig. 5), respectively.25

According to the results shown in Table 4, coagulation and dry deposition were relevant
aerosol dynamic processes for particle removal in the Rotterdam campaign whereas dry
deposition was the predominant aerosol process in the Oslo campaign. Due to identical
dispersion conditions and wind speeds used in the comparison, the observed difference
is attributed to the different shapes of the initial size distribution measured at the road-
side station and the background particle size distributions. The larger fraction of particles
with diameter > 25 nm measured at Rotterdam (accounting for 73 % of total PN) explains
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the higher relevance of coagulation compared to the Oslo campaign. Particles with larger
diameter more efficiently scavenge the small (< 25 nm diameter) particles by coagulation.5

For the LIPIKA and MMEA campaigns coagulation was the most important aerosol pro-
cess for particle removal during low wind speed. The size distributions for LIPIKA and
MMEA (green and cyan lines in Fig. 3a) peak in a size range between 10–40 nm diameter
and show a higher fraction of Acc particles than the SAPPHIRE distributions. Obviously,
coagulation becomes a relevant PN loss process once large numbers of particles below10

50 nm diameter from vehicle exhaust emissions (e.g. ca. 92 000 particles cm−3 at roadside,
LIPIKA) are accompanied by a significant PN fraction of larger particles, which originate
either from other local sources or from secondary particle formation within the urban area.
These results are in agreement with the ones by Kerminen et al. (2007) who estimated that
the lower and upper limits for the inter-modal coagulation time scale during the rush hours15

were 15–20 and 60–80 min, respectively. During the night, the inter-modal coagulation time
scale was 2–3 times that during the rush hours (Kerminen et al., 2007).

The contribution of dry deposition and coagulation to total PN losses is comparable to
those determined in previous measurements and model studies. City scale modelling stud-
ies with a multi-plume aerosol dynamics and transport model indicated that coagulation and20

dry deposition can cause total PN losses of 15–30 % between roadside measurement and
urban background measurement in Copenhagen (Ketzel and Berkowicz, 2005). Gidhagen
et al. (2005), using an urban dispersion model that included aerosol dynamics in Stock-
holm, concluded that in terms of time-averaged PN concentration, dry deposition may yield
particle number losses of up to 25 % in certain locations, while coagulation contributed little25

to PN losses. During particle peak episodes the removal by dry deposition and coagulation
was more substantial (Gidhagen et al., 2005).

Condensation and evaporation of vapors as such is not expected to change the total num-
ber concentrations, however can modify the particle size distributions and particle volume.
In this study a significant increase of PN (by up to 8 % after 30 min travel time) was evi-
dent under inefficient dispersion conditions, when condensation was considered in addition
to coagulation and dry deposition. The reason could be the competition between conden-
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sation and coagulation. As the air parcel moves away from the roadside, condensation of
condensable organic vapors leads to rapid growth of small particles to larger diameters5

at which they are less affected by coagulational loss. In addition, dry deposition velocity
decreases with increasing diameter between 1 and 100 nm. Hence particles grown by con-
densation of condensable organic vapors will be less affected by deposition.

Aerosol dynamics are less relevant under conditions with efficient dispersion. When effi-
cient dispersion occurs in the urban canopy, dilution by background air is the only effective10

process reducing PN concentration with distance from the roadside. In such situations (dilu-
tion parameters: a= 80, b= 0.9) aerosol processes account for PN concentration changes
of less than 3 % after 10 min and PN concentration changes of less than 6 % after 30 min,
hence modelling of PN as passive tracer is adequate. According to the previously published
model study at the Dutch motorway A16; the particle size distribution at Dp > 40 nm is not15

further altered by aerosol processes after a distance of 1000 m from the roadside (Keuken
et al., 2012). The distance where the PN level reaches background concentrations de-
pends on dispersion conditions. Background PN levels were reached approximately (within
an accuracy of ±5 %) after 1740, 900, and 160 m in distance from the road for inefficient,
moderate, and efficient dispersion conditions, respectively, in box model simulations using20

the Rotterdam campaign data.

3.3 Effect of dry deposition of particles to different surface types

The sensitivity of modelled PN concentrations towards dry deposition of particles on var-
ious surface types and roughness conditions were studied in the campaigns Rotterdam
TRANSPHORM and UFP-Oslo Tav under moderate dispersion conditions. Two different25

deposition methodologies, KS2012 and H2012 (detailed description in Sect. 2.3), were ap-
plied. Results from the sensitivity tests are summarized in Table S2 in the Supplement.

Between different KS2012 cases, calculated dry deposition velocity, νd, spanned about
one order of magnitude for all particle diameters. Case “KS2012 Urban” corresponded to
the surface characteristics of typical urban environments, i.e. streets and buildings, as used
for the reference model runs with MAFOR. KS2012 parameterization was not sensitive
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to changes of friction velocity or roughness length within a typical urban range of values:5

reducing friction velocity (case “Low friction”) or increasing roughness length (case “High
roughness”) resulted in negligible (≤ 0.1 %) change of PN loss due to dry deposition com-
pared to case “Urban”. Over grassland and forest, modelled PN concentration changes due
to dry deposition were smaller by 30 and 50 %, respectively, than over urban surfaces.

Using the deposition methodology H2012 for case “Urban” resulted in 40–50 % lower PN10

losses by dry deposition compared to KS2012. Between different H2012 cases calculated
νd spans about two orders of magnitude for accumulation mode particles (Dp 100–1000 nm)
which can be attributed to the fact that surface roughness becomes a dominant factor in
collecting aerosol particles efficiently for that particle size range, where neither diffusion nor
inertial processes are significant processes. H2012 parameterization was very sensitive to15

changes of friction velocity or roughness length. The contribution of dry deposition to PN
changes varied by roughly a factor of 5 for Rotterdam and by a factor of 3–4 for Oslo due to
changing roughness conditions.

It has been evident in the literature (e.g., Guha, 1997), that surface roughness can in-
crease νd by up to two orders of magnitudes, in the size range between particle diffusion20

regime and diffusion-impaction regime, compared to a smooth surface. This behavior is
reflected by the H2012 parameterization, but not by the KS2012 parameterization.

3.4 Effect of condensation and evaporation of organic compounds

Inspection of the modelled evolution of number size distributions in simulations of Helsinki
LIPIKA (moderate dispersion) revealed that variation of organic vapor concentration mainly25

affected the nucleation mode. Compared to a simulation without condensation and evapo-
ration, the reference case with 0.5 ppb condensable organic vapors (sum of C22 and C28
gas-phase concentration with ratio 50:50) did not significantly change the number size dis-
tribution in a distance of 240 m from the road (Fig. S3a) but doubled the mass of 10 nm
particles (Fig. S3b). When the concentration of condensable organic vapors was reduced
to 0.05 ppb or below, condensation became completely negligible. Our sensitivity results are
qualitatively in line with the study of Pohjola et al. (2007) who, based on measured PN data
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and the aerosol dynamics model MONO32 (Pirjola et al., 2003), found that the influence5

of condensation on PN concentrations was negligible on a distance scale of 200 m near
a major road in Helsinki. For example, presence of a condensable organic compound with
∼ 0.4 ppb increased the diameter in the two smallest particle size modes by only 14 and
1.9 %, respectively (Pohjola et al., 2007).

An extreme case to test the relevance of condensing n-alkane vapor and its effect on10

traffic-related size distributions was the Oslo Winter data (Fig. 4a). Under inefficient disper-
sion conditions, modelled total PN concentration in UFP-Oslo Winter was 2 % higher after
a distance of 240 m with 0.5 ppb condensable organic vapors, compared to a simulation
without condensation. Growth of particles by condensation caused a shift of the nucleation
mode diameter from 5.9 to 8.8 nm (Fig S4a), thus increasing the survival probability of the15

very small particles. Two factors enhanced the effect of condensation on the changing size
distribution: first, the low temperature causing low vapor pressure (a factor of 90 smaller
than at 10 ◦C) and second, the high fraction of initially present particle numbers with di-
ameter below 10 nm. For lower concentrations of condensable organic vapors, 0.05 ppb
and 0.005 ppb, no significant particle growth was found (mass size distribution in Fig. S4b).20

Evaporation of particles < 10 nm diameter occurred at 0.005 ppb, when changing the or-
ganic fraction of nucleation mode particles to 100 % C22, i.e. assuming higher volatility of
vehicular nanoparticles that formed post-emission. Interestingly, the evaporated material
partly re-condensed to particles with diameter > 100 nm within 240 m distance from the
roadside (blue dashed line in Fig. S4a and Fig. S4b).25

The growth of small particles (Dp < 10 nm) at 0.5 ppb condensable organic vapors to
larger sizes within a distance of 240 m in campaign UFP-Oslo Winter corroborates the find-
ing in a curbside study by Zhang et al. (2004) at two freeways in Los Angeles, that a large
number of emitted sub-6 nm particles can grow substantially 30–90 m downwind. However,
it cannot be excluded that downwind emissions of vehicle pollutants or oxidized volatile
organic compounds (VOC) contributed to the observed growth.

Model simulations of the idealized scenario suggest that evaporation could be an impor-
tant process, altering the particle size distribution in urban micro-environments, if the semi-5
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volatile vapor and also the nanoparticles forming post-emission were assumed to have the
same or higher volatility as the n-alkane C22. Dall’Osto et al. (2011) analyzed observations
of particle size distributions from London and reported a reduction in the size of nucleation
mode particles during advection from a major highway into the cleaner environment of a
park, indicating evaporative loss of semi-volatile constituents during travel times of around10

5 min. Harrison et al. (2016), for the same location, found most rapid evaporation to occur
at higher wind speeds, associated with shorter travel times, but cleaner air.

3.5 Effect of fractal geometry of soot particles and van der Waals forces

Model calculations for the idealized scenario assumed that all particles are spherical. How-
ever, soot particles emitted from diesel vehicles are fractal-like aggregates consisting of15

nano-sized primary spherules. The effect of fractal geometry on coagulation was taken into
account by considering the effect on radius, diffusion coefficient and the Knudsen number
in the Brownian collision kernel. In order to test how fractal geometry of soot particles af-
fects the modeled particle size distribution and PN concentrations, the coagulation kernel
in MAFOR was modified by assuming that the collision radius is equal to the fractal (outer)20

radius, rf , defined as (Jacobson and Seinfeld, 2004):

rf,i = rs×n
1/Df

s,i (3)

Where ns = υi/υs is the number of primary spherules in the soot aggregate, υi is the
volume of the aggregate, treated as if it were spherical, rs is the radius of spherules and υs
is the volume of a spherule that makes up the aggregate, and Df is the fractal dimension.25

Soot particle density was corrected as explained in Lemmetty et al. (2008).
Van der Waals forces and viscous interactions affect the coagulation rate of small par-

ticles. It has been shown that van der Waals forces can enhance the coagulation rate of
particles with diameter < 50 nm by up to a factor of five (Jacobson and Seinfeld, 2004). To
evaluate how neglecting the two forces affected the particle size distribution evolution, a5

correction factor VE,i,j accounting for van der Waals and viscous forces was applied to the
24
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Brownian collision kernel, KB
i,j , for the collision of particle of size bin i with particles of size

bin j in the MAFOR model:

Kcorr
i,j =KB

i,j ×VE,i,j (4)

It is referred to section S3 in the Supplement for details of the implementation. The effect10

of van der Waals forces and viscous interactions as well as fractal geometry on the Brown-
ian collision kernel is shown in Figure S5. Parameters of the fractal geometry adapted from
Jacobson and Seinfeld (2004), rs = 13.5 nm and Df = 1.7, resulted in stronger enhance-
ment of the coagulation rate for collisions with a 10 nm particle than the parameters (rs =
2.5 nm and Df = 2.5) adapted from Lemmetty et al. (2008).15

The combination of both effects substantially enhanced the loss of nanoparticles in the
simulation of the evolution of the roadside aerosol. For Helsinki MMEA, inefficient disper-
sion conditions, the enhancement was similar for the two effects, separately, i.e. spherical
particles with van der Waals and viscous forces versus fractal particles (Fig. S6). The com-
bined effect increased the loss of total PN by 15 % compared to the reference simulation20

(coagulation of spherical particles by Brownian motion) in 600 m distance from the road.

3.6 Uncertainties of the aerosol treatment in the idealized scenario

Computation of the aerosol evolution between the roadside station and the neighborhood
environment with the idealized scenarios involves several assumptions and uncertain pa-
rameters. An uncertainty analysis was performed to quantify the errors associated with the25

determination of the contribution of the respective atmospheric processes to the change of
total PN. Errors were determined based on simulations for the mean traffic-related parti-
cle distribution (section 3.1) under inefficient dispersion conditions after 30 min travel time
(Figure 6).

Fractal parameters of Jacobson and Seinfeld (2004) were chosen for the evaluation of
the uncertainty of the coagulation process. The combined effect of fractal geometry and van
der Waals plus viscous interactions was taken into account, resulting in an error of +130 %,
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roughly corresponding to a doubling of the contribution of coagulation to PN losses between5

roadside station and the neighborhood.
Measurements of dry deposition velocities of particles for one particular surface type

generally vary by one order of magnitude for a given particle size range of a half logarithmic
decade (e.g. for different grassland and forest types; Petroff et al., 2008). Dry deposition
velocities for total PN (0.2–0.9 cm s−1), calculated with the reference case parameterization10

“KS2012 Urban”, correspond to the reported range of measured deposition velocity values.
Here, dry deposition velocity was scaled by factor 2 and 1/5 to evaluate the uncertainty of
the dry deposition process due to literature span of measured velocities. This resulted in an
error margin from −76 % to +64 % for the contribution from dry deposition.

For the mean traffic-related particle distribution, evaporation contributed 0.3 % to PN15

losses when assuming 0.005 ppb C22 + C28 and 100 % C22 in < 10 nm particles. Con-
densation and evaporation are uncertain processes due to the lack of measurements of
the gas-phase and particle phase concentrations of condensable compounds at the road-
side station. Oxidation of VOC from vehicular emissions may provide an additional source
of condensable material on the neighborhood scale. However, oxidized VOC in the back-20

ground air are expected to condense on the particles of the accumulation mode, increasing
their volume, rather than changing PN concentrations.

Additional emissions of particles on the travel path between the roadside station and the
background were not considered in the idealized scenario. Since the dilution process in the
model simulations was constrained with the measured size distribution at the background,25

the influence of additional particle emissions has been implicitly taken into account. How-
ever, if there are strong emission sources of ultrafine particles on the way, the momentary
particle size distribution might be perturbed. The error due to fluctuations of the dilution rate
caused by additional emissions was estimated to be −4 %.

The main uncertain parameter in the applied dilution scheme [Eqs. 1 and 2] is the initial
plume height at the roadside, Hm,0. Doubling Hm,0 resulted in a small error (−1 %) of the5

contribution of dilution to PN losses.
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It is concluded that errors due to the design of the scenario (dilution scheme, additional
emissions) are relatively small compared to the magnitude of the potential contribution of
coagulation and dry deposition to total PN losses between roadside station and the neigh-
borhood environment.10

3.7 The recommended simplified parametrizations of aerosol processes

As a first step of the implementation of a treatment of aerosol processes in urban air quality
models, a separation of PN to various size categories is required. Three particle number
concentration (PNC) categories were defined, as follows: PNC1 (8.5 nm<Dp < 25 nm; “Nu-
cleation mode”), PNC2 (25 nm <Dp < 100 nm; “Aitken mode”), and PNC3 (100 nm <Dp <15

500 nm; Acc). The upper boundary of 500 nm is justified because the contribution of large
particles (defined here as > 500 nm) to total PN concentration from vehicular exhaust is
negligible.

A first-order rate law for PNC in the three size categories (index k) was derived for number
concentration change with time due to dry deposition:

ln

(
PNCk

PNCk,0

)
= −

νd,k
Hm

× t (5)

Where PNCk,0 is initial concentration. The average dry deposition velocity νd,k was deter-
mined by fitting a linear regression model to the time series of modelled PNC1, PNC2, and
PNC3, from a MAFOR run initialized with the size distribution ”mean of traffic sites” (see5

Sect. 3.1) and dry deposition as only process.
In Eulerian models, dry deposition of particles can be implemented according to:

dPNCk
dt

∣∣∣∣
depo

= −PNCk
νd,k
Hgrid

(6)

Here Hgrid is the depth of the lowest grid level. Table 5 provides average dry deposition
velocity derived from the fit to Eq. (5). If applying the parameterization in a Gaussian model10
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then the deposition velocity is usually used to influence the reflection parameter (α) for the
reflected plume, e.g. using the following equation (Hanna et al., 1982):

αk(x) = 1−
2νd,k

νt + νd,k + (Uh− νtx)×σ−1
z

(
dσz
dx

) (7)

Where h is the effective plume rise and σz is the vertical dispersion coefficient. Gravitational
settling velocity νt in Eq. (7) can be neglected (set to zero) since only particle sizes below15

500 nm are relevant for determining PN concentrations.
Coagulation of particles can be implemented, rate according to:

dPNCk
dt

∣∣∣∣
coag

= −PNCk×
(
Kcoag,k×PNC0

k

)
(8)

Where Kcoag,k (in units cm3 s−1) is the average coagulation coefficient in a size category k
derived from MAFOR calculations, provided in Table 5. The expression in Eq. (8) neglects20

the production terms of coagulation. The superscript 0 indicates the number concentration
at the start of the time step calculation in Eulerian models. For Gaussian models this is
the calculated concentration before the inclusion of the decay rate due to any physical and
chemical processes considered for PNC.

Dry deposition and coagulation terms are applied separately for the three PNC classes.25

This means that coagulation between different size categories is not calculated explicitly
with the parameterization. However, inter-modal coagulation is partly taken into account
through the average coagulation coefficient derived from a model calculation that included
coagulation between all size bins. Since the average coagulation coefficient of a given size
category depends on the number concentrations in the other size categories, the predicted
coagulational loss for PNC1 and PNC2 of roadside size distributions that differ from the size
distribution ”mean of traffic sites” will be somewhat inaccurate.

The accuracy of the presented parameterization for aerosol processes for prediction of
PN concentrations is limited by three factors: first, by the averaging of process parame-5

ters over a certain size range; second by the simplified treatment of coagulation; and third
28
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by neglecting condensation and evaporation. The uncertainty of the parameterization was
studied by comparison with PN concentrations resulting from a detailed aerosol dynamics
calculation with MAFOR as reference. For the case “mean of traffic sites”, calculated total
PNC after 10 min travel time deviated from the reference solution by only 1 %, implying that10

the error introduced by size-averaged process parameters is negligible. When applying the
parameterization to campaign data, the deviation of the total PNC to the reference solution
was up to 10 %. UFP-Oslo Winter was excluded from the evaluation due the obvious influ-
ence of condensation as shown in Sect. 3.4. Increasing the number of PNC size categories
is expected to reduce the error due to neglecting coagulation between size categories. A15

parameterization with six PNC categories resulted in a deviation to the reference solution
by only up to 5 % (Table S3). In addition the parameterization is uncertain due to assump-
tions about particle shape, neglecting van der Waals forces as well as inaccurate measured
dry deposition velocities. It is however not affected by the specific treatment of dilution in
the idealized scenarios because the simplified PNC parameterization was derived with only20

one aerosol process activated.
Results of PN concentration modelling for Oslo using the simplified parameterization for

dry deposition and coagulation in the Eulerian urban dispersion model EPISODE (Slørdal
et al., 2003) are presented in Kukkonen et al. (2015).

4 Conclusions25

We have evaluated the significance of aerosol processes during the atmospheric trans-
port of particles on a timescale of one hour, i.e., from the roadside to the neighborhood
scale, based on measurement campaigns and modelling in three European major cities.
Most of the previous studies have been based on the results of one specific measurement
campaign. Our analysis included size distribution data from several campaigns that were
performed in different urban settings (street canyon, highway, and suburban main road),
exhibiting different traffic characteristics and dispersion conditions, at different times of the5

year. Monitoring was done with stationary or mobile platforms, and size distributions were
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measured with various aerosol instruments. An advantage of this study is therefore that the
results and conclusions about the relevance of aerosol processes do not depend critically
on the specific conditions in terms of emissions, meteorology, and dispersion of a single
campaign.10

We have used the one-dimensional multicomponent aerosol dynamics model MAFOR to
predict PN concentrations and number size distributions. We coupled this one-dimensional
model with a simplified treatment of the dilution of particle numbers. Three dispersion cases
that are common for northern and central Europe were simulated, ranging from stagnant
conditions to efficient dispersion. Despite the simple representation of atmospheric disper-15

sion, size distributions predicted by the aerosol model after approximately 10 min of travel
time (U = 3 m s−1) compared well with the size distributions measured at the respective
urban background sites.

A limitation of this study was that the chemical transformation of gas phase compounds
was not taken into account. It was not necessary to evaluate the nucleation of gas-phase20

vapors to form new particles, as the model simulations of this study were started at road-
side conditions (instead of the exit of the tailpipes of vehicles). It was investigated how
condensational growth might influence the shape of the particle size distribution between
roadside and the neighborhood scale. Condensational growth did not substantially affect
the temporal evolution of the PN concentrations in the presence of efficient and moderate25

dispersion conditions. The present study shows that growth by condensation can increase
the survival probability of very small particles. Condensation removes the smallest parti-
cles (Dp < 15 nm; Ketzel and Berkowicz, 2004) from the size distribution by growing them
to larger sizes, which are less affected by removal through dry deposition and coagulation.
An increase of the PN concentration was found between roadside and the neighborhood
scale due to condensational growth under inefficient dispersion conditions. This result dif-
fers from that in some previous studies, which stated that the total number concentration
between roadside and ambient is not substantially influenced by condensation and evapo-
ration (e.g., Ketzel and Berkowicz, 2004).5

30



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

It was found that dry deposition and coagulation of particles were generally relevant for
PN concentrations on timescales of the neighborhoods. However, as expected, these pro-
cesses were less relevant in efficient dispersion conditions. The relative relevance of co-
agulation compared to dry deposition depended on the concentrations of nanometer size
particles (< 50 nm).10

Coagulation is especially important for the removal of nanoparticles, in this study defined
as particles of the sizes 8–25 nm, which accounted for 70 % of the total PN of the mean
traffic-related aerosol.

The typical time scale of dry deposition of particles with 8–25 nm diameter in the urban
environment using different deposition schemes was 0.5–3 h. Average dry deposition veloc-15

ities were in the range of 0.2–0.9 cm s−1; similar with the range of 0.6–0.9 cm s−1 estimated
by Ketzel and Berkowicz (2004). Large differences between the two considered deposition
schemes were evident for very rough urban surfaces and for forests. Most of the urban envi-
ronmental surfaces are rough, and the influence of surface roughness on the dry deposition
seems to be pronounced, especially for those particles that are not deposited efficiently by20

diffusion and inertial processes (Hussein et al., 2012). A future refinement of the parame-
terization of dry deposition for use in urban models (Eq. (6) should take into account the
dependence of the deposition velocity on the underlying urban surface. The lack of mea-
surements of deposition velocities for ultrafine particles to various urban surfaces currently
impedes such a refinement.25

A simple parameterization of dry deposition and coagulation for urban air quality mod-
els was derived. The parameterization of dry deposition and coagulation can predict total
particle number concentrations between roadside and the urban background within an in-
accuracy of ∼ 10 %, compared to simulations with the fully size-resolved MAFOR model.
Inclusion of more PN data from other traffic sites and cities might improve the overall ac-
curacy of the parameterization. Potentially, the process of condensational growth might be
included in the framework of the current PN parameterization. However, new particle forma-
tion events in the urban background air, frequently associated with a prominent nucleation
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mode with peak diameterDp < 10 nm (Hussein et al., 2014), probably cannot be sufficiently5

accurately represented by such a simplified parameterization.
Computation of the aerosol evolution between the roadside station and the neighbor-

hood environment involved several assumptions and uncertain parameters. Due to the lack
of measurements of the gas-phase and particle phase concentrations of semi-volatile com-
pounds during the studied campaigns, the contributions from condensation and evaporation10

of condensable vapors emitted with the vehicle exhaust to PN changes are uncertain. Due
to the wide span of measured deposition velocities in literature, the contribution from dry
deposition to PN losses has an uncertainty range from −76 % to +64 %. The removal of
nanoparticles by coagulation is further enhanced when considering the fractal nature of
soot aggregates and the combined effect of van der Waals and viscous interactions. Taking15

into account these effects doubles the contribution of coagulation to PN losses between
roadside and neighborhood.

Mitigation policies for ultrafine particle pollution in the future would require the need for
operational modelling of PN on urban scales. The presented simplified parameterization
can be implemented in both Gaussian and Eulerian models. However, it would be recom-20

mendable to evaluate such modelling systems against measured PN data in various urban
settings.

Code availability

The computer code of the MAFOR aerosol dynamics model, version 1.8, can be made
available upon request (contact: Matthias Karl on email matthias.karl@hzg.de). The code
is written in FORTRAN 90.

The Supplement related to this article is available online at
doi:10.5194/acpd-0-1-2016-supplement.
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Table 1. Meteorological and dilution parameters used in the numerical computations on the evolu-
tion of the particle size distribution and PN between roadside and neighborhood time scales. No-
tation: U = wind speed at a height of 10 m, Hm = initial plume height at the roadside station, a,
b= Parameters of the particle dilution parameterization (y = a×x−b, where x is the distance from
roadside in meter). The moderate dispersion conditions were used for the reference case.

Dispersion cases Wind speed Initial plume Dilution parameter

U [m s−1] Hm,0 [m] a b

Moderate dispersion 3.0 0.9 40.0 0.5
Efficient dispersion 4.0 0.7 80.0 0.9
Inefficient dispersion 1.0 2.6 20.0 0.2
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Table 2. Dry deposition of particles to urban surfaces. Parameter values used in the modelling of
the reference case (all campaigns) and in the sensitivity cases for the dry deposition process. Nota-
tion: u∗ = friction velocity, z0 = roughness height, dcol = effective collector size, zC = canopy height,
F+ = effective roughness length. Values for F+ were adopted from Hussein et al. (2012) for corre-
sponding surface and vegetation types.

Case Surface type u∗ z0 dcol zC F+

[cm s−1] [m] [cm] [m] [–]

Urban Street and building 133 0.13 0.20 10.0 0.55
Low friction Street and building 27 0.13 0.20 10.0 0.55
High roughness Street and building 133 1.00 0.20 10.0 1.60
Green area without trees Grassland 36 0.01 0.40 0.20 0.50
Green area with forest Deciduous forest 75 1.00 1.00 12.0 2.25
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Table 3. Campaign number size distribution data used in this study. Notation: RT = roadside traffic
site, ST = street canyon traffic site, UB = urban background, RB = regional background.

City Campaign / Time Classification Name of station Data averaging Average total PN References
case period of location method [particles cm−3]

Bentickplein (ST) Mean 20 300
Rotterdam TRANSPHORM 6–19 May 2011 Suburban dN/dlog(Dp) This Study

Zwartewaalstraat (UB) 14 100
Cabauw (RB) 10 200 a

12 Dec 2007 Smestad (RT) Mean 24 000
Oslo UFP-Oslo – Suburban dN/dlog(Dp) b This Study

17 Apr 2008 Sofienberg park (UB) 9300

Highway Itäväylä, Median
Helsinki SAPPHIRE case I 23–28 Aug 2003 Suburban Herttoniemi (RT) dN/dlog(Dp) c 32 000 Hussein et al.,

at 65 m distance 2007
Kumpula (UB) 7200

Highway Itäväylä, Median
Helsinki SAPPHIRE case II 9–11 Feb 2004 Suburban Herttoniemi (RT) dN/dlog(Dp) c 55 100 Hussein et al.,

at 65 m distance 2007
Kumpula (UB) 11 300

Highway Itäväylä, 1 data record
Helsinki LIPIKA 17 Feb 2003 Suburban Herttoniemi (RT) (10 min average) 129 600 Pirjola et al.,

at 9 m distance 2006 and
Saunalahti bay, Mean 13 400 Pohjola et al.,
Herttoniemi (UB) dN/dlog(Dp) 2007

Mannerheimintie (ST), 1 data record 51 000
Helsinki MMEA 9–11 Feb 2004 Suburban Herttoniemi (RT) (10 min average) (25 800) Pirjola et al.,

at 0 m (or 8 m) distance 2012
Lääkärinkatu (UB) Mean 13 700

dN/dlog(Dp)
a Annual average (2011) at Cabauw.
b Weekdays, between 6 a.m. and 3p.m.
c Excluding night-time between 10p.m. to 6 a.m.
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Table 4. Contribution of processes coagulation (Coag), dry deposition (Dry dep), condensation
(Cond) and dilution (Dil) to percentage change of PN concentration ( %) between roadside station
and neighborhood environment after 30 min transport time for different dispersion conditions (i.e.
(∆PNprocess/(PN(initial)−PN(end)))×100 %; with ∆PNprocess being the change due to the respec-
tive process after 30 min).

City and campaign Efficient dispersion Moderate dispersion Inefficient dispersion

Coag Dry dep Cond Dil Coag Dry dep Cond Dil Coag Dry dep Cond Dil

Rotterdam TRANSPHORM 4.7 0.9 0.0 94.4 7.5 4.3 −0.1 88.4 12.9 16.6 −0.9 71.4
Oslo UFP-Oslo Tav 0.5 0.4 0.0 99.1 0.8 2.6 −0.1 96.8 4.1 15.1 −2.9 83.7
Oslo UFP-Oslo Winter 0.5 0.4 0.0 99.1 0.8 2.8 −0.1 96.5 4.4 16.8 −5.9 84.7
Helsinki SAPPHIRE Case I 0.4 0.3 0.0 99.3 0.7 3.2 0.0 96.1 4.6 18.3 −4.5 81.6
Helsinki SAPPHIRE Case II 0.7 0.4 0.0 98.8 1.2 2.4 0.0 96.3 7.3 14.8 −3.0 80.9
Helsinki LIPIKA 1.1 0.2 0.0 98.7 2.2 1.0 −0.1 95.9 12.5 8.7 −1.1 79.9
Helsinki MMEA 1.3 0.3 0.0 98.5 2.2 1.6 −0.1 96.2 12.0 9.2 −1.0 79.8

All campaigns
Range (min–max) 0.4–4.7 0.2–0.9 0.0 94.4–99.3 0.7–7.5 1.0–4.3 −0.1–0.0 88.4–96.8 4.1–12.9 8.7–18.3 −5.9– −0.9 71.4–84.7

City and campaign All dispersion conditions
Range (min – max)

Coag Dry dep Cond Dil

Rotterdam TRANSPHORM 4.7–12.9 0.9–16.6 −0.9–0.0 71.4–94.4
Oslo UFP-Oslo Tav 0.5–4.1 0.4–15.1 −2.9–0.0 83.7–99.1
Oslo UFP-Oslo Winter 0.5–4.4 0.4–16.8 −5.9–0.0 84.7–99.1
Helsinki SAPPHIRE Case I 0.4–4.6 0.3–18.3 −4.5–0.0 81.6–99.3
Helsinki SAPPHIRE Case II 0.7–7.3 0.4–14.8 −3.0–0.0 80.9–98.9
Helsinki LIPIKA 1.1–12.5 0.2–8.7 −1.1–0.0 79.9–98.7
Helsinki MMEA 1.3–12.0 0.3–9.2 −1.0–0.0 79.8–98.5

All campaigns
Range (min–max) 0.4–12.9 0.2–18.3 -5.9–0.0 71.4–99.3
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Table 5. Data required for the implementation of the PNC parameterization for dry deposition ac-
cording to three different methodologies and for coagulation. Typical urban times scales for dry
deposition (τdepo) and for coagulation (τcoag) is given as reference. MAFOR uses a large number of
bin sizes so the extracted coefficients for the three size categories are based on an integral/average
over a number of bins in the model. The initial size distribution ratio is the PN fraction in each PNC
category for the “mean of traffic sites” distribution. Dry deposition velocity and time scale was calcu-
lated with three different methods: KS2012 (Kouznetsov and Sofiev, 2012), H2012 (Hussein et al.,
2012), and S1985 (Schack et al., 1985).

Size Size Initial νd νd νd Kcoag τdepo τdepo τdepo τcoag

category ranges size distr. KS2012 H2012 S1985 KS2012 H2012 S1985
[nm] ratio [–] [cm s−1] [cm s−1] [cm s−1] [cm3 s−1] [h] [h] [h] [h]

PNC1 8.5–25 0.70 0.53 0.20 0.87 4.51×10−9 1.1 2.8 0.6 1.9
PNC2 25–100 0.29 0.12 0.08 0.19 3.10×10−9 4.7 6.7 2.9 6.6
PNC3 100–500 0.01 0.02 0.07 0.03 8.82×10−10 24 8.5 17 589
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Figure 1. Idealized scenario for model simulations with MAFOR to study aerosol processes be-
tween roadside and neighborhood scale. Model simulations start at the point where the exhaust
parcel (plume height typically 0.9 m) has approached the roadside traffic station. The simulations
are initialized with PN concentration and size distribution measured at roadside. Particle concentra-
tions in the exhaust air are diluted by background air with constant PN concentration.
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−Figure 2. Dry deposition velocity, νd (in m s−1) as function of particle diameter Dp (in µm), using
a particle density of 1400 kg m−3. The results with the model of Kouznetsov and Sofiev (2012)
(KS2012) are shown as black lines and the results with the model of Hussein et al. (2012) (H2012)
are shown as blue lines. The curve of “KS2012 Urban” (thick black line) represents the dry deposition
parameterization that is used in all model runs with MAFOR. The curves for cases “KS2012 Low
Friction” (dashed black line) and “KS2012 High Roughness” (dash-dotted black line) partly overlay
with the curve for “KS2012 Urban”.
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Figure 3. Measured size distribution data normalized to total PN concentration at different traffic sta-
tions: (a) Helsinki SAPPHIRE Case I, Helsinki SAPPHIRE Case II, Helsinki LIPIKA, Helsinki MMEA,
and (b) Oslo Smestad Tav case, Oslo Smestad Winter case, Rotterdam Bentinckplein. Urban back-
ground concentrations have not been subtracted. The “mean of traffic sites” curve (solid black line)
was constructed based on the mean of the size distribution curves for all traffic sites (Bentinck-
plein, Smestad, Itäväylä, Mannerheimintie) in all campaigns, after synchronization of the size bin
diameters. The “mean of traffic sites” curve is displayed in both panels (a, b).
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Figure 4. Size distributions (dN/dlogDp in particles cm−3) downwind of roads in selected cam-
paigns: (a) Oslo, UFP-Oslo Winter, (b) Rotterdam, (c) Helsinki SAPPHIRE Case I, and (d) Helsinki
MMEA. The plots show the measured distribution at roadside (black squares connected by line),
the measured distribution at urban background (black diamonds connected by line), the initial model
distribution (roadside: dashed red line, background: dashed black line) and the modelled distribu-
tions (resulting for moderate dispersion conditions) at distances of 60, 120, 240, 1800, and 3600 m,
respectively. Size distributions are shown with a lower size cut-off at 6 nm.

47



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 5. Contribution of aerosol processes to the percentage change of PN concentration ( %)
between roadside station and neighborhood environment for inefficient dispersion conditions after
30 min transport time in all campaigns.
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Figure 6. Contribution of processes to the percentage change of PN concentrations between road-
side station and neighborhood environment, and their associated uncertainty depicted as error bars.
Inset magnifies the contribution and uncertainty of the aerosol processes and additional emissions
of particles.
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