

Supplement of

The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou by a single particle aerosol mass spectrometer

G. Zhang et al.

Correspondence to: X. Bi (bixh@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

16 **1** The meteorological conditions over the study

 including solar radiation, temperature (Temp), relative humidity (RH), wind di (WD) and wind speed (WS), and air quality parameters (i.e., NO_x, SO₂, O₃, Pl shown in Fig. S1. These parameters were provided by Guangdong Enviror Monitoring Center (http://www.gdemc.gov.cn/). Ambient Temp, RH, and WS c study varied between 10.8–31 °C, 20.7–89.8%, and 0.2–3.9 m/s, with average of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	ological parameters,
 (WD) and wind speed (WS), and air quality parameters (i.e., NO_x, SO₂, O₃, Pl shown in Fig. S1. These parameters were provided by Guangdong Enviror Monitoring Center (http://www.gdemc.gov.cn/). Ambient Temp, RH, and WS c study varied between 10.8–31 °C, 20.7–89.8%, and 0.2–3.9 m/s, with average of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	(RH), wind direction
 shown in Fig. S1. These parameters were provided by Guangdong Enviror Monitoring Center (http://www.gdemc.gov.cn/). Ambient Temp, RH, and WS c study varied between 10.8–31 °C, 20.7–89.8%, and 0.2–3.9 m/s, with average of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	x, SO ₂ , O ₃ , PM ₁) are
 Monitoring Center (http://www.gdemc.gov.cn/). Ambient Temp, RH, and WS c study varied between 10.8–31 °C, 20.7–89.8%, and 0.2–3.9 m/s, with average of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	dong Environmental
 study varied between 10.8–31 °C, 20.7–89.8%, and 0.2–3.9 m/s, with average of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	RH, and WS over the
 of 21.2 °C, 59.9%, and 1.1 m/s, respectively. The concentration peaks for NO and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	with average values
 and PM₁ were often observed during the nighttime, due to the accumula pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	peaks for NO _x , SO ₂ ,
 pollutants under unfavorable meteorological conditions with lower WS and boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	he accumulation of
 boundary layer depth. 2 The mass spectral patterns for the single particle types The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	wer WS and lower
 27 28 2 The mass spectral patterns for the single particle types 29 The mass spectral characteristics are displayed in Fig. S4, and a brief deso 30 is provided as follows. 31 OC group: Mass spectra for OC particles mainly contain the OC markers, a 	
 28 2 The mass spectral patterns for the single particle types 29 The mass spectral characteristics are displayed in Fig. S4, and a brief desc 30 is provided as follows. 31 OC group: Mass spectra for OC particles mainly contain the OC markers, a 	
 The mass spectral characteristics are displayed in Fig. S4, and a brief desc is provided as follows. OC group: Mass spectra for OC particles mainly contain the OC markers, a 	pes
 30 is provided as follows. 31 OC group: Mass spectra for OC particles mainly contain the OC markers, a 	d a brief description
31 OC group: Mass spectra for OC particles mainly contain the OC markers, a	
	OC markers, and also

32 some other OC peaks such as $50[C_4H_2]^+$, $51[C_4H_3]^+$, $55[C_4H_7]^+$ and $63[C_5H_3]^+$. Besides,

33 a large peak at m/z 39 is also observed in mass spectra of OC, which might be explained

34 by coagulation between OC and 39[K]⁺ or condensation of organic species onto

35 biomass seed [Moffet et al., 2008]. Particle mass spectra in HMOC type show the

36 presence of m/z 50, 51, 63, 77, 91, 115, and 128 [Silva and Prather, 2000; Sodeman et

al., 2005]. By including the ion peak from sulfate/nitrate, OC particles were subdivised
into OC-S, OC-SN, and HMOC.

39 EC group: Mass spectra of LC-EC type are dominated by the distinct carbon ion 40 clusters ranged from m/z -120 to m/z 180, with minor ion intensities from other species. 41 SC-EC type is associated with short carbon clusters ions peaks ($C_n^{+/-}$, n < 6), generally 42 internally mixed with intense sulfate ion peak. Differently, NaK-EC type shows the 43 carbon ion clusters mainly in the negative mass spectra, combined with dominant peaks 44 from 23[Na]⁺ and 39[K]⁺ in the positive ones.

ECOC group: ECOC particles have typical carbon ion clusters $(12[C]^{+/-},$ 45 $24[C_2]^{+/-}, \ldots, 12n[C_n]^{+/-}$ with $36[C_3]^+$ as dominant fragments, together with OC 46 markers (e.g., $27[C_2H_3]^+$, $29[C_2H_5]^+$, $37[C_3H]^+$, and $43[C_2H_3O]^+$). K-rich particles 47 48 contain potassium (39[K]⁺), sulfate (-97[HSO₄]⁻), nitrate (-46[NO₂]⁻ and -62[NO₃]⁻), 49 and carbonaceous species (e.g., $12[C]^+$, $27[C_2H_3]^+$, $29[C_2H_5]^+$, $36[C_3]^+$, $37[C_3H]^+$, 50 $43[C_2H_3O]^+$, $-26[CN]^-$, $-42[CNO]^-$) as major components, similar to those reported in 51 other studies [Moffet et al., 2008; Silva et al., 1999]. The association of sulfate and/or 52 nitrate separated the ECOC particles into ECOC-S, ECOC-SN, K-S, K-SN, and K-N 53 [*Zhang et al.*, 2015].

Metal rich group: Peaks corresponding to **23**[Na]⁺, 39[K]⁺, 46[Na₂]⁺, 81/83[Na₂Cl]⁺, nitrate and chloride (-35[Cl]⁻ and -37[Cl]⁻) are present in mass spectra of Na-rich, indicating transport and evolution of sea salt particles [*Gaston et al.*, 2011; *Gaston et al.*, 2013]. Na-K type is characterized by dominant peaks from 39[K]⁺,

58	relatively less intense peak from $23[Na]^+$, nitrate and silicate (-76[SiO ₃] ⁻). They are
59	probably from dust and/or industry sources [Moffet et al., 2008]. Fe-rich type is
60	identified by strong peaks from iron at m/z 54, 56 and 57, according to their isotopic
61	components. Similarly, Pb-rich type is identified by strong peaks m/z 206-208, and Cu-
62	rich is characterized by the presence of isotopic peaks at m/z 63 and 65. Fe-Cu-Pb
63	represents the internally mixed Fe, Cu, Pb in the individual particles.

64

Fig. S1. Temporal profiles (in 1 h resolution) of PM₁, visibility, and black carbon (BC),
gaseous pollutants (SO₂, NO_x, and O₃) and meteorological parameters, during the 13th
October–26th November 2012 in Guangzhou.

Fig. S2. (a) Upper limit of light scattering signals and theoretical PSCS for PSL as a function of size (0.15, 0.3, 0.5, 0.72, 1, and 2 μ m) and (b) their relationship. For PSL, n = 1.59 and $\rho_{eff} = \rho_p = 1.054$ g cm⁻³.

Fig. S3. Mass spectra for the observed single particle types in the atmosphere of Guangzhouduring fall of 2012.

80 Fig. S4. Measured and best fit theoretical PSCS for OC-SN particle type.

78

79

82

81

Fig. S5. Measured and best fit theoretical PSCS for various particle types observedin the present study.

85 **REFERENCES**

- 86 Gaston, C. J., H. Furutani, S. A. Guazzotti, K. R. Coffee, T. S. Bates, P. K. Quinn, L. I.
- 87 Aluwihare, B. G. Mitchell, and K. A. Prather (2011), Unique ocean-derived particles
- serve as a proxy for changes in ocean chemistry, J. Geophys. Res.-Atmos., 116(D18310),
- 89 1-13, doi:10.1029/2010jd015289.
- 90 Gaston, C. J., P. K. Quinn, T. S. Bates, J. B. Gilman, D. M. Bon, W. C. Kuster, and K. A.
- 91 Prather (2013), The impact of shipping, agricultural, and urban emissions on single
- 92 particle chemistry observed aboard the R/V Atlantis during CalNex, J. Geophys. Res.-

93 Atmos., 118(10), 5003-5017, doi:10.1002/Jgrd.50427.

94 Moffet, R. C., B. de Foy, L. T. Molina, M. J. Molina, and K. A. Prather (2008), Measurement

95 of ambient aerosols in northern Mexico City by single particle mass spectrometry,

- 96 *Atmos. Chem. Phys.*, 8(16), 4499-4516.
- 97 Silva, P. J., D. Y. Liu, C. A. Noble, and K. A. Prather (1999), Size and chemical
- 98 characterization of individual particles resulting from biomass burning of local Southern
 99 California species, *Environ. Sci. Technol.*, *33*(18), 3068-3076.
- Silva, P. J., and K. A. Prather (2000), Interpretation of mass spectra from organic compounds
 in aerosol time-of-flight mass spectrometry, *Anal. Chem.*, 72(15), 3553-3562.
- 102 Sodeman, D. A., S. M. Toner, and K. A. Prather (2005), Determination of single particle
- 103 mass spectral signatures from light-duty vehicle emissions, *Environ. Sci. Technol.*,

39(12), 4569-4580.

- Song, X. H., P. K. Hopke, D. P. Fergenson, and K. A. Prather (1999), Classification of single
 particles analyzed by ATOFMS using an artificial neural network, ART-2A, *Anal. Chem.*, 71(4), 860-865.
- 108 Zhang, G. H., B. X. Han, X. H. Bi, S. H. Dai, W. Huang, D. H. Chen, X. M. Wang, G. Y.
- 109 Sheng, J. M. Fu, and Z. Zhou (2015), Characteristics of individual particles in the
- 110 atmosphere of Guangzhou by single particle mass spectrometry, *Atmos. Res.*, 153(0),
- 111 286-295, doi:10.1016/j.atmosres.2014.08.016.