

Response to the Editor:

Comments to the Author:

Dear Tao Luo,

The Referees that reviewed the revised version of your manuscript still identified a few minor issues. Before I can make a final decision about the publication of your manuscript, I would like you to address the Referee comments provided in this second round of reviews.

Thank you very much.

With best regards,

Matthias

Reply:

Dear Editor,

Thank you very much for your effort in improving this manuscript. We revised the paper according to reviewer's comments and suggestions. The detailed responses to the referees' comments are listed below. We hope that you now find the revised paper suitable for publication in ACP.

Best regards,

Tao

General response

The authors thank the reviewers for their helping to improve this manuscript and the English language. We greatly appreciate your detail comments and creative suggestions. We revised the paper according to your suggestions. Our replies to the comments are given below.

Anonymous reviewer #1

Anonymous during peer-review:

Yes No

Anonymous in acknowledgements of published article: **Yes** **No**

Recommendation to the Editor

1)	Scientific	Significance	Excellent	Good	Fair	Poor
	Does the manuscript represent a substantial contribution to scientific progress within the scope of this journal (substantial new concepts, ideas, methods, or data)?					
2)	Scientific	Quality	Excellent	Good	Fair	Poor
	Are the scientific approach and applied methods valid? Are the results discussed in an appropriate and balanced way (consideration of related work, including appropriate references)?					
3)	Presentation	Quality	Excellent	Good	Fair	Poor
	Are the scientific results and conclusions presented in a clear, concise, and well structured way (number and quality of figures/tables, appropriate use of English language)?					

For final publication, the manuscript should be

accepted as is

accepted subject to technical corrections

accepted subject to minor revisions

reconsidered after major revisions

I would be willing to review the revised paper, if the Editor considers it necessary

I would NOT be willing to review the revised paper

rejected

Please note that this rating only refers to this version of the manuscript!

Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final publication)

Review of Lou et al. “Marine boundary layer structure as observed by A-train satellites” revised from earlier draft. The manuscript is much improved and the quantitative analysis is appreciated. Please see the below comments.

Reply: Thanks you very much for your valuable comments. We revised the manuscript according to your comments. The detailed responses to the comments can be found below.

(1) Page 1, Line 16: Please clarify if these results are from the global or regional (E. Pacific) analysis

Reply: ‘over the eastern Pacific Ocean region’ was added.

(2) Page 6, lines 2-7: I’m a bit confused as to why an RMS difference in the U_{10m} produces an RMS difference in the SST value. Is an estimate of U_{10m} used to estimate SST by the AMSR-E algorithm?

Reply: Corrected. The sentences was rephrased to ‘Error in the data was estimated using the root mean square (RMS) difference between AMSR-E U_{10m} and U_{10m} coming from four other satellite microwave radiometers (three SSM/Is and TRMM TMI) and with U_{10m} from the satellite microwave scatterometer QuikScat (Wentz et al., 2003). This calculation gave an RMS difference of 0.92 m/s with a bias of 0.57 m/s in AMSR-E U_{10m} . The RMS difference between AMSR-E SST retrievals and the Reynolds SST is 0.76 K (Wentz et al., 2003).’

(3) Page 7, line 14: I believe the acronym for the high spectral resolution lidar is HSRL, not HRSL.

Reply: Corrected to ‘HSRL’ through out the manuscript.

(4) Page 7, lines 18-24: How many of the MAGIC transect soundings are cloud-free? If there was a high occurrence of clouds along the transect, such that most or all of the soundings sample cloudy conditions and the CALIPSO estimates are all cloud-free observations, the two data sets will sample different conditions.

Reply: We have visually checked the 20 transects with both HSRL and soundings available. Only 7 soundings (~2% of the total soundings) are under the cloud-free condition among total 345 soundings during these transects. Information was added.

Yes, most of the soundings sample cloudy conditions and the CALIPSO estimates are all cloud-free observations. Thus, the two data sets sampled different cloud conditions. The purpose of the evaluations of CALIOP with MAGIC soundings was to show that the CALIOP-observed clear-sky MBL structure could be similar to the structure of the nearby cloudy-sky MBL. As can be seen in Fig. 2 (a), the CALIOP-derived cloud-free MBL structure capture a similar spatial trend as the results from MAGIC soundings, but systematical differences can be found between the two datasets mainly due to sampling different cloudy conditions.

(5) Page 9, line 10: Remove the word “between”

Reply: Removed.

(6) Page 9, line 11: Here you state that these are small mean bias values, but biases of 60-120 m on a background value of 500 – 1500 m seems rather large. Also, it seems as though you are stating that a small bias when comparing MPL to radiosondes implies a small bias when comparing CALIPSO to radiosondes and this is not the case.

Reply: The mean BLH is ~1.2 km and the mean MLH is ~0.69km. The bias of -0.12 in BLH and of 0.06 km and MLH correspond to ~10% of uncertainties. Therefore, our lidar based BLH and MLH determinations for clear-sky MBL can be considered accurate, especially from remote sensing point of view. The similar performance of lidar methodology can be expected in the CALIOP observation, though the biases in CALIOP observation is slightly larger than those in ground-based MPL results due to the noisy

CALIOP signals. The bias in CALIOP-derived BLH is -0.14 km and the bias in CALIOP-derived MLH is 0.1km when comparing to MAGIC soundings. The bias in CALIOP-derived BLH is small (-0.06 km) when comparing to stratiform cloud top height, but the RMSE is quite large (0.54 km). However, those biases are acceptable for satellite retrievals, especially for a statistical study.

Changed ‘These small values of mean bias indicate that our CALIOP based BLH and MLH determinations for clear-sky MBL can be considered accurate.’ to ‘These values of mean bias indicate that our lidar based BLH and MLH determinations for clear-sky MBL can be considered accurate.’

(7) Page 9, line 20-21: You state that the CALIOP MBL structure appears differently from the radiosonde results. Could this be due to the CALIPSO observations not containing any stratiform clouds (because they are cloud-free)?

Reply: Yes, the different cloud conditions in these two observation datasets can be the reason for the difference. Relative statement was added.

(8) Page 10, lines 6-7: Can you comment on the large RMSE values (relative to the BLH value) and why you state there is good agreement with these large errors.

Reply: The large RMSE may relate to cloud top detrainment or cloud edge local circulations. However, the mean bias of 0.06 km corresponds to ~5% of uncertainty and the correlation between each other is correlation coefficient of 0.66 at the confidence level of 0.01. Therefore, those two have good agreement.

Relative statements were added.

(9) Page 12, lines 11-14: This is hard to see in the figures because the label blocks some of the figure and EIS>4 is cut off

Reply: The label of figures was moved so as not to block some of the figure. The upper range of y-axis was changed to 6 K now.

(10) Page 13, lines 1-6: Do you have an explanation for why the correlation changes

sign at 135W?

Reply: We don't have a good explanation for the sign change in correlation coefficients. There could be other factors other than EIS controlling the Sc occurrence, which will be investigated in our future work.

(11) Page 13, line 9: I believe 80 degrees, should be 80 degrees W

Reply: Changed to -80° .

(12) Page 14, lines 7-9: The strong error bars on Fig. 6a mean that you cannot clearly distinguish between $EIS < 0$ and $EIS > 10$ so you cannot claim EIS controls decoupling. You can only suggest that this could be part of the cause.

Reply: Changed as suggested.

(13) Page 14, lines 15-23: Why would weaker inversions measured by LTS imply less decoupling, but weaker inversions as measured by EIS imply more decoupling?

Reply: The EIS is an estimation of the inversion near the mixing layer top, which control the entrainment process. The weaker the inversion near the mixing layer top, the stronger the entrainment process, and the more the MBL decoupling.

Under the same EIS, our observation shows that weaker LTS cases usually correspond to cases with larger sea-air temperature difference (corresponding to larger latent heat flux) and higher U_{10m} , which prompt stronger turbulence mixing and result in deeper mixing layers. Therefore, weaker LTS under the same EIS implies less decoupling. However, further investigation is needed to understand the essential connection between the large-scale stability and near surface turbulence parameters by combining observations and model simulations.

Relative statements were added.

(14) Page 15, line 15: Is this a 25 km AMSR-E footprint or a 0.25 degree footprint as stated on line 18?

Reply: Changed to '0.25°'.

(15) Figure 6: You give the standard deviations for figures 6b and 6c, but they are not shown on the figure. Where did these numbers come from?

Reply: The standard deviations were calculated in each data bin in figures 6 and are ~ 0.2 for data in figures 6 (a) and (b), and ~ 0.1 for data in figures 6 (c). The plots look too busy when adding the standard deviations, so we only provide the numbers for figures 6b and 6c.

Anonymous reviewer #2

Anonymous during peer-review: Yes No

Anonymous in acknowledgements of published article: Yes No

Recommendation to the Editor

1)	Scientific	Significance	Excellent	Good	Fair	Poor
	Does the manuscript represent a substantial contribution to scientific progress within the scope of this journal (substantial new concepts, ideas, methods, or data)?					
2)	Scientific	Quality	Excellent	Good	Fair	Poor
	Are the scientific approach and applied methods valid? Are the results discussed in an appropriate and balanced way (consideration of related work, including appropriate references)?					
3)	Presentation	Quality	Excellent	Good	Fair	Poor
	Are the scientific results and conclusions presented in a clear, concise, and well structured way (number and quality of figures/tables, appropriate use of English language)?					

For final publication, the manuscript should be
accepted as is

accepted subject to **technical corrections**

accepted subject to minor revisions

reconsidered after **major revisions**

I would be willing to review the revised paper, if the Editor considers it necessary

I would NOT be willing to review the revised paper

rejected

Please note that this rating only refers to this version of the manuscript!

Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final publication)

Both the text and the figures in the paper have improved a lot. Thank you for those efforts. I noticed a few remaining minor issues (and no doubt missed a few more). The page numbers refer to the version 2 document (including the replies to the reviewers)

Reply: Thanks you very much for your valuable comments. We revised the manuscript according to your comments. The detailed responses to the comments can be found below.

Minor comments:

(1) Page 29 Line 16 does not strong enough ◊ is not strong enough

Reply: Corrected.

(2) Page 32: Line 2 rephrase: ‘cloud type were obtained from the 2B-CLDCLASS-1 LIDAR product (Wang et al., 2012; Sassen and Wang 2012) with combining

CloudSat and CALIOP observations, allowing better identify the cloud boundaries.'

Reply: Rephrased to ' Cloud top height (CTH) and cloud type were obtained from the 2B-CLDCLASS-LIDAR product (Wang et al., 2012; Sassen and Wang 2012). This product combines CloudSat and CALIOP observations to better identify the cloud boundaries.'

(3) Page 33: Line 13 as -> of

Reply: This sentence was changed to 'The RMS difference between AMSR-E SST retrievals and the Reynolds SST is 0.76 K (Wentz et al., 2003)'.

(4) Page 37: Line 17 described in the previous section

Reply: Corrected.

(5) Page 39: Line 28 rephrase "When distant away from the coast"

Reply: Changed to 'when moving away from the coast'.

(6) Page 40: Line 7: It then decreases west southward towards the tropics.

Reply: Corrected

(7) Page 41: Define MABL (only occurrence in text). I guess you mean MBL here but cannot be completely sure.

Reply: Changed to 'MBL'.

1 **Marine Boundary Layer Structure as Observed by A-train**
2 **Satellites**

3
4
5 **Tao Luo, Zhien Wang, Damao Zhang and Bing Chen**

6 University of Wyoming, Dept. Atmospheric Science, Laramie, WY, USA
7 Correspondence to: Z. Wang (zwang@uwyo.edu)

8
9 **Abstract**

10 The marine boundary layer (MBL) structure is important to the marine low cloud processes,
11 and the exchange of heat, momentum, and moisture between oceans and the low atmosphere.
12 This study examines the MBL structure over the eastern Pacific region and further explores
13 the controlling factors of MBL structure over the global oceans with a new 4-year satellite-
14 based dataset. The MBL top (BLH) and the mixing layer height (MLH) were identified using
15 the MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared
16 Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with
17 MLH/BLH ratio ranging from ~0.5 to ~0.8 [over the eastern Pacific Ocean region](#). The MBL
18 decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in
19 turn controls the cloud top entrainment process. The systematic differences between drizzling
20 and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to
21 the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the
22 MBL shows a similar decoupled structure for clear sky and cumulus cloud-topped conditions,
23 but is better mixed under stratiform cloud breakup and overcast conditions.

24 **1 Introduction**

25 The planetary boundary layer is the lowest part of the troposphere that is directly influenced
26 by the Earth's surface. It is considered to be important for the exchange of heat, momentum,
27 and moisture between the surface and the upper troposphere (Stull, 1988). Over oceans, the
28 marine boundary layer (MBL) clouds are frequently present within the MBL, making

1 significant contributions to the energy and moisture budgets of the earth because of their high
2 albedo (Klein and Hartmann, 1993; Norris and Leovy, 1994; Norris, 1998; Wood and
3 Bretherton, 2004). Despite decades of research efforts, the MBL clouds are still one of the
4 primary contributors to the uncertainty in the model predictions of climate change (Bony and
5 Dufresne, 2005; Randall et al., 2007; Wyant et al., 2015). Because of the close interactions of
6 MBL clouds with the vertical structure and turbulence of the MBL, the representation of
7 convection and MBL processes is critical to the successful climate simulations (Randall et al.
8 1985; Albrecht et al., 1995; Bony and Dufresne, 2005; Wyant et al., 2010; Zhang, et al.,
9 2011).

10 The decoupling of the MBL is frequently observed at the downwind of the subtropical
11 stratocumulus regions when the turbulence is not strong enough to maintain a well-mixed
12 MBL, especially when the MBL is higher than 1km (Bretherton and Wyant, 1997; Wood and
13 Bretherton, 2004; Jone et al., 2011; Caldwell et al., 2012). A wide range of factors controls
14 the MBL decoupling. Bretherton and Wyant (1997) suggested that the decoupling structure is
15 mainly driven by an increasing ratio of the surface latent heat flux to the net radiative cooling
16 in the cloud and that other factors such as drizzle, the vertical distribution of radiative cooling
17 in the cloud, and sensible heat fluxes, only play less important roles. Meanwhile, Zhou et al.
18 (2015) showed that the entrainment of the dry warm air above the inversion could be the
19 dominant factor triggering the systematic decoupling, while surface latent heat flux,
20 precipitation, and diurnal circulation did not play major roles.

21 The MBL structure and processes are still not well understood with observations mainly
22 limited to specific case studies in early studies (Wood and Bretherton, 2004). The boundary
23 layer structure can be derived from ground-based observations such as sounding (Seidel et al.,
24 2010) or lidar (Emeis et al. 2008). However, ground-based observations of the MBL over the
25 global oceans are sparse and may be not representative. Wood and Bretherton (2004) were the
26 first to attempt a combination of MODIS and reanalysis data to study the MBL decoupling,
27 though this passive remote sensing cannot produce direct measurements of MBL structures.

28 New satellite-based observations allow innovative ways to observe the boundary layer
29 structure. The global boundary layer height (BLH) climatology has been derived by using
30 Global Positioning System radio occultation (GPS-RO) measurements (Ratnam and Basha,
31 2010; Guo et al, 2011; Ao et al, 2012), the Lidar In-space Technology Experiment (LITE)
32 (Randall et al., 1998), the Geoscience Laser Altimeter System (GLAS) (Palm et al., 2005),

1 and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) (Jordan et al., 2010,
2 McGrath-Spangler and Denning, 2012, 2013). GPS-RO provides a valuable global view of
3 height-resolved refractivity or moisture structure of boundary layer, but suffers with very
4 coarse spatial resolutions (200 m in vertical and ~200 km horizontal) and has limited
5 penetration into the lowest 500 m of the atmosphere (Xie et al, 2012). Satellite-based lidar is
6 sensitive to boundary layer aerosols and clouds, providing global measurements of aerosol
7 properties and their vertical distributions. As the aerosol vertical distribution in the boundary
8 layer is heavily influenced by the boundary layer thermal structure, aerosol structures were
9 used as a good proxy to study the MBL structures (Stull and Eloranta, 1984; Boers et al.,
10 1984; Melfi et al., 1985; Boers and Eloranta, 1986; Leventidou et al., 2013; Luo, et al., 2014a;
11 Kong and Fan, 2015).

12 Early studies have shown that satellite-based lidar is effective at deriving global BLH
13 distributions (Randall et al., 1998; Palm et al., 2005; Jordan et al., 2010; McGrath-Spangler
14 and Denning, 2012, 2013). This is especially true when using CALIOP observations, because
15 of their much finer vertical (30m) and horizontal resolution (333m) in the lower troposphere.
16 The aforementioned studies used gradient or variance methods over land and ocean under all-
17 sky or no-optically-thick-cloud conditions. Over land, the gradient or variance methods could
18 identify the BLH, which is usually lower than the aerosol layer (Luo et al., 2014a). However,
19 over oceans, the BLH is associated with the aerosol layer top (clear sky) or stratiform cloud
20 top (cloudy sky). Under decoupled MBL conditions, a well-mixed layer usually exists below
21 the BLH with a stronger gradient in aerosol loading near the mixed layer height (MLH) than
22 near the BLH (Luo, et al., 2014a). Thus, the aforementioned studies have the potential to
23 report MLH as BLH as they did not fully consider the MBL decoupled structure in choosing
24 lidar methodologies. In the MBL, difficulties in differentiating between the stratiform clouds
25 and cumulus clouds could lead to BLH uncertainties, as the cumulus cloud top heights are
26 often higher than the BLH. Those issues could result in statistical biases in marine BLH
27 distributions differences in reported values and spatial distributions of the BLH over ocean
28 among early studies.

29 After considering the MBL decoupling structure, a new CALIOP based approach was
30 developed to reliably determine BLH and MLH in order to investigate the clear-sky MBL
31 decouple structure (Luo, et al., 2014a). This study uses this new method to investigate the
32 MBL decouple structure over the eastern Pacific Ocean region using CALIOP observations,

1 and combining CloudSat observations with reliable cloud type identification to provide BLH
2 information under stratiform-cloud-topped conditions. The authors also present an
3 examination of the dependence of the MBL decoupled structure on environmental parameters
4 over global oceans. Section 2 describes the data used in this study. Section 3 introduces and
5 evaluates the lidar MBL structure identification methodology with the ship-base observations.
6 Section 4 presents the results and discussions, and brief conclusions are in section 5.

7 **2 Data**

8 **2.1 Satellite Observations and Data Collocation**

9 This study uses multiple remotely sensed and operational meteorological datasets over global
10 oceans during the period from June 2006 to December 2010.

11 Clear-sky MBL structure was determined from the cloud-free CALIOP measured aerosol
12 backscattering with the cloud-free condition defined as no cloud below 8km, although cases
13 with optically thin high clouds above 8km are included. CALIOP is a dual-wavelength (532
14 and 1064 nm) backscatter lidar, which is carried on the Cloud-Aerosol Lidar and Infrared
15 Pathfinder Satellite Observations (CALIPSO) (Winker et al., 2007; Winker et al., 2009). At
16 532 nm, the CALIOP provides both the parallel and perpendicular polarization components of
17 attenuated backscatter. The along-track footprint of CALIOP is 333m with the vertical
18 resolution of 30m below 8.2 km. CALIOP level 1B data provide three calibrated and geo-
19 located lidar profiles of 532nm and 1064nm total attenuated backscatter (TAB) and 532nm
20 perpendicular polarization component. The molecular backscattering was estimated using the
21 temperature and pressure profiles from the ECMWF-AUX (European Center for Medium
22 range Weather Forecasting AUX-algorithm, Partain, 2004).

23 CloudSat carries a 94 GHZ cloud profiling radar (CPR) (Stephens et al., 2002). The CloudSat
24 antenna pattern provides an instantaneous footprint at mean sea level of approximately 1.3
25 km, while vertically it has 125 bins with a bin size of about 240m. Cloud top height (CTH)
26 and cloud type were obtained from the 2B-CLDCLASS-LIDAR product (Wang et al., 2012;
27 Sassen and Wang 2012). [This product combines](#) CloudSat and CALIOP observations [to](#) better
28 identify the cloud boundaries. In order to produce clear-sky aerosol information, cloudy
29 CALIOP profiles were removed from further averaging. And the cloudy BLH was estimated
30 from the CTH of marine stratiform clouds, which was a good proxy for estimating the marine
31 BLH under cloudy conditions and has been widely used in the previous studies (Minnis et al.

1 1992; Wood and Bretherton 2004; Ahlgrimm and Randall 2006; Zuidema et al. 2009;
2 Karlsson et al., 2010). Classification of drizzle within the Cloudy MBL was performed by
3 applying a threshold of -20 dB (Leon et al., 2008) to the CloudSat CPR measured reflectivity
4 factor in CloudSat 1B-CPR product (Tanelli et al., 2008).

5 The atmospheric large-scale stability parameters used in this study include lower tropospheric
6 stability (LTS) (Klein and Hartmann 1993), and estimated inversion strength (EIS) (Wood
7 and Bretherton 2006). LTS is calculated using the difference in potential temperature between
8 700 hPa and the surface ($\theta_{700} - \theta_{\text{surface}}$), whereas EIS is the difference between LTS and $\Gamma_{850} *$
9 ($Z_{700} - \text{LCL}$), where, Γ_{850} is the moist adiabatic lapse rate at 850hPa, LCL is lifting
10 condensation level, and Z_{700} is the height at 700hPa. EIS is considered a more precise
11 measure of the strength of a possible inversion than the LTS. EIS and LTS were estimated
12 from AIRS (the Atmospheric Infrared Sounder) level 2 version 5 products (Jason, 2008).
13 AIRS is a grating spectrometer carried on Aqua. It has a spectral resolution of $\nu/\Delta\nu \approx 1200$, a
14 total of 2378 channels in the range of 3.7–15.4 μm with a few spectral gaps, and provides
15 well-calibrated level 1B radiances (Overoye, 1999). AIRS is co-registered with AMSU
16 (Pagano et al., 2003; Lambrightsen and Lee, 2003), and the combined measurements are used
17 to retrieve temperature, humidity and numerous other surface and atmospheric parameters.
18 Geophysical retrievals are obtained in clear sky and broken cloud cover through the use of a
19 cloud-clearing methodology (Susskind et al., 2003). Though there is no retrieval under
20 overcast conditions, AIRS can provide a reasonable measure of the seasonal mean EIS as
21 compared to model simulations (Yue et al., 2001). Additionally, the AIRS-derived EIS has
22 strong connection with low cloud (Yue et al., 2001), making the, seasonal-mean EIS
23 appropriate for the analysis of the MBL cloud behaviors in this paper.

24 The sea surface temperature (SST) and surface wind speed at 10m ($U_{10\text{m}}$) were obtained from
25 AMSR-E Level 3 daily Ocean Products version-7 (Wentz et al., 2014). The Advanced
26 Microwave Scanning Radiometer - Earth Observing System (AMSR-E) is a twelve-channel,
27 six-frequency, passive-microwave radiometer system (Kawanishi et al, 2003). It measures
28 horizontally and vertically polarized brightness temperatures at 6.9, 10.7, 18.7, 23.8, 36.5, and
29 89.0 GHz. Spatial resolution of the individual measurements varies from 5.4 km at 89 GHz to
30 56 km at 6.9 GHz. AMSR-E is co-located with AIRS and AMSU onboard Aqua and in the A-
31 train with CALIPSO; thus, the instruments are sampling similar conditions and the same time
32 of day. The daily AMSR-E Ocean Products are produced by Remote Sensing Systems (RSS,

1 http://www.remss.com/). The orbital data is mapped to 0.25° grid box and is divided into 2
2 maps based on ascending and descending passes for daytime and nighttime orbits. Error in the
3 data was estimated using the root mean square (RMS) difference between AMSR-E U_{10m} and
4 U_{10m} coming from four other satellite microwave radiometers (three SSM/Is and TRMM
5 TMI) and with U_{10m} from the satellite microwave scatterometer QuikScat (Wentz et al.,
6 2003). This calculation gave an RMS difference of 0.92 m/s with a bias of 0.57 m/s in
7 AMSR-E U_{10m} . The RMS difference between AMSR-E SST retrievals and the Reynolds SST
8 is 0.76 K (Wentz et al., 2003). Validation using data from a buoy (National Data Buoy
9 Center, NDBC) U_{10m} (mean value of 6.61 m/s) gave an RMS difference with AMSR-E U_{10m}
10 (mean value of 6.46 m/s) is 1.63 m/s with a bias of -0.15 m/s (Luo et al., 2015). Validation
11 with NDBC buoy SST (mean value of 299.49 K) in this study showed that the RMS
12 difference in AMSR-E SST (mean value of 299.26 K) is 0.99 K with a bias of -0.23 K.

13 All the related datasets were collocated into AMSR-E 0.25° grid-box and cloud-free CALIOP
14 backscattering profiles are then averaged. CALIOP backscattering profiles with no cloud
15 below 8km (including cases with clouds above 8km) were averaged. Thus, within each 0.25°
16 grid-box, there are three general conditions of the MBL: 100% cloud cover, partial cloud
17 cover, and cloud-free. For the 100% cloud cover the BLH is determined from stratiform CTH.
18 For the partial cloud cover, and cloud-free conditions the daily day- or night- averaged cloud-
19 free CALIOP measurements are used to determine BLH and MLH. The following analyses
20 only present data taken over the oceans (within 50° N and 50° S, and at least 200km away from
21 continental boundaries), but include both daytime and nighttime observations. The MBL
22 aerosol identifications are the same as in Luo et al. (2014a).

23 **2.2 MAGIC and Collocated Satellite Observations**

24 The Marine ARM GPCI (GCSS Pacific Cross-section Intercomparison, a working group of
25 GCSS; GCSS is GEWEX Cloud Systems Study) Investigation of Clouds (MAGIC) field
26 campaign (<http://www.arm.gov/sites/amf/mag/>) deployed the U.S. Department of Energy
27 (DOE) Atmospheric Radiation Measurement Program Mobile Facility 2 (AMF2) on the
28 commercial cargo container ship Horizon Spirit from October 2012 through September 2013
29 with 20 round trips (Lewis et al., 2012; Zhou et al., 2015). The MAGIC transect is the line
30 from the coast of California to Hawaii (35.8° N, 125.8° W to 18° S, 173.8° W) and was
31 undertaken to provide unprecedented, intra-seasonal, high-resolution ship-based observations
32 in order to improve the understanding of the Sc-to-Cu (Stratocumulus-to-Cumulus) transition

1 along this transect. The AMF2 contained a state-of-the-art instrumentation suite and was
2 designed to operate in a wide range of climate conditions and locations, including shipboard
3 deployments.

4 This study used atmospheric soundings and MARMETX (marine meteorological
5 measurements) datasets to characterize MBL structure. Standard radiosondes (Vaisala model
6 MW-31, SNE50401) were launched every 6-hour to measure vertical profiles of the
7 thermodynamic state of the atmosphere (temperature, pressure, relative humidity, and wind
8 speed and direction). The MARMETX dataset
9 (<http://www.arm.gov/campaigns/amf2012magic/>) contains standard surface meteorological
10 parameters measured by the MARMET: temperature (T), pressure (P), relative humidity
11 (RH), and apparent and true wind speed and direction; and the sea surface skin temperature
12 measured by the Infrared Sea surface Temperature Autonomous Radiometer (ISAR) with an
13 accuracy of better than 0.18°C.

14 The high spectral resolution lidar ([HSRL](#), Shipley et al., 1983; Piironen and Eloranta, 1994)
15 measuring total attenuated backscattering was also used to document the aerosol and cloud
16 distributions. Because of the high occurrence of the cloud along the MAGIC transect, the
17 lidar-based MBL structure identification method was not applied to the [HSRL](#) observations.

18 To evaluate the satellite-retrieved MBL structure with results from MAGIC soundings, the
19 cloud-free CALIOP observations within a 2.5° grid-box and within 1 day of MAGIC
20 soundings during October 2012 through September 2013 were collocated. The loose
21 restriction was applied in the collocation, because limited MAGIC soundings, poor spatial
22 coverage of CALIOP measurements, and high occurrence of clouds in the region [\(only ~2%
23 of the total soundings are under the cloud-free condition\)](#). The cloud-free CALIOP profiles
24 were firstly averaged into 0.25° grid-box to improve the signal-to-noise ratio. Then the MBL
25 structure were identified and averaged into the 2.5° grid-box.

26

27 **3 MBL Structure Identification Methodology**

28 **3.1 MBL structure identification methodology for radiosonde**

29 For radiosonde, the BLH was determined by the Richardson number (RI) method (with the
30 Eq. (2) in Vogelegang and Holtslag, 1996). This method determines the BLH as the height at

1 where RI is larger than the critical value (= 0.25). The RI method is suitable for both stable
2 and convective boundary layers. This method gives the BLH more physical meaning as it
3 relates the derived BLH to boundary layer processes - surface heating, wind shear and
4 capping inversion. Also, RI method does not produce a negative BLH, as it does not depend
5 strongly on the sounding vertical resolution of the sounding. Therefore, the RI method is
6 often considered as the best estimation against which to evaluate lidar based BLH estimations
7 (Hennemuth and Lammert, 2006; Seidel et al, 2010).

8 Figure 1 presents one transect HSRL and potential temperature from MAGIC measurements.
9 It is clear that the BLHs from the RI method correspond well with the aerosol layer tops, or
10 stratiform clouds tops over the stratiform cloud region (eastern than longitude of $\sim 137^\circ$).
11 There is also some correspondence of BLHs with the highest cumulus clouds tops over the
12 cumulus cloud region (western than longitude of $\sim 137^\circ$). Over the cumulus cloud region the
13 MBL becomes obviously decoupled, and there is usually one or more weak inversion layers
14 below the RI determined BLH. The lowest inversion layer usually limits the upward
15 transportation of the aerosols to form a layer, forming a layer with more concentrated aerosols
16 than that above (this can also be seen in Figure 4 in Luo et al. (2014a)). This inversion can also
17 limit the vertical developments of the small cumulus clouds that may form in the mixing
18 layer. This characteristic allows the identification of MLH height as the base of the lowest
19 inversion layer with inversion strength larger than 0.05K/100m in radiosonde potential
20 temperature profiles. This threshold was chosen based on visual check of all MAGIC
21 transects.

22 **3.2 MBL structure identification methodology for CALIOP**

23 As detailed in Luo et al. (2014b), the BLH can be determined with an improved threshold
24 method using a threshold $\beta'_{thr} = \beta'_m + 2 * MBV$ applied to the marine aerosol backscattering
25 coefficient profile retrieved from collocated CALIOP level 1B data. In this equation, β'_m is
26 the molecular backscattering coefficient, estimated by temperature and pressure profiles from
27 ECMWF-AUX products; MBV is the measured backscatter variation, estimated as the
28 standard deviation of measured attenuated backscatter coefficients from 30 to 40 km.

29 The MLH was identified by the gradient method (Luo et al., 2014a). The gradient of aerosol
30 backscattering coefficient is calculated after three points moving average smoothing. After

1 smoothing, the MLH is determined to be the lowest point with an aerosol backscattering
2 coefficient gradient larger than 2 times of the molecular backscattering gradient.

3 The evaluation of lidar methodology with radiosonde soundings were performed with 2-year
4 (2007-2008) clear-sky Atmospheric Radiation Measurement Program (ARM) Climate
5 Research Facility (ACRF) radiosonde and micro pulse lidar (MPL) observations (Xie et al.,
6 2010, Mather and Voyles, 2013) collected from Nauru (marine site). Detailed data process
7 can be found in Luo et al. (2014a). When compared to radiosonde-derived BLH, the bias and
8 root mean square error (RMSE) of MPL derived BLH is -0.12 ± 0.24 km with a correlation
9 coefficient of 0.75. When compared to radiosonde-derived MLH, the bias and RMSE of MPL
10 derived MLH is -0.06 ± 0.16 km with a correlation coefficient of 0.66. An overall
11 comparison of radiosonde-derived to MPL derived MLH/BLH produces a bias and RMSE of
12 -0.02 ± 0.1 and a correlation coefficient of 0.61. All the correlation coefficients are reported at
13 confidence level of 0.01. These values of mean bias indicate that our lidar-based BLH and
14 MLH determinations for clear-sky MBL can be considered accurate.

15 Further evaluations were performed with loosely collocated CALIOP and MAGIC
16 observations. While only cloud-free CALIOP profiles can be used to derive the MBL
17 structure, the soundings were measured in all-sky conditions (mostly cloudy conditions) (Fig.
18 1). Figure 2 shows the comparisons of MBL structure between radiosonde and CALIOP
19 measurements. The mean MBL structure by CALIOP and radiosonde along the MAGIC
20 transect is shown in Fig. 2 (a). Both results show a similar trend in the MBL structure, being
21 less decoupled near the coast and more decoupled over the far ocean. The heights of the
22 CALIOP-derived BLH and MLH are lower than those derived from the radiosonde. Over the
23 stratiform cloud regions, the CALIOP-derived MBL structure appears more decoupled than in
24 the radiosonde results, which could be resulted from different cloud conditions sampled by
25 these two observation datasets. However, the CALIOP-derived BLH shows good agreement
26 with those from radiosonde as shown in Fig. 2 (b). The bias and RMSE in CALIOP-derived
27 BLH were calculated to be -0.14 ± 0.37 km, with a correlation coefficient of 0.56 at the
28 confidence level of 0.01. For CALIOP-derived MLH, the bias and RMSE is -0.1 ± 0.45 km
29 with a correlation coefficient of 0.34 at the confidence level of 0.01. Although the biases are
30 small, the RMSE differences are large, mainly as a result of limited sampling and large spatial
31 mismatch, and different cloud conditions. This is especially true over the stratiform cloud
32 region where the cloud fraction in the MBL is very high (Fig. 1). In this area the collocated

1 cloud-free CALIOP profiles are often too far from the sounding observations to produce a
2 strong correlation. However, Fig. 2 clearly shows that the CALIOP-observed clear-sky MBL
3 structure captures a similar spatial trend as those from the nearby cloudy-sky MBL.

4 Additionally, the radiosonde-derived MLH agrees well with the LCL (Fig. 2(b)), with the bias
5 and RMSE of -0.13 ± 0.21 km, and with a correlation coefficient of 0.73 at the confidence
6 level of 0.01. Figure 2(d) shows [the comparison between](#) the CALIOP-derived BLH and
7 stratiform CTHs (CTH_{sc}) within the same AMSR-E grid box over the eastern Pacific Ocean
8 region. [The bias and RMSE of the CALIOP-derived BLH is](#) -0.06 ± 0.52 km [with a](#)
9 [correlation coefficient of 0.66 at the confidence level of 0.01. The large RMSE may relate to](#)
10 [cloud top detrainment or cloud edge local circulations. However, the mean bias of 0.06 km](#)
11 [corresponds to a uncertainty of ~5% mean BLH.](#) Good agreement between the CALIOP-
12 derived BLH and CTH_{sc} can also be found over the global oceans (Luo et al., 2014a).

13 4 Results and Discussions

14 4.1 MBL Structure over the Eastern Pacific Ocean

15 This section uses the 4-year new MBL and marine boundary layer cloud (MBLC) dataset
16 described in the previous [section](#) to investigate the MBL structure over the eastern Pacific.
17 The MBLC dataset includes cloud type and stratiform-cloud (Sc) top and drizzle information
18 based on the CloudSat products. Figure 3 shows the 4-year mean MBL structure (BLH, MLH
19 and MLH/BLH), CTH_{sc} (with or without drizzle), EIS and U_{10m} over the eastern Pacific
20 Ocean. Hereafter, the MBL structure (BLH, MLH and MLH/BLH) is referred to the clear-sky
21 condition with aerosols as a proxy, while the CTH_{sc} is used as the proxy of BLH under
22 cloudy conditions.

23 The 4-year mean BLH over the eastern Pacific Ocean is shown in Fig. 3 (a). Fig. 3 (a) shows
24 that the marine BLH is lower than ~ 1 km near the coast region at latitude of $\sim \pm 30^\circ$. This is
25 assumed to due to the strong subsidence and low SST. When moving away from the strong
26 subsidence region, the BLH increases. The BLH is highest over the Intertropical Convergence
27 Zone (ITCZ) attributed to large-scale convergence and the high SST causing strong
28 buoyancy-driven vertical turbulence mixing. This is especially prevalent over the eastern
29 Pacific near the Central America. However, the BLH is low along the equator with a tendency
30 to rise heading westward. The 4-year mean MLH (Fig. 3(b)) shows a similar spatial pattern as
31 the BLH, with a correlation coefficient of 0.6 at confidence level of 0.01. The rising trend of

1 BLH when away from the coast was also illustrated in former satellite-based studies (Ratnam
2 and Basha, 2010; Guo et al, 2011; Ao et al, 2012Randall et al., 1998; Palm et al., 2005;
3 Jordan et al., 2010; McGrath-Spangler and Denning, 2012, 2013). However, due to different
4 methodologies associated with different definition of BLH and the filtering of cloud
5 conditions, this study shows a significant magnitude of differences in BLH from former
6 studies. As an example, the BLH reported in McGrath-Spangler and Denning (2013) is much
7 lower than the BLH seen in our results, but there is similarity in pattern and value of our
8 MLH and the McGrath-Spangler and Denning BLH over the eastern Pacific Ocean.

9 The 4-year mean MBL coupling status in terms of averaged ratio of MLH/BLH is shown in
10 Fig. 3 (c). The better mixed the MBL, the larger the ratio of MLH/BLH. This is shown in the
11 stratiform cloud dominated region (where Sc Fraction $>\sim 0.4$ with stronger EIS and lower
12 BLH) where there is higher MLH/BLH than in the cumulus cloud dominated region (where
13 Sc Fraction $<\sim 0.4$ with weaker EIS and higher BLH). The MBL is obviously decoupled over
14 the ITCZ. The MBL shows better mixing from 100°W to 80°W of the equator, but weak
15 mixing from 160°W to 100°W of the equator. And the decoupling trend of the MBL is present
16 westward along the equator.

17 Sc occurs more frequently (Sc fraction $>\sim 0.6$) when EIS $>\sim 1K$, with a decreasing fraction
18 towards the far ocean, as shown in Fig. 3 (d). Sc occurrence depends on the EIS (Fig. 3 (g)),
19 with a correlation coefficient of 0.78 at confidence level of 0.01 in their spatial patterns.
20 Figures 3 (e) and (f) show Sc tops with and without drizzle. The Sc case is defined as the case
21 where there are only Sc (and clear-sky if it has) profiles in the collocated 0.25° grid-box (the
22 Sc fraction > 0). These cases are then broken into the Sc case with and without drizzle. The Sc
23 case with drizzle is the Sc case where at least one Sc profile in the collocated 0.25° grid-box
24 has drizzle, while the remaining Sc cases are non-drizzled Sc case. The drizzled Sc tops are
25 lower than ~ 1.5 km when near the coast where the stratus cloud is dominant, and the drizzled
26 Sc tops rise up to ~ 2.5 km as distance away from the coast increases. The non-drizzled Sc
27 tops show a similar pattern to the drizzled Sc top (with a correlation coefficient of 0.53 at
28 confidence level of 0.01 in their spatial pattern), except that the non-drizzled Sc top are lower
29 when approaching the tropical Pacific near longitude of $\sim 180^{\circ}$ W. Generally, the drizzled Sc
30 top is ~ 0.2 to 1 km higher than the non-drizzle Sc top, which suggests the important role of
31 the mesoscale circulations in MBL. Precipitation more commonly occurs in updraft regions
32 and the breakup of Sc usually happens in downdrafts areas, which was also observed in the

1 rift area of Sc (Sharon et al., 2006) and in MAGIC (Zhou et al., 2015). Furthermore, [the](#)
2 occurrence of drizzled Sc case is \sim 6.2% (the number of Sc profiles with drizzle / the number
3 of Sc profiles) among MBL cases where a 0.25° grid-box contains both Sc and clear-sky,
4 comparing to \sim 32% of all MBL cases being stratiform cloud with drizzle cases. The Sc case
5 containing clear-sky profiles are where broken Sc clouds or a cloud edge enter a 0.25° grid-
6 box. This relationship indicates that heterogeneous cloudy conditions within a grid-box (i.e.,
7 broken Sc clouds or near the cloud edge) are less likely to produce precipitation than where
8 the conditions are more homogeneously cloudy.

9 The detailed assessments of the seasonal MBL and MBLC structures in the two selected
10 transects over the northeastern and southeastern Pacific Ocean (NPO and SPO) are presented
11 in Figs. 4 and 5. Figs. 4 and 5 (a1-a4) show the seasonal mean MBL structure in terms of
12 MBL aerosol loading, overlain with seasonal mean BLH and MLH. The mean BLH, MLH
13 and their standard deviations, show that the MBL tends to be more frequently well mixed near
14 the coast region and be more frequently decoupled over the far ocean. This corresponds to a
15 stronger EIS near the coast and weaker EIS over the far ocean (the black diamond-solid lines
16 in Figs. 4 and 5 (b1-b4)). The EIS over the NPO shows negative correlation with the U_{10m} ,
17 with a correlation coefficient of -0.64 at confidence level of 0.01, but there is a positive
18 correlation with the U_{10m} when EIS < 3 K over the SPO, with the correlation coefficient of 0.6
19 at confidence level of 0.01. The seasonal variations in the MBL structure are small over both
20 the NPO and SPO regions, except that the MBL tends to be lower and better mixed near the
21 coast region during March, April and May (MAM) and June, July and August (JJA) over the
22 NPO, and in JJA and September, October and November (SON) over the SPO. This is likely
23 associated with the stronger EIS (> 5 K) in these seasons than EIS (< 5 K) in the other
24 seasons.

25 Surface wind speed is the main factor controlling the loading of sea salt aerosols near the
26 surface, while its vertical distribution is closely related to the boundary layer processes (Luo
27 et al., 2014b). When [moving](#) away from the coast, the aerosol loading (Figs. 4 and 5 (a1-a4))
28 in the well-mixed layer shows strong positive correlation with the U_{10m} in NPO with a
29 correlation coefficient of 0.64 at the confidence level of 0.01. However, there is almost no
30 correlation between them in the SPO (correlation coefficient of -0.08 at the confidence level
31 of 0.39). In the SPO, when further east than longitude of \sim 100 $^{\circ}$, the aerosol loading in the
32 lower well-mixed layer increases with decreasing of the U_{10m} . This is attributed to lowering

1 MLH limiting the vertical transportation. When near the coast region, the aerosol loading in
2 the well-mixed layer has weak correlation with the U_{10m} over both regions, possibly due to the
3 aerosol transported from the continent.

4 Figures 4 and 5 (c1-c4) show the mean Sc occurrences over the two regions. Over the NPO
5 region (Fig. 4 (c1-c4)), the Sc occurrence is small near the coast and increases to a maximum
6 of ~ 0.6 near the longitude of $\sim 130^\circ$ to -135° . It then decreases west southward towards the
7 tropic. Over the NPO, the Sc occurrence increases with decreasing of EIS when [moving away](#)
8 from the coast to the maximum occurrence point (at longitude of $\sim 135^\circ$), with the correlation
9 coefficient of -0.51 at the confidence level of 0.01. And there shows a positive correlation
10 with EIS from the maximum occurrence point down to the equator, with the correlation
11 coefficient of 0.92 at the confidence level of 0.01. Over the SPO region (Fig. 5 (c1-c4)), the
12 maximum Sc occurrence point is close to the coast. Therefore, the Sc occurrence and the EIS
13 both decrease when far away from the coast and correlate well with each other when further
14 west than longitude of $\sim 80^\circ$, with the correlation coefficient of 0.91 at the confidence level of
15 0.01. In the near-coast region, other processes such as sea-land breeze and cold current
16 producing cold SST could affect the relationship between EIS and Sc occurrence. The drizzle
17 occurrence showed a weak correlation with EIS in both regions (not shown here).

18 Figures 4 and 5 (d1-d4) show the seasonal mean $CTH_{drizzle}$ (blue diamond line) and $CTH_{no drizzle}$
19 (green diamond line) along with the seasonal mean BLH and MLH over the NPO and
20 SPO. The $CTH_{no drizzle}$ is lower than the $CTH_{drizzle}$, but is close to the BLH. Over the NPO
21 region, the $CTH_{drizzle}$ shows strong negative correlation with the EIS, with the correlation
22 coefficients of < -0.82 at the confidence level of 0.01. Over the NPO region, in MAM, JJA
23 and SON, the $CTH_{drizzle}$ shows strong negative correlation with the EIS, with the correlation
24 coefficients of < -0.77 at the confidence level of 0.01, while very weak correlation in
25 December, January and February (DJF), with the correlation coefficients < -0.33 at the
26 confidence level of 0.08. The $CTH_{no drizzle}$ generally shows a weak correlation with the EIS,
27 although there is a positive correlation with the EIS for sub-regions, such as over the SPO
28 when west of longitude of $\sim 90^\circ$ in DJF and MAM and when west of longitude of $\sim 100^\circ$ in
29 JJA and SON, with the correlation coefficients of > 0.64 at the confidence level of 0.01. The
30 difference between $CTH_{drizzle}$ and $CTH_{no drizzle}$ shows strong dependence on the EIS, i.e., there
31 is a smaller difference associated with stronger EIS and larger difference associated with
32 weaker EIS. This is attributed to a stronger EIS indicating a more stable [MBL](#), which allows

1 for small depth variations associated with several possible vertical displacement forces in
2 MBL. Thus, a small difference between CTH_{drizzle} and $CTH_{\text{no drizzle}}$ is expected under stronger
3 EIS.

4 The MBL activities are strongly connected with the large-scale stabilities. Figure 6 shows the
5 relationships between EIS and MBL coupling structure. In Fig. 6 (a), MAGIC observations
6 and CALIOP observations over the extended MAGIC region were sorted and averaged into
7 different bins of EIS. Both observations from MAGIC radiosonde and CALIOP show that the
8 MBL tends to be better mixed as EIS increases. One of the main parameters controlling the
9 entrainment process is the inversion strength near the mixing layer top (Venzenten et al.,
10 1999). According to the definition of EIS, it implies that a stronger EIS leads to a stronger the
11 inversion near the mixing layer top, and a weaker the entrainment of the dry warm air above
12 the inversion. Therefore, the relationship between EIS and MBL structure suggests that the
13 entrainment of the dry warm air above the inversion could be an important factor controlling
14 the MBL decoupling. It could also be expected that the SST, wind shear and surface heat flux
15 may also affect MBL decoupling as these parameters or processes can also affect the
16 entrainment process (Venzenten et al., 1999). However, analyses of U_{10m} and SST show only
17 very weak correlations with MBL coupling structure. This is possibly due to the uncertainties
18 in satellite retrievals of these parameters or that the role of other factors was partially included
19 in the EIS.

20 After further investigation, we concluded that the MBL coupling structure is controlled by
21 both LTS and EIS when $EIS < \sim 3$ K, i.e., there is greater mixing in the MBL with increasing
22 EIS and decreasing of LTS. Fig. 6(b) shows the mean CALIOP-derived MBL coupling
23 structure over global oceans under binned EIS and LTS values. As shown in Fig. 6(b), the
24 mean MBL coupling structure in terms of MLH/B LH shows good correlation with EIS under
25 different bins of LTS when LTS is between 2.5K and 17.5K (correlation coefficient of > 0.88
26 at confidence level of 0.01). And the MBL coupling structure in term of MLH/B LH shows a
27 very strong negative correlation with LTS when binned $EIS < 2$ K (correlation coefficient < -0.95
28 at confidence level of 0.01). Under the same EIS, our observation shows that weaker
29 LTS cases usually correspond to cases with larger sea-air temperature difference
30 (corresponding to larger latent heat flux) and higher U_{10m} , which prompt stronger turbulence
31 mixing and result in deeper mixing layers. Therefore, weaker LTS under the same EIS implies
32 less decoupling. However, further investigation is needed to understand the essential

1 | [connection between the large-scale stability and near surface turbulence parameters by](#)
2 | [combining observations and model simulations.](#)

3 The differences between drizzling and non-drizzling Sc tops are also controlled by the EIS.
4 Figure 6(c) shows the seasonal mean relationship over the global oceans between EIS and
5 $CTH_{no\ drizzle}/CTH_{drizzle}$ binned by SST. The SST, EIS and $CTH_{no\ drizzle}/CTH_{drizzle}$ was averaged
6 across a $2.5^{\circ} \times 2.5^{\circ}$ grid box and different seasons. After this, the seasonal-mean $CTH_{no\ drizzle}/CTH_{drizzle}$ was sorted and averaged into different bins of EIS and SST. This binning
7 showed that with cold SST ($SST <= 20^{\circ}C$) in the middle to high latitude regions, mean $CTH_{no\ drizzle}/CTH_{drizzle}$ does not vary with EIS, whereas in the Sc-to-Cu transition regions where there
8 is warm SST ($SST > 20^{\circ}C$), the mean $CTH_{no\ drizzle}/CTH_{drizzle}$ shows good dependence on EIS (a
9 correlation coefficient > 0.89 at confidence level of 0.01). The relative difference between
10 $CTH_{drizzle}$ and $CTH_{no\ drizzle}$ becomes larger with decreasing EIS and increasing SST, indicating
11 more vigorous the subsidence and uplifting in the MBL under weak EIS conditions and
12 warmer SST. This result suggests that the subsidence and uplifting may relate to meso-scale
13 processes, such as gravity waves, which can be generated from the geostrophic adjustment, jet
14 break or other sources, affecting the morphology of clouds (Jiang and Wang, 2012; Allen et
15 al., 2013) over the Sc-to-Cu transition regions. The different roles of SST and EIS in
16 controlling Sc top and precipitation generation in different regions will be further investigated
17 of in future studies.

20 **4.2 Discussion**

21 The MBL decoupling was suggested to play an important role in Sc-to-Cu transition
22 (Bretherton and Wyant, 1997; Wood and Bretherton, 2004). The MBL structure is shown in
23 Fig. 7 as the mean of aerosol backscattering from the cases with both clear-sky and
24 stratiform/Cu cloud in the same 0.25° grid box over the eastern Pacific Ocean where the Sc-
25 to-Cu transition frequently happens. The clear condition is defined as totally cloud-free in the
26 0.25° AMSR-E footprint (named as clear MBL). This condition is expected to be less affected
27 by the local circulation associated with the cloud development. Aerosols under the stratiform
28 cloud condition are derived from cases with partially stratiform cloud and partially clear sky
29 in a 0.25° AMSR-E footprint (named as stratiform MBL). Aerosols under the Cu cloud
30 condition are derived from cases with partially Cu cloud and partially clear sky in a 0.25°
31 AMSR-E footprint (named as Cu MBL). According to the comparison of CALIOP-derived
32 clear-sky MBL structure with near-by cloudy-sky MBL structure from MAGIC radiosonde

1 and with the nearby stratiform cloud top from 2B-CLDCLASS-LIDAR in section 3.2, it is
2 reasonable to assume that the cloud-topped MBL can have the similar structure to the nearby
3 clear-sky MBL within a 0.25° footprint for the Sc and Cu MBL cases. Figure 7 shows that the
4 clear MBL and Cu MBL become more decoupled with increasing BLH and decreasing EIS as
5 indicated by large vertical gradients between mixing layer aerosols and near MBL top
6 aerosols. The Stratiform MBL shares similar characteristics to the Cu MBL, but are better
7 mixed than clear MBL and Cu MBL when $EIS > 0$. According to Fig. 3, the region with $EIS < 0$ K
8 is the Cu cloud dominated region (where the fraction of Sc cloud is smaller than 0.2), and
9 the Sc MBL cases here are more likely to associated with the clear-sky MBL adjacent to the
10 small Sc. The region of $0 < EIS < 2.5$ K is considered a transition region where the Sc
11 clouds are broken down and transit to Cu clouds. The Stratiform MBL cases with $0 < EIS < 2.5$ K
12 are more likely associated to the clear-sky MBL adjacent to broken Sc. The stratiform
13 MBL cases with $EIS > 2.5$ K are more likely associated with the clear-sky MBL near the edge
14 of overcast Sc in the region where Sc fraction $>\sim 0.6$. When $EIS < 0$ K, the stratiform MBL
15 showed no major difference between clear MBL and Cu MBL. With increasing EIS,
16 corresponding to increasing amount of stratiform clouds, the presence of large-scale
17 subsidence prompts a well-mixed MBL, or more occasionally a decoupled MBL with two
18 well-mixed sub-layers (Fig. 7(c2)).

19 **5 Conclusions**

20 This paper used 4-year satellite observations to investigate the MBL decoupled structure and
21 its spatial distribution over the eastern Pacific region and its dependence on environmental
22 parameters over global oceans (within latitude of $\pm 50^\circ$). The aerosol information in CALIOP-
23 measured backscattering data is considered to be a good proxy for the MBL decoupled
24 structure. The aerosol layer top is a good indicator for BLH and was able be identified by the
25 threshold method, whereas the MLH could be identified by the gradient methods. The lidar
26 determined BLH showed good agreements with BLH determined by the RI method using
27 radiosonde measurements and with the stratiform cloud top from CloudSat product. The lidar
28 determined MLH showed good agreement with the base of lowest inversion layer in
29 radiosonde temperature profiles.

30 The lidar methodology was then applied to the 4-year satellite observations over the eastern
31 Pacific Ocean. Clear-sky MBL structure characteristics were analyzed together with the
32 cloudy MBL top (inferred from the stratiform cloud top). For the first time, the climatology

1 and seasonal variations of the MBL structure in the eastern Pacific Ocean region were
2 presented and analyzed. This analysis showed that MBL is generally decoupled, with
3 MLH/BLH ratio ranging from ~0.5 to ~0.8 over the eastern Pacific Ocean region. The MBL
4 decoupling magnitude is mainly controlled by EIS that affects the cloud top entrainment
5 process, with correlation coefficient of > 0.88 at confidence level of 0.01 between the mean
6 MBL coupling structure in terms of MLH/BLH and EIS when binned LTS is between 2.5K
7 and 17.5K. The systematic differences between drizzling and non-drizzling Sc tops over the
8 Sc-to-Cu transition region also show dependence on EIS and may relate to the meso-scale
9 circulations driven by gravity wave in MBL. Further analysis showed that the MBL shows
10 similar decoupled structure under clear sky and cumulus cloud-topped conditions, but is better
11 mixed under Sc breakup and overcast conditions.

12 This study demonstrated that satellite lidar measurements offer a unique opportunity to
13 characterize MBL over global oceans, something no possible using other techniques. Multi-
14 satellite measurements also offer a chance to further study related MBL processes. Using
15 observational results presented here, it will be possible to evaluate and improve model MBL
16 simulations under different dynamical and thermodynamical conditions.

17 **Acknowledgements**

18 This research was partially funded by the DOE Grant DE-SC0006974 as part of the ASR
19 program and by the NASA Grant NNX13AQ41G. We would also like to thank anonymous
20 reviewers for their positive and constructive comments. The authors would like to thank the
21 Editor's effort in improving this manuscript. The authors would like to thank CloudSat team
22 for providing data from the CloudSat Data Processing Center
23 (<http://www.cloudsat.cira.colostate.edu>). The authors would like to thank the CALIOP team
24 for providing data obtained from the NASA Langley Research Center Atmospheric Science
25 Data Center. AMSR data are produced by Remote Sensing Systems and were sponsored by
26 the NASA AMSR-E Science Team and the NASA Earth Science MEaSUREs Program and
27 are available at www.remss.com. AIRS data were obtained through the Goddard Earth
28 Sciences Data and Information Services Center (<http://daac.gsfc.nasa.gov>). The buoy data was
29 obtained from National Data Buoy Center (<http://www.ndbc.noaa.gov/>). ARM data is made
30 available through the U.S. Department of Energy as part of the Atmospheric Radiation
31 Measurement (ARM) Program. ARM Climate Research Facility TWP-C2 site data and
32 MAGIC campaign data were used.

33

1 **References**

2 Ahlgrimm, M. and Randall, D. A.: Diagnosing monthly mean boundary layer properties from
3 reanalysis data using a bulk boundary layer model, *J. Atmos. Sci.*, 63, 998-1012, 2006.

4 Ao, C. O., Waliser D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.:
5 Planetary boundary layer heights from GPS radio occultation refractivity and humidity
6 profiles, *J. Geophys. Res.*, 117, D16117, 2012.

7 Albrecht, B. A., Jensen, M. P., and Syrett, W. J.: Marine boundary layer structure and
8 fractional cloudiness, *J. Geophys. Res.*, 100(D7), 14209-14222, 1995.

9 Allen, G., Vaughan, G., Toniazzo, T., Coe, H., Connolly, P., Yuter, S. E., Burleyson, C. D.,
10 Minnis, P., and Ayers, J. K.: Gravity-wave-induced perturbations in marine stratocumulus,
11 *Quarterly Journal of the Royal Meteorological Society*, 139 (670), 32-45, 2013.

12 Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud
13 feedback uncertainties in climate models, *Geophys. Res. Lett.*, 32, L20806, 2005.

14 Boers, R., Eloranta, E. W., and Coulter, R. L.: Lidar observations of mixed layer dynamics:
15 tests of parameterized entrainment models of mixed layer growth rate, *J. Clim. Appl.*
16 *Meteorol.*, 23, 247-266, 1984.

17 Boers, R. and Eloranta, E. W.: Lidar measurements of the atmospheric entrainment zone and
18 potential temperature jump across the top of the mixed layer, *Bound.-Lay. Meteorol.*, 34, 357-
19 375, 1986.

20 Bretherton, C. S. and Wyant, M. C.: Moisture transport, lower-tropospheric stability, and
21 decoupling of cloud-topped boundary layers, *J. Atmos. Sci.*, 54, 148-167, 1997.

22 Emeis, S., Schafer, K., and Munkel, C.: Surface-based Remote Sensing of the Mixing-layer
23 Height – a Review, *Meteorologische Zeitschrift*, 17, 621-630, 2008.

24 Guo, P., Kuo, Y.-H., Sokolovskiy, S. V., and Lenschow, D. H.: Estimating Atmospheric
25 Boundary Layer Depth using COSMIC Radio Occultation Data, *J. Atmos. Sci.*, 68(8), 1703–
26 1713, 2011.

27 Jason, L.: README document for AIRS Level-2 version 005 standard products. Goddard
28 Earth Sciences Data And Information Services Center (Ed., National Aeronautics and Space
29 Administration (NASA), 2008.

1 Jiang, Q. and Wang, S.: Impact of gravity waves on marine stratocumulus variability, J.
2 Atmos. Sci., 69(12), 3633-3651, 2012.

3 Jones, C. R., Bretherton, C. S., and Leon, D.: Coupled vs. decoupled boundary layers in
4 VOCALS-REx, Atmos. Chem. Phys., 11, 7143-7153, 2011.

5 Jordan, N. S., Hoff, R. M., and Bacmeister, J. T.: Validation of Goddard Earth Observing
6 System-version 5 MERRA planetary boundary layer heights using CALIPSO, J. Geophys.
7 Res., 115(D24), D24218, 2010.

8 Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Miura,
9 M., Inahata, H., and Spencer, R. W.: The Advanced Microwave Scanning Radiometer for the
10 Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and
11 water cycle studies, IEEE Trans. Geosci. Remote Sensing, 41, 184-194, 2003.

12 Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds, J. Climate, 6,
13 1587-1606, 1993

14 Kong, W., and Fan Y.: Convective boundary layer evolution from lidar backscatter and its
15 relationship with surface aerosol concentration at a location of a central China megacity,
16 Journal of Geophysical Research: Atmospheres, 120 (15), 7928-7940, 2015.

17 Lambrightsen, B. H. and Lee, S.-Y.: Coalignment and synchronization of the AIRS instrument
18 suite, IEEE T. Geosci. Remote, 41, 343-351, 2003.

19 Leon, D. C., Wang, Z. and Liu, D.: Climatology of drizzle in marine boundary layer clouds
20 based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder
21 Satellite Observations (CALIPSO), J. Geophys. Res., 113, D00A14, 2008.

22 Leventidou, E., Zanis, P., Balis, D., Giannakaki, E., Pytharoulis, I., and Amiridis, V.: Factors
23 affecting the comparisons of planetary boundary layer height retrievals from CALIPSO,
24 ECMWF and radiosondes over Thessaloniki, Greece, Atmospheric Environment, 74, 360-
25 366, 2013.

26 Lewis, E. R., and Coauthors, 2012: MAGIC: Marine ARM GPCI Investigation of Clouds.
27 DOE/SC-ARM-12-020, U.S. Department of Energy, 12 pp.

28 Luo, T., Yuan, R. M. and Wang, Z.: Lidar-based remote sensing of atmospheric boundary
29 layer height over land and ocean, Atmos. Meas. Tech., 7, 1-10, 2014a.

1 Luo, T., Yuan, R. M., and Wang, Z.: On factors controlling marine boundary layer aerosol
2 optical depth, *Journal of Geophysical Research: Atmospheres*, 119(6), 3321-3334, 2014b.

3 Luo, T., Yuan, R. M., Wang, Z. and Zhang, Z.: Quantifying the Hygroscopic Growth of
4 Marine Boundary Layer Aerosols by Satellite-Based and Buoy Observations. *J. Atmos.*
5 *Sci.*, **72**, 1063-1074, 2015.

6 McGrath-Spangler, E. L., and Denning A. S.: Estimates of North American summertime
7 planetary boundary layer depths derived from space-borne lidar, *J. Geophys. Res.*,
8 117(D15101), 2012.

9 McGrath-Spangler, E. L., and Denning A. S.: Global seasonal variations of midday planetary
10 boundary layer depth from CALIPSO space-borne LIDAR, *J. Geophys. Res. Atmos.*, 118,
11 1226–1233, 2013.

12 Melfi, S. H., Sphinhirne, J. D., Chou, S. H., and Palm, S. P.: Lidar observations of the
13 vertically organized convection in the planetary boundary layer over the ocean, *J. Climate*
14 *Appl. Meteorol.*, 24, 806-821, 1985.

15 Minnis, P., Heck, P. W., Young, D. F., Fairall, C. W., and Snider, J. B.: Stratocumulus cloud
16 properties derived from simultaneous satellite and island-based instrumentation during FIRE,
17 *J. Appl. Meteorol.*, 31, 317-339, 1992.

18 Norris, J. R., Leovy, C. B.: Interannual variability in stratiform cloudiness and sea surface
19 temperature, *J. Climate*, 7, 1915-1925, 1994.

20 Norris, J. R.: Low cloud type over the ocean from surface observations. Part I: relationship to
21 surface meteorology and the vertical distribution of temperature and moisture, *J. Climate*, 11,
22 369-382, 1998.

23 Overoye, K., Aumann, H. H., Weiler, M. H., Gigioli, G. W., Shaw, W., Frost, E., and McKay,
24 T.: Test and calibration of the AIRS instrument, *SPIE Proceedings*, 3759, 254-265, 1999.

25 Pagano, T. S., Aumann, H. H., Hagan, D. E. and Overoye, K.: Prelaunch and in-flight
26 radiometric calibration of the Atmospheric Infrared Sounder (AIRS), *IEEE Trans. Geosci.*
27 *Remote Sens.*, 41, 265–273, 2003.

28 Palm, S. P., Benedetti, A., and Sphinhirne, J.: Validation of ECMWF global forecast model
29 parameters using GLAS atmospheric channel measurements, *Geophys. Res. Lett.*, 32(22),
30 L22S09, 2005.

1 Partain P.: Cloudsat ECMWF-AUX auxiliary data process description and interface control
2 document, 2004.

3 Piironen, P., and Eloranta, E. W.: Demonstration of a high spectral resolution lidar based on
4 an iodine absorption filter, Optics letters, 19, 234-236, 1994.

5 Ratnam, M. V. and Basha, S. G.: A Robust Method to Determine Global Distribution of
6 Atmospheric Boundary Layer Top from COSMIC GPS RO Measurements, Atmos. Sci. Let,
7 11, 216–222, 2010.

8 Randall, D. A., Abeles, J. A. and Corsetti, T. G.: Seasonal simulations of the planetary
9 boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J.
10 Atmos. Sci., 42, 641-675, 1985.

11 Randall, D. A., Shao, Q., and Branson M. : Representation of clear and cloudy boundary
12 layers in climate models, in Clear and Cloudy Boundary Layers, edited by A. A. M. Holtslag,
13 and P. G. Duynkerke, pp. 305–322, Royal Netherlands Academy of Arts and Sciences,
14 Amsterdam, 1998.

15 Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman,
16 A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A. and Taylor, K.E.: Climate Models and
17 Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of
18 Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
19 Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and
20 H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
21 NY, USA, 2007.

22 Sassen, K. and Z. Wang, 2012: The Clouds of the Middle Troposphere: Composition,
23 Radiative Impact, and Global Distribution, Surv. Geophys., 3, 677-691, 2012.

24 Seidel, D. J., Ao, C. O., and Li K.: Estimating climatological planetary boundary layer heights
25 from radiosonde observations: comparison of methods and uncertainty analysis, J. Geophys.
26 Res., 115, D16113, 2010.

27 Shipley, S. T., Tracy D. H., Eloranta, E. W., Trauger, J. T., Sroga, J. T., Roesler, F. L. and
28 Weinman, J. A.: A High Spectral Resolution Lidar to measure optical scattering properties of
29 atmospheric aerosols, Part I: Instrumentation and theory, Applied Optics, 23, 3716-3724, 1983.

1 Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A.,
2 J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A.,
3 Mitrescu, C., and The CloudSat Science Team: THE CLOUDSAT MISSION AND THE A-
4 TRAIN. *Bull. Amer. Meteor. Soc.*, 83, 1771-1790, 2002.

5 Stull, R. B. and Eloranta, E. W.: Boundary Layer Experiment 1983, *Bull. Amer. Meteorol.*
6 *Soc.*, 65, 450–456, 1984.

7 Susskind, J., Barnet, C., Blaisdell, J., Iredell, L., Keita, F., Kouvaris, L., Molnar, G., and
8 Chahine, M.: Accuracy of geophysical parameters derived from Atmospheric Infrared
9 Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover, *J.*
10 *Geophys. Res.*, 111, D09S17, 2006.

11 Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., Haynes, J. M., and
12 Marchand, R. T.: CloudSat's cloud profiling radar after two years in orbit: Performance,
13 calibration, and processing. *Geoscience and Remote Sensing, IEEE Transactions on*, 46(11),
14 3560-3573, 2008.

15 Vanzanten, M. C., Duynkerke, P. G., and Cuijpers, J. W.: Entrainment parameterization in
16 convective boundary layers, *J. atmos. sci.*, 56(6), 813-828, 1999.

17 Vogelzang, D., and Holtslag, A.: Evaluation and model impacts of alternative boundary-layer
18 height formulations. *Bound.-Layer Meteor.*, 81, 245-269, 1996.

19 Wang, Z., D. Vane, G. Stephens, and D. Reinke, 2012: Level 2 combined radar and lidar
20 cloud scenario classification product process description and interface control document. JPL
21 Rep., 22 pp. Available online at
22 <http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS->
23 LIDAR_PDICD.P_R04.20120522.pdf [Accessed 2016/02/25].

24 Wentz, F. J., Gentemann C. and Ashcroft, P.: On-orbit calibration of AMSR-E and the
25 retrieval of ocean products, 83rd AMS Annual Meeting, American Meteorological Society,
26 Long Beach, CA, 2003.

27 Wentz, F.J., T. Meissner, C. Gentemann, and M. Brewer: Remote Sensing Systems AQUA
28 AMSR-E Daily Environmental Suite on 0.25 deg grid, Version 7.0. Remote Sensing
29 Systems, Santa Rosa, CA, 2014. Available online at www.remss.com/missions/amsre
30 [Accessed 2016/02/25].

1 Winker, D. M., Hunt, W. H., and McGill M. J.: Initial performance assessment of CALIOP,
2 Geophys. Res. Lett., 34(19), L19803, 2007.

3 Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and
4 Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing algorithms, J.
5 Atmos. Oceanic Technol., (26), 2310-2323, 2009.

6 Wood R. and Bretherton C. S.: Boundary layer depth, entrainment, and decoupling in the
7 cloud-capped subtropical and tropical marine boundary layer, J. Climate, 17, 3576-3588,
8 2004.

9 Wood, R., and Bretherton, C. S.: On the relationship between stratiform low cloud cover and
10 lower-tropospheric stability, J. Climate, 19(24), 6425–32, 2006.

11 Wyant, M. C., Wood, R., Bretherton, C. S., Mechoso, C. R., Bacmeister, J., Balmaseda, M.
12 A., Barrett, B., Codron, F., Earnshaw, P., Fast, J., Hannay, C., Kaiser, J. W., Kitagawa, H.,
13 Klein, S. A., Köhler, M., Manganelli, J., Pan, H.-L., Sun, F., Wang, S., and Wang, Y.: The
14 PreVOCA experiment: modeling the lower troposphere in the southeast Pacific, Atmos.
15 Chem. Phys., 10, 4757-4774, 2010.

16 Wyant, M. C., Bretherton, C. S., Wood, R., Carmichael, G. R., Clarke, A., Fast, J.,
17 George, R., Gustafson Jr., W. I., Hannay, C., Lauer, A., Lin, Y., Morcrette, J.-J., Mulcahy, J.,
18 Saide, P. E., Spak, S. N., and Yang, Q.: Global and regional modeling of clouds and aerosols
19 in the marine boundary layer during VOCALS: the VOCA intercomparison, Atmos. Chem.
20 Phys., 15, 153-172, 2015.

21 Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., and Kursinski, E. R.: Advances and
22 Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over
23 Southeast Pacific Ocean, Atmos. Chem. Phys., 12, 903-918, 2012.

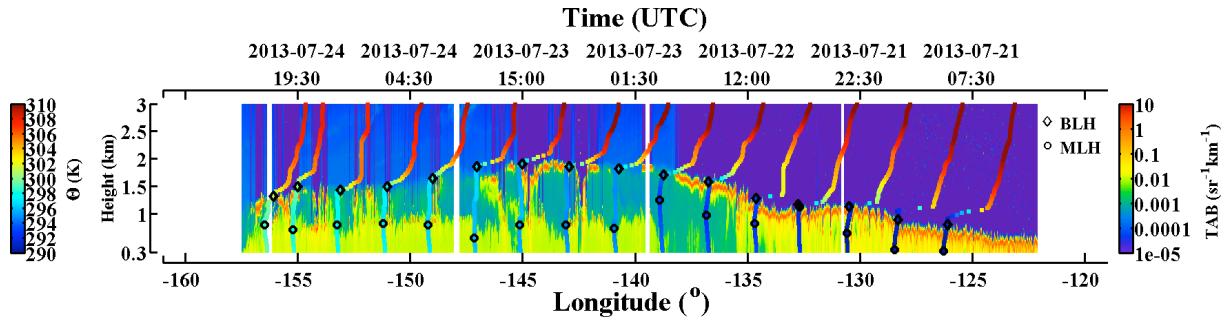
24 Yue, Q., Kahn, B. H., Fetzer, E. J., and Teixeira, J.: Relationship between marine boundary
25 layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP, J.
26 Geophys. Res., 116, D18212, 2011.

27 Zhou, X., Kollias, P., and Lewis, E. R.: Clouds, precipitation, and marine boundary layer
28 structure during the magic field campaign. J. Climate, 28, 2420–2442, 2015.

1 Zhang, C., Wang, Y., Hamilton, K.: Improved representation of boundary layer clouds over
2 the southeast Pacific in ARW-WRF using a modified tiedtke cumulus parameterization
3 scheme, *Mon. Wea. Rev.*, 139, 3489-3513, 2011.

4 Zhou, X., Kollias, P., and Lewis, E. R.: Clouds, precipitation and marine boundary layer
5 structure during the MAGIC field campaign, *Journal of Climate*, 28, 2420-2442, 2015.

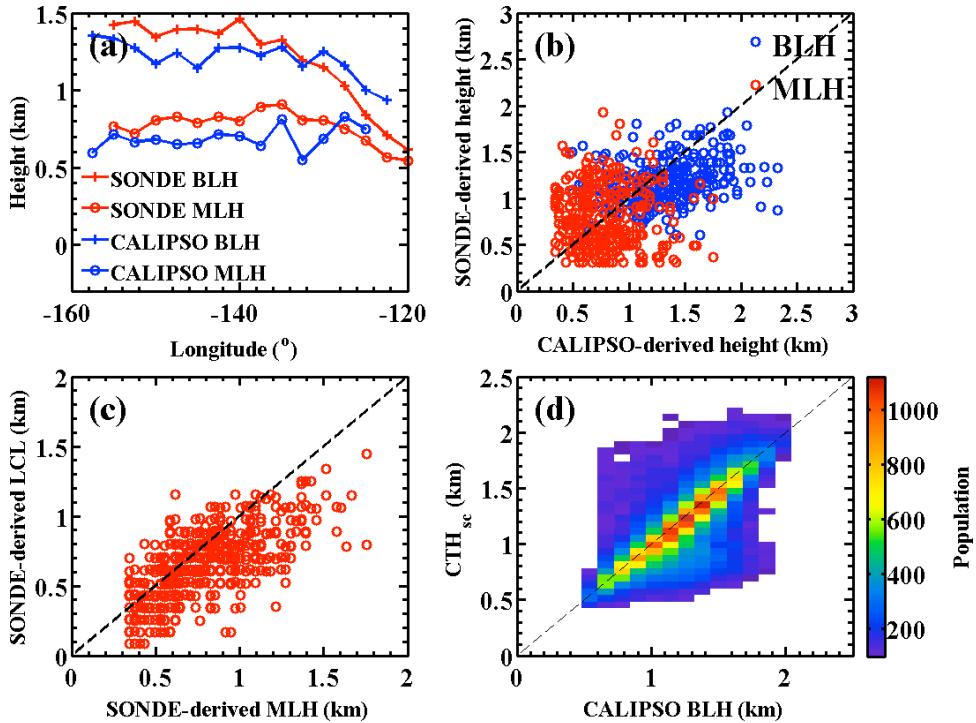
6 Zuidema, P., Painemal, D., Szoek, S. de, Fairall, C.: Stratocumulus cloud-top height
7 estimates and their climatic implications, *J. Climate*, 22, 4652-4666, 2009.


8

9

10

11


1

2

3

4 Figure 1. Potential temperature profiles and retrieved MBL structure (black diamonds for
 5 BLH and black circles for MLH) for a MAGIC leg from 2013/07/21 - 2013/07/24, overlaid
 6 with total attenuated backscattering from HSRL.

7

8

9 Figure 2. (a) Mean MBL structure along longitude from MAGIC radiosonde and collocated
 10 CALIOP observations; (b) comparisons of radiosonde and CALIOP derived BLH and MLH;
 11 (c) comparison of radiosonde derived MLH and LCL; (d) comparison of CALIOP derived
 12 BLH and stratiform cloud top (CTH_{sc}).

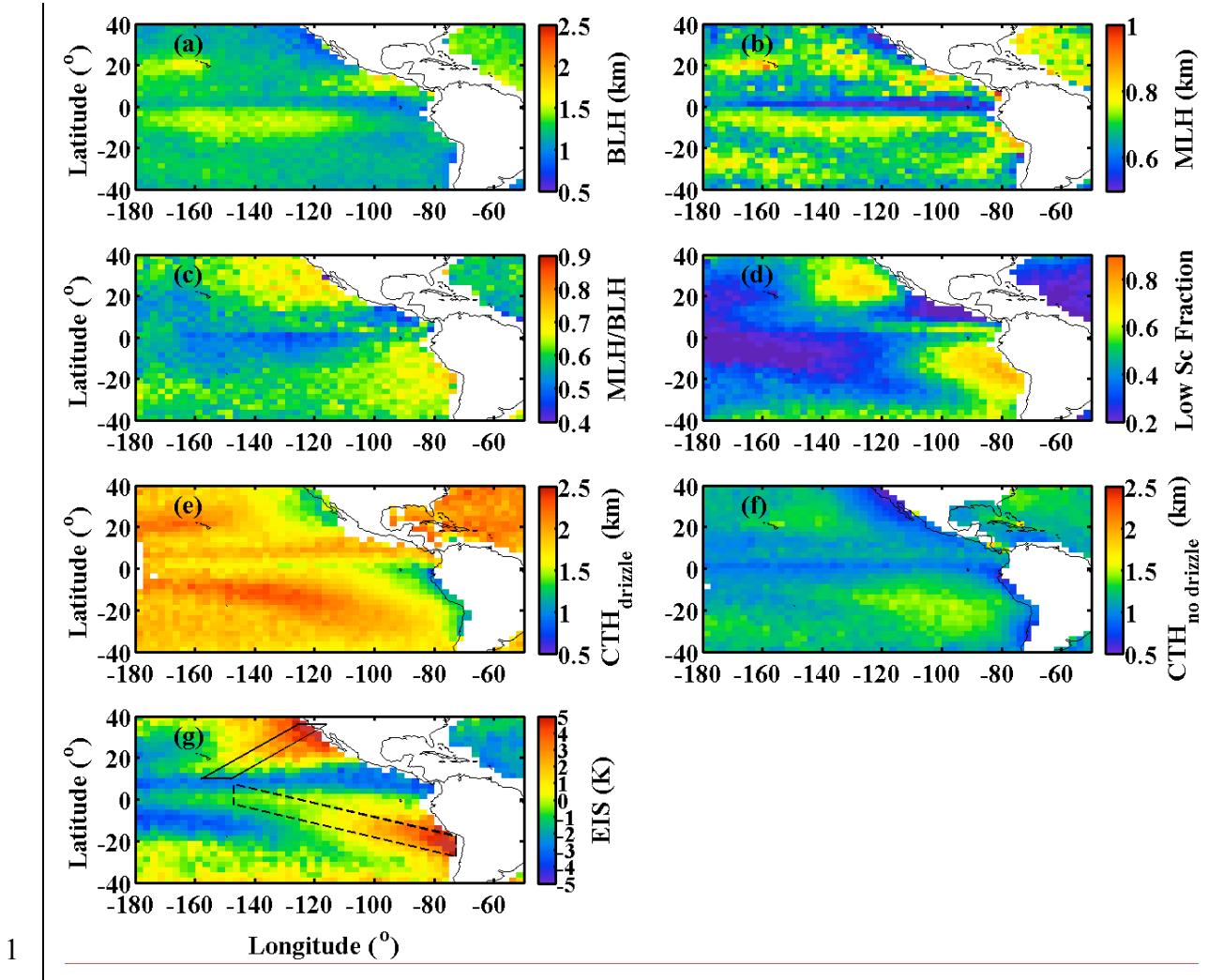
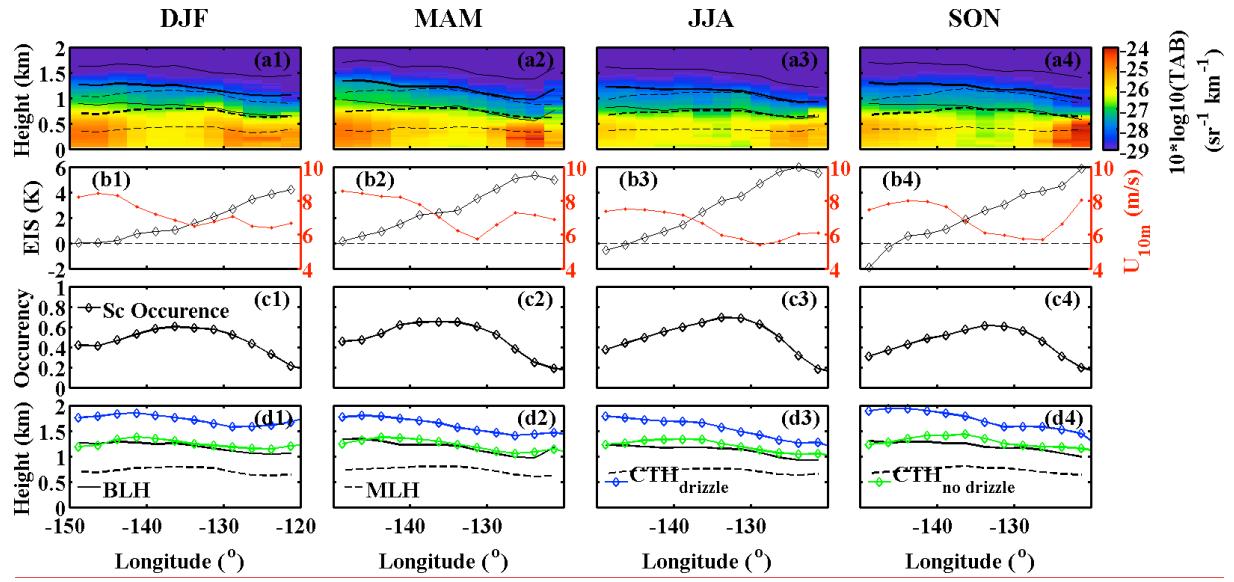
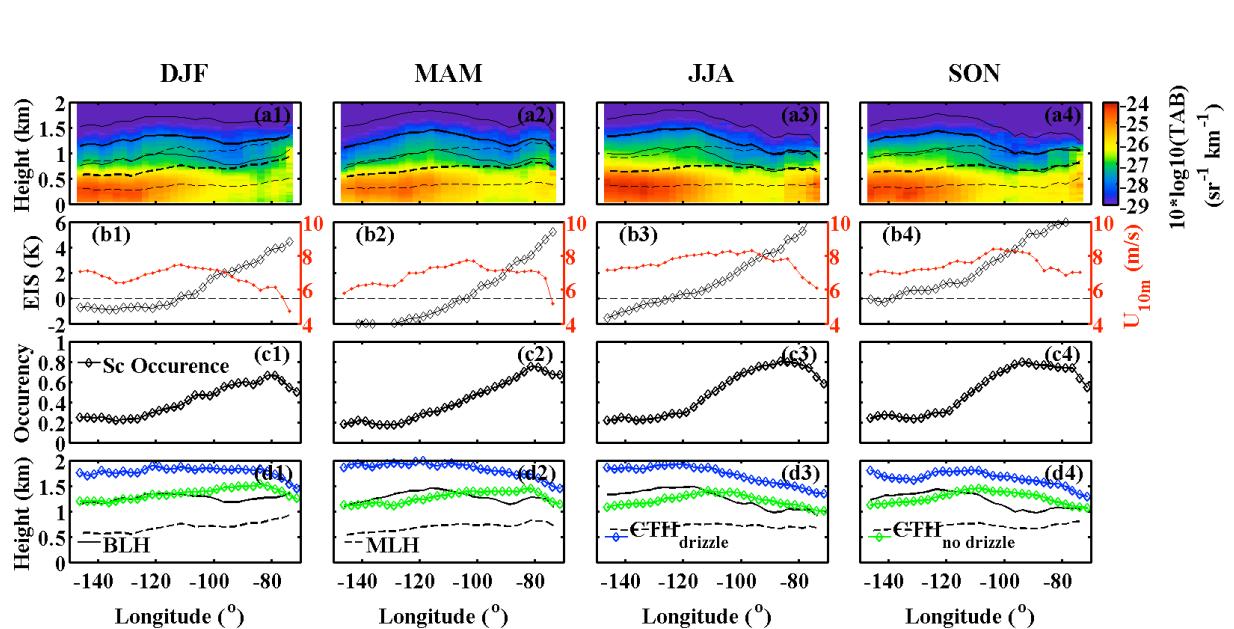




Figure 3. The spatial distribution of (a) CALIOP derived BLH, (b) CALIOP derived MLH, (c) CALIOP derived MBL decoupling structure in term of MLH/BLH, (d) Marine low clouds fraction, (e) drizzled stratiform CTH ($CTH_{drizzle}$), (f) non-drizzled stratiform CTH ($CTH_{no_drizzle}$), (g) EIS. The solid and dashed boxes in (g) denote the selected transects on the northeastern and southeastern Pacific Ocean (NPO and SPO) used in Figs. 4 and 5 respectively.

2 Figure 4: The satellite MBL observations along the transect region on the northeastern Pacific
3 Ocean (NPO, solid box in fig 3e) in different seasons: (a1-a4) the mean BLH (solid line) and
4 MLH (dashed line) overlaid with TAB, and corresponding standard deviations (thin solid and
5 dashed lines); (b1-b4) EIS (black diamond line) and U_{10m} (red dot line); (c1-c4) stratocumulus
6 (Sc) occurrence; (d1-d4) comparisons of BLH, MLH, $CTH_{drizzle}$, and $CTH_{no\ drizzle}$.

8 Figure 5: Same as Fig. 4 but for the transect region on the southeastern Pacific Ocean (SPO,
9 dashed box in fig 3e) in different seasons.

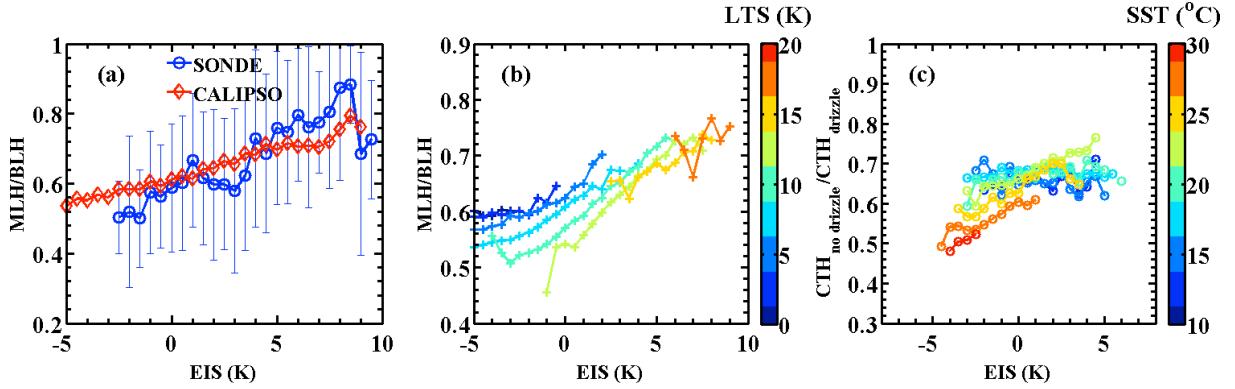


Figure 6. (a) Relationship with EIS and MLH/BLH in MAGIC and Satellite observations over extended MAGIC region; (b) relationship between EIS and CALIOP-derived MLH/BLH under different LTS over the global oceans; (c) seasonal mean relationship between EIS with $CTH_{no\ drizzle}/CTH_{drizzle}$ under different SST over the global oceans. The standard deviations (not shown in figures (b) and (c)) for data in the figures (a) and (b) are ~ 0.2 , and ~ 0.1 in (c).

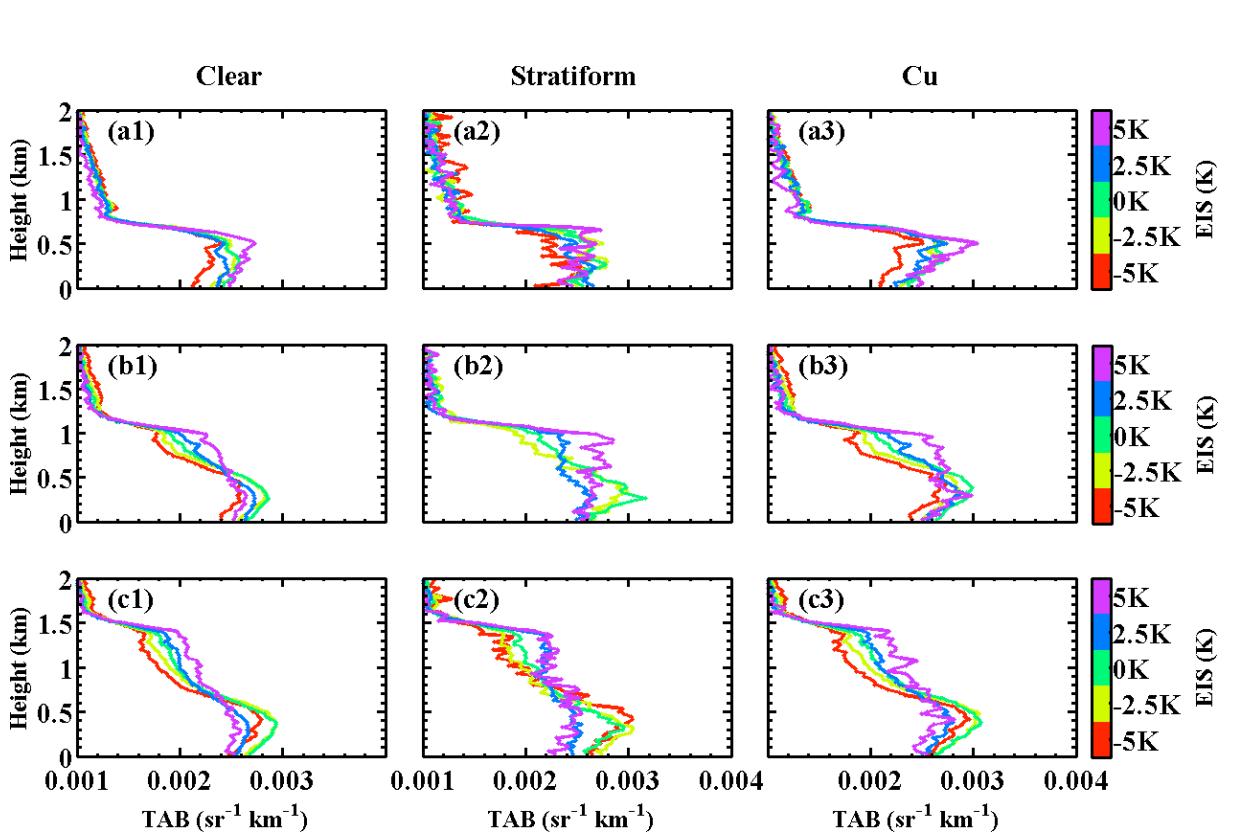


Figure 7. Mean MBL CALIOP TAB structure under different conditions from 4-year climatology over the eastern Pacific Ocean: $0.6\text{ km} < \text{BLH} < 0.8\text{ km}$ (a1, a2, a3), $1\text{ km} < \text{BLH} < 1.2\text{ km}$ (b1, b2, b3), and $1.4\text{ km} < \text{BLH} < 1.6\text{ km}$ (c1, c2, c3). (a1, b1, c1) are under the clear conditions that is defined as totally cloud-free over a 0.25° AMSR-E footprint; (a2, b2, c2) are under the stratiform cloud conditions that is defined as with only stratiform cloud and

1 clear sky in each 0.25° AMSR-E footprint; (a3, b3, c3) are under the Cu cloud conditions that
2 is defined as with only Cu cloud and clear sky in each 0.25° AMSR-E footprint. Only results
3 with $5 \text{ m/s} < U_{10\text{m}} < 8 \text{ m/s}$ were included.