
Manuscript prepared for Atmos. Chem. Phys.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 8 March 2016

Climatology of the aerosol optical depth by
components from the Multiangle Imaging
SpectroRadiometer (MISR) and chemistry transport
models
Huikyo Lee1, Olga V. Kalashnikova1, Kentaroh Suzuki2, Amy Braverman1,
Michael J. Garay1, and Ralph A. Kahn3

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
2Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
3Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Correspondence to: Huikyo Lee (huikyo.lee@jpl.nasa.gov)

Abstract. The Multi-angle Imaging SpectroRadiometer (MISR) Joint Aerosol (JOINT_AS) Level 3

product provides a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and

aerosol type information for each month between March 2000 and the present. Using Version 1 of

JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study

analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three5

broad classes of aerosols: spherical non-absorbing, spherical absorbing, and non-spherical – near

or downwind of their major source regions. The statistical moments (means, standard deviations,

and skewnesses) and distributions of AOD by components derived from the JOINT_AS are com-

pared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol

Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall,10

the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with

each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR

and models show considerable high positive skewness, which indicates the importance of includ-

ing extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS

product will greatly facilitate comparisons between satellite observations and model simulations of15

aerosols by type.

1 Introduction

Atmospheric aerosol distributions and temporal variations play fundamental roles in the Earth’s

climate system. Direct radiative forcing of aerosol scattering and absorption of shortwave radiation

is estimated at around -0.7 Wm−2 from reanalysis data (Bellouin et al., 2013) and -1.3 Wm−220

based on satellite observations (Bellouin et al., 2008). In addition, aerosols affect radiative forcing

indirectly by changing the microphysical properties of clouds and precipitation. Studies of aerosol
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impacts on large-scale circulation have brought further attention to interactions between aerosols and

clouds. For example, Li et al. (2008) shows that the recent positive trend in wintertime precipitation

over the North Pacific is related to increased aerosol emissions. Zhang et al. (2007) and Wang et al.25

(2014) suggest that increased anthropogenic aerosol emissions in Asia can strengthen cyclones along

the Pacific storm track. Both direct and indirect radiative forcing of aerosols are expected to be

more important under a changing climate. For example, Ganor et al. (2010) and Lu et al. (2010)

report increasing dust aerosols in Africa and sulfate aerosols in China, respectively. However, global

climate models (GCMs) have a hard time producing consistent radiative forcing responses to varying30

concentrations of aerosols (IPCC, 2013). In fact, indirect radiative forcing due to aerosols is one of

the dominant sources of uncertainty in the energy budget of many GCMs (Regayre et al., 2014).

Despite substantial improvements in the representation of physical and chemical processes related

to aerosols in global-scale chemistry models relative to most GCMs, recent work has shown that

chemistry models still exhibit considerable biases and uncertainties in aerosol concentrations and35

related radiative forcings (Lee et al., 2013; Shindell et al., 2013). Therefore, validating simulated

aerosols in chemistry models is critical in order to better understand the root causes of these biases

and uncertainties.

Aerosol-radiation interactions are determined by the size distribution of aerosols, as well as their

shape and light-absorption properties (Boucher et al., 2013). Understanding the optical and micro-40

physical characteristics of natural and anthropogenic aerosols is critical for advancing the ability of

chemistry climate models (CCMs) to correctly simulate the climate impact of aerosols. Nevertheless,

many previous studies evaluating simulated aerosol optical depth (AOD) in models against satel-

lite observations, such as those available from the Moderate Resolution Imaging Spectroradiometer

(MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), have used only the total column45

AOD without taking into account aerosol type information (e.g., Tilmes et al., 2015). Shindell et al.

(2013) compared AODs for each aerosol type simulated in nine CCMs. Not surprisingly, the dif-

ference in component AODs among models is much greater than the difference in total AODs (see

Fig. 3 in Shindell et al., 2013). To understand the diverse partitioning of AOD among dust, sea salt,

sulfate, nitrate, black carbon, and organic carbon in CCMs, it is important to compare the simulated50

component AODs against global climatological maps of observed AOD by components, if possible.

Unfortunately, the retrieval of AOD by type from satellite observations and using the retrieved

AOD for chemistry model evaluation have been, and remain, a significant challenge. Aerosol polar-

ization measurement by the POLDER3 (POLarization and Directionality of the Earth Reflectance)

instrument onboard the PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric55

Sciences coupled with Observations from a Lidar) enables classifying observed aerosols into vari-

ous types (Russell et al., 2014). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation) also provides aerosol classification from backscatter and depolarization measurement,

plus some geographical constraints (Omar et al., 2009). Higurashi and Nakajima (2002) suggests
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detecting a dominant aerosol type using radiances from four spectral channels on the Sea-viewing60

Wide Field-of-view Sensor (SeaWiFS). Kim et al. (2007) used both MODIS observations and data

from the Ozone Monitoring Instrument (OMI) to classify retrieved aerosol types, but the algorithm

was similarly limited to providing a single, dominant aerosol type. Even these state-of-art satellite

observations providing information on AOD by components cannot be readily compared with sim-

ulated AOD for different aerosol types. The aerosol type in satellite retrievals is defined by optical65

properties, whereas the simulated aerosol type is specified by chemical composition. As a result,

in the AOD climatology by type reconstructed in Nabat et al. (2013), total AOD is from a satellite

instrument, but the AOD by type was derived solely from the fractions of the five aerosol types (sul-

fate, black carbon, organic carbon, dust, and sea salt) simulated in two CCMs. Holzer-Popp et al.

(2008) provides an overview of currently available aerosol type datasets from satellites, and used70

the Advanced Along Track Scanning Radiometer (AATSR) and the Scanning Imaging Absorption

Spectrometer for Atmospheric Cartography (SCIAMACHY) onboard the European Environmen-

tal Satellite (ENVISAT) to produce total column AOD and speciation by aerosol mixtures. In their

study, total column AOD and surface reflectivity were derived from AATSR observations and these

variables were used to simulate spectra for pre-defined aerosol mixtures, which were selected by75

comparison with the observed SCIAMACHY spectra.

Due to its unique multiangle viewing approach, the MISR instrument on NASA’s Terra satellite is

capable of distinguishing mixtures of aerosol types without relying on data from other instruments

(Diner et al., 2005a). MISR measures radiation in four spectral bands (blue-446 nm, green-558 nm,

red-672 nm, and near infrared-866 nm) from nine different viewing directions (±70.5◦, ±60.0◦,80

±45.6◦, ±26.1◦, and 0.0◦ along the direction of satellite motion), allowing retrievals of aerosol par-

ticle size and shape (Kahn et al., 2001; Diner et al., 2005b). The operational (Version 22) aerosol

retrieval algorithm is based on matching observed top of atmosphere (TOA) radiances to radiances

modeled for AODs ranging from 0.0 to 3.0 from 74 “mixtures”, each defined as up to the three of

eight “pure” particle types, or “components”, in specific mid-visible AOD proportions. Each compo-85

nent represents a single size distribution having specific optical properties (Kahn et al., 2010). There

are optical models for four spherical non-absorbing components of different sizes, two spherical

absorbing components with different single-scattering albedos, and two non-spherical dust optical

analogs. Within the algorithm, a mixture is acceptable, or “passing,” if the difference between the ob-

served and modeled radiances is less than a pre-determined value. In the Level 2 (swath) product, the90

mean AOD of the passing mixtures is reported in the field “RegBestEstimateSpectralOptDepth” at

a spatial resolution of 17.6 km × 17.6 km. The best-fitting mixture out of the 74 candidate mixtures

is reported as the “RegLowestResidMixture,” but the AOD and information about which mixtures

were considered “passing” are retained in the fields “OptDepthPerMixture” and “AerRetrSuccFlag-

PerMixture,” respectively, for further evaluation. Validation of the Level 2 Version 22 product against95

ground-based observations from the Aerosol Robotic Network (AERONET) (Holben et al., 1998),
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including assessments of particle type retrievals, can be found in Kahn et al. (2010) and Kahn and

Gaitley (2015). The mixture type information in the MISR Version 22 aerosol product has been ex-

ploited by Li et al. (2013) and Li et al. (2015), for example, who used CCM information to select

from the complete set of “passing” mixtures to improve agreement with AERONET in the continen-100

tal United States.

The main objective of the current study is to compare multi-year MISR AOD climatologies with

simulated AODs, broken down by aerosol type. The results of this work highlight the added value

of using AOD by components from MISR in evaluating chemistry transport models (CTMs) and

CCMs. Due to the relatively short lifetime of aerosols compared to trace gases, it is also impor-105

tant to consider the spatial inhomogeneity of aerosol distributions and resulting regional effects.

MISR’s aerosol-type information becomes more reliable in the regions where AOD exceeds about

0.15 and 0.2 (Kahn et al., 2010; Kahn and Gaitley, 2015). Therefore, here we focus, in particular,

on characterizing AOD distributions in regions near major aerosol emission sources: East Asia, the

Sahara Desert, and West Africa, with comparisons between MISR climatological observations and110

two model simulations. One is from the Goddard Chemistry Aerosol Radiation and Transport (GO-

CART) model (Chin et al., 2002, 2014), and the other is from the SPectral RadIatioN-TrAnSport

(SPRINTARS) model for Aerosol Species (Takemura et al., 2002, 2005) interactively coupled to the

Nonhydrostatic Icosahedral Atmospheric Model (NICAM) (Satoh et al., 2008, 2014; Suzuki et al.,

2008). We also demonstrate why it is important to consider spatio-temporal distributions of AOD115

when comparing satellite observations and models rather than simply using spatially and temporally

averaged AODs for model evaluation.

The remainder of the paper is structured as follows. The data and models used in this study are

described in Section 2. Comparisons between MISR retrievals and model simulations are presented

in Section 3, followed by a summary of key findings in Section 4.120

2 Data

2.1 MISR Level 3 Joint Aerosol product

As the MISR mission progresses, and more observations become available for model intercom-

parison projects, such as AeroCom (Schulz et al., 2006; Myhre et al., 2013), the Coupled Model

Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012), and the Atmospheric Chemistry125

and Climate Model Intercomparison Project (ACCMIP) (Lamarque et al., 2013), it is important that

these data become more accessible (Teixeira et al., 2014). Getting the mixture information from the

MISR Level 2 aerosol product is an indirect procedure, requiring access to Hierarchical Data Format

(HDF) Vertex Data (VDATA) fields that map integer-valued mixture identifiers in the Level 2 files

to the MISR components and corresponding mixing proportions. To make this information more130

readily available, and to reduce the overall data volume required for large-scale analysis, the MISR
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project provides a Level 3 (gridded) Joint Aerosol Product (JOINT_AS) that summarizes the Level 2

aerosol retrievals on a monthly, 5◦×5◦ latitude-longitude spatial-temporal grid. “Joint” refers to the

joint distributions of aerosol types reported in this product, and “AS” refers to the MISR Aerosol-

Surface algorithm that produced the original Level 2 product from which JOINT_AS is derived. The135

contents of the JOINT_AS product can be thought of as eight-dimensional histograms summarizing

a large number of retrievals in every grid cell. The summarization algorithm is based on Braverman

and Di Girolamo (2002). Each grid cell in the product contains a set of representative vectors and

their associated weights in what is essentially a multi-dimensional probability distribution. The rep-

resentative vectors have eight elements, which are the mid-visible (558 nm) AODs assigned to the140

eight components in the MISR algorithm climatology. These eight components include four non-

absorbing spherical particle optical analogs, having size distributions with effective radii of 0.06,

0.12, 0.26, and 2.80 µm; two spherical absorbing particle analogs, both having size distributions

with an effective radius of 0.12 µm and single-scattering albedos of 0.9 and 0.8 in the mid-visible;

and two non-spherical-particle size distributions corresponding to dust, one of grains with an effec-145

tive radius of 0.75 µm, and the other of spheroids with an effective radius of 3.32 µm (Kahn et al.,

2010; Kahn and Gaitley, 2015).

Conceptually, one can think of the JOINT_AS product as being created as follows. For a given

grid cell, all mixtures that pass the algorithm acceptance criteria are transformed into an eight-vector

that aggregates component-AOD proportions across mixtures, to yield total proportions of each com-150

ponent. Next, these proportions are multiplied by the total retrieved mid-visible AOD (“RegBestEs-

timateSpectralOptDepth”) to create an eight-vector of AODs that sums to the total reported AOD.

To summarize the multi-dimensional distribution of AOD, the JOINT_AS product uses a clustering

algorithm to partition the eight vectors into groups with similar members. These are effectively new,

statistically representative mixtures of the eight components. A detailed description of the clustering155

algorithm used to generate the JOINT_AS can be found in Braverman (2002). In this study, we use

Version 1 of the MISR JOINT_AS, based on the operational (Version 22) Level 2 MISR aerosol

retrievals, for all months during the 15-year period from March 2000 through February 2015. When

comparing MISR JOINT_AS with model simulations, we used the data for the 8-year period be-

tween 2000 and 2007.160

Figure 1 shows an example of how a two-dimensional subset of the eight-dimensional histogram

contained within the MISR JOINT_AS product can be visualized as a scatterplot of absorbing, spher-

ical particle AOD plotted against non-absorbing, spherical particle AOD over East Asia for the month

of April. One-dimensional AOD sampling distributions are shown as the histogram on the top of the

figure for non-absorbing, spherical particles and to the right of the figure, AOD for spherical ab-165

sorbing particles. The scatterplot itself shows how these two aerosol types co-vary in this region

for the chosen time period. From the histograms, the MISR V22 product identifies non-absorbing,

spherical particles as the dominant aerosol component, with AOD that tends to span the range from
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about 0.025 to 0.15, whereas retrieved absorbing AOD contribute only less than about 0.02 to the

total AOD, in part due to relatively low sensitivity to particle single-scattering albedo (SSA) in most170

remote-sensing retrievals, and in part to limitations in the MISR Version 22 algorithm climatology,

which contains very few absorbing-aerosol components, so SSA tends to be overestimated when

absorbing particles are present (Kahn et al., 2010; Kahn and Gaitley, 2015). Because of this, there

is very little covariance between the absorbing and non-absorbing component AODs in this case. In

other words, the changes in retrieved non-absorbing AOD over the area are not related to retrieved175

absorbing AOD.

Note that for comparisons with models, we bookkeep in this study the total optical depth for

spherical non-absorbing, spherical absorbing, and non-spherical aerosols as the three highest-level

aerosol-type categories in the MISR climatology. However, the absorbing AOD for a given retrieval

is defined as the sum over all components,
∑

components (1−SSA)× (component AOD). So, for180

example, particles having SSA= 0.8 would only contribute 20% of their AOD to absorption.

From the information used to construct the marginal histograms, it is simple to calculate the

moments (mean, variance, and skewness) of the AOD distributions for different aerosol types. The

k-th central moment of the distribution (Mk) with a sample size, N , is conventionally defined as

follows:185

first moment (mean) = x̄ =
1

N

N∑
j=1

xj (1)

k-th central moment = Mk =
1

N

N∑
j=1

(xj − x̄)k (2)

where xj corresponds to the jth AOD. Using the above definitions, the skewness of the distribution

can be represented as:

skew =N
M3

M2
1.5 . (3)190

If the data follow a normal (Gaussian) distribution, the skewness of the data should be close to

zero. If a distribution has positive skewness, the tail representing values larger than the median of

the distribution is longer than the tail representing smaller values. Conversely, if the distribution

has a negative skewness, the tail representing smaller values is enhanced. If the skewness of the

distribution is not close to zero, the mean and standard deviation are not enough to appropriately195

represent the distribution. For a normal distribution the standard deviation of the sample skewness

is approximately
√

15/N , where N is the sample size. Skewness values less than a few times as

large as this (e.g., |skew|< 3 for a sample size of 15) should be viewed with suspicion. On the other

hand, when the distribution of data is highly skewed, this indicates that it is necessary to analyze

individual values or at least a summary histogram of the data in order to understand how the data are200

actually distributed. As we will show, the ability to easily determine the moments and distributions
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of the MISR AODs by three general categories (spherical non-absorbing, spherical absorbing, and

non-spherical) is an important feature of the JOINT_AS product.

2.2 Models

In this study, we compare the AOD by components from the JOINT_AS product with results from205

two CTMs. Unlike CCMs, which generate their own meteorological fields, CTMs require meteo-

rological input from another GCM. The GOCART simulation used here has horizontal resolution

of 2.5◦× 1.5◦, and is driven by meteorology fields from Goddard Earth Observing System - Data

Assimilation system (GEOS-DAS). The GOCART model used the emission data provided for the

AeroCom Phase II model experiments (Diehl et al., 2012) for the 8-year period between 2000 and210

2007. The GOCART CTM provides daily optical depths of total aerosols, black carbon, dust, organic

aerosols, sulfate and sea salt at a wavelength of 550 nm.

We also compare the MISR JOINT_AS product to the SPRINTARS CTM because of the model’s

unusually high spatial and temporal resolution; although the SPRINTARS detail will average out

in the comparison, in some respects the aggregated data might provide a more accurate species-215

specific AOD picture. SPRINTARS simulation is coupled to the high-resolution NICAM model,

which reports AOD at 550 nm wavelength every three hours for four different aerosol types (car-

bonaceous, dust, sea salt, and sulfate), with a horizontal resolution of 7 km globally. As described

by Suzuki et al. (2008), the SPRINTARS CTM reasonably reproduces global distributions of total

AOD in comparison with MODIS near major aerosol emission sources. SPRINTARS is also one of220

the models included the AeroCom intercomparison (Huneeus et al., 2011). However, due to com-

putational limitations, the SPRINTARS simulation period available for this study covers only the

eight days from 1 July through 8 July 2006. In addition, we found that the JOINT_AS product for

the single month of July 2006 contains a significant number of missing values even at 5◦× 5◦ spa-

tial resolution. The missing data are likely due to cloud screening and locations being flagged as225

inappropriate for aerosol retrievals, as discussed in Kahn et al. (2009). To enable the comparison be-

tween MISR and SPRINTARS, we had to aggregate the MISR data for multiple Julys, and assume

that the AOD distribution does not change significantly from one year to the next during the month

of July (the “stationarity” assumption). However, stationarity does not hold near the major aerosol

emission sources, as shown later in Fig. 5. So we view the results of the SPRINTARS comparison230

as an adjunct to the GOCART comparison.

It is important to note that the aerosol types in the GOCART and SPRINTARS models are dif-

ferent from the components used in the operational MISR aerosol retrievals (see Table 1 of Kahn

and Gaitley, 2015). In order to compare the MISR AOD by components with those of the mod-

els, MISR aerosol types were combined in the manner shown in Table 1. AODs from weakly and235

strongly absorbing spherical aerosols in the MISR dataset, with SSA in the mid-visible of 0.9 and

0.8, respectively, were combined to construct an analog to modeled carbonaceous aerosols. The
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combination of the more absorbing and less absorbing spherical particles is intended to represent the

range of such particles in nature (e.g., Liu et al., 2014). Given the limited non-spherical dust mod-

els in the MISR operational retrieval, the AODs from the non-spherical grains and coarse spheroids240

from MISR (Kalashnikova et al., 2005) were combined. Finally, AODs from the three (small) non-

absorbing spherical particles were added to compare to the modeled sulfate aerosols. The largest

MISR particle type, with an effective radius of 2.8 µm, was excluded when calculating the non-

absorbing AOD due to issues with retrieval sensitivity to this component (Kahn et al., 2010).

3 Results245

3.1 East Asia

Rapid increases in emissions of aerosols and their precursors in East Asia have caused growing con-

cern because of the broad impact they have on aerosol loading over the North Pacific and mainland

North America, especially the United States (Yu et al., 2008). Figure 2 compares climatological

AODs from spherical non-absorbing aerosols for July retrieved by MISR in East Asia with the sul-250

fate AOD predicted by GOCART and SPRINTARS. Figures 2a and 2b are the respective MISR

non-absorbing and GOCART sulfate AOD maps averaged over 8 years, and Figure 2c is the sulfate

AOD in SPRINTARS for the beginning of July 2006. The three maps of non-absorbing AOD are dis-

played using the same color scale. Peak AOD values correspond to source regions in the Shandong

Province south of Beijing and are closely related to the emissions in this heavily industrial region255

(Streets et al., 2007). The spatial gradient in AOD is due to transport and deposition processes. In

spite of the differences in time period between SPRINTARS and the other two datasets, Fig. 2a -

2c show good qualitative agreement in their representation of the spatial distribution of spherical

non-absorbing/sulfate AOD. The reason for the generally good agreement is likely that the industrial

source regions are well considered in the emission database used for GOCART and SPRINTARS,260

and at least at this level-of-detail, inter-annual variability does not alias the SPRINTARS result.

Figures 2d and 2e show the probability mass function (PMF) of the non-absorbing AOD and total

AOD, corresponding to the white boxes on the maps in Figs. 2a - 2c. The white boxes capture the re-

gion of highest AOD loading. The daily AOD observations from the AERONET station at Shouxian

(116.8◦E,32.6◦N ), inside the white box, is available only in 2008. The PMF is simply the histogram265

scaled so that the total area of the bars corresponds to some fixed value. It is important to recognize

that Fig. 2d and Fig. 2e from MISR and GOCART include both temporal and spatial variability,

because data for the histograms are aggregated over an 8-year time period, whereas Fig. 2d from

SPRINTARS and Fig. 2e from SPRINTARS and AERONET represent primarily spatial variability.

Even so, the non-absorbing particle histograms have similar overall shapes, with similar standard270

deviations (0.39 for MISR, 0.33 for GOCART and 0.33 for SPRINTARS), but considerable dis-

agreement in the peak magnitudes and the mean non-absorbing/sulfate AOD values (0.40 for MISR,
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0.53 for GOCART and 0.36 for SPRINTARS). Also noticeable about the shapes of the distributions

is that they are non-Gaussian, with long positive tails. The ability to visualize the full AOD distri-

bution is an important analysis technique enabled by the MISR JOINT_AS product. The skewness275

of the MISR distribution is 1.70 and for GOCART and SPRINTARS, the skewness values are 0.93

and 2.6 respectively, showing that GOCART model has smaller positive skewness corresponding

to more high AOD values between 0.5 and 1.5 than MISR, whereas SPRINTARS is more peaked

toward the lower values. These features in the distributions are not clearly visible when comparing

climatological mean AOD spatial maps in Fig. 2a - 2c.280

Levy et al. (2009) describe how the monthly mean AOD reported by satellite instruments is highly

dependent on the averaging method selected. Reliance on the mean and standard deviation alone are

particularly problematic when high outliers are common. A satellite instrument can miss extreme

events due to its sampling characteristics (Colarco et al., 2014), but these events may be captured

by a model with better temporal and complete spatial sampling. If this is the case, the mean AOD285

values could be very different, but, as shown here, the distributions are still similar.

Compared to the distributions of non-absorbing AOD in Fig. 2d, there are significant differences

in the total AOD distributions across the observations and models. The secondary peak around AOD

1.5 only appears in the AERONET AOD data. MISR’s total AOD observations show a multimodal

distribution similar to AERONET, but still the differences between MISR and AERONET are large.290

Unlike the observations, the total AOD distributions for the two models are positively skewed and

unimodal. When the distributions have multiple modes, we should not read too much into averaged

AOD for comparison between observations and models.

It is worth noting that taking the base-10 logarithm of the non-absorbing/sulfate AODs in Fig. 2d

results in distributions with skewnesses of -0.21 (MISR), -0.41 (GOCART), and -0.11 (SPRINT-295

ARS). These skewness values are close to zero, indicating that these modified distributions are nearly

log-normal, as is typical for atmospheric pollutant concentrations (Ott, 1990). The results in Fig. 2

as a whole indicate that combining MISR spherical non-absorbing AOD in the manner described

appears to be a good proxy for sulfate aerosol loading, at least in July in East Asia.

When comparing satellite-derived total column AOD with modeled AOD, it is common practice to300

assume that a single, dominant aerosol type accounts for the majority of the modeled AOD in a region

(e.g., Kim et al., 2007). However, this approach will not work if the dominant pollutant type varies

over time (Wang et al., 2010). Another useful characteristic of the MISR operational aerosol retrieval

is that the mixture climatology is applied globally to all locations and seasons, unlike MODIS over

land, which relies on aerosol models that change as a function of location and season based on305

the AERONET climatology (Levy et al., 2013). A recent study by Eck et al. (2013), for example,

shows that the seasonality in biomass-burning SSA in southern Africa is better captured by MISR

than MODIS due to the algorithm flexibility in choosing mixtures, combined with the additional

information content of the multi-angle measurements (e.g., Kahn and Gaitley, 2015). Figure 3 shows
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the monthly partitioning of aerosol type from MISR, GOCART and SPRINTARS, based on the 8-310

year climatology from MISR and GOCART and the 8-day average from GOCART. This comparison

is possible because the MISR JOINT_AS product retains statistical information on the full range of

“passing” particle types within a 5◦× 5◦ grid cell instead of reporting a single, dominant particle

type.

What is immediately apparent when comparing the April and July particle type climatologies315

from MISR and GOCART is that the dominant source region in April is located in the vicinity of

Hong Kong, whereas in July it is farther to the north as discussed in relation to Fig. 2. In April,

the southern source region is dominated by non-absorbing aerosols (sulfate and possibly nitrate),

with absorbing aerosols being a secondary contributor. Both the partitioning and seasonality are

consistent with monthly observations of PM2.5 constituents in Hong Kong (Haung et al., 2014).320

Additionally, there is significantly more non-spherical aerosols in the region in April, when dust

storms are most frequent (e.g., Wang et al., 2010; Lee et al., 2013). Although individual dust events

do not last very long, they are captured in the long-term MISR climatology due to their seasonal

recurrence. The dust makes an important contribution to the total AOD especially in April, but it

would be a mistake to use the total monthly mean AOD in the region to study the transport and325

radiative effects of dust by itself in China. The dust AOD in GOCART and SPRINTARS is higher

than MISR non-spherical AOD in July and especially in April. Sulfate AOD in SPRINTARS for July

shows qualitative good agreement with MISR and GOCART, but the sulfate AOD in the models is

higher than MISR spherical non-absorbing AOD in both months. Figure 3 demonstrates the value

of aerosol data from the MISR JOINT_AS product to further study climate impacts and air quality330

issues due to aerosols over East Asia together with chemistry model simulations.

3.2 Eastern Atlantic

The eastern Atlantic Ocean in July is directly downwind from the largest source of dust aerosols

on Earth (e.g., Koven and Fung, 2008; Ridley et al., 2012). Figure 4a shows a map of the climatol-

ogy of non-spherical aerosol optical depth for July from 8 years of MISR data from the JOINT_AS335

product for the eastern Atlantic off western Africa. Figure 4b and 4c show the dust aerosol AOD

simulated by GOCART and SPRINTARS respectively for the same region. We focus on retrievals

over ocean because of the highly episodic nature of dust events (e.g., Ben-Ami et al., 2012) (see

also Fig. 5), which make direct comparisons difficult in the source regions themselves. In addition,

although MISR-reported AODs show good agreement with AERONET over ocean, downwind of340

the source region, the magnitude tends to be underestimated in situations with high aerosol loading,

as in the case of large dust outbreaks, especially near-source (Kahn et al., 2010; Carboni et al., 2012;

Banks et al., 2013). On the modeling side, in the first AEROCOM intercomparison, the SPRINTARS

model also tends to underestimate the emissions in north Africa, with dust particles having too short

a lifetime (1.6 days) (Huneeus et al., 2011). In this regard, it is important to recall that the MISR and345
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GOCART data represent temporal averages over 8 years, whereas the SPRINTARS model would

capture background dust levels, and possibly a single, large dust event. The two models, especially

GOCART, show much higher dust AOD over land than the MISR Version 22 product. In spite of

these differences, there is general agreement among the spatial patterns of the Figs. 4a - 4c maps. The

latitudinal and longitudinal spread is less in SPRINTARS than in the MISR and GOCART climatolo-350

gies. Between the end of March and mid-October, the location of the maximum dust emission shifts

with time, consistent with the differences shown here in the latitudinal distributions (Prospero et al.,

2002; Ben-Ami et al., 2012). The difference in longitudinal extent could be related to the difference

in the dust particle lifetime in the SPRINTARS (Huneeus et al., 2011) and GOCART models.

Focusing on the white rectangles on the maps, Figs. 4d and 4e show the PMFs of the non-spherical355

(dust) AOD and total AOD from MISR and the models. GOCART shows the largest mean dust AOD

of 0.51, followed by MISR (0.41) and SPRINTARS (0.33). The three distributions have similar stan-

dard deviations (0.23 for MISR, 0.22 for GOCART, and 0.20 for SPRINTARS). The distributions

also commonly have significant positive skewness (0.88 for MISR, 0.63 for GOCART and 1.40 for

SPRINTARS), with the SPRINTARS model showing greater skewness than the satellite observa-360

tions. Looking at the distributions themselves, it is apparent that both non-spherical and total AOD

in the region is much better behaved than the AOD distribution in East Asia, which contains multiple

modes in the observed total AOD distributions. Although the peaks of the three distributions in Fig.

4d are nearly identical (around 0.4), the SPRINTARS distribution is more skewed than MISR and

GOCART. The relatively small positive skwness in MISR and GOCART may be due to sampling365

over the longer 8-year period. Careful inspection of the three distributions shows that frequency of

AOD values larger than the highest peak in the SPRINTARS model falls off more rapidly than it

does in the MISR observations and GOCART model, another indication that the dust lifetime may

be too short in SPRINTARS. Again, this demonstrates the importance of comparing probability dis-

tributions in AOD between models and observations rather than relying only on differences in mean370

AODs as a model performance metric. The July total AOD observations from the AERONET site at

Capo Verde (22.9◦W,16.7◦N ) is available only for 2005, so the green histogram in Fig. 4e is based

on the data for a single month.

Figure 5 shows the non-spherical AOD for north Africa for July for 2000 to 2014 from the MISR

JOINT_AS product at 5◦×5◦ resolution. The significant inter-annual variability in both dust loading375

and peak locations is immediately apparent. The western Sahara is particularly variable in both

location and intensity, but the region downwind from the Bodélé Depression in Chad (Bristow et al.,

2009), around 10◦ E, is persistent, although with varying intensity from year to year. This indicates

that in north Africa, the stationarity assumption for the spatial distribution of non-spherical AOD

does not work well. Therefore, if simulation datasets are available for a longer period, it is important380

to compare simulated dust AOD over the region using observational datasets with enough temporal

overlap with the simulation.
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3.3 Central Africa

Over half of the global emissions of carbon come from Africa (van der Werf et al., 2010) and in

Central Africa, south of the Equator, these emissions are dominated by savanna and grassland fires385

(Ichoku and Ellison, 2014). Figure 6a shows the MISR absorbing aerosol climatology for July from

8 years of data from the JOINT_AS product. Figure 6b exhibits the sum of two optical depths,

black carbon and organic aerosols in July from GOCART, averaged for 8 years. Figure 6c shows the

carbonaceous aerosols from the SPRINTARS model from 1 July through 8 July 2006. The agree-

ment between the satellite observations and the models appears to be qualitatively good. Careful390

examination shows that the highest aerosol loading predicted by the models occurs primarily over

northwestern Angola and the Democratic Republic of the Congo, whereas the satellite data has a

maximum extending from the Democratic Republic of the Congo, across the Republic of the Congo,

into the Atlantic Ocean. The modeled carbonaceous aerosols are therefore displaced to the south-

east relative to the MISR satellite observations. A similar displacement was found by Liousse et al.395

(2010) when comparing POLDER total column AOD measurements from the PARASOL satellite

with modeled AOD for July 2006. These authors attribute the displacement to errors in the location

of the biomass burning emissions, errors in transport, or errors in the satellite products. In fact, the

location of the maximum carbonaceous AOD in SPRINTARS corresponds well with the location of

the maximum BC emission in the Global Emissions Inventory Activities (GEIA) emissions (Liousse400

et al., 2010), which are used in the SPRINTARS model (Takemura et al., 2005). The GEIA emis-

sions distribution in this region is consistent with version 3 of the Global Fire Emissions Database

(GFED3) (van der Werf et al., 2010) as well as the Fire Energetics and Emissions Research version

1.0 (FEER.v1) (Ichoku and Ellison, 2014) database. The spatial distribution of absorbing aerosols

from MISR shown in Fig. 6a is also consistent with the AOD map from POLDER shown in Liousse405

et al. (2010), even though the PARASOL satellite has a 13:30 LT (Local Time) equatorial crossing

time compared to the 10:30 LT equatorial crossing time for the Terra satellite. These results impli-

cate the transport and deposition processes in the GOCART and SPRINTARS models, as opposed to

the emissions inventory or the satellite products, themselves. Even so, recent work by Marlier et al.

(2014) has shown that daily fire emissions lead to different model results compared to monthly fire410

emissions, and Veira et al. (2015) show that the injection height of aerosols can also play a role in the

modeled distribution of AOD from biomass burning. The paper by Matichuk et al. (2007) includes

a longer list of additional model sensitivities that complicate model predictions of carbonaceous

aerosol loading, particularly in transport regions.

Figures 6d and 6e show the distributions of spherical absorbing/carbonaceous AOD and total AOD415

from MISR, the two models, and AERONET for the white boxes on the maps in Figs. 6a, 6b and 6c,

which corresponds to the region of highest AOD loading in both the observations and the models.

In this case, the two distributions from the models are quite similar. The mean MISR absorbing

particle AOD is 0.36, and the means for GOCART and SPRINTARS carbonaceous AOD are 0.45
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and 0.40, with the difference between MISR and the models likely due to the higher AOD near the420

source regions, and possibly the lack of absorbing-particle optical models in the MISR climatology

covering the natural range of size distributions and SSA values (Kahn et al., 2010). The peak values

in the models are also slightly higher than MISR. The standard deviations for MISR, GOCART and

SPRINTARS are 0.22, 0.19 and 0.18, respectively, with the MISR distribution skewed slightly higher

with a skewness of 0.77, compared to 0.67 for GOCART and 0.71 for SPRINTARS. These results425

are consistent with the models producing carbonaceous aerosols that are not transported as far as the

MISR observations indicate. The Lope National Park AERONET site in Gabon provides the only

available surface-based total AOD observations in the study region for July 2014. The AERONET

site reported anomalously high AOD with mean of 0.91. Due to the limited temporal coverage of

the AERONET observations, MISR’s total AOD data over a longer period is much more useful for430

comparing with simulated total AOD. Again, the ability to generate distributions of AOD by aerosol

type and total AOD is an important strength of the MISR JOINT_AS product and, as shown in this

example, provides a powerful model diagnostic.

4 Conclusions

Although a number of previous studies have evaluated aerosols modeled in both GCMs and chem-435

istry models using observational datasets from a variety of sources, studies focusing on specific

aerosol types have been limited by the lack of global comparison datasets. However, it is well un-

derstood that model improvements depend on moving beyond simple comparisons of total AOD. In

this work, we describe the MISR Level 3 Joint Aerosol product that provides monthly climatolog-

ical distributions of AOD for eight different aerosol components, which allows detailed statistical440

comparisons between satellite observations and models. In addition, we demonstrate how the MISR

components can be combined into analogs for model aerosol species. In comparisons with the two

chemistry transport models, GOCART and SPRINTARS, we show that reliance on the simple mean

and standard deviation of the AOD distribution can result in misleading conclusions when evaluating

simulated AOD against observed AOD. In the three high-AOD regions studied, high positive skew-445

ness in the component-AOD distributions is indicative of large outliers that may be due to episodic

events or differences in sampling that must be considered when making comparisons between satel-

lite observations and model datasets. We also show how the reliance on a single, dominant aerosol

type may be inappropriate for certain locations and seasons.

We believe that the comparison of AOD distributions by components between MISR and chem-450

istry models will provide useful guidance to improve model emissions, transport processes, and will

ultimately improve computations of aerosol-related radiative forcing in the models. The first step

should be matching simulated AOD by components with those from MISR by adjusting emissions

and lifetime of aerosols in models. Further research along these lines would clarify uncertainties
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of chemistry models on regional and global scales. Conversely, scrutinizing the AOD distributions455

reported by MISR using chemistry climate models may feed back and improve the quality of aerosol

retrievals from MISR.
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Figure 1. A scatter plot of spherical absorbing-component AOD and spherical non-absorbing-component AOD

at 558 nm wavelength and their histograms over East Asia (117.5◦ − 127.5◦E,32.5◦ − 42.5◦N ) in April

between 2000 and 2014. The AOD data are from MISR Version 1 of the Level 3 Joint Aerosol product

(JOINT_AS) based on the Version 22 operational Level 2 aerosol retrievals. The two histograms for spheri-

cal non-absorbing and absorbing-component AOD are scaled to show a probability mass function (PMF) so

that the total area of the bars in each histogram becomes one.

Table 1. Combination of AOD by components for comparison of MISR with the GOCART and SPRINTARS

models. The names of aerosol components in MISR are from Table 1 in Kahn et al. (2015).

MISR GOCART SPRINTARS

weakly+strongly spherical absorbing aerosols black carbon
carbonaceous aerosols

: sph_absorb_0.12_ssa_green_09 +organic aerosols

+ sph_absorb_0.12_ssa_green_08

medium + coarse non-spherical aerosols
dust dust

: medium_grains + coarse_spheroids

very small + small + medium spherical non-absorbing aerosols

sulfate sulfate
: sph_nonabsorb_0.06

+ sph_nonabsorb_0.12

+ sph_nonabsorb_0.26
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Figure 2. (a) Climatological mean optical depth of the spherical non-absorbing aerosol components in MISR,

sulfate aerosol optical depth in (b) GOCART, and (c) SPRINTARS over East Asia for July. Data from the eight

Julys between 2000 and 2007 are averaged for MISR and GOCART. Spatio-temporal distributions of (d) the

non-absorbing (or sulfate) AOD and (e) total AOD from MISR (grey bars), from GOCART (red lines) and from

SPRINTARS (blue lines), covering the boxed emission source region (112.5◦E− 122.5◦E,32.5◦ − 37.5◦N )

are displayed. The green star in (a) displays a location of the AERONET station in Shouxian. The green line in

(e) represents the total AOD distribution in Shouxian for July 2008.
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Figure 3. Maps of average MISR optical depth of spherical non-absorbing aerosols, non-spherical, spherical

absorbing aerosols and total aerosols in April ((a)-(d)) and July ((i)-(l)). Maps of average GOCART optical

depth of sulfate, dust, carbonaceous and total aerosols in April ((e)-(h)) and July ((m)-(p)). Maps of average

SPRINTARS optical depth of sulfate, dust, carbonaceous and total aerosols in July ((q)-(t)).
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Figure 4. (a) Climatological mean optical depth of the non-spherical aerosols in MISR, dust AOD in (b)

SPRINTARS and (c) GOCART over the Eastern Atlantic for July. Data from the eight Julys between 2000

and 2007 are averaged for MISR and GOCART. Spatio-temporal distributions of (d) the non-spherical (or dust)

AOD and (e) total AOD from MISR (grey bars), from GOCART (red lines), and from SPRINTARS (blue lines),

covering the boxed region (112.5◦E−122.5◦E,32.5◦−37.5◦N ) off the coast are displayed. The green star in

(a) displays a location of the AERONET station in Capo Verde. The green line in (e) represents the total AOD

distribution in Capo Verde for July 2005.
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Figure 5. Monthly mean optical depth of the dust aerosols from MISR in July for 15 years between 2000 and

2014.
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Figure 6. (a) Climatological mean optical depth of the non-spherical aerosols in MISR, dust AOD in (b)

SPRINTARS and (c) GOCART over West Africa for July. Data from the eight Julys between 2000 and 2007

are averaged for MISR and GOCART. Spatio-temporal distributions of (d) the non-absorbing (or carbonaceous)

AOD and (e) total AOD from MISR (grey bars), from GOCART (red lines), and from SPRINTARS (blue lines),

covering the boxed emission source region (7.5◦E− 22.5◦E,12.5◦S− 2.5◦N ) are displayed. The green star

in (a) displays a location of the AERONET station in Lope National Park. The green line in (e) represents the

total AOD distribution in Lope National Park for July 2014.
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