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Abstract 12 

There are few multi-decadal observations of atmospheric aerosols worldwide. This study 13 

applies global hourly visibility (Vis) observations at more than 3000 stations to investigate 14 

historical trends in atmospheric haze over 1945-1996 for the US, and over 1973-2013 for 15 

Europe and Eastern Asia. A comprehensive data screening and processing framework is 16 

developed and applied to minimize uncertainties and construct monthly statistics of inverse 17 

visibility (1/Vis). This data processing includes removal of relatively clean cases with high 18 

uncertainty, and change point detection to identify and separate methodological 19 

discontinuities such as the introduction of instrumentation. Although the relation between 20 

1/Vis and atmospheric extinction coefficient (bext) varies across different stations, spatially 21 

coherent trends of the screened 1/Vis data exhibit consistency with the temporal evolution of 22 

collocated aerosol measurements, including the bext trend of -2.4% yr-1 (95% CI: -3.7, -1.1% 23 

yr-1) versus 1/Vis trend of -1.6% yr-1 (95% CI: -2.4, -0.8% yr-1) over the US for 1989-1996, 24 

and the fine aerosol mass  (PM2.5) trend of -5.8% yr-1 (95% CI: -7.8, -4.2% yr-1) versus 1/Vis 25 

trend of -3.4% yr-1 (95% CI: -4.4, -2.4% yr-1) over Europe for 2006-2013. Regional 1/Vis and 26 

Emissions Database for Global Atmospheric Research (EDGAR) sulfur dioxide (SO2) 27 

emissions are significantly correlated over the eastern US for 1970-1995 (r = 0.73), over 28 

Europe for 1973-2008 (r ~ 0.9) and over China for 1973-2008 (r ~ 0.9). Consistent “reversal 29 
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points” from increasing to decreasing in SO2 emission data are also captured by the regional 1 

1/Vis time series (e.g. late 70s for the eastern US, early 1980s for Western Europe, late 1980s 2 

for Eastern Europe, and mid 2000s for China). The consistency of 1/Vis trends with other in 3 

situ measurements and emission data demonstrates promise in applying these quality assured 4 

1/Vis data for historical air quality studies. 5 

 6 

1 Introduction 7 

Atmospheric aerosols have broad implications for air quality and climate change. The Global 8 

Burden of Disease (GBD) assessment attributed ambient exposure to aerosol particles with an 9 

aerodynamic diameter below 2.5 μm (PM2.5) as the sixth largest overall risk factor for 10 

premature mortality with 3.2 million premature deaths per year (Lim et al., 2012). Aerosols 11 

are also considered as the most uncertain component for global radiative forcing (IPCC, 12 

2013). Aerosols are formed from a variety of emission sources and chemical processes with a 13 

short tropospheric lifetime against different removal mechanisms, yielding a highly variable 14 

spatiotemporal distribution that is not well understood (Fuzzi et al., 2015). Information on 15 

long-term aerosol temporal evolution is crucially needed across a range of disciplines. 16 

Historical PM2.5 exposure and its trends are needed to understand changes in Global Burden 17 

of Disease (Brauer et al., 2012), and to guide mitigation actions (Apte et al., 2015; Wong et 18 

al., 2004). Observations are needed to evaluate historical emission inventories that are crucial 19 

to accurately represent the changes in aerosol sources and its consequent feedbacks on climate 20 

(Lu et al., 2011; S. Smith et al., 2011a; Xu et al., 2013). Aerosol trend analysis is also 21 

fundamental to assessing radiative forcing, evaluating model processes, and projecting future 22 

changes (Chin et al., 2014; Leibensperger et al., 2012; Li et al., 2014). Various studies have 23 

been carried out to investigate aerosol trends using in situ measurements (Collaud Coen et al., 24 

2013; Hand et al., 2012a; Murphy et al., 2011), satellite/ground remote sensing (Hsu et al., 25 

2012; Li et al., 2014; Zhang and Reid, 2010), and analysis of measurements with models 26 

(Boys et al., 2014; Chin et al., 2014; Pozzer et al., 2015; Turnock et al., 2015). However these 27 

studies are mostly limited to the recent 2 decades, since few satellite or in situ aerosol 28 

observations exist over land prior to the 1990s. Long-term observations of aerosols at the 29 

global scale are needed to place current knowledge of their spatial distribution and temporal 30 

evolution in a historical context for all these applications. 31 
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Visibility observations offer an alternative information source to investigate historical aerosol 1 

trends. Horizontal visibility (Vis) from worldwide meteorological stations and airports is 2 

mainly determined by the optical extinction (bext) of the atmospheric boundary layer, and has 3 

been recognized as a proxy of the atmospheric aerosol burden/loading (Husar et al., 2000). 4 

Historical Vis data from more than 3000 stations have been applied to characterize decadal 5 

trends in global aerosol optical depth (AOD) from 1973 to 2007 (Wang et al., 2009). Regional 6 

trend studies of Vis were also conducted for populated areas e.g. the US (Husar et al., 1981; 7 

Schichtel et al., 2001), Europe (Vautard et al., 2009) and China (Che et al., 2007; Chen and 8 

Wang, 2015; Lin et al., 2014; Wu et al., 2012; Wu et al., 2014), and the inferred trends were 9 

usually attributed to changes in anthropogenic emission. Another study employing Vis over 10 

desert regions (Mahowald et al., 2007) found an association of Vis with meteorology factors 11 

such as drought index (based on precipitation and temperature) and surface wind speeds. 12 

Trends in Vis data interpreted with other datasets also supported studies of several aerosol 13 

related climate trends such as the western Pacific subtropical high (Qu et al., 2013) and 14 

precipitation (Rosenfeld et al., 2007; Stjern et al., 2011).  15 

Despite the abundance of the above mentioned studies, the interpretation of Vis data and its 16 

trends might be limited by insufficient data processing or poor data quality. Multi-decadal Vis 17 

data might contain possible variation or even reversal in haze trends as expected from 18 

historical emission and surface solar radiation (SSR) data (Lu et al., 2010; Stern, 2006; Streets 19 

et al., 2006; Wild et al., 2005). It is of particular interest how these changes would associate 20 

with the trends of air quality, and would be captured by the Vis data. Detailed variation in 21 

global Vis trends are rarely reported in these previous studies. On the other hand, Vis data are 22 

inherently uncertain because most Vis are recorded through human observations with variable 23 

protocols. For example, an increase in inverse visibility (1/Vis) has been reported over the US 24 

during 1993-2010 (Wang et al., 2012) that is opposite in sign with the significant decline 25 

(>10% decade-1) of observed PM2.5, sulfate and bext (Attwood et al., 2014; Hand et al., 2012a; 26 

Hand et al., 2014; US EPA, 2012), and raises questions about the quality of Vis observations. 27 

This study revisits the Vis observations to characterize historical trends of atmospheric haze 28 

by asserting two major efforts: a more comprehensive data quality assurance processing and a 29 

more detailed trend analysis for separate periods. This analysis provides multi-decadal 30 

information about air quality evolution and its connections to emission trends over major 31 

industrialized regions. To facilitate interpretation, the theoretical relationship between Vis and 32 
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atmospheric extinction is reviewed in the following section. Section 3 describes the data and 1 

processing methods, followed by an evaluation of the screened monthly 1/Vis and its trends 2 

using in situ measurements in Section 4. Section 5 provides an extensive discussion of the 3 

resultant spatial distribution and temporal variation of the derived 1/Vis trends for three 4 

highly populated regions (i.e. the US, Europe and Eastern Asia), and comparative analysis of 5 

these trends with sulfur dioxide (SO2) emission data. The final section summarizes this work 6 

and its implications. 7 

 8 

2 Relationship between Vis and bext 9 

Visibility is a measure of the transparency of the atmosphere, and is defined as the greatest 10 

distance at which a black object can be recognized against the horizon sky (WMO, 2008). The 11 

visibility of a particular object (i.e. visibility marker) is determined by the contrast C between 12 

the radiation intensity I of the background b and of the object o reaching an observer at 13 

distance x from the object: 14 
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          (1) 15 

Under assumptions of a plane-parallel atmosphere and homogeneous background intensity 16 

(i.e. constant sky brightness), C exhibits an exponential decay based on Beer’s law, 17 

)exp()( 0 xbCxC ext          (2) 18 

where bext is the extinction of the atmosphere (including extinction of aerosols and 19 

molecules). Since Vis represents the furthest distance corresponding to a minimum critical 20 

contrast Ccrit below which the observer cannot discern the object, we have 21 

)exp(0 VisbCC extcrit           (3) 22 

Rearranging to solve for bext yields 23 
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K
bext             (4) 24 

where 
0
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C
K crit . This is the Koschmieder equation (Griffing, 1980), representing a linear 25 

relationship between 1/Vis and bext. The slope K of this relationship is mainly determined by 26 

two factors: the inherent contrast at the object’s position C0 and the critical contrast of the 27 
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observer’s eye Ccrit. This equation is only valid for a plane-parallel and homogeneous 1 

atmosphere. For situations with high gradients of bext (e.g. smoke plumes), this could readily 2 

break down. Even for ideal conditions, this relationship could vary due to the variation of C0 3 

(change of markers or observing conditions) and/or Ccrit (change of observer or protocol). It is 4 

sometimes assumed that the object is perfectly black (C0 = 1) so that K is only determined by 5 

Ccrit. Nevertheless, K still varies from 1.5 to 3.9 (e.g. Husar and Wilson, 1993; Schichtel et al., 6 

2001; Wang et al., 2009) because of different Ccrit values or different observing conditions. 7 

Below we similarly find that even where 1/Vis is highly correlated with bext data, K still varies 8 

significantly for different stations. 9 

 10 

3 Data and processing 11 

3.1 Visibility data 12 

We begin with raw Vis data from synoptic observations over 1929-2013 in the Integrated 13 

Surface Database (ISD, https://catalog.data.gov/dataset/integrated-surface-global-hourly-data) 14 

archived at the NOAA's National Centers for Environmental Information (NCEI). ISD data 15 

are generated through merging hundreds of data sources (A. Smith et al., 2011). The data 16 

from different networks have different report frequencies (e.g. hourly, 3-hourly, 6-hourly, 17 

etc.). We reject the daily averaged data called “global summary of the day” (GSOD) since an 18 

arithmetic mean could bias the daily and monthly statistics because of threshold and 19 

discreteness issues, as discussed in Section 3.1.2. Each processing step is described below.  20 

3.1.1 Conventional screening 21 

We begin with “conventional screening” using algorithms adapted from prior studies. We 22 

eliminate effects on Vis of weather conditions such as fog, precipitation, low cloud and high 23 

relative humidity (RH > 90%, estimated from temperature and dew point) following the 24 

description in Husar et al. (2000). A sensitivity test that limited conditions to RH < 80% 25 

reduced data density but yielded similar trend results without changing the main findings in 26 

this study. Potential human errors are reduced by statistical checks of daily spikes and non-27 

repeating values following Lin et al. (2014). Duplicate stations with different names are 28 

combined, and stations lacking geolocation information are removed following Willett et al. 29 

(2013). After this screening step, 21,703 stations remain from the 30,895 original ISD sites. 30 
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3.1.2 Threshold filtering 1 

We develop a filter to address spatial and temporal variation in the threshold of reported Vis. 2 

The “threshold” is the maximum reported Vis at a station that often depends on the furthest 3 

employed Vis marker. Vis above this threshold is not resolved. Thus the threshold acts as an 4 

artificial detection limit. The ability of Vis data to capture the variation of bext is weak when 5 

the air is clean and/or the adopted threshold Vis at the station is low. We identify the 99th 6 

percentile of reported Vis in each year as the threshold for each station, and reject months 7 

with ≤ 50% of the data below the threshold. This approach differs from eliminating stations 8 

with low thresholds (e.g. Husar et al., 2000). Observations could still be meaningful at heavily 9 

polluted stations even if the threshold is low, while for clean stations with high thresholds 10 

most of the reported Vis could remain unresolved. To further ensure data representativeness 11 

and variability, data are removed for any month with less than 4 different days of data or with 12 

nearly identical percentile values (i.e. the ratio of 50th and 25th percentile Vis is less than 13 

1.07 or the ratio of the 25th to 10th percentile Vis is less than 1.1) following Husar et al. 14 

(2000). This data screening step further reduces the number of qualified station to 10,446. 15 

We describe the monthly Vis level with nonparametric statistics rather than arithmetic mean 16 

for a few reasons. First, an arithmetic mean would have biased monthly statistics due to the 17 

variable fraction (50-100% after the threshold filtering) of Vis reported under the threshold in 18 

one month. Second, Vis is recorded as discrete values with coarse and uneven increments, and 19 

is not normally distributed (Schichtel et al., 2001). The protocol of reporting Vis varies across 20 

stations, depending on local regulations and available Vis markers. Both issues would affect 21 

the GSOD data or the monthly mean 1/Vis so we work with the raw data. We follow the 22 

convention to adopt the 75th percentile 1/Vis as the monthly representation of haziness 23 

(Husar et al., 2000; Qu et al., 2013). Other statistics, such as 50th and 90th percentile 1/Vis 24 

lead to similar trends and do not alter the conclusion of this study. However, the 50th 25 

percentile is closer to and more vulnerable to the detection limit, while the 90th percentile 26 

tends to be more susceptible to extreme events. Husar and Patterson (1987) assessed the 27 

effects of different choices of statistics. Below we commonly refer to the 75th percentile as 28 

“monthly 1/Vis” unless stated otherwise.  29 
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3.1.3 Completeness check 1 

Completeness criteria are applied for further screening. A year of data is removed if less than 2 

6 months in this year is available to guarantee annual representativeness. Short-term time 3 

series covering less than 7 years are also removed since they offer little information on trends. 4 

A total of 6,466 stations comply with these standards and remain in the data archive. 5 

3.1.4 Change point detection 6 

Sudden discontinuities in characteristics of the derived monthly time series of 1/Vis are 7 

frequently found even after the comprehensive filtering. Any change of the Vis marker (i.e. 8 

change of C0) or observing standard (i.e. change of Ccrit) could alter the relationship (K) 9 

between bext and 1/Vis, introducing inconsistency in the time series unrelated to actual bext 10 

change. For example, instrumentation (e.g. telephotometers, transmissometers and 11 

scatterometers) has replaced human observers at many sites in the US (Kessner et al., 2013) 12 

and to a lesser extent in Europe (Vautard et al., 2009), but there is a lack of documentation 13 

recording when and at which stations this switch occurred. Such artificial changes could 14 

seriously bias the inferred trends if not addressed. Various methods have been proposed to 15 

detect abrupt “change points” (Costa and Soares, 2009; Reeves et al., 2007). For example, the 16 

RHtest software package developed for multiple change point detection is based on penalized 17 

maximal t and F test (Wang, 2008a; Wang et al., 2007) embedded in a recursive testing 18 

algorithm (Wang, 2008b). We adopt the FindU function in the RHtest (version 4, available at 19 

http://etccdi.pacificclimate.org/) software to detect “type-1” change points (without reference 20 

time series). We manually examine all reported change points for possible false detections. 21 

By visually inspecting each remaining station from Section 3.1.3, we retain only obvious 22 

structural discontinuities in the time series of 50th or 75th monthly percentiles from the 23 

candidate change points provided by the RHtest results. 24 

Figure 1 shows an example of change point detection based on the time series of 50th and 25 

75th percentiles of monthly 1/Vis at one ISD station. The change points are reported in 3 26 

different types (95% confidence): significant change, possibly significant (undetermined) 27 

change and insignificant change. In this example, although 4 significant changes for the 50th 28 

percentiles 1/Vis and 2 significant change points for the 75th percentiles 1/Vis are reported, 29 

only one candidate (February, 1988) indicated by both time series is considered as an obvious 30 

discontinuity and chosen as the actual change point.  31 
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The candidate change points provided by RHtest allow greater efficiency than pure manual 1 

detection, which is prohibitive for thousands of stations. Any gap of more than 4 years in a 2 

time series is also considered as a change point. Such a large gap could obscure protocol 3 

changes and introduce uncertainties in the derived trends without separation. We analyze 4 

separately the 1/Vis time series before and after the determined change points. Finally, we 5 

eliminate any year of data with annual 1/Vis (average of monthly 1/Vis) less than 40 Mm-1 to 6 

address the poor data variation and representativeness of clean environments, as will be 7 

discussed in Section 4.1. 8 

We acknowledge that, although guided by RHtest results and a synthetic analysis based on the 9 

time series of 50th and 75th percentiles, this is still a subjective method. A small fraction of 10 

determined change points could be extreme events, while a few undetected change points 11 

missed by this subjective judgement might remain in the analysis. Several time series with 12 

irregular temporal variation are also removed during the visual examination. In summary, 13 

only 1/Vis time series considered as consistent and continuous are analyzed here.  14 

A total of 3,930 stations (5,320 time series) remain after this processing step, in which 856 15 

sites (22%) are diagnosed as containing change points and thus separated. This small fraction 16 

of structural discontinuities generally has minor impacts on the large-scale trend features and 17 

regional trends in Section 5 according to our sensitivity test using data without separation. But 18 

the separated data reduce spatial incoherency in the derived trend maps, and are more reliable 19 

for studies over small areas or independent stations, as shown in Fig. 1. 20 

The threshold filtering (Section 3.1.2) and change point detection (Section 3.1.4) are designed 21 

to ensure basic representativeness and continuity of the derived monthly 1/Vis time series, 22 

and are the main differences of this processing from prior investigations.  23 

3.1.5 Distribution of stations 24 

Figure 2 (top) shows the ISD stations and the number of years with available data for 1929-25 

2013 before and after data processing. Most of the remaining stations are located in the US 26 

(753), Europe (1625) and Eastern Asia (791). More than 6000 removed stations have less than 27 

7 years of data as indicated in the left panel. Many other removed stations have small 28 

population density or harsh observing environment (e.g. islands and polar regions), which 29 

might correspond to poor observing conditions or maintenance.  30 
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Figure 2 (bottom) shows that most US stations are screened after the mid 1990s. This is 1 

because more than 90% of the ISD stations gradually switched to employ a low Vis threshold 2 

of 10 miles (~16 km) after the mid 1990s (Fig. A1), probably due to the introduction of 3 

unified instrumentation (Kessner et al., 2013). A maximum Vis of 16 km may be sufficient 4 

for airport navigation and weather reports, but this threshold Vis under clear sky conditions 5 

represents a moderate pollution level, and clean cases are not resolved. Thus most of the US 6 

stations with such low thresholds are rejected during the threshold screening. In contrast, 7 

screened stations remain densely distributed with long-term data over Europe and Eastern 8 

Asia after the mid 1990s because the adopted thresholds are generally higher and more 9 

consistent (Fig. A1). 10 

3.2 Complimentary in situ data 11 

We adopt complimentary data to evaluate and interpret the constructed monthly 1/Vis time 12 

series and trends. The measured and calculated aerosol optical data from the Interagency 13 

Monitoring of PROtected Visual Environments (IMPROVE) programme 14 

(http://vista.cira.colostate.edu/improve/Data/data.htm) are employed to evaluate the screened 15 

1/Vis data and its trends after 1988. IMPROVE applies empirical mass extinction and RH 16 

growth factors to measured mass of aerosol components to calculate and report ambient bext in 17 

a 3-4 day frequency (Pitchford et al., 2007), and for several stations concurrent measurements 18 

of aerosol scattering coefficient (bsp) are also made at hourly frequency using nephelometers. 19 

We generate monthly mean total bext (including aerosol extinction and site-specific Rayleigh 20 

scattering) and bsp from data with RH < 90% and status flags as “V0” (valid). Any month with 21 

less than 4 available days for averaging is abandoned. Pitchford et al. (2007) demonstrated 22 

that the estimated bext is consistent with measured bsp. We also find high correlation (r = 0.90, 23 

N = 3439) between monthly bext and bsp across IMPROVE stations (Fig. A2).  24 

The measurement of bext or bsp is sparse outside the US. Therefore we obtain long-term 25 

measurements of fine particulate matter mass (PM2.5) from the European Monitoring and 26 

Evaluation Programme (EMEP, http://ebas.nilu.no) for comparison over Europe (Tørseth et 27 

al., 2012). Forty-five stations of data collected by filter-based ambient samplers are used. 28 

Similarly, these daily PM2.5 data are averaged monthly provided at least 4 valid measurements 29 

are available. 30 
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3.3 SO2 emission data 1 

We apply bottom-up total anthropogenic SO2 emission inventories to interpret historical 1/Vis 2 

trends. This approach exploits the close relation of sulfate aerosol concentration with SO2 3 

emission due to the short time scale of SO2 oxidation (Chin et al., 1996; Chin et al., 2014; 4 

Daum et al., 1984; Hand et al., 2012a), the major PM2.5 contribution from sulfate aerosols 5 

over land for most populated areas (Chin et al., 2014; Philip et al., 2014), and the dominance 6 

of sulfate for light extinction due to its hygroscopicity (Hand et al., 2014). We employ 3 7 

different SO2 emission datasets, including country-level data for 1850-2005 (S. Smith et al., 8 

2011 a, b), gridded data from EDGAR (Emissions Database for Global Atmospheric 9 

Research) version 4.2 (EC-JRC/PBL, 2011)  at 0.1 degree resolution for 1970-2008 10 

(http://edgar.jrc.ec.europa.eu/), and data from Lu et al. (2011) at 0.5 degree resolution for 11 

1996-2010 over China. The data from S. Smith et al. (2011a) are referred to as “Smith 12 

emissions” below. The data from Lu et al. (2011) are referred to as “Lu emissions”. 13 

3.4 Trend analysis 14 

In this study, we separately calculate trends for several periods of 8-10 years to allow possible 15 

trend reversal, and to include stations with short-term data. The choice of study periods is 16 

mainly based on the historical SO2 emission data. Figure A3 shows the Smith emission data 17 

for several representative countries. SO2 emission trends in the US changed direction at 18 

~1944, ~1954, and again at ~1973. Also, for most Eastern European countries, there is a sharp 19 

reduction of SO2 emission starting from ~1989 after the breakdown of the communist system, 20 

while the 1997 Asian financial crisis affected the SO2 emission trend in Korea. It is of 21 

particular interest to examine how Vis is affected by these emission changes. Data for most 22 

ISD stations outside the US start from the year 1973, and representative coverage of Vis 23 

stations over the US starts from the year 1945, although the earliest records after screening 24 

start from 1929. Based on these transition points of SO2 trends and Vis data availability, 8 25 

periods (1945-1953, 1954-1963,1964-1972, 1973-1980, 1981-1988, 1989-1996, 1997-2005, 26 

2006-2013) are chosen to be analyzed in detail over the US, while the latter 5 periods are 27 

studied for Europe and Eastern Asia. We also briefly examine two short periods before 1945 28 

(1929-1934 and 1935-1944) over the US where stations are less spatially representative (not 29 

included in regional quantitative analysis) but still show prominent trend information in 1/Vis.  30 
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We assess the linear trend and its significance (p value, two-tail test) in the deseasonalized 1 

monthly anomalies using Sen’s slope (Sen, 1968) and the Mann-Kendall (MK) test (Kendall, 2 

1975; Mann, 1945). All monthly data are deseasonalized by removing multi-year monthly 3 

means of each period before trend estimation. Pre-whitening is introduced to reduce the effect 4 

of lag-1 autocorrelation (Yue et al., 2002), and 95% confidence interval (CI) of the slope is 5 

calculated (Li et al., 2014). This nonparametric trend estimation method is insensitive to 6 

missing values and outliers in the time series, and does not require a normal distribution, thus 7 

it has been widely adopted to study aerosol trends in previous studies (Collaud Coen et al., 8 

2013; Papadimas et al., 2008). Least square trends (Weatherhead et al., 1998) are also 9 

calculated, and are found to be consistent with the MK-Sen trends. For all the 8027 calculated 10 

slopes in 1/Vis, 88% are unanimously diagnosed as significant (90% confidence, p < 0.1) or 11 

insignificant by both methods. For the significant trends 76% of their differences are within 12 

20%. Relative trends are calculated by normalizing the absolute MK-Sen slopes to the multi-13 

year mean of monthly 1/Vis in the corresponding period to facilitate the comparison and 14 

interpretation with other in situ data. 15 

Short-term trends of 8-10 years are expected to be less statistically robust and more sensitive 16 

to extremes. For each period, a time series is required to contain at least half of the total 17 

months and 2/3 of the total years (e.g. at least 60 monthly data in at least 7 years for a 10 year 18 

period) for the calculated trend to be representative. This step only reduces the number of 19 

stations at which trends are reported, but does not further screen the data.  20 

The meaning and observing methods of daytime and nighttime data differ. According to 21 

WMO (2008), Vis at night, as determined using illuminated objects, also depends on the light 22 

source intensity, the adaptation of the observer’s eyes to darkness and the observer’s 23 

illuminance threshold. We compare the relative trends calculated using daytime and nighttime 24 

data to the combined trends adopted in this paper, over all remaining sites and the 8 periods. 25 

The 5183 daytime trends have a correlation of 0.85 with the combined trends, in which 84% 26 

of the differences between significant trends (p < 0.1) are within 50%. For the comparison 27 

between 4109 nighttime and combined trends, the correlation is 0.80 and 78% of the 28 

differences between significant trends are within 50%. Therefore, after representing the data 29 

into a monthly resolution and normalizing the changes in 1/Vis into relative trends, the 30 

daytime and nighttime data show generally consistent trends in haze level compared to the 31 

combined data, and do not meaningfully alter our results and conclusions. 32 
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We calculate composite trends based on monthly 1/Vis averaged from an ensemble of stations 1 

(e.g. for the time series of collocated stations in Section 4 or defined regions in Section 5). To 2 

ensure temporal representativeness, a station is considered in the average only if 2/3 of the 3 

total months of data are available for the study period. Qualified stations are gridded to 1 4 

degree resolution before averaging to avoid biased averaging towards more densely 5 

distributed areas. To ensure spatial representativeness, only monthly data derived from at least 6 

75% of the total grids (i.e. number of unique grids covered by all the monthly data) for each 7 

study period are used in the composite trend estimation. This strategy reduces sampling 8 

difference within each periods, however the composite 1/Vis for different periods might be 9 

averaged from a different distribution of stations. We expect the uncertainty from spatially 10 

variant K and data quality to be random, and to be reduced by spatial averaging and by 11 

normalizing the slopes into relative trends. Over these regions, we also calculate several time 12 

series and trends for longer merged periods with consistent station coverage and similar 13 

trends, to assess the consistency of the short-term trends. 14 

 15 

4 Evaluation against in situ data 16 

4.1 Comparison with IMPROVE bext and EMEP PM2.5 17 

We compare the monthly IMPROVE bext data with the quality controlled monthly 1/Vis from 18 

Section 3.1. Collocations are considered between IMPROVE and ISD time series over 1988-19 

2013 within the distance of less than 1 degree and altitude difference of less than 500 m. One 20 

IMPROVE station could pair with more than one ISD station and vice versa. Fifty-nine 21 

collocations (each with at least 20 paired monthly values) are made. We expect a maximum 22 

correlation of 0.9 given the relation between measured bsp and calculated bext (Fig. A2). 23 

Similarly, we create collocations between ISD 1/Vis and EMEP PM2.5 on a monthly basis, 24 

and expect a weaker correlation due to variation of aerosol water and mass extinction 25 

efficiency. 26 

Figure 3 shows the comparison results between collocated 1/Vis and bext over the US. This 27 

evaluation highlights several major findings: 28 

1) The mean bext level of collocated IMPROVE stations after 1990 is below 50 Mm-1 for the 29 

western US, and below 120 Mm-1 for the eastern US (top left). As discussed in Section 3.1, 30 

the low threshold Vis of ~16 km (equivalent to bext ~100 – 240 Mm-1 depending on K) 31 
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recently adopted by most US stations fails to resolve actual bext variation under this relatively 1 

clean environment. Thus many stations are rejected by the threshold filtering.  2 

2) As shown in the top right panel, correlation coefficients of monthly values vary from ~0 to 3 

0.85. About half of the collocations (29 out of 59) have r < 0.5, while 10 collocated ISD 4 

stations have r > 0.7. The overall moderate correlation is not unexpected, as is similarly found 5 

in previous studies (Mahowald et al., 2007; Wang et al., 2012). Correlations are expected to 6 

differ from station to station, due to the inherent difference in observing conditions, protocols, 7 

and residual uncertainties. This preliminary evaluation suggests that Vis data at individual 8 

stations can be unreliable, and in the following discussion we focus on interpreting regionally 9 

coherent observations. 10 

3) Correlations generally exceed 0.5 in the eastern US, where the mean bext is higher due to 11 

higher aerosol concentration (Hand et al., 2012b; van Donkelaar et al., 2015) and to a larger 12 

fraction of hygroscopic sulfate aerosols (Hand et al., 2012b). The correlation increases 13 

significantly with the mean bext, indicating the tendency for better 1/Vis representativeness in 14 

more polluted regions. As previously discussed, at lower bext more reported Vis are close to 15 

the threshold Vis, thus the true 1/Vis tends to be less well resolved. Also, because the Vis data 16 

are reported in discrete values, clean stations with a narrow dynamic range of bext have few 17 

reportable Vis to capture the continuous bext variation. Moreover, the increment of adjacent 18 

reportable Vis is relatively coarse in cleaner conditions (WMO, 2008), and atmospheric 19 

homogeneity might break down for longer distances. All these factors weaken the ability of 20 

Vis to capture bext variation in clean environments. Wang et al. (2012) found low correlation 21 

of 1/Vis with PM10 over the US and Canada, and similarly attributed this to low aerosol 22 

concentrations and higher Vis uncertainty over North America. Thus we apply the 40 Mm-1 23 

threshold of annual 1/Vis to further filter the data as introduced in Section 3.1.4. Without this 24 

screening, 7 of 8 stations with mean 1/Vis < 40 Mm-1 were found to exhibit low correlations 25 

(r < 0.25) with collocated bext. Different thresholds from 10 to 70 Mm-1 were tested, and 26 

thresholds above 40 Mm-1 ceased to improve the consistency with the few sites reporting bext.  27 

4) The slope of fitted linear relationship (bottom left) between 1/Vis and bext varies from ~0.8 28 

to ~2 even over the eastern US where correlations are higher. This supports the expectation 29 

that this slope (K) would differ spatially with observing conditions (Griffing, 1980; Husar et 30 

al., 2000; Schichtel et al., 2001), as discussed in Section 2. Thus in the later analysis we focus 31 

on the relative trend of 1/Vis which is independent of K.  32 
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Figure 3 (bottom right) also shows the correlation between monthly 1/Vis and PM2.5 over 1 

Europe. Although the relation of 1/Vis with PM2.5 is expected to be more uncertain than with 2 

bext, we find more stations with high correlation (r > 0.5) over Europe (93 out of 129, 72%) 3 

than over the US (51%). Wang et al. (2012) similarly found higher correlation of 1/Vis with 4 

PM10 over Europe and China than over the US and Canada. The higher thresholds and higher 5 

concentration of fine aerosol over Europe (van Donkelaar et al., 2015) allow 1/Vis to better 6 

resolve PM2.5 variation there. These findings suggest more reliability of Vis observations at 7 

areas with both higher aerosol loading and sufficiently high thresholds to resolve bext 8 

variation, e.g. the three populated regions investigated in this study. 9 

4.2 Trend evaluation 10 

Figure 4 shows the spatial distribution of relative trends in 1/Vis, in IMPROVE estimated bext 11 

and in measured bsp over the US for 1989-2013. Overall, the trend maps of 1/Vis, bext and bsp 12 

show a dominant trend of decreasing haziness over the continental US after 1988, which 13 

reflects reduction of aerosol sources (Hand et al., 2014; Leibensperger et al., 2012). The 14 

overall decrease across the US is consistent with recent trend studies employing IMPROVE 15 

bext (Hand et al., 2014) and bsp (Collaud Coen et al., 2013) data, and is determined by the 16 

reduction of both aerosol mass and hygroscopicity (Attwood et al., 2014). For the last 2 17 

periods (1997-2013), the number of available ISD stations for trend analysis is dramatically 18 

reduced by their detection limit and improved air quality. Although the remaining sparse ISD 19 

stations still show overall consistency in trends with nearby bext and bsp, they cannot provide 20 

spatially coherent and aggregated trend information. We thus suggest that the ISD Vis data 21 

over the US are not appropriate for studying haze trends after the mid 1990s, and limit our 22 

analysis to data before 1996 for this region. Over 1989-1996, the 1/Vis trends still reproduce 23 

the bext trends, with decreasing tendencies in the eastern and western US. For this period, 15 24 

ISD stations and 9 IMPROVE stations with significant trends are collocated and labeled. Thus 25 

the apparent discrepancy in sign of trends in 1/Vis (Wang et al., 2012) with trends in other 26 

aerosol measurements (Attwood et al., 2014; Hand et al., 2012a; Hand et al., 2014; US EPA, 27 

2012) is resolved by more comprehensive data processing and screening. 28 

Figure 5 shows the spatial distribution of relative trends in 1/Vis and PM2.5 over Europe for 29 

2006-2013. There is a tendency of greater reductions in 1/Vis over Western Europe than over 30 

Eastern Europe as examined further in Section 5.2. The dominant decreasing trends of PM2.5 31 
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is well captured by the 1/Vis trends, especially at the 19 ISD and 10 EMEP collocated sites 1 

with significant trends, as discussed further below. 2 

Figure 6 (top) shows the composite time series of the collocated 1/Vis and bext stations over 3 

the US for 1989-1996. The seasonal variation of the averaged bext is well reproduced by that 4 

of collocated 1/Vis, with a correlation of 0.77 between these two time series. Both composite 5 

1/Vis and bext show a peak in summer months, due mostly to increased aerosol concentration 6 

in warm months because of increased photochemical activity and biogenic emission (Chen et 7 

al., 2012; Hand et al., 2012b). The trend of collocated 1/Vis (-1.6% yr-1; 95% CI: -2.4, -0.8% 8 

yr-1) is within the confidence intervals of the decrease of bext (-2.4% yr-1; 95% CI: -3.7, -1.1% 9 

yr-1). The slight underestimation may reflect the weak sensitivity of discrete 1/Vis data to the 10 

continuous decrease of bext in clean environments due to the threshold and discreteness issues.   11 

Figure 6 (bottom) shows composite time series of PM2.5 and 1/Vis of these collocated 1/Vis 12 

and PM2.5 stations over Europe for 2006-2013. High correlation (0.80) between these two 13 

time series indicates consistent seasonal variation. The winter maximum in the composite 14 

1/Vis over Europe well represents the PM2.5 seasonality at most collocated EMEP sites, which 15 

could be attributable to near surface inversion and low surface winds (Yttri et al., 2012), to 16 

greater nitrate aerosol formation (Aas et al., 2012; Yttri et al., 2012), and to higher 17 

carboneceous aerosol emission from residential wood combustion (Denier van der Gon et al., 18 

2015). The CI of the 1/Vis trend (-3.4% yr-1, 95% CI: -4.4, -2.4% yr-1) overlaps with that of 19 

the PM2.5 trend (-5.8% yr-1, 95% CI: -7.8, -4.2% yr-1), but underestimates the relative decrease 20 

of PM2.5. In addition to the weak sensitivity of discrete 1/Vis to resolve aerosol variation 21 

under clean environment (the collocated EMEP stations are mostly in the cleaner Western 22 

Europe), the inclusion of Rayleigh scattering in 1/Vis and the non-linear association between 23 

ambient 1/Vis and dry PM2.5 (fixed at 50% RH) also contribute to this bias.  24 

In summary, 1/Vis exhibits spatially variant K (i.e. relationship with bext) and data quality that 25 

suggests uncertainty in the information of one station especially at clean locations. However 26 

the aggregated 1/Vis time series successfully capture the seasonal variation and trends of 27 

collocated in situ data. The high correlation between composite time series and the overall 28 

consistency of composite trends suggest that the interpretation value of 1/Vis data benefits 29 

from averaging over multiple stations. 30 

 31 
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5 Historical Trends of 1/Vis 1 

5.1 United States 2 

Figure 7 presents the calculated relative trend of 1/Vis of all qualified stations over the US for 3 

1945-1988 (Fig. 4 contains 1/Vis trends over 1989-2013). Figure 8 shows the regionally 4 

averaged time series and trends of 1/Vis over the eastern US for 1945-1996, superimposed 5 

with the evolution of SO2 emission data. Historically, 1/Vis in the eastern US experienced a 6 

pronounced decrease (-2.8% yr-1, p < 0.001) after World War II until the mid 1950s, a 7 

consistent upward trend afterwards (0.9‒1.8% yr-1, p < 0.001) during the following 2 periods 8 

until the early 1970s, variable tendencies during 1973-1980, and a significant decreasing trend 9 

(-1.1 to -2.0% yr-1, p < 0.005) from the early 1980s until 1996. Over 1954-1973, the long-term 10 

trend of 1/Vis is 1.2% yr-1 (p < 0.001), lying between the separated short-term trends. This 11 

1/Vis trend evolution resembles the SO2 emission trend. Industrial activity gradually 12 

decreased after World War II until mid 1950s, followed by economic growth until the early 13 

1970s with the emergence of both the oil crisis and the Clean Air Act (Greenstone, 2001). The 14 

emission of SO2 starts to consistently decrease after 1973 for the Smith inventory, and after 15 

1977 for the EDGAR inventory. For the period 1973-1980 the regional 1/Vis is generally 16 

consistent with these two inventories except for an anomalous peak of annual 1/Vis in 1977-17 

1979. The NOAA Climate Extremes Index (http://www.ncdc.noaa.gov/extremes/cei/) 18 

describes the winters of 1977-1979 as the coldest during 1945-1996 across the US. Increased 19 

emissions from domestic heating, as well as stagnant weather may contribute to the 1/Vis 20 

peak. After 1978, the three annual time series uniformly exhibit a downward tendency.  21 

Table 1 contains the correlation of annual 1/Vis with SO2 emissions. Annual 1/Vis over the 22 

eastern US exhibits a correlation of 0.66 with the Smith SO2 emissions over the entire US 23 

(1946-1995), and of 0.73 with the EDGAR SO2 emissions over the eastern US (1970-1995). 24 

The 1/Vis trends over the western US (where SO2 emissions are much lower than in the 25 

Eastern US, organic aerosols dominate in PM2.5 and forest fires are more prevalent) are less 26 

consistent than over the eastern US with the SO2 emission data, given the influence of other 27 

sources. In summary, the 1/Vis time series successfully capture large-scale haze evolution 28 

over the eastern US from 1945 to 1996, which is consistent with changes in SO2 emissions as 29 

well as previous investigations on 1/Vis for this region (Husar and Wilson, 1993; Schichtel et 30 

al., 2001).  31 
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Figure A4 shows the calculated 1/Vis trends over the US for two short periods prior to 1945. 1 

Although the stations are sparsely distributed, the nearly uniform trends in 1/Vis strongly 2 

suggest a prominent decrease over 1929-1934, and then a rapid increase over 1935-1944. This 3 

evolution reflects the significant drop in industrial activity following the 1929 Great 4 

Depression, and the economic recovery after ~1933 during the New Deal programs and 5 

World War II. The Smith SO2 emissions of the US (Fig. A3) also reflect these socioeconomic 6 

events. 7 

5.2 Europe 8 

Figure 9 presents the spatial distribution and temporal evolution of haze trends over Europe as 9 

derived from the 1/Vis data for 1973-2005. The historical trend pattern of 1/Vis is quite 10 

different between Western and Eastern Europe. The large-scale 1/Vis trend over Western 11 

Europe is consistently decreasing for the 4 periods after 1981 (also in Fig. 5). Some countries 12 

such as the UK and France begin decreasing prior to 1981, consistent with the SO2 emission 13 

decrease over these countries (Fig. A3). Prior analysis also indicated Vis improvements after 14 

~1973 for most sites over the UK (Doyle and Dorling, 2002). Meanwhile stations over 15 

Eastern Europe have significantly increased 1/Vis for 1973-1980, a mostly decreasing trend in 16 

its western part for 1981-1988, and then a decrease-dominant trend after 1989.  17 

Figure 10 shows the regionally composite time series of 1/Vis as well as SO2 emissions over 18 

Western and Eastern Europe for 1973-2013. Table 2 lists the specific country names included 19 

in the Smith emissions for the two regions. The evolution of 1/Vis over Western and Eastern 20 

Europe is broadly consistent with the SO2 emissions, and reflects the lag of emission 21 

reduction in Eastern versus Western Europe. Stjern et al. (2011) similarly reported later 22 

improvement in Vis over Eastern versus Western Europe. The SO2 emission reduction 23 

extends from the 1980s to the end of data record for Western Europe, and primarily over 24 

1989-2000 for Eastern Europe. The composite 1/Vis time series successfully capture the 25 

significant reduction of haze over Western Europe (-1.1 to -1.7% yr-1, p < 0.08). Long term 26 

1/Vis trend over Western Europe for 1981-2011 (insufficient qualified stations after 2011) is -27 

1.8% yr-1 (p < 0.001), consistent with the separate short-term trends. For Eastern Europe the 28 

decrease of 1/Vis is stronger before 1997 (-2.0% yr-1, p < 0.001) than after 2006 (-1.1% yr-1, p 29 

= 0.03), and the calculated trend over 1997-2005 is insignificant, consistent with the SO2 30 

emission evolution. There is an obvious peak in 1/Vis from October 1995 to March 1996 31 
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especially over Eastern Europe, which is consistent with the peak sulfate concentration that 1 

Stjern et al. (2011) attributed to the anomalously cold winter of 1996 with stagnant air.  2 

Table 1 shows that the annual 1/Vis time series exhibit a correlation of 0.91 (0.92) with the 3 

Smith Emissions for 1973-2005, and of 0.92 (0.92) with the EDGAR emissions for 1973-4 

2008 over Western (Eastern) Europe, respectively. Such high correlations suggest a major 5 

role of SO2 emissions to determine the decadal trends of haze over Europe.  6 

5.3 Eastern Asia 7 

Figure 11 shows the calculated relative trends of 1/Vis over Eastern Asia after 1973. A 8 

persistent increasing trend of 1/Vis dominates over eastern China for more than 30 years. A 9 

prominent feature in the trends over China is more heterogeneity in the spatial distribution 10 

compared to the trend maps over the US and Europe. This could be a result of asynchronous 11 

economic development, as several studies reported “lagging” of Vis impairment in rural sites 12 

(from ~1990s) compared to urban sites (from ~1960s) in China (Quan et al., 2011; Wu et al., 13 

2012). The overall increasing trend in 1/Vis reverses in the last period of 2006-2013, when 14 

most stations in southern China and many in northern China show a statistically significant 15 

decreasing trend of 1/Vis. This is consistent with the implementation of fuel-gas 16 

desulfurization facilities in power plants after ~2007. This recent reduction was also 17 

supported by satellite observations of SO2 (Li et al., 2010; Lu et al., 2010; Lu et al., 2011; S. 18 

Wang et al., 2015; Zhao et al., 2013). 19 

Figure 11 also shows a consistent increase of 1/Vis over Korea from 1973 to 1996. After 1997 20 

when the SO2 emission transits to decrease (Fig. A3), the increase in 1/Vis levels off and 21 

reverses. The aerosols over China also affect areas downwind through long-range transport 22 

(Aikawa et al., 2010). For the 1997-2005 period, most eastern stations of Korea show a 23 

downward trend, in contrast with the increasing 1/Vis over the west, which is more strongly 24 

influenced by pollutant transport from China. Lee et al. (2015) also discovered insignificant 25 

improvement of Vis over urban areas of Korea after late 1990s despite the national emission 26 

reduction policy launched in early 2000s, which was attribued to the regional transport from 27 

upwind continental areas. Long-term aerosol measurement over Gosan Island, Korea showed 28 

rapid increase of sulfate and nitrate concentrations from early 2000s to ~2006, which were 29 

closely related with the trends of China’s emission (Kim et al., 2011). Similarly, stations over 30 

the western and coastal areas of Japan consistently exhibit an upward 1/Vis trend before 2006, 31 
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despite the continuous decrease of local SO2 emission and concentration since 1970 1 

(Wakamatsu et al., 2013). Aikawa et al. (2010) found a zonal gradient in terms of both the 2 

magnitude and trend of measured SO2 and sulfate concentrations over Japan, and in the 3 

modeled contribution from China to the sulfate concentration in Japan. Lu et al. (2010) 4 

reported that most EANET (Acid Deposition Monitoring Network in East Asia) stations over 5 

Japan and Korea have increasing trends in SO2 and sulfate aerosols from 2001 to 2007. For 6 

the last period 2006-2013, 1/Vis shows a dominant decreasing trend over Japan and Korea 7 

that may reflect in part China’s SO2 emission controls. Itahashi et al. (2012) reported a trend 8 

reversal of MODIS (Moderate Resolution Imaging Spectroradiometer) fine aerosol optical 9 

depth (AOD) over the Sea of Japan from increasing to decreasing at ~2006 that is more 10 

consistent with China’s SO2 emission than the local emission. This analysis highlights the 11 

sensitivity of 1/Vis to long range transport, and the value of international collaboration for air 12 

quality improvement over Eastern Asia. 13 

Figure 12 presents a regional analysis of averaged 1/Vis time series over northern and 14 

southern China, and the evolution of SO2 emissions from two inventories. The overall Vis 15 

impairment trend in China for 1973-2005 reflects the consistent SO2 emission increase. Both 16 

the north and south show a steady and significant (p < 0.001) increase of haziness for the 17 

1973-1980 period, and southern China shows an even faster impairment (2.9% yr-1) than the 18 

north (1.2% yr-1). For the next 2 decades (1980-2000) the 1/Vis increase slows down in both 19 

the south and the north, in accordance with other investigations using Vis and SSR data (Chen 20 

and Wang, 2015; Luo et al., 2001; Wu et al., 2014). The south exhibits a slower (0.2% yr-1) 21 

and less significant (p > 0.3) increase than the north (0.5‒0.6% yr-1). The long-term trend over 22 

1981-1996 for Northern China (0.5% yr-1, p<0.001) also exceeds that for Southern China 23 

(0.2% yr-1, p=0.04). This difference is determined not only by the slower increase of SO2 24 

emissions in the south (Lu et al., 2010), but also by more precipitation and ventilation in the 25 

south that favors the removal of aerosols and their precursors (Xu, 2001; Ye et al., 2013). The 26 

decline of SO2 emissions from 1996 to 2000 reflects both the 1997 Asian financial crisis, and 27 

a decline in coal use and sulfur content (Lu et al., 2011). Both regions show a leveling off or 28 

even reversal of 1/Vis increase during this short period, which is again more significant in the 29 

south. The period 2000-2006 exhibits significant growth (>1% yr-1) of 1/Vis in both the north 30 

and south, resembling the steady growth in SO2 emissions. The recent reduction of SO2 31 

emissions is reflected in the Lu emissions while not in the EDGAR emissions. After 2006 32 

significant (p < 0.05) decreasing trends in 1/Vis are apparent (-0.9 to -1.6% yr-1) for both 33 
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northern and southern China, which is more consistent with the Lu emissions. As shown in 1 

Table 1, the annual 1/Vis time series exhibit a high correlation of 0.78 (0.87) with the Lu 2 

emissions (1996-2010), and of 0.91 (0.88) with the EDGAR emissions (1973-2008) over 3 

northern (southern) China, respectively. 4 

5.4 Connections to SSR and AOD trends 5 

Long-term records of surface solar radiation (SSR) and columnar aerosol optical depth (AOD) 6 

serve as complimentary data resources to study and interpret changes in air pollution during 7 

the last few decades, especially for regions with fewer ground-based aerosol measurements. 8 

SSR is determined by the total columnar extinction of aerosols and clouds while 1/Vis 9 

represents the extinction level at the surface. Moreover, the direct scattering and absorption of 10 

solar radiation by aerosols could be amplified in less polluted regions or dampened over 11 

highly polluted stations, due to aerosol-cloud interaction (Fuzzi et al., 2015; Wild, 2009). 12 

Despite these uncertainties, the observed reversals of SSR from “dimming” to “brightening” 13 

in 1980-1990 over the US and Europe (Streets et al., 2006; Turnock et al., 2015; Wild, 2012) 14 

generally agree with the reversals around the 1980s of 1/Vis trends in this study. Over China, 15 

the recently reported decadal SSR variation shows dimming before the 1990s and no 16 

significant trend afterwards (Tang et al., 2011; K. Wang et al., 2015). The latter phenomenon 17 

may reflect compensation of more aerosol extinction by less cloud cover (Norris and Wild, 18 

2009). 19 

Reliable AOD data over land are limited to the recent two decades, but exhibit even greater 20 

consistency with 1/Vis trends. The recent decrease in 1/Vis after late-1990s over the US and 21 

Western Europe in this study is consistent with previous studies on AOD trends based on both 22 

ground based (e.g. Li et al., 2014; Yoon et al., 2012) and satellite (e.g. Chin et al., 2014; Hsu 23 

et al., 2012; Pozzer et al., 2015) observations. Over China, several studies on AOD trends in 24 

the 2000s showed notable increasing tendency (e.g. Hsu et al., 2012; Pozzer et al., 2015; 25 

Yoon et al., 2012), while some recent studies also discovered that separating AOD time series 26 

could reflect the plateauing and reversal of trends in recent years due to emission control 27 

strategies (Che et al., 2015; He et al., 2016; Lu et al., 2011). PM2.5 trends derived from 28 

satellite AOD over 1998-2012 have decreasing tendencies over North America and Europe, 29 

and increasing tendencies over Eastern Asia (Boys et al., 2014; Van Donkelaar et al., 2015), 30 

similar to the 1/Vis trends found here. 31 
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 1 

6 Conclusion 2 

This study examines Vis observations as a trend indicator of haziness and air quality over the 3 

US (1945-1996), Europe (1973-2013), and Eastern Asia (1973-2013). We comprehensively 4 

process the raw data from over 20,000 stations considering effects from meteorological 5 

factors, protocol design, and human errors. We develop filters to exclude relatively clean 6 

cases (i.e. months with ≤ 50% records below the threshold Vis, or years with annual 1/Vis ≤ 7 

40 Mm-1) with weaker sensitivity to bext variation, and apply change point detection and 8 

separation to largely reduce the intrinsic discontinuities. Nearly 4000 stations remain after the 9 

processing with 753 over the US, 1625 over Europe, and 791 over Eastern Asia. The 10 

composite time series of 1/Vis over the US for 1989-1996 generally agrees with the 11 

collocated IMPROVE bext in terms of both seasonal variation (r = 0.77) and trends (-1.6% yr-1, 12 

95% CI: -2.4, -0.8% yr-1) in 1/Vis versus bext (-2.4% yr-1, 95% CI: -3.7, -1.1% yr-1). Similarly, 13 

for 2006-2013 over Europe, the seasonal variation (r = 0.80) and significant decrease (-5.8% 14 

yr-1, 95% CI: -7.8, -4.2% yr-1) in PM2.5 are captured by collocated 1/Vis (-3.4% yr-1, 95% CI: 15 

-4.4, -2.4% yr-1). This consistency highlights the benefits of thorough data screening to reduce 16 

uncertainties brought by the inherent issues in Vis observations such as threshold choices, 17 

discreteness and discontinuities. As discussed in Section 3.1, the inclusion of unresolved 18 

values in the mean 1/Vis and the contaminants of discontinuities could dampen the ability of 19 

1/Vis to correctly resolve aerosol trends. Admittedly, the derived 1/Vis trends are still subject 20 

to several uncertainties, e.g. the spatially variant K and data quality, the less robust short-term 21 

trends, sampling differences and direct averaging in composite time series. Nevertheless, the 22 

interpretation value of 1/Vis data is shown to be enhanced by the comprehensive screening 23 

and spatial averaging. Therefore we focus on the trend results that are regionally coherent and 24 

aggregated, and avoid drawing strong conclusions based solely on the 1/Vis trends. Although 25 

at individual stations the 1/Vis changes might be affected by these above stated artificial 26 

factors, regionally coherent trend signals suggest these derived 1/Vis trends represent actual 27 

changes in bext. Our filtered monthly 1/Vis data are freely available as a public good 28 

(http://fizz.phys.dal.ca/~atmos/martin/?page_id=2527). 29 

Analysis of the 1/Vis trends for several short periods reveals haze trend evolution and 30 

reversals. These historical 1/Vis trends and their evolution also exhibit compelling 31 

consistency with SO2 emissions and SSR studies. For example, 1/Vis shows statistically 32 
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significant decreasing trends from the late 1970s to the mid 1990s over the eastern US (-1.1 to 1 

-2.0% yr-1), from the early 1980s to 2013 over Western Europe (-1.1 to -1.7% yr-1), in the 2 

early 1990s (-2.0% yr-1) and after the mid 2000s (-1.1% yr-1) over Eastern Europe, and after 3 

the mid 2000s over China (-0.9 to -1.6%/yr). These recent decreases in 1/Vis are attributable 4 

to emission changes in these populated areas. Reversal points of 1/Vis trends also consistently 5 

reflect several historical socioeconomic events e.g. the New Deal programs (from decrease to 6 

increase at ~1934), the end of World War II (from increase to decrease at ~1945) and the 7 

Clean Air Act (from increase to decrease at ~1979) in the US, the collapse of communism in 8 

Eastern Europe (from increase to decrease at ~1989), and the 1997 Asian financial crisis.  9 

Therefore, the constructed 1/Vis data are applicable to resolve historical aerosol trends on a 10 

regional and annual basis, and provide complementary information about the historical 11 

changes in air quality. For instance, the annual 1/Vis time series exhibit high correlations 12 

(0.7-0.9) with SO2 emissions for 5 large domains (Table 1). Apart from verifying the 13 

historical 1/Vis trends, this consistency also provides an evaluation of emission inventories. 14 

For example, after ~2006 1/Vis trends agree better with Lu et al. (2011) than the EDGAR 15 

emissions in capturing the SO2 emission controls over China. Emission inventories differ 16 

significantly (S. Smith et al., 2011a), and 1/Vis data offer constraints on these inventories. 17 

However, SO2 emission inventories cannot fully explain the trends in ambient haze due to the 18 

influence of other emissions and meteorological factors. Notable reductions in emissions of 19 

nitrogen oxides and black carbon have been reported over North America and Western 20 

Europe (Bond et al., 2007; Lu et al., 2015; US EPA, 2012; Vestreng et al., 2009), while 21 

steady increase in emissions of nitrogen oxides, organic carbon and black carbon were 22 

identified over China (Lu et al., 2011; Zhao et al., 2013). Observed (Leibensperger et al., 23 

2012; Murphy et al., 2011) and simulated (Lin et al., 2010; Wang et al., 2013) changes in 24 

various aerosol chemical species suggest increasing importance of emissions other than SO2 25 

on air quality trends in recent years. We have also shown that occasional cold winters in the 26 

US and Europe, and the long-range transport of China’s pollutants into Korea and Japan could 27 

affect the association between 1/Vis and local emission. Future work includes applying a 28 

chemical transport model to further interpret the observed 1/Vis (bext) trends, as well as the 29 

contribution from meteorology and emissions. 30 

 31 

Appendix 32 
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Four appendix figures (Fig. A1-A4) are included for complementary interpretation. 1 
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Table 1. Summary of Pearson correlation coefficients (r) between annual 1/Vis and SO2 1 

emissions for 5 regions. 2 

Inventory Period Eastern US  

Smith 1946-1995 0.66  

EDGAR 1970-2008 0.73  

  Eastern Europe Western Europe 

Smith 1973-2005 0.92 0.91 

EDGAR 1973-2008 0.92 0.92 

  Northern China Southern China 

Lu 1996-2010 0.78 0.87 

EDGAR 1973-2008 0.91 0.88 

3 
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Table 2. List of countries included to calculate regional SO2 emission from the country-level 1 

emission data (countries with most parts inside the defined region) of S. J. Smith et al. 2 

(2011a). 3 

Region Countries 

Eastern 

US 
United States 

Eastern 

Europe 

Albania, Belarus, Bosnia & Herzegovina, Bulgaria, Czech, Croatia, 

Greece, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, 

Serbia & Montenegro, Slovakia, Slovenia, Turkey, Ukraine 

Western 

Europe 

Austria, Belgium, Denmark, France, Germany, Ireland, Italy, 

Netherland, Portugal, Spain, Switzerland, United Kingdom 
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Figure 1. An example of change point detection and determination based on the time series of 1 

50th (red) and 75th (black) percentiles of monthly 1/Vis. Automatically detected change 2 

points are represented by vertical lines. Text in the inset lists the dates of automatically 3 

detected points. In this example, 5 significant change points are identified, in which February 4 

1988 is determined as the separation point for further analysis, while other reported breaks are 5 

considered as false detections. 6 

Figure 2. Distribution of Integrated Surface Database (ISD) stations before (left) and after 7 

(right) data screening. Colors indicate the number of years with available visibility data for 8 

(upper) 1929-2013 and (lower) 1995-2013. 9 

Figure 3. Spatial distribution of: (top left) average of the collocated bext of IMPROVE 10 

stations, (top right) Pearson correlation coefficients between collocated pairs of monthly ISD 11 

1/Vis and IMPROVE bext, (bottom left) slope of monthly bext against monthly 1/Vis after 12 

linear fitting through the origin point using the reduced major-axis linear regression (Ayers, 13 

2001), and (bottom right) Pearson correlation coefficients between collocated pairs of 14 

monthly ISD 1/Vis and EMEP PM2.5. 15 

Figure 4. Spatial distribution of relative trends in 1/Vis (top row), IMPROVE bext (middle 16 

row), and IMPROVE bsp (bottom row) over the US for 1989-2013. Larger colored points with 17 

black outline indicate trends with at least 95% significance, smaller colored points with black 18 

outline represent trends with 90%-95% significance, and colored points without outline 19 

indicate insignificant trends. Stations with cross and circle symbols are collocated between 20 

the ISD and IMPROVE networks over 1989-1996 for composite time series analysis in Fig. 6. 21 

Figure 5. Spatial distribution of relative trends in 1/Vis and PM2.5 over Europe for 2006-2013. 22 

Larger colored points with black outline indicate trends with at least 95% significance, 23 

smaller colored points with black outline represent trends with 90%-95% significance, and 24 

colored points without outline indicate insignificant trends.Stations with cross and circle 25 

symbols are collocated between the ISD and EMEP networks for composite time series 26 

analysis in Fig. 6. 27 

Figure 6. Composite time series and trends of (top) 1/Vis and bext for collocated ISD and 28 

IMPROVE stations (Fig. 4) over 1989-1996 and (bottom) 1/Vis and PM2.5 for collocated ISD 29 

and EMEP stations (Fig. 5) over 2006-2013. Only stations with significant trends of >90% 30 

confidence are collocated. The long ticks on the horizontal axis indicate the January of the 31 
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year.  Data gaps represent months with less than 75% of the total grids. Error bars show the 1 

25th and 75th percentile of all monthly values of collocated stations. 2 

Figure 7. Spatial distribution of relative trends in 1/Vis over the US for 1945-1988. Larger 3 

colored points with black outline indicate trends with at least 95% significance, smaller 4 

colored points with black outline represent trends with 90%-95% significance, and colored 5 

points without outline indicate insignificant trends. The red rectangle defines the eastern US 6 

region for composite time series analysis in Fig. 8. 7 

Figure 8. Composite time series of 1/Vis and SO2 emission over the eastern US region. The 8 

long ticks on the horizontal axis indicate January of the year, where all annual values are 9 

plotted. Light green dots represent the average monthly 1/Vis of all qualified stations (error 10 

bars showing the 25th and 75th percentile) in the defined region. Red dots show the number 11 

of grid cells for averaging, and data gaps indicate months with less than 75% of the total grids 12 

for each period. Blue lines and text represent the 1/Vis trends calculated using the monthly 13 

anomalies for each period. Trends in parentheses are the 95% confidence intervals. Black 14 

lines are the annual 1/Vis averaged from at least 8 monthly values. SO2 emissions for the 15 

entire US from S. J. Smith et al. (2011a) are in orange. Purple indicates EDGAR SO2 16 

emissions for the entire US (dashed) and for the defined region (solid) in Fig. 7. 17 

Figure 9. Spatial distribution of relative trends in 1/Vis over Europe for 1973-2005. Larger 18 

colored points with black outline indicate trends with at least 95% significance, smaller 19 

colored points with black outline represent trends with 90%-95% significance, and colored 20 

points without outline indicate insignificant trends. Red rectangles define the Eastern and 21 

Western Europe regions for composite time series analysis in Fig. 10. 22 

Figure 10. Regional time series analysis of 1/Vis and SO2 emission over Western and Eastern 23 

Europe. The long ticks on the horizontal axis indicate January of the year, where all annual 24 

values are plotted. Light green dots represent the average monthly 1/Vis of all qualified 25 

stations (error bars showing the 25th and 75th percentile) in the defined region. Red dots 26 

show the number of grid cells for averaging, and data gaps indicate months with less than 27 

75% of the total grids for each period. Blue lines and text represent the 1/Vis trends calculated 28 

using the monthly anomalies for each period. Trends in parentheses are the 95% confidence 29 

intervals. Black lines are the annual 1/Vis averaged from at least 8 monthly values. The Smith 30 

SO2 emissions in orange are the total emission of all countries listed in Table 2 for each 31 
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region. The EDGAR SO2 emissions in purple are summed from all pixels inside the defined 1 

region (Fig. 9). 2 

Figure 11. Spatial distribution of relative trends in 1/Vis over Eastern Asia for 1973-2013. 3 

Larger colored points with black outline indicate trends with at least 95% significance, 4 

smaller colored points with black outline represent trends with 90%-95% significance, and 5 

colored points without outline indicate insignificant trends.Red rectangles define the northern 6 

and southern China regions for composite time series analysis in Fig. 12. 7 

Figure 12. Regional time series analysis of 1/Vis and SO2 emission over sorthern and 8 

nouthern China. The long ticks on the horizontal axis indicate January of the year, where all 9 

annual values are plotted. Light green dots represent the average monthly 1/Vis of all 10 

qualified stations (error bars showing the 25th and 75th percentile) in the defined region. Red 11 

dots show the number of grid cells for averaging, and data gaps indicate months with less than 12 

75% of the total grids for each period. Blue lines and text represent the 1/Vis trends calculated 13 

using the monthly anomalies for each period. Trends in parentheses are the 95% confidence 14 

intervals. Black lines are the annual 1/Vis averaged from at least 8 monthly values. The SO2 15 

emission in Lu et al. (2011) in orange and the EDGAR SO2 emission in purple are summed 16 

from all pixels inside the defined region (Fig. 11). 17 

Figure A1. Threshold visibility of ISD stations over the US, Europe and Eastern Asia in 1990, 18 

1995 and 2000. 19 

Figure A2. Scatter plot of monthly bsp (measured by nephelometers) and bext (estimated from 20 

aerosol speciation data) from all IMPROVE stations with bsp measurements for 56 IMPROVE 21 

sites over 1993-2013. The intercept of ~12 Mm-1 corresponds to Reyleigh scattering. 22 

Figure A3. SO2 emission for several major countries. Data are from S. J. Smith et al. (2011a). 23 

The top left and top right panels include major countries of Western and Eastern Europe, 24 

respectively. Vertical lines represent division years of the study periods that roughly indicate 25 

transition points of emission trend. 26 

Figure A4. Spatial distribution of relative trends in 1/Vis over the US for 1929-1944. Larger 27 

colored points with black outline indicate trends with at least 95% significance, smaller 28 

colored points with black outline represent trends with 90%-95% significance, and colored 29 

points without outline indicate insignificant trends. 30 
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