

1 **Observations and implications of liquid-liquid phase**
2 **separation at high relative humidities in secondary organic**
3 **material produced by α -pinene ozonolysis without inorganic**
4 **salts**

5

6 **Lindsay Renbaum-Wolff^{1*†}, Mijung Song^{1*#}, Claudia Marcolli^{2,3}, Yue Zhang⁴, Pengfei**
7 **F. Liu⁴, James W. Grayson¹, Franz M. Geiger⁵, Scot T. Martin^{4,6}, Allan K. Bertram¹**

8

9 [1]{Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada}

10 [2]{Marcolli Chemistry and Physics Consulting GmbH, Zurich, Switzerland}

11 [3] {Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland}

12 [4]{School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
13 02138, USA}

14 [5]{Department of Chemistry, Northwestern University, Evanston, IL 60208, USA}

15 [6]{Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
16 02138, USA}

17 † now affiliated with Aerodyne Research, Inc, Billerica, MA 01821 and Boston College, Chestnut
18 Hill, MA 02467

19 # now affiliated with Department of Earth and Environmental Sciences, Chonbuk National
20 University, Jeollabuk-do, Republic of Korea

21 *These authors contributed equally to this work.

22 Correspondence to: A. K. Bertram (bertram@chem.ubc.ca) and S. T. Martin
23 (scot_martin@harvard.edu)

24

1 **Abstract**

2 Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To
3 predict the role of these particles in climate, visibility, and atmospheric chemistry, information on
4 particle phase state (i.e. single liquid, two liquids, and solid) is needed. This paper focuses on the
5 phase state of SOM particles free of inorganic salts produced by the ozonolysis of α -pinene. Phase
6 transitions were investigated in the laboratory using optical microscopy and theoretically using a
7 thermodynamic model at 290 K and for relative humidities ranging from < 0.5% to 100%. In the
8 laboratory studies, a single phase was observed from 0 to 95% relative humidity (RH) while two
9 liquid phases were observed above 95% RH. For increasing RH, the mechanism of liquid-liquid
10 phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases
11 were observed did not depend on the direction of RH change. In the modeling studies, the SOM
12 took up very little water and was a single organic-rich phase at low RH values. At high RH, the
13 SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the
14 laboratory studies. The presence of LLPS at high RH-values can have consequences for the cloud
15 condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM
16 particles, two local maxima were observed. Depending on the composition of the SOM, the first
17 or second maximum can determine the critical supersaturation for activation. Recently researchers
18 have observed inconsistencies between measured CCN properties of SOM particles and
19 hygroscopic growth measured below water saturation (i.e. hygroscopic parameters measured
20 below water saturation were inconsistent with hygroscopic parameters measured above water
21 saturation). The work presented here illustrates that such inconsistencies are expected for systems
22 with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an
23 organic-rich phase while the barrier for CCN activation can be determined by the second maximum
24 in the Köhler curve when the particles are water-rich.

1 **1 Introduction**

2 Particles consisting of secondary organic material (SOM) can account for 20 – 80% of the total
3 submicron organic mass concentrations in the atmosphere (Zhang et al., 2007; Jimenez et al., 2009).
4 SOM in the particle phase consists of the low volatility fraction of the oxidized products of
5 biogenic or anthropogenic volatile organic compounds (Hallquist et al., 2009). To predict the role
6 of SOM particles for climate, visibility and atmospheric chemistry, information on the phase state
7 within individual SOM particles (e.g., one liquid, two liquids, and one solid) is needed. Particle
8 phase state influences the properties of particles such as cloud condensation nuclei (CCN)
9 properties, optical properties, and interactions with reactive and non-reactive gas phase species
10 (Martin et al., 2000; Raymond and Pandis, 2002; Bilde and Svenningsson, 2004; Zuend et al., 2010;
11 Kuwata and Martin, 2012).

12 A possible phase transition of SOM particles during RH cycling is liquid-liquid phase separation
13 (LLPS) (Pankow et al., 2003; Petters et al., 2006). LLPS has been observed in the laboratory when
14 SOM produced by α -pinene ozonolysis was combined with ammonium sulfate and for other
15 organic systems when mixed with inorganic salts when the average organic oxygen-to-carbon
16 elemental ratios (O:C) were less than approximately 0.8 (Krieger et al., 2012; You et al., 2014).
17 The presence of the ammonium sulfate causes salting-out of the organic material and the formation
18 of two liquid phases. However, we are not aware of previous laboratory studies focusing on LLPS
19 in SOM in the absence of inorganic salts.

20 This paper focuses on phase transitions of SOM produced by α -pinene ozonolysis free of inorganic
21 salts. α -Pinene was chosen for the precursor gas for SOM because it is an important contributor to
22 organic particle mass in the atmosphere, especially in regions such as boreal forests (Cavalli et al.,
23 2006). Phase transitions were investigated both in the laboratory and with a thermodynamic model
24 over the range of < 0.5% to 100% RH.

1 **2 Methods**

2 **2.1 Laboratory studies**

3 **2.1.1 Production and collection of secondary organic material**

4 Particles of secondary organic material were produced by α -pinene ozonolysis in a flow tube
5 reactor by the methods described in Shrestha et al. (2013). To remove excess reactants, the aerosol
6 in the outflow from flow tube reactor continued through a diffusion dryer charged with ozone
7 destruction catalyst (Ozone Solutions, model ODS-2) and a carbon filter denuder (Sunset
8 Laboratory). Particle mass concentrations in the flow tube reactor ranged from 75 to 11,000 μg
9 m^{-3} (Table 1).

10 At the outlet of the flow tube reactor, particles were collected using one of two different methods.
11 In the first method, after charging in a bipolar charger (TSI, 3077), a portion of the flow (1.5 slpm)
12 was sampled into a Nanometer Aerosol Sampler (TSI, Model 3089). The particles were collected
13 by electrostatic precipitation (-10 kV sampler potential) onto a siliconized glass slide (Hampton
14 Research, Canada). This method of collection resulted in submicron particles distributed evenly
15 over the glass slide (Liu et al., 2013). In the second method, a portion (1.5 slpm) of the aerosol
16 flow exiting the flow reactor was sampled into a single stage impactor (Prenni et al., 2009; Poschl
17 et al., 2010). The collection substrate was a glass slide coated with trichloro (1H,1H,2H,2H-
18 perfluorooctyl) silane (Sigma-Aldrich, 97% purity). The coating procedure, which was described
19 in Knopf (2003), produced a hydrophobic surface. The size of the particles after coagulation on
20 the glass slides ranged from 10 to 80 μm in diameter. Table 1 lists samples collected by method 1
21 or method 2.

22 For the optical microscope experiments (see Sect. 2.1.2), supermicron particles are needed, and in
23 the case of method 1 the collected submicron particles were exposed to water supersaturation
24 conditions to grow and coagulate the particles (Song et al., 2015). Specifically, the slides
25 containing the submicron particles were mounted to a temperature and RH-controlled flow cell,
26 which was coupled to a reflectance microscope, as described previously (Koop et al., 2000; Parson
27 et al., 2004; Pant et al., 2006). The RH in the flow cell was initially set to > 100% by decreasing
28 the cell temperature to below the dew point temperature. At the initial RH (> 100%) water
29 condensed on the slides forming large (150 - 300 μm) droplets by growth and coagulation. The

1 RH was then ramped back to ~ 98% by warming the cell back to room temperature, resulting in
2 water evaporating from the droplets. This process of coagulation followed by evaporation resulted
3 in SOM particles with lateral dimensions of 5 - 30 μm .

4 This hygroscopic cycling of method 1 did introduce the possibility for aqueous phase reactions to
5 occur (e.g., simulating cloud water reactions) that might not be present under subsaturated
6 conditions (e.g., aerosol water only). Furthermore, during the RH cycle some of the secondary
7 organic material may have evaporated from the particles. However, the similarities in the results
8 for two collection methods (see Table 1) suggest that neither of these possible processes, if present,
9 changed the chemical composition enough to influence LLPS. Also prior to collection with both
10 methods excess gas phase components were removed with a carbon filter. During this process,
11 some of the more volatile material in the SOM may have evaporated. If some evaporation of higher
12 volatility species occurred, the SOM would likely be more similar to the chemical composition of
13 SOM particles in the atmosphere, which are formed at lower particle mass concentrations
14 compared to in the current laboratory experiments.

15

16 **2.1.2 Method of determining SOM phase(s)**

17 Hydrophobic substrates containing the supermicron particles were located within a flow cell with
18 temperature and RH control and coupled to a reflectance microscope (Zeiss, AxioTech, 50x
19 objective) for observation (Koop et al., 2000; Parson et al., 2004; Pant et al., 2006). During
20 experiments, the RH was changed by adjusting the moisture content of the gas flow. The RH was
21 measured with a chilled-mirror hygrometer (General Eastern, model 1311DR), which was
22 calibrated using the deliquescence RH of pure ammonium sulfate particles. During typical
23 experiments, the RH was first set to ~100%, and then the RH was ramped down at a rate of 0.1 -
24 0.3% RH min^{-1} and images were collected every 5 - 20 s. After the RH reached $\leq 0.5\%$ RH, it was
25 ramped up again at the same rate to ~100%. During the experiments, temperature was constant at
26 290 ± 1 K. From images recorded while changing the RH, the number of phases present in the
27 SOM was determined.

28 During the experiments used to determine SOM phase state the concentration of organic vapours
29 in the flow cell was not controlled. Hence, some of the more volatile material in the SOM may

1 have evaporated during these experiments. However, no visible change in the particle volume
2 occurred during these experiments, suggesting evaporative loss was minimal. The SOM particle
3 mass concentrations used when generating the SOM were similar to those used in Grayson et al.
4 2015, and the sample preparation methods were identical to those used in Grayson et al. 2015, who
5 showed no visible volume change of the droplets over time periods of greater than 44 hours. It is
6 possible that condensed phase reactions may have occurred that lowered the vapor pressure of the
7 SOM.

8

9 **2.2 Thermodynamic modelling studies**

10 Liquid-liquid equilibria and water uptake were calculated with the methods developed by Zuend
11 et al. (2008; 2010; 2011) and Zuend and Seinfeld (2012; 2013). To calculate activity coefficients
12 of the organic species as a function of the solution composition, the thermodynamic group-
13 contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity
14 Coefficients) developed by Zuend et al. (2008; 2010; 2011) was utilized. To determine if two
15 liquid phases or a single liquid phase was the thermodynamic stable state, the Gibbs free
16 energies of a two-liquid phase state and a single-liquid phase state were calculated (Zuend et
17 al., 2010). If the two-liquid phase state had a lower Gibbs free energy compared to the one
18 liquid phase state, then LLPS was predicted.

19 To represent SOM from the ozonolysis of α -pinene the oxidation products listed in Table 2 were
20 used. These oxidation products were based on the calculations performed by Zuend and Seinfeld
21 (2012), who used the Master Chemical Mechanism (Jenkin et al., 1997; Saunders et al., 2003) in
22 combination with EVAPORATION (Compernolle et al., 2011) to establish a representative
23 condensed-phase composition of oxidation products from the ozonolysis of α -pinene. Three
24 different mixtures of the oxidation products were used in the current study (see Table 2). The
25 mixtures SOM-high and SOM-low are based on calculations by Zuend and Seinfeld (2012) carried
26 out at 60% RH yielding particle mass concentrations of $21.86 \mu\text{g m}^{-3}$ and $0.81 \mu\text{g m}^{-3}$, respectively
27 (see Fig. 4 from Zuend and Seinfeld). The SOM-ox mixture used the same oxidation products as
28 SOM-high and SOM-low mixtures, but the share of the more oxidized products was increased.
29 Water uptake and CCN activation for these mixtures were simulated assuming that all oxidation

1 products remained in the condensed phase without further gas-to-particle partitioning to isolate the
2 effect of LLPS. The average O:C ratios used in the thermodynamic modelling studies are
3 similar to those measured in environmental chambers (e.g. see Chhabra et al. (2011) and
4 references therein).

5 The oxidation products and mole fractions used in the thermodynamic modelling studies were used
6 to 1) improve our understanding of the phase state of multicomponent organic mixtures such as
7 those generated during SOM formation from α -pinene ozonolysis and 2) to explore the possible
8 implications of liquid-liquid phase separation in multicomponent organic mixtures such as
9 SOM. However, the oxidation products and their mole fractions were not intended to reproduce
10 the laboratory conditions used here or atmospheric SOM.

11 In addition to detecting the presence of LLPS, the thermodynamic model was used to predict the
12 hygroscopic growth factor (HGF), CCN activation, and the hygroscopicity parameter (κ), from
13 calculations of hygroscopic growth (κ_{HGF}) and calculations of CCN activation (κ_{CCN}). The
14 hygroscopic growth factor was calculated with the following Eq. (1):

$$15 \quad HGF(RH) = \frac{D(RH)}{D_0}, \quad (1)$$

16 where $D(RH)$ and D_0 represent the wet and the dry diameters of the particles, respectively. The dry
17 diameter D_0 was calculated at 1% RH. The following equation was used to calculate the κ_{HGF}
18 (Petters and Kreidenweis, 2007; Pajunoja et al., 2015):

$$19 \quad \kappa_{HGF} = 1 - HGF^3 + \frac{HGF^3 - 1}{\frac{RH}{100\%}} e^{\left(\frac{4\sigma M_w}{RT\rho_w d_p HGF} \right)}, \quad (2)$$

20 where σ is surface tension at the particle-air interface, M_w is the molecular weight of water (18 g
21 mol⁻¹), R is the universal gas constant, T is temperature (298K), ρ_w is the density of water (1 g cm⁻³),
22 and d_p is diameter of droplet. The following equation was used to calculate κ_{CCN} (Petters and
23 Kreidenweis, 2007; Pajunoja et al., 2015):

$$24 \quad \kappa_{CCN} = \frac{4A_{Kelvin}^3}{27d_c^3 \ln^2 S_c}, \quad (3)$$

25 where

1 $A_{Kelvin} = \frac{4\sigma M_w}{RT\rho_w}$, (4)

2 and d_c and S_c are the critical diameter and saturation ratio, respectively.

3

4 **3 Results and Discussion**

5 **3.1 Observations of LLPS in α -pinene-derived SOM particles: laboratory studies**

6 As the RH was scanned from high values ($\sim 100\%$) to low values ($\leq 0.5\%$) and in reverse, LLPS
7 in the SOM was clearly visible for $RH > 95\%$. Example images are shown in Fig. 1. As the RH
8 was increased from $< 0.5\%$ to $\sim 95\%$, no change in the image was observed. The particles appear
9 as a single phase. The light-colored circle in the center of the particle in Panel A is an optical effect
10 of light scattering from a hemispherical uniform particle (Bertram et al., 2011). Above $\sim 95\%$ RH,
11 the particle underwent spinodal decomposition, resulting in two phases (see Fig. 1 and Movie S1).
12 Spinodal decomposition, a phenomenon by which the phase transition occurs with essentially no
13 free energy barrier to nucleation of a second phase, is evident from the formation of the many
14 small inclusions of the second phase throughout the particle (Ciobanu et al., 2009; Song et al.,
15 2012). After phase separation by spinodal decomposition, the inclusions containing the second
16 phase increased in size and coagulated into larger inclusions and eventually formed the inner phase
17 of the particle as the RH was increased above $\sim 95\%$ RH (see Movie S1). After phase separation,
18 two liquid phases persisted until $\sim 100\%$ RH.

19 Panel B of Fig. 1 and Movie S2 show the same particle as Panel A, but for experiments using
20 decreasing RH starting from close to 100% RH. At $\sim 98\%$ RH, the particle contained two liquid
21 phases. As the RH decreased from $\sim 98\%$ to $\sim 95\%$, the thickness of the SOM-rich phase increased,
22 while the amount of the water-rich phase decreased. Below $\sim 95\%$ RH, the two phases merged into
23 a single phase. As the RH was decreased further to $< 0.5\%$ RH, no abrupt change was observed,
24 indicating the absence of any further phase transitions. Figure 2 and Movies S3-S4 show similar
25 pictures and movies as Fig. 1 and Movies S1-S2, except in this case the SOM was generated using
26 a higher particle mass concentration in the flow tube reactor.

27 Figures 1-2 and Movies S1-S4 show that there are differences in the process of LLPS and the
28 resulting morphology depending on the direction of the RH change. For increasing RH, spinodal

1 decomposition was identified as the mechanism of phase separation. For decreasing RH,
2 disappearance of phase separation occurred by merging of the two phases.

3 Experiments were also carried out to determine if the lowest RH at which two phases existed
4 depended on the direction of RH change. Values for the lowest RH at which two phases were
5 observed when increasing and decreasing RH are listed in Table 1 and shown in Fig. 3 (black
6 circles correspond to increasing RH and red circles correspond to decreasing RH). Table 1 and Fig.
7 3 illustrate that the lowest RH at which two phases were observed did not depend significantly on
8 the direction of RH change. Figure 3 and Table 1 also show that within uncertainties of the
9 measurements, there is no effect of the SOM particle mass concentrations in the flow tube reactor
10 on the lowest RH at which two liquid phases were observed for the range of 75 to 11,000 $\mu\text{g m}^{-3}$.
11 Also included in Figure 3 are typical SOM particle mass concentrations measured over a boreal
12 forest (Raatikainen, T., et al.), where α -pinene is an important contributor to SOM (Cavalli et al.,
13 2006). Since the SOM particle mass concentrations used in our experiments when generating the
14 SOM were lower than typically observed in the atmosphere, additional studies are needed to
15 confirm LLPS with SOM produced using atmospherically relevant particle mass concentrations.

16 The behavior observed here for SOM is consistent with bulk thermodynamics. Consider, for
17 example, a mixture of a relatively hydrophobic organic with a less hydrophobic organic, such as a
18 mixture containing equal mole ratios of heptanol and propanol (Stoicescu et al., 2011). Under dry
19 conditions this mixture exist as a single phase. As water is added to the system, the mixture exists
20 as a single (organic-rich) phase until the water content is approximately 0.3 mole fraction. At this
21 point, the mixture separates into an organic-rich phase and a water-rich phase. As water is further
22 added to the system, the two phases co-exist until a large amount of water has been added, at which
23 point all the organic material dissolves into the water-rich phase. The formation of two phases is
24 due to the non-ideality of the mixture. I.e. if the mixture was ideal, LLPS would not be observed.
25 Examples of other organic mixtures that exhibit this type of behavior include mixtures of hexanol
26 and acetic acid (Senol et al., 2004) and mixtures of octanol and acetone (Tiryaki et al., 1994). For
27 a long list of organic mixtures that undergo liquid-liquid phase separation when mixed with water,
28 see Table 1 in Ganbavale et al. (2015).

1 **3.2 Observations of LLPS in α -pinene-derived SOM particles: thermodynamic**
2 **modelling studies**

3 Shown in **Panel A** of Fig. 4 are the simulated hygroscopic growth factors for the three different
4 SOM mixtures (SOM-high, SOM-low, SOM-ox) with a dry diameter of 20 μm , which is similar
5 in size to the particles used in the optical microscope experiments, **and assuming a surface tension**
6 **(σ) of water**. At RH values $< 98\%$ the SOM took up little water. However, when the
7 multicomponent systems consisting of organic substances with different hydrophilicities (i.e.
8 different O:C elemental ratios) were exposed to RH values $> 98\%$ RH, LLPS into an organic-rich
9 phase and a **water-rich** phase was observed. At the RH of LLPS, the particles took up a significant
10 amount of water, leading to an almost vertical increase in the hygroscopic growth curve as shown
11 in **Panel A** of Fig. 4. For the SOM-high mixture LLPS occurred from **99.3 – 99.88% RH** as
12 indicated by the red segment on the green line. When the share of the more hydrophilic substances
13 is increased as is the case for the low SOM loading (SOM-low) with a particle mass concentration
14 of $0.81 \mu\text{g m}^{-3}$ the onset of LLPS shifted to lower RH and the RH range of LLPS was increased.
15 In the laboratory experiments, LLPS was observed starting at 95% RH. This lower onset may be
16 due to more highly oxidized products produced in the laboratory compared with the oxidation
17 products used in the thermodynamic calculations. **When the range of O:C elemental ratios of the**
18 **individual products used in the thermodynamic calculations is narrower than what is present**
19 **in the SOM generated in the experiment, the calculated width of LLPS in terms of RH would**
20 **be narrower than the measured one.**

21 Shown in **Panel B** of Fig. 4 are the simulated hygroscopic growth factors of a 100 nm dry particle
22 for the three different SOM mixtures (SOM-high, SOM-low, SOM-ox), again assuming a surface
23 tension of water. This figure illustrates that LLPS can shift to RH $> 100\%$ in small particles due
24 to the Kelvin effect. In 100 nm particles, the SOM took up little water at RH $< 100\%$, and LLPS
25 is predicted above 100 % RH.

26

27 **4 Implications**

28 **4.1 Cloud condensation nuclei properties**

1 The presence of a miscibility gap at RH > 95% has consequences for the CCN activity of particles
2 as suggested previously (Petters et al., 2006). Shown in Panel A of Fig. 5 are simulated Köhler
3 curves for SOM particles with dry diameters of 100 nm and using the surface tension of water.
4 The Köhler curves show a sharp increase in the equilibrium water vapor supersaturation above the
5 particles (SS) as the size of the particles increases from 100 nm to roughly 110 nm due to the
6 Kelvin effect when they are still in their organic-rich phase (i.e. low water content state). As the
7 particle size increases from 110 nm to 200 nm there is a steep decrease in SS as the particles switch
8 from the organic-rich phase to two phases by taking up water from the gas phase. This gives rise
9 to the first maximum in the Köhler curve, which occurs at a wet particle diameter of $D_p \approx 110$ nm
10 for the SOM-high mixture. The second maximum of SS at a wet diameter of $D_p \approx 300$ nm is the
11 regular maximum of the Köhler curve, which occurs when the droplet is dilute and close to solution
12 ideality. When the particle is composed of higher shares of the more hydrophilic substances, the
13 first maximum decreases in height while the second maximum remains constant (see Panel A of
14 Fig. 5). For SOM-high (O:C = 0.472) and SOM-low (O:C = 0.513), the first maximum in the
15 Köhler curve determines the critical supersaturation to overcome the activation barrier. In SOM-
16 ox (O:C = 0.582) the second maximum is higher than the first one and relevant for CCN activation.
17 The height of the second maximum in the Köhler curve is sensitive to the molecular weight of the
18 organic substances making up the particle (e.g. Wex et al., 2007; 2008).

19 Shown in Panel A of Fig. 6 are simulated Köhler curves for SOM particles with dry diameters of
20 100 nm and using the surface tension of 40 mN m^{-1} , which is consistent with the surface tension
21 of aqueous mixtures of pinonic acid, pinic acid, and pinonaldehyde (Tuckermann and Cammenga,
22 2004; Hartz et al., 2006). Panel A of Fig. 6 illustrates that a lower surface tension has a large effect
23 on the first maximum in the Köhler curve and also lowers the barrier of the second maximum.
24 During the activation process, the surface tension is expected to increase as the phase state changes
25 from organic-rich to water-rich, but this process is not modelled here. Additional studies are
26 needed to fully understand the effect of varying surface tension on the resulting Kohler curves
27 (Ruehl et al., 2016).

28 The non-ideality of SOM has also consequences for the applicability of the single parameter κ
29 representation of Köhler theory (Petters and Kreidenweis, 2007). If SOM forms an ideal mixture
30 with water then κ_{HGF} is approximately constant over the whole RH range and κ_{CCN} corresponds

1 well with κ_{HGF} for an organic particle (Petters and Kreidenweis, 2007). However, Panels B of Figs.
2 5 and 6 show that κ_{HGF} for the mixtures SOM-high, SOM-low, and SOM-ox with a dry diameter
3 of 100 nm are not constant over the whole RH range. Due to the solution non-ideality, κ_{HGF}
4 decreases as the RH increases. In addition, κ_{CCN} strongly depends on whether the first or the second
5 maximum in the Köhler curve is limiting CCN activation.

6 Recently researchers have observed inconsistencies between measured CCN properties of SOM
7 particles and hygroscopic growth measured below water saturation. In other words, hygroscopic
8 parameters measured below water saturation were inconsistent with hygroscopic parameters
9 measured above water saturation. Several reasons have been put forward to explain these
10 discrepancies (Petters et al., 2006; Prenni et al., 2007; Petters et al., 2009; Juranyi et al., 2009;
11 Good et al., 2010; Massoli et al., 2010; Hersey et al., 2013; Pajunoja et al., 2015). The results
12 shown in Panel B of Figs. 5-6 illustrate that such inconsistencies are expected for systems with
13 LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of the
14 organic-rich phase while the barrier for CCN activation is determined by the second maximum in
15 the Köhler curve when the particles are water-rich. Additional laboratory studies are needed to
16 determine if LLPS occurs in α -pinene SOM generated with particle mass concentrations typically
17 found in the atmosphere. Additional studies are also needed to determine if LLPS occurs in other
18 types of SOM particles of atmospheric relevance.

19

20 Acknowledgments

21 This work was supported by the Natural Sciences and Engineering Research Council of Canada.
22 Support from the US National Science Foundation and the US Department of Energy is also
23 acknowledged. Claudia Marcolli acknowledges the Competence Center Environment and
24 Sustainability of the ETH Domain (CCES) project OPTIWARES for financial support and
25 Andreas Zuernd for providing the program to perform the model calculations. The authors would
26 also like to thank Doug Worsnop for enthusiastic and motivating discussions related to the current
27 manuscript.

28

1 **References**

2 Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M.,
3 Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase
4 separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic
5 material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon
6 elemental ratio of the organic component, *Atmos. Chem. Phys.*, 11, 10995-11006, doi
7 10.5194/acp-11-10995-2011, 2011.

8 Bilde, M., and Svenningsson, B.: CCN activation of slightly soluble organics: the importance of
9 small amounts of inorganic salt and particle phase, *Tellus B*, 56, 128-134, doi 10.1111/j.1600-
10 0889.2004.00090.x, 2004.

11 Brunamonti, S., Krieger, U. K., Marcolli, C., and Peter, T.: Redistribution of black carbon in
12 aerosol particles undergoing liquid-liquid phase separation, *Geophys. Res. Lett.*, 42, 2532-2539,
13 doi 10.1002/2014gl062908, 2015.

14 Cavalli, F., Facchini, M. C., Decesari, S., Emblico, L., Mircea, M., Jensen, N. R., and Fuzzi, S.:
15 Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the
16 QUEST project, *Atmos. Chem. Phys.*, 6, 993-1002, 2006.

17 Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L. M., Worsnop, D. R.,
18 Flagan, R. C., and Seinfeld, J. H.: Elemental composition and oxidation of chamber organic aerosol,
19 *Atmos. Chem. Phys.*, 11, 8827-8845, 10.5194/acp-11-8827-2011, 2011.

20 Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.: Liquid-liquid phase
21 separation in Mixed Organic/Inorganic Aerosol Particles, *J. Phys. Chem. A*, 113, 10966-10978,
22 doi 10.1021/Jp905054d, 2009.

23 Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure
24 estimation method for organic molecules including non-additivity and intramolecular interactions,
25 *Atmos. Chem. Phys.*, 11, 9431-9450, doi:10.5194/acp-11-9431-2011, 2011.

26 Ganbavale, G., Zuernd, A., Marcolli, C., and Peter, T.: Improved AIOMFAC model
27 parameterisation of the temperature dependence of activity coefficients for aqueous organic
28 mixtures, *Atmos Chem Phys*, 15, 447-493, 10.5194/acp-15-447-2015, 2015.

1 Good, N., Topping, D. O., Duplissy, J., Gysel, M., Meyer, N. K., Metzger, A., Turner, S. F.,
2 Baltensperger, U., Ristovski, Z., Weingartner, E., Coe, H., and McFiggans, G.: Widening the gap
3 between measurement and modelling of secondary organic aerosol properties?, *Atmos. Chem.*
4 *Phys.*, 10, 2577-2593, 10.5194/acp-10-2577-2010, 2010.

5 **Grayson, J. W., Zhang, Y., Mutzel, A., Renbaum-Wolff, L., Böge, O., Kamal, S., Herrmann, H.,**
6 **Martin, S. T., and Bertram, A. K.: Effect of varying experimental conditions on the viscosity of α -**
7 **pinene derived secondary organic material, *Atmos. Chem. Phys. Discuss.*, 15, 32967-33002,**
8 **doi:10.5194/acpd-15-32967-2015, 2015.**

9 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,
10 J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T.,
11 Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans,
12 G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and
13 Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging
14 issues, *Atmos. Chem. Phys.*, 9, 5155-5236, 2009.

15 **Hartz, K. E. H., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and Pandis, S. N.:**
16 **Cloud condensation nuclei activation of limited solubility organic aerosol, *Atmos. Environ.*, 40,**
17 **605-617, 10.1016/j.atmosenv.2005.09.076, 2006.**

18 Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., Cahill, J. F., Duong,
19 H. T., Sorooshian, A., Jonsson, H. H., Shiraiwa, M., Zuend, A., Nenes, A., Prather, K. A., Flagan,
20 R. C., and Seinfeld, J. H.: Composition and hygroscopicity of the Los Angeles Aerosol: CalNex,
21 *J. Geophys. Res.-Atmos.*, 118, 3016-3036, 10.1002/jgrd.50307, 2013.

22 Jenkin, M. E., Saunders, S. M., Derwent, R. G., and Pilling, M. J.: Construction and application of
23 a master chemical mechanism (MCM) for modelling tropospheric chemistry, *Abstr. Pap. Am.*
24 *Chem. S*, 214, 116-COLL, 1997.

25 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
26 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
27 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,
28 C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M.,
29 Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A.,

1 Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F.,
2 Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
3 Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R.,
4 Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,
5 Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic
6 aerosols in the atmosphere, *Science*, 326, 1525-1529, doi 10.1126/science.1180353, 2009.

7 Juranyi, Z., Gysel, M., Duplissy, J., Weingartner, E., Tritscher, T., Dommen, J., Henning, S., Ziese,
8 M., Kiselev, A., Stratmann, F., George, I., and Baltensperger, U.: Influence of gas-to-particle
9 partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary
10 organic aerosol, *Phys. Chem. Chem. Phys.*, 11, 8091-8097, doi 10.1039/B904162a, 2009.

11 Knopf, D. A.: Thermodynamic properties and nucleation processes of upper tropospheric and
12 lower stratospheric aerosol particles, *Diss. ETH No. 15103*, Zurich, Switzerland, 2003.

13 Koop, T., Kapilashrami, A., Molina, L. T., and Molina, M. J.: Phase transitions of sea-salt/water
14 mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer,
15 *J. Geophys. Res.-Atmos.*, 105, 26393-26402, doi 10.1029/2000jd900413, 2000.

16 Krieger, U. K., Marcolli, C., and Reid, J. P.: Exploring the complexity of aerosol particle properties
17 and processes using single particle techniques, *Chem. Soc. Rev.*, 41, 6631-6662,
18 doi 10.1039/c2cs35082c, 2012.

19 Kuwata, M., and Martin, S. T.: Phase of atmospheric secondary organic material affects its
20 reactivity, *P. Natl. Acad. Sci. USA*, 109, 17354-17359, doi 10.1073/pnas.1209071109, 2012.

21 Liu, P. F., Zhang, Y., and Martin, S. T.: Complex refractive indices of thin films of secondary
22 organic materials by spectroscopic ellipsometry from 220 to 1200 nm, *Environ. Sci. Technol.*, 47,
23 13594-13601, doi 10.1021/Es403411e, 2013.

24 Martin, S. T.: Phase transitions of aqueous atmospheric particles, *Chem. Rev.*, 100, 3403-3453,
25 doi 10.1021/Cr990034t, 2000.

26 Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkila, J., Canagaratna, M.
27 R., Brune, W. H., Onasch, T. B., Jayne, J. T., Petaja, T., Kulmala, M., Laaksonen, A., Kolb, C. E.,
28 Davidovits, P., and Worsnop, D. R.: Relationship between aerosol oxidation level and hygroscopic

1 properties of laboratory generated secondary organic aerosol (SOM) particles, *Geophys. Res. Lett.*,
2 37, Artn L2480110.1029/2010gl045258, 2010.

3 Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan, J. F., Hao, L. Q.,
4 Paramonov, M., Hong, J., Prisle, N. L., Malila, J., Romakkaniemi, S., Lehtinen, K. E. J.,
5 Laaksonen, A., Kulmala, M., Massoli, P., Onasch, T. B., Donahue, N. M., Riipinen, I., Davidovits,
6 P., Worsnop, D. R., Petaja, T., and Virtanen, A.: Adsorptive uptake of water by semisolid
7 secondary organic aerosols, *Geophys. Res. Lett.*, 42, 3063-3068, doi 10.1002/2015gl063142, 2015.

8 Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single and multi-
9 phase aerosol particles. 1. Unified modeling framework, *Atmos. Environ.*, 37, 3323-3333, doi
10 10.1016/S1352-2310(03)00346-7, 2003.

11 Pant, A., Parsons, M. T., and Bertram, A. K.: Crystallization of aqueous ammonium sulfate
12 particles internally mixed with soot and kaolinite: Crystallization relative humidities and
13 nucleation rates, *J. Phys. Chem. A*, 110, 8701-8709, doi 10.1021/Jp060985s, 2006.

14 Parsons, M. T., Knopf, D. A., and Bertram, A. K.: Deliquescence and crystallization of ammonium
15 sulfate particles internally mixed with water-soluble organic compounds, *J. Phys. Chem. A*, 108,
16 11600-11608, Doi 10.1021/Jp0462862, 2004.

17 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth
18 and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961–1971, doi:10.5194/acp-7-
19 1961-2007, 2007.

20 Petters, M. D., Kreidenweis, S. M., Snider, J. R., Koehler, K. A., Wang, Q., Prenni, A. J., and
21 Demott, P. J.: Cloud droplet activation of polymerized organic aerosol, *Tellus B*, 58, 196-205, doi
22 10.1111/j.1600-0889.2006.00181.x, 2006.

23 Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain,
24 L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic
25 growth and activation for secondary organic aerosol - Part 2: Theoretical approaches, *Atmos.*
26 *Chem. Phys.*, 9, 3999-4009, 2009.

27 Poschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer,
28 D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis,

1 T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P.,
2 and Andreae, M. O.: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the
3 Amazon, *Science*, 329, 1513-1516, doi 10.1126/science.1191056, 2010.

4 Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and Ziemann, P. J.: Cloud droplet
5 activation of secondary organic aerosol, *J. Geophys. Res.-Atmos.*, 112, Artn D10223, Doi
6 10.1029/2006jd007963, 2007.

7 Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S. T., Artaxo, P., Garland,
8 R. M., Wollny, A. G., and Poschl, U.: Relative roles of biogenic emissions and Saharan dust as ice
9 nuclei in the Amazon basin, *Nat. Geosci.*, 2, 401-404, doi 10.1038/Ngeo517, 2009.

10 Raatikainen, T., Vaattovaara, P., Tiitta, P., Miettinen, P., Rautiainen, J., Ehn, M., Kulmala, M.,
11 Laaksonen, A., and Worsnop, D. R.: Physicochemical properties and origin of organic groups
12 detected in boreal forest using an aerosol mass spectrometer, *Atmos. Chem. Phys.*, 10, 2063-2077,
13 2010.

14 Raymond, T. M., and Pandis, S. N.: Cloud activation of single-component organic aerosol particles,
15 *J. Geophys. Res.-Atmos.*, 107, Artn 4787, doi 10.1029/2002jd002159, 2002.

16 Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for cloud droplet
17 formation on organic aerosols, *Science*, Vol. 351, Issue 6280, pp. 1447-1450, DOI:
18 10.1126/science.aad4889, 2016.

19 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development
20 of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic
21 volatile organic compounds, *Atmos. Chem. Phys.*, 3, 161-180, 2003.

22 Senol, A.: Phase equilibria for ternary liquid systems of (water plus carboxylic acid or alcohol plus
23 1-hexanol) at T=293.15 K: modelling considerations, *J. Chem. Thermodyn.*, 36, 1007-1014,
24 10.1016/j.jct.2004.07.016, 2004.

25 Shrestha, M., Zhang, Y., Ebbin, C. J., Martin, S. T., and Geiger, F. M.: Vibrational sum frequency
26 generation spectroscopy of secondary organic material produced by condensational growth from
27 alpha-pinene ozonolysis, *J. Phys. Chem. A*, 117, 8427-8436, doi 10.1021/Jp405065d, 2013.

1 Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation
2 and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, *Atmos.*
3 *Chem. Phys.*, 12, 2691-2712, doi 10.5194/acp-12-2691-2012, 2012.

4 Song, M., Liu, P. F., Hanna, S. J., Li, Y. J., Martin, S. T., and Bertram, A. K.: Relative humidity-
5 dependent viscosities of isoprene-derived secondary organic material and atmospheric
6 implications for isoprene-dominant forests, *Atmos. Chem. Phys.*, 15, 5145-5159, doi 10.5194/acp-
7 15-5145-2015, 2015.

8 Stoicescu, C., Iulian, O., and Isopescu, R.: Liquid-Liquid phase equilibria of (1-propanol + water
9 + n-alcohol) ternary systems at 294.15 K. II. 1-propanol + water+1-heptanol or 1-octanol or 1-
10 nonanol or 1-decanol, *Rev. Roum. Chim.*, 56, 561, 2011.

11 Tiryaki, A., Guruz, G., and Orbey, H.: Liquid-Liquid Equilibria of Ternary-Systems of Water Plus
12 Acetone and C-5-Alcohol and C-8-Alcohol at 298-K, 303-K and 308-K, *Fluid. Phase. Equilibr.*,
13 94, 267-280, Doi 10.1016/0378-3812(94)87061-6, 1994.

14 Tuckermann, R., and Cammenga, H. K.: The surface tension of aqueous solutions of some
15 atmospheric water-soluble organic compounds, *Atmos. Environ.*, 38, 6135-6138,
16 10.1016/j.atmosenv.2004.08.005, 2004.

17 Wex, H., Hennig, T., Salma, I., Ocskay, R., Kiselev, A., Henning, S., Massling, A., Wiedensohler,
18 A., and Stratmann, F.: Hygroscopic growth and measured and modeled critical super-saturations
19 of an atmospheric HULIS sample, *Geophys. Res. Lett.*, 34, L02818, doi:10.1029/2006GL028260,
20 2007.

21 Wex, H., Topping, D., McFiggans, G., and Stratmann, F.: The Kelvin versus the Raoult term in
22 the Köhler equation, *J. Atmos. Sci.*, 65, 4004–4016, doi:10.1175/2008JAS2720.1, 2008.

23 You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N., Kamal, S., Smith,
24 M. L., Zhang, X. L., Weber, R. J., Shilling, J. E., Dabdub, D., Martin, S. T., and Bertram, A. K.:
25 Images reveal that atmospheric particles can undergo liquid-liquid phase separations, *P. Natl. Acad.*
26 *Sci. USA*, 109, 13188-13193, doi 10.1073/pnas.1206414109, 2012.

1 You, Y., Smith, M. L., Song, M. J., Martin, S. T., and Bertram, A. K.: Liquid-liquid phase
2 separation in atmospherically relevant particles consisting of organic species and inorganic salts,
3 *Int. Rev. Phys. Chem.*, 33, 43-77, 10.1080/0144235X.2014.890786, 2014.

4 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
5 Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.
6 F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa,
7 N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams,
8 P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and
9 Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in
10 anthropogenically-influenced Northern Hemisphere midlatitudes, *Geophys. Res. Lett.*, 34, Artn
11 L13801, doi 10.1029/2007gl029979, 2007.

12 Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K.,
13 Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization
14 of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic
15 mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic
16 functional groups, *Atmos. Chem. Phys.*, 11, 9155-9206, doi:10.5194/acp-11-9155-2011, 2011.

17 Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-
18 inorganic aerosols to predict activity coefficients, *Atmos. Chem. Phys.*, 8, 4559–4593,
19 doi:10.5194/acp-8-4559-2008, 2008.

20 Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and
21 phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic
22 aerosols, *Atmos. Chem. Phys.*, 10, 7795-7820, doi 10.5194/acp-10-7795-2010, 2010.

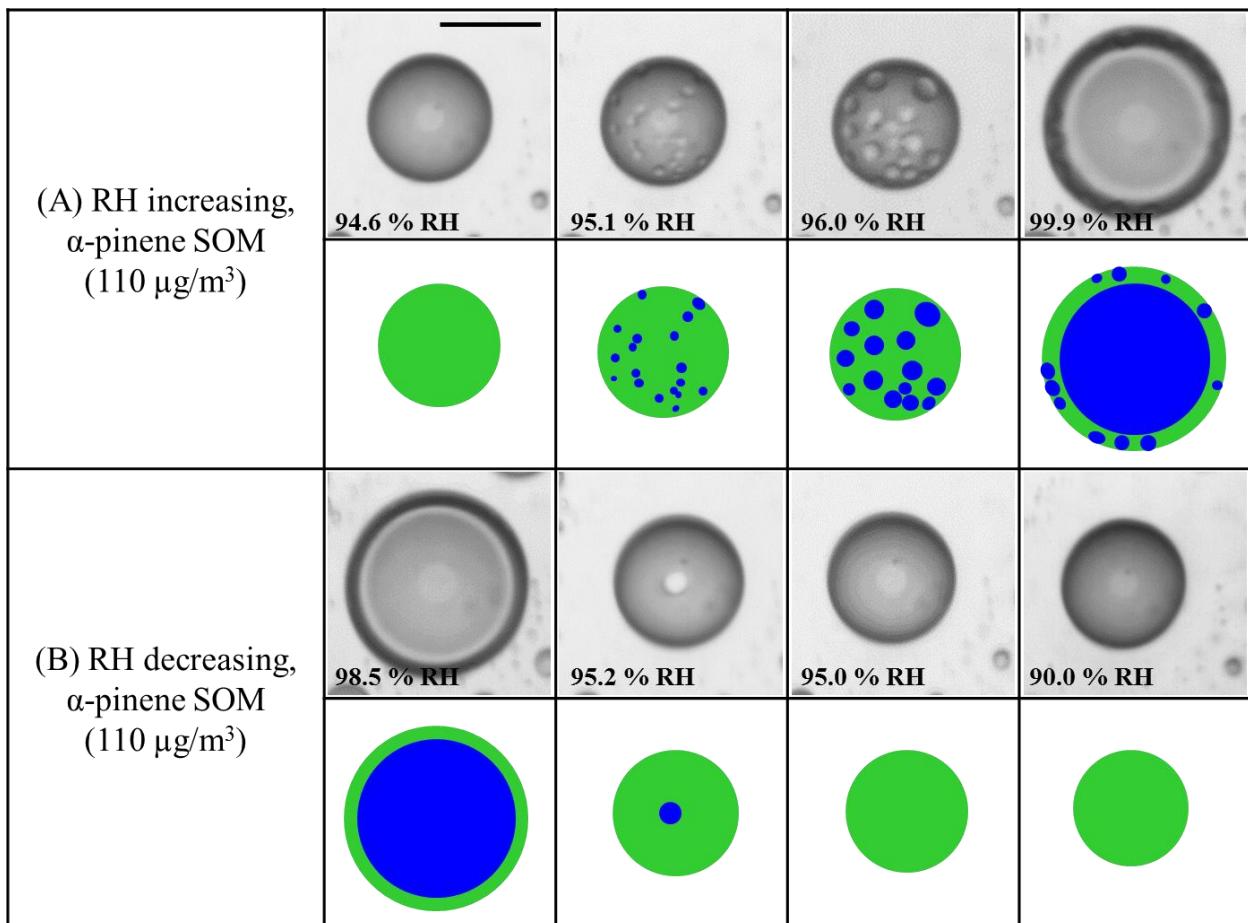
23 Zuend, A., and Seinfeld, J. H.: Modeling the gas-particle partitioning of secondary organic aerosol:
24 the importance of liquid-liquid phase separation, *Atmos. Chem. Phys.*, 12, 3857-3882, doi
25 10.5194/acp-12-3857-2012, 2012.

26 Zuend, A. and Seinfeld, J. H.: A practical method for the calculation of liquid–liquid equilibria in
27 multicomponent organic–water–electrolyte systems using physicochemical constraints, *Fluid*
28 *Phase Equilibr.*, 337, 201–213, 2013.

1 **Table 1.** Summary of experimental conditions for the production and collection of α -pinene-
 2 derived SOM. SOM samples 2, 3, 4, 5, 7, and 8 were collected on hydrophobic substrates using a
 3 single stage impactor. SOM samples 1, 6, and 9 were collected on hydrophobic substrates using
 4 an electrostatic precipitator. The separation relative humidity (SRH) from one to two phases is
 5 listed for each SOM. The standard deviation (stdev) is derived from several cycles of RH for
 6 different deposited particles. In cases for which the SRH was only determined for one humidity
 7 cycle (SOM samples 3-5), the error represents the maximum error reported for the other SOM
 8 samples. SOM particle mass concentration refers to the concentration of organic particles
 9 suspended in the gas phase at the time of SOM production.

SOM sample	α -pinene (ppm)	O_3 (ppm)	SOM mass concentration ($\mu g m^{-3}$)	particle	Collection time (min)	SRH (%) \pm stdev with decreasing RH	SRH (%) \pm stdev with increasing RH	Collection Method
1	0.20	16	75		3120	96.2 \pm 0.41	96.4 \pm 0.03	1
2	0.35	10	85		5580	95.8 \pm 0.18	95.9 \pm 0.04	2
3	0.35	10	95		5733	95.1 \pm 0.41	95.2 \pm 0.41	2
4	0.35	10	110		2160	94.7 \pm 0.13	95.0 \pm 0.41	2
5	0.80	10	320		1590	95.2 \pm 0.41	96.3 \pm 0.41	2
6	1.00	20	1,500		1440	96.2 \pm 0.39	96.1 \pm 0.08	1
7	5.00	10	2,900		1520	97.3 \pm 0.08	96.7 \pm 0.39	2
8	5.00	10	2,900		1472	95.8 \pm 1.05	96.5 \pm 0.21	2
9	5.00	20	11,000		330	96.5 \pm 0.23	96.5 \pm 0.28	1

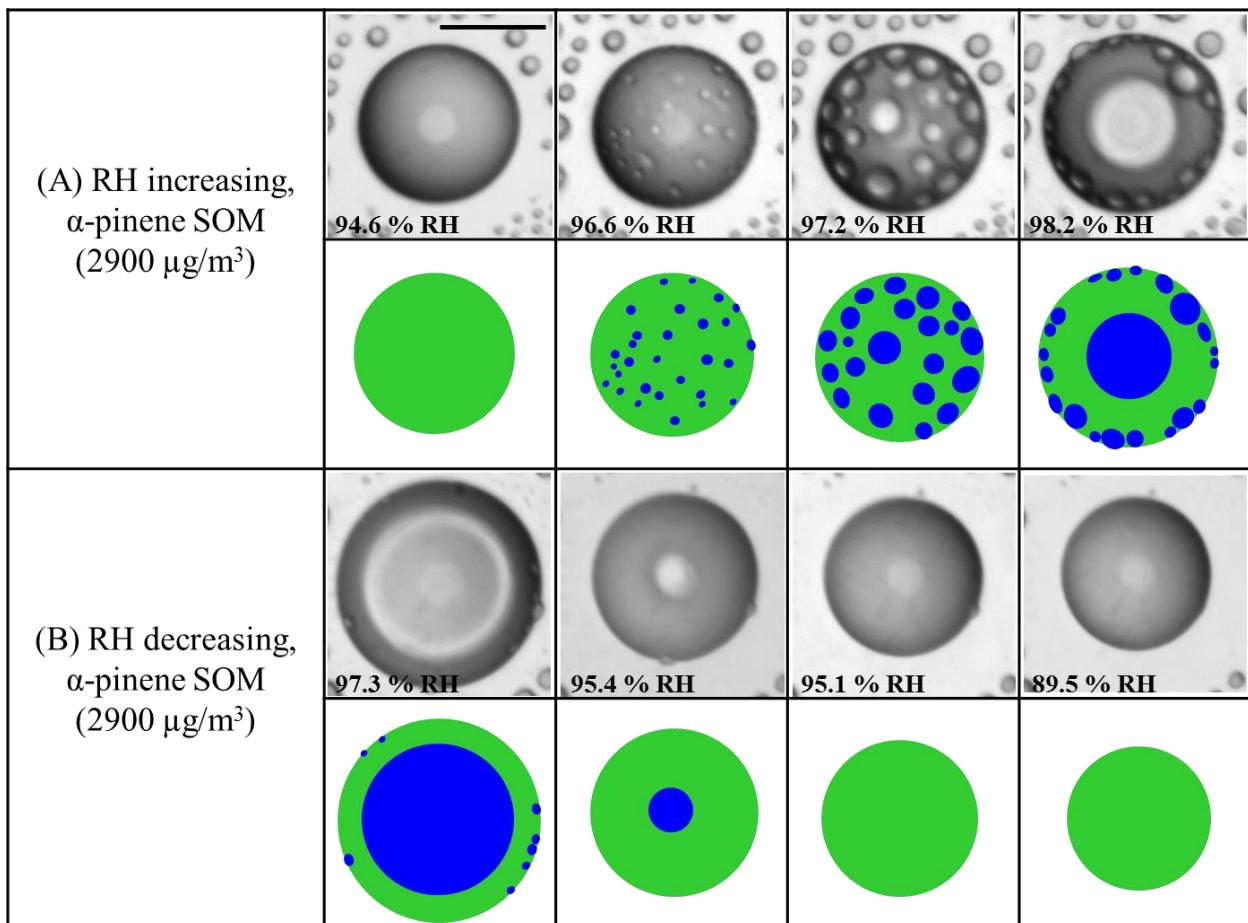
1 **Table 2.** Molecular weights (M_w), O:C **elemental** ratios and mole fractions of the α -pinene
 2 ozonolysis products from Zuernd and Seinfeld (2012) used in the thermodynamic modelling study.
 3 Three different scenarios were investigated: high SOM concentrations (SOM-high), low SOM
 4 concentration (SOM-low) and with higher shares of the more oxidized products (SOM-ox).


Name	M_w (g mol ⁻¹)	O:C	Mole fraction in mixture		
			SOM-high	SOM-low	SOM-ox
C107OOH	200.231	0.4	0.039	0.013	0.009
Pinonic acid	184.232	0.3	0.016	0.000	0.000
C97OOH	188.221	0.444	0.310	0.042	0.030
C108OOH	216.231	0.5	0.050	0.012	0.009
ALDOL_dimer	368.421	0.368	0.029	0.079	0.056
Pinic acid	186.205	0.444	0.167	0.156	0.110
C921OOH	204.220	0.556	0.138	0.271	0.192
C109OOH	200.231	0.4	0.005	0.000	0.000
C812OOH	190.194	0.625	0.128	0.277	0.245
ESTER_dimer	368.421	0.368	0.005	0.021	0.015
C811OH	158.094	0.375	0.012	0.000	0.000
Hopinonic acid	200.232	0.4	0.058	0.026	0.019
C813OOH	206.193	0.75	0.042	0.102	0.316

5

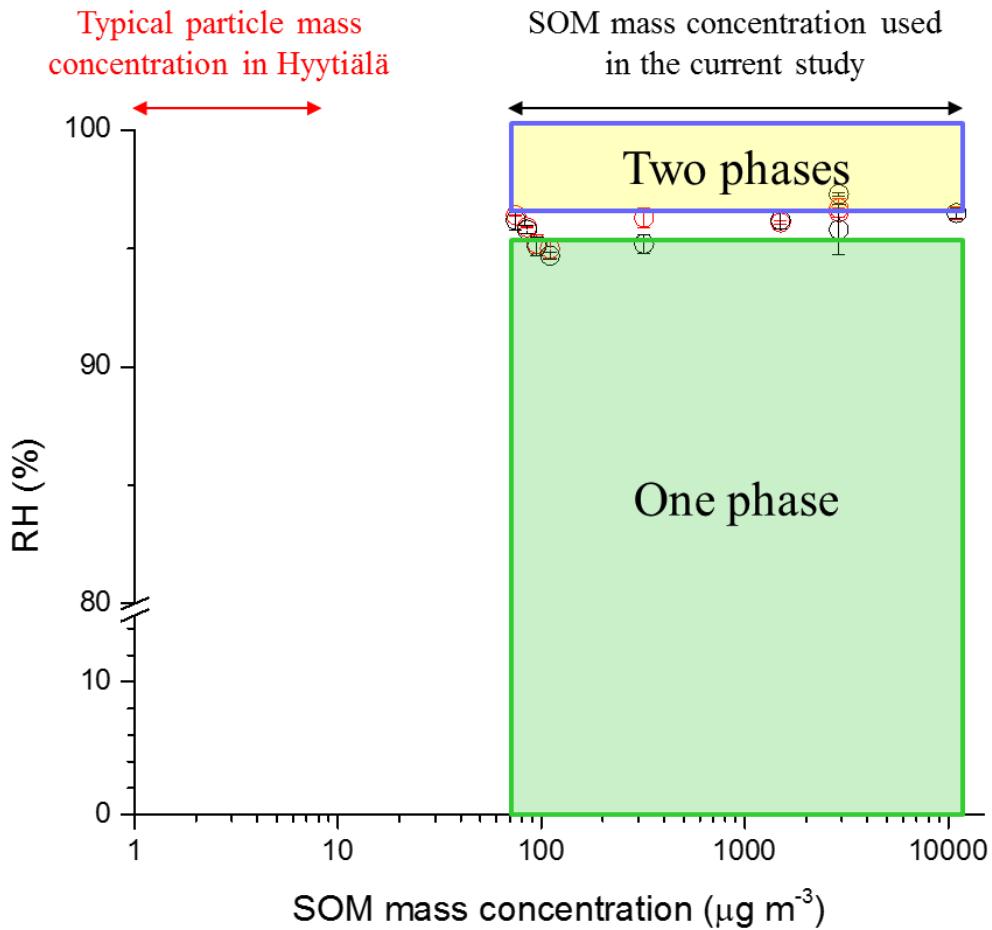
6

1 **Table 3** Calculated properties of the mixtures SOM-high, SOM-low and SOM-ox: average O:C
 2 elemental ratio, average molecular weight, range of LLPS for a 20 μm particle in diameter, range
 3 of LLPS for a 100 nm particle in diameter, critical supersaturation SSc for a 100 nm particle with
 4 a surface tension of 72 mN m^{-1} , critical supersaturation SSc for a 100 nm particle with a surface
 5 tension of 40 mN m^{-1} , κ_{HGF} from the hygroscopic growth curve at 90% RH for a 100 nm diameter
 6 particle and surface tension of 72 mN m^{-1} , κ_{HGF} from the hygroscopic growth curve at 90% RH for
 7 a 100 nm diameter particle and surface tension of 40 mN m^{-1} , κ_{CCN} from SSc of the Köhler curve
 8 for a 100 nm particle and surface tension of 72 mN m^{-1} , κ_{CCN} from SSc of the Köhler curve for a
 9 100 nm particle and surface tension of 72 mN m^{-1} , simulated mass yields at 60% RH reported in
 10 Zuend and Seinfeld (2012).

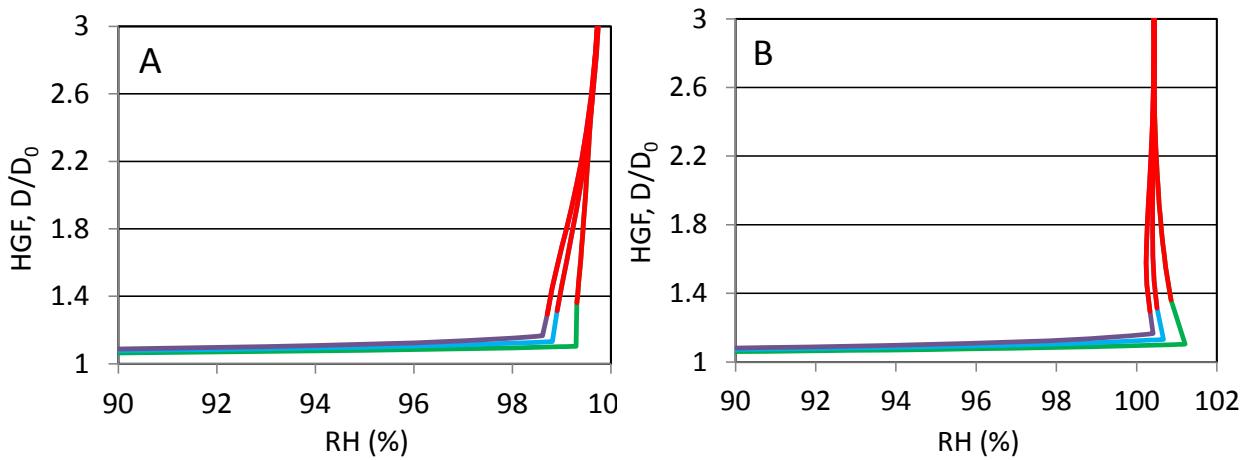

	SOM-high	SOM-low	SOM-ox
av. O:C	0.472	0.513	0.582
av. M (g mol^{-1})	199.5	213.5	210.6
PM mass conc. ($\mu\text{g m}^{-3}$)	21.86	0.81	-
LLPS range (% RH), 20 μm	99.31 – 99.88	98.91 – 99.94	98.71 – 99.92
LLPS range (% RH), 100 nm	> 100 %	> 100 %	> 100 %
SSc (%), 72 mN m^{-1}	1.206	0.668	0.432
SSc (%), 40 mN m^{-1}	0.335	0.177	0.172
κ_{HGF} at 90% RH, 72 mN m^{-1}	0.0225	0.0274	0.0314
κ_{HGF} at 90% RH, 40 mN m^{-1}	0.0227	0.0276	0.0316
κ_{CCN} , 72 mN m^{-1}	0.0093	0.0318	0.0758
κ_{CCN} , 40 mN m^{-1}	0.0198	0.0750	0.0793

1

2


3 **Fig. 1.** Effect of RH cycles on α -pinene-derived SOM for SOM produced at $110 \mu\text{g m}^{-3}$.
 4 Illustrations of the images are shown for clarity. Green: SOM-rich phase. Blue: water-rich phase.
 5 Size bar is $20 \mu\text{m}$.

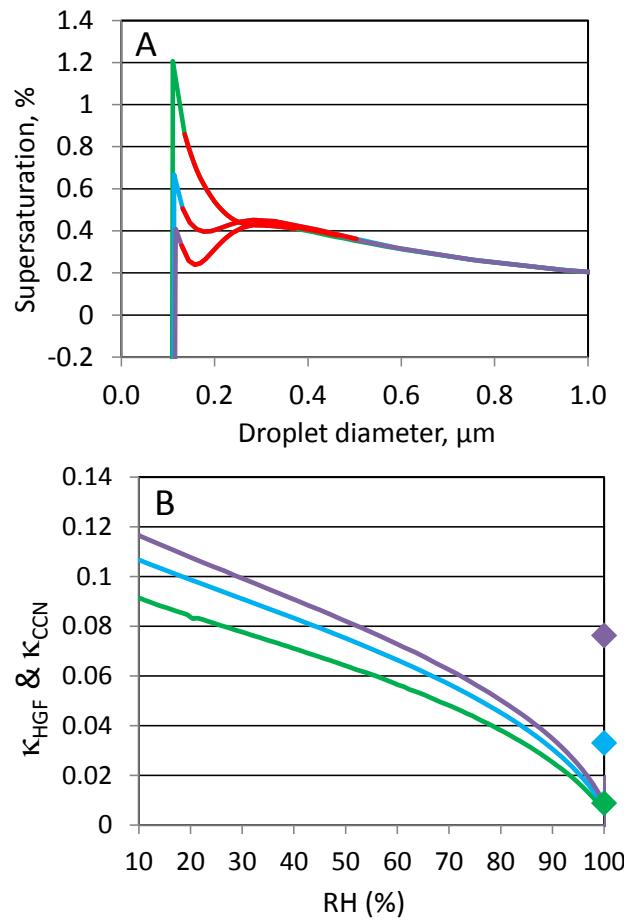
1


2

3 **Fig. 2.** Effect of RH cycles on α -pinene-derived SOM for SOM produced at $2900 \mu\text{g m}^{-3}$.
 4 Illustrations of the images are shown for clarity. Green: SOM-rich phase. Blue: water-rich phase.
 5 Size bar is $20 \mu\text{m}$.

1
2
3 **Fig. 3.** Relative humidity (RH) at which phase transition between one phase and two liquid phases
4 were observed for α -pinene-derived SOM as a function of the mass concentration of SOM
5 produced. Red circles: onset of phase separation upon moistening. Black circles: merging of the
6 two liquid phases upon drying. The y-error bars represent the standard deviation in RH
7 determination at the phase transition. Green shaded region: one phase prevalent in α -pinene-
8 derived SOM and yellow shaded region: two phases present. **Also shown is the mass concentration**
9 **observed over a representative boreal forest in Hyytiälä (Raatikainen et al., 2010).**

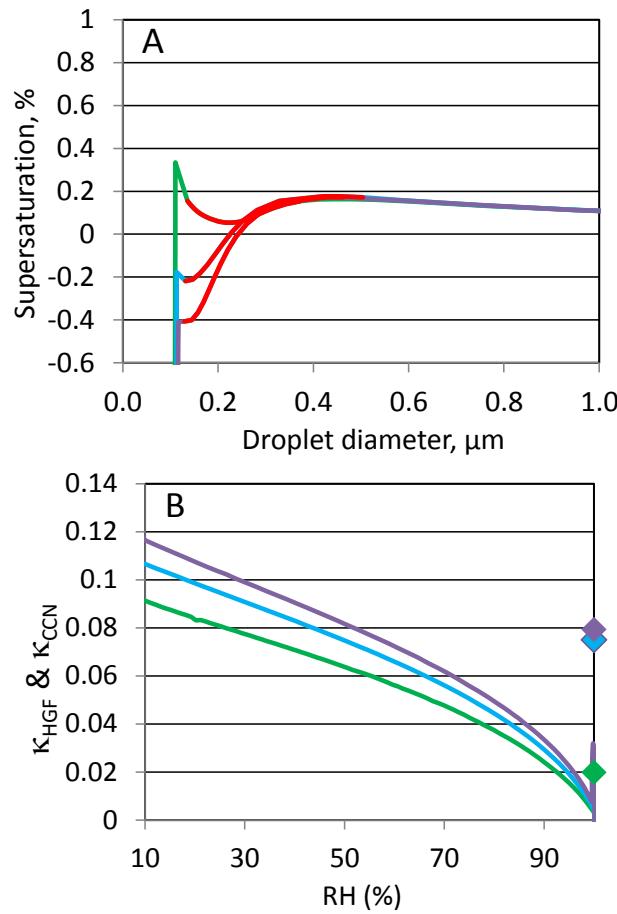
1



2

3 **Fig. 4.** Simulated hygroscopic growth factors $HGF = D/D_0$ for SOM-high (green, O:C = 0.472),
 4 SOM-low (blue, O:C = 0.513) and SOM-ox (purple, O:C = 0.582) The red segments on the lines
 5 indicate the presence of LLPS. **Panel A** corresponds to a dry diameter of $20 \mu\text{m}$, which is similar
 6 in size to the particles used in the optical microscope experiments, and a surface tension of water.
 7 **Panel B** corresponds to a dry diameter of 100 nm and a surface tension of water.

8


1

2

3

4 **Fig. 5.** Assuming the surface tension of water, Köhler curves (Panel A) and hygroscopicity
 5 parameter κ (Panel B) for a particle with a dry diameter of 100 nm for SOM-high (green, O:C =
 6 0.472), SOM-low (blue, O:C = 0.513) and SOM-ox (purple, O:C = 0.582). The red segments on
 7 the lines in Panel (A) indicate the presence of LLPS. In panel (B), κ_{HGF} is given as solid line as a
 8 function of RH and κ_{CCN} as diamond at RH = 100%.

1 **Fig. 6.** Assuming a surface tension of 40 mN m^{-1} , Köhler curves (Panel A) and hygroscopicity
2 parameter κ (Panel B) for a particle with a dry diameter of 100 nm for SOM-high (green, O:C =
3 0.472), SOM-low (blue, O:C = 0.513) and SOM-ox (purple, O:C = 0.582). The red segments on
4 the lines in Panel (A) indicate the presence of LLPS. In panel (B), κ_{HGF} is given as solid line as a
5 function of RH and κ_{CCN} as diamond at RH = 100%.

7
8
9

1 **Supporting Movies**

2 Movie S1. A movie of an α -pinene-derived SOM particle for SOM produced at $110 \text{ } \mu\text{g m}^{-3}$ with
3 increasing RH. This movie corresponds to Fig. 1a. Images were recorded as the RH was increased
4 from 94% to 100% at a temperature of $290 \pm 1 \text{ K}$. The ramp rate was approximately $0.1\% \text{ RH min}^{-1}$.
5 For the particle shown in the movie, LLPS occurred at approximately 95.0 % RH.

6

7 Movie S2. A movie of an α -pinene-derived SOM particle for SOM produced at $110 \text{ } \mu\text{g m}^{-3}$ with
8 decreasing RH. This movie corresponds to Fig. 1b. Images were recorded as the RH was increased
9 from 99% to 90% at a temperature of $290 \pm 1 \text{ K}$. The ramp rate was approximately $0.1\% \text{ RH min}^{-1}$.
10 For the particle shown in the movie, two phases merged into a single phase at approximately
11 95.0 % RH.

12

13 Movie S3. A movie of an α -pinene-derived SOM particle for SOM produced at $2900 \text{ } \mu\text{g m}^{-3}$ with
14 increasing RH. This movie corresponds to Fig. 2a. Images were recorded as the RH was increased
15 from 94% to 99% at a temperature of $290 \pm 1 \text{ K}$. The ramp rate was approximately $0.3\% \text{ RH min}^{-1}$.
16 For the particle shown in the movie, LLPS occurred at approximately 96.6 % RH.

17

18 Movie S4. A movie of an α -pinene-derived SOM particle for SOM produced at $2900 \text{ } \mu\text{g m}^{-3}$ with
19 decreasing RH. This movie corresponds to Fig. 2b. Images were recorded as the RH was increased
20 from 97% to 90% at a temperature of $290 \pm 1 \text{ K}$. The ramp rate was approximately $0.3\% \text{ RH min}^{-1}$.
21 For the particle shown in the movie, two phases merged into a single phase at approximately
22 95.1 % RH.