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Abstract

To predict the role of secondary organic material (SOM) particles in climate, visibility,
and health, information on the viscosity of particles containing SOM is required. In this
study we investigate the viscosity of SOM particles as a function of relative humidity and
SOM particle mass concentration during SOM synthesis. The SOM was generated via
the ozonolysis of a-pinene at <5 % relative humidity (RH). Experiments were carried
out using the poke-and-flow technique, which measures the experimental flow time
(Texp, flow) Of SOM after poking the material with a needle. In the first set of experiments,
we show that 7., 0 increased by a factor of 3600 as the RH increased from <0.5

to 50 % RH, for SOM with a production mass concentration of 121 ug m~2. Based on
simulations, the viscosities of the particles were between 6 x 10° and 5 x 10" Pas at
<0.5% RH and between 3 x 10% and 9 x 10°Pas at 50% RH. In the second set
of experiments we show that under dry conditions 7, 1,y decreased by a factor of

45 as the production mass concentration increased from 121 to 14 000 pg m~2. From
simulations of the poke-and-flow experiments, the viscosity of SOM with a production
mass concentration of 14000 ug m~2 was determined to be between 4 x 10* and
1.5x 10°Pas compared to between 6 x 10° and 5 x 10” Pa's for SOM with a production
mass concentration of 121 g m~2. The results can be rationalised by a dependence of
the chemical composition of SOM on production conditions. These results emphasise
the shifting characteristics of SOM, not just with RH and precursor type, but also with
the production conditions, and suggest that production mass concentration and the
RH at which the viscosity was determined should be considered both when comparing
laboratory results and when extrapolating these results to the atmosphere.
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1 Introduction

Aerosol particles are ubiquitous in the Earth’s lower atmosphere, of which a major
source is the oxidation of volatile organic compounds (VOCs) (Andreae and Crutzen,
1997). VOCs are emitted from the Earth’s surface by both human and natural sources
and, once in the atmosphere, are readily oxidised to form secondary organic material
(SOM) that can condense to the particle phase (Hallquist et al., 2009). Aqueous-phase
reactions also provide an important pathway to the production of SOM (Ervens et al.,
2011).

Atmospheric particles containing SOM play an important role in governing the Earth’s
energy budget, both directly via the scattering or absorption of solar radiation (Yu et al.,
2006) and indirectly by acting as cloud condensation nuclei (Solomon et al., 2007) and
possibly as ice nuclei (Berkemeier et al., 2014; Choularton et al., 2007; Knopf and Rigg,
2011; Ladino et al., 2014; Wang et al., 2012b; Murray et al., 2010; Schill et al., 2014).
SOM particles may also play a role in human health (Baltensperger et al., 2008) and the
chemistry of the atmosphere by providing solid or liquid phases for reactions (Hallquist
et al., 2009). Despite the importance of SOM particles, their physical properties, such
as viscosity, are poorly understood.

The viscosity of SOM is important for a number of reasons. First, the viscosity of
SOM governs the rate at which organic molecules can diffuse through particles, and
knowledge of the viscosity is thus required to predict the mechanism, rate of growth,
total mass, and size of modelled particles (Riipinen et al., 2011; Shiraiwa et al., 2011;
Shiraiwa and Seinfeld, 2012; Shiraiwa et al., 2013; Zaveri et al., 2014). Viscosity is also
important for predicting the long range transport of polycyclic aromatic hydrocarbons
(Zelenyuk et al., 2012; Zhou et al., 2012), as well as rates of both heterogeneous and
photochemical processes (Houle et al., 2015; Kuwata and Martin, 2012; Lignell et al.,
2014; Zhou et al., 2013). In addition, if viscosities are high in particles containing SOM
the optical properties of the particles may be altered (Adler et al., 2013; Robinson et al.,
2014), and both the crystallization of inorganic salts (Bodsworth et al., 2010; Murray
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and Bertram, 2008; Song et al., 2012) and the ability of particles to uptake water (Bones
et al., 2012; Hawkins et al., 2014; Lu et al., 2014; Price et al., 2014; Tong et al., 2011)
may be inhibited. Furthermore, if SOM particles are solid or “glassy” in phase under
atmospheric conditions they may provide a surface for ice nucleation (Baustian et al.,
2013; Berkemeier et al., 2014; Knopf and Rigg, 2011; Ladino et al., 2014; Wang et al.,
2012b; Murray et al., 2010; Schill et al., 2014).

Researchers have traditionally assumed particles containing SOM to be of low
viscosity when modelling particle growth (Hallquist et al., 2009). However, recent
measurements have suggested that this may not be the case under certain conditions.
Measurements that have suggested SOM can have high viscosities include (1) direct
measurements of viscosity of SOM or proxies for SOM (Booth et al., 2014; Renbaum-
Wolff et al., 2013; Pajunoja et al., 2014; Song et al.,, 2015; Zhang et al., 2015),
(2) measurements of diffusion rates and mixing times in SOM (Abramson et al.,
2013; Loza et al., 2013; Perraud et al., 2012), (3) bounce measurements off surfaces
(Bateman et al., 2015; Kidd et al., 2014; Saukko et al., 2012; Virtanen et al., 2010,
2011), (4) measurements of the flatness of particles after impaction (O’Brien et al.,
2014), (5) measurements of rates of evaporation from SOM (Cappa and Wilson, 2011;
Vaden et al., 2011), and (6) measurements of reactivity of SOM (Kuwata and Martin,
2012; Wang et al., 2012a, 2015). Nevertheless, the viscosities and diffusion rates of
SOM are still a matter of debate (Saleh et al., 2013; Robinson et al., 2013; Yatavelli
et al., 2014; Price et al., 2015).

Recently we investigated the viscosity of the water-soluble component of SOM
produced from the ozonolysis of a-pinene in an environmental chamber (Renbaum-
Wolff et al., 2013). The current manuscript is an extension of the work by Renbaum-
Wolff et al. (2013). Similar to Renbaum-Wolff we study the viscosity of SOM particles
derived via the ozonolysis of a-pinene; however, in contrast, the current study focuses
on particles consisting of the whole SOM, meaning both the water-soluble fraction and
water-insoluble fraction.
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In the first set of experiments, we investigated the effect of relative humidity on
the viscosity of the whole SOM. SOM was generated via the ozonolysis of a-pinene.
Reported here are viscosity measurements as a function of RH between < 0.5 and
50 % RH, using SOM with production mass concentrations of 520 and 121 ug m~>. The
results add to the few existing measurements of the effect of RH on the viscosity of
SOM produced via the ozonolysis of a-pinene (Renbaum-Wolff et al., 2013; Bateman
et al., 2015; Kidd et al., 2014; Zhang et al., 2015). Understanding the effect of RH on
the viscosity of SOM is important as RH in the boundary layer regularly varies between
roughly 20 and 100 % RH with varied time and location in the planetary boundary layer
(Hamed et al., 2011).

In the second set of experiments, we investigated the effect on viscosity of the
production mass concentration of SOM particles (in units of micrograms of SOM per
m? of gas) used when generating SOM. Experiments have shown that the composition
of SOM particles can change with production mass concentration (Shilling et al.,
2009), possibly affecting the viscosity of the SOM particles. The production mass

concentrations of the SOM in the current study ranged from 121 to 14 000 pg m~2.

2 Experimental

SOM particles were produced either in a flow tube (particle mass concentrations of 520
to 14000 pg m‘3) or a chamber (particle mass concentrations of 121 and 230 ug m‘s)
at < 5% RH and collected on hydrophobic substrates with an impactor (Sects. 2.1 and
2.2). The poke-and-flow technique in conjunction with simulations of fluid flow was used
to determine the viscosity of the SOM (Sects. 2.3 and 2.4).
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2.1 Production and collection of SOM generated at production mass
concentrations from 520 to 14000 ugm3

For the production of SOM at production mass concentrations from 520 to
14000 ug m=3, a previously described flow tube was used (Shrestha et al., 2013) to
generate the SOM. Alpha-pinene (Sigma-Aldrich, >99.5 % purity, 97 % enantiomeric
excess) and 2-butanol (Sigma-Aldrich, > 99.5 % purity; used as an OH scavenger) were
introduced into the flow tube at an a-pinene : 2-butanol ratio of 1:49, using a dry air flow
rate of 0.50 sLpm. Ozone was produced prior to the inlet of the flow tube by passing
dry air through an ozone generator (Jetlight, Model 600) at a rate of 3.0 sLpm, resulting
in an ozone concentration of 12 ppm at the inlet of the flow tube, as measured by an
ozone sensor (Ecosensors, UV-100). Residence time in the flow tube was 38 + 1s. The
concentration of the a-pinene entering the flow tube was varied to produce samples
at a total of five different particle mass concentrations (as measured using an SMPS;
TSI, model 3934), with the ozone concentration being kept in constant excess. Table 1
shows the mass concentrations and collection times used in the flow tube experiments,
as well as the mean geometric size of the particles produced in the flow (Sample names
Flow tube #1 — Flow tube #5).

After exiting the flow tube the 2Lpm of dry flow was diluted with an 8 Lpm flow
of humidified air, giving a total airflow of 10 Lpm with a humidity of 68 +2 % RH, as
measured using an RH meter (Rotronic, HC2-S). The airflow then passed through
a single stage impactor (MSP Corp.), within which a hydrophobic glass substrate was
mounted. Over the course of an experiment sub-micron sized SOM particles impacted
on a hydrophobic glass substrate, with the humidified gas serving to reduce the fraction
of particles that bounced in the impactor. Over time the particles coagulated to form
super-micron sized particles. The production mass concentration, mode diameter,
geometric standard deviation, and collection times are detailed in Table 1. After
collection, the samples were stored at 253 K until use. All samples were used within 4
weeks of production. To determine the impact of storing samples at 253 K, the viscosity
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of one sample (produced using a mass concentration of 6000 ug m‘3) was measured
first after four days of storage and again after 24 further days of storage. The measured
lower and upper limits of viscosity differed by < 20 % (which is within experimental
uncertainty) when measured at both 30 and < 0.5 % RH.

2.2 Production and collection of SOM generated at production mass
concentrations of 121 and 230 ugm~—3

For production mass concentrations < 500 pg m~2 the time required to collect enough
material for the poke-and-flow experiments was > 12h using the flow tube setup
described above. As a result, to collect SOM using production mass concentrations
less than 500 ug m~ we used the Leipzig Aerosol Chamber (LEAK), a cylindrical 19 m?
Teflon bag (linuma et al., 2009). The LEAK chamber could be sampled at higher flow
rates than the flow tube (16 Lpm as opposed to 2 Lpm), reducing the required collection
time.

First, ozone was introduced into LEAK, which was operating under dry conditions
(< 5% RH). The ozone concentration was held between 64—-72 ppb (0zone monitor;
49c Ozone Analyzer, Thermo Scientific, USA). Afterwards a-pinene (Sigma-Aldrich,
= 99.5 % purity, 97 % enantiomeric excess) was injected into LEAK, and the formation
and growth of SOM particles within LEAK was monitored using an SMPS (TROPOS-
type). No OH scavenger was used during experiments. After 80 min of reaction, the
submicron sized particles were collected by pumping air from the chamber at a flow rate
of 16 Lpm. At the exit of LEAK the air passed through a humidifier unit (FC300-1660-
15-LP-01, Perma Pure LLC, NJ, USA), and upon exiting the humidifier unit the air was
determined to be at 91 £ 2.5 % RH, as measured using a handheld RH meter (RH85,
Omega, USA). The airflow then passed through a single stage impactor, as described
in Sect. 2.1. Particles collected and coagulated on a hydrophobic slide located within
the impactor. After collection, the samples were stored at 253 K until use. All samples
were used within 10 weeks of production. The production mass concentration, mode
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diameter, geometric standard deviation, and collection times are detailed in Table 1
(samples named Chamber sample #1 and Chamber sample #2).

2.3 Poke-and-flow technique

A schematic of the setup for the poke-and-flow experiments is shown in Fig. 2. The
technique builds upon the qualitative technique described by Murray et al. (2012) and
has been described in detail previously (Grayson et al., 2015; Renbaum-Wolff et al.,
2013). In short, a hydrophobic glass slide containing super-micron sized particles was
placed in a flow cell, and the flow cell was mounted to a microscope. Experiments were
performed at 293-295 K, with the temperature of the cell being monitored throughout
by a thermocouple located directly beneath the slide surface. A flow of gas was passed
through a bubbler located in a temperature controlled water bath prior to entering the
cell, allowing control over humidity in the cell. The dewpoint of the gas was measured by
a dewpoint monitor (General Eastern; Model 1311DR), which was positioned at the exit
of the flow cell. The dewpoint monitor was calibrated using the deliquescence dewpoint
of potassium carbonate, and found to give readings within 0.1 K of the expected value
at 43% RH.

A sharp, sterilized needle was attached to a micromanipulator, which could move
the needle in the x, y, and z axes. The needle was aligned vertically above a particle,
typically 50—70 um in diameter, and then moved downwards along the Zz axis, passing
through the particle and impacting the substrate surface. Upon removal of the needle
the behavior of the particle was observed via reflectance optical microscopy and
recorded using a charge coupled device (CCD).

In the majority of cases the penetration and removal of the needle resulted in the
material of the particle forming a half-torus geometry (see Fig. 3, panel a2 for an
example). Over time the material flowed, and the area of the hole at the centre of
the half-torus decreased. Ultimately, the depression filled and the particle re-attained
its initial, energetically favourable, roughly hemi-spherical geometry. From the images
the area A of the depression was determined. An equivalent area diameter d was
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determined from the equation d = (4 A/7r)1/2. The experimental flow time, 7e,q, 0w, Was
the time at which the equivalent area diameter decreased to half its original size.

During poke-and-flow experiments the SOM was exposed to a dry or humid gas flow
over a period of 3—15h. During this time semi-volatile components of the SOM may
undergo evaporation. If the semi-volatile components were behaving as plasticizers
within the SOM, the viscosity of the SOM may increase upon evaporation. To determine
whether this process occurred here and, if so, whether it had a significant effect on
the results, the volumes of particles consisting of whole SOM and produced with
a mass concentration of 6000 g m~ were determined for up to 45 h while exposed to
a dry (< 0.5% RH) flow of nitrogen gas (see Sect. S1 in the Supplement for further
experimental details). Within experimental uncertainty the volume of the particles
remained unchanged (Fig. S1 in the Supplement).

In addition, the viscosity of particles consisting of whole SOM and produced with
a mass concentration of 6000 ugm'3 were determined after both 1 and 45h of
exposure to a dry (< 0.5 % RH) flow of nitrogen gas. The mean lower and upper limits
of viscosity were determined to be roughly double after 45 h of exposure compared to
their values after 1 h of exposure (Table S1 in the Supplement). This result suggests
it is possible that a small volume of semi-volatile material may have evaporated
during the exposure to dry nitrogen, below the detection limit of the measurements
of particle volume, but enough to result in a small increase in viscosity. Alternatively,
oligomerisation or polymerisation could occur within the samples at room temperature,
with the products of this process being of higher viscosity than their precursors. This
doubling in viscosity should be considered as a conservative upper limit to the effect
of evaporation in the rest of the experiments reported here, which were carried out on
a time scale of 3—-15h.

Two or three samples were analyzed per set of conditions, and the results of the
three samples combined to give the values reported here. In total, this study contains
the results from experiments on a total of 436 particles.

32976

Jaded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

©)
do

Jaded uoissnosiq

ACPD
15, 32967-33002, 2015

Viscosity of a-pinene
derived SOM

J. W. Grayson et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/32967/2015/acpd-15-32967-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/32967/2015/acpd-15-32967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2.4 Simulations of fluid flow

Limits of viscosity were determined via simulation for each particle using the
microfluidics module of COMSOL, a multiphysics program. Particles that exhibited flow
were simulated using a half-torus geometry. Full details are shown in Fig. 2 of Grayson
et al. (2015). The top and sides of the half-torus geometry, which represented the air-
SOM interface, were allowed to undergo free deformation in all directions. The bottom
of the half-torus geometry, which represented the SOM-hydrophobic glass interface,
was allowed to undergo free deformation only in the horizontal plane. In the simulations
the material flowed to minimize the surface energy, as was observed to occur in the
experiments. For the simulations a mesh consisting of ~ 5800 elements and a mesh
spacing of 3.92-337 nm was used, with the range in values of mesh spacing being
required to accurately model the shape of the half torus, as well as track its movement
over time. The model flow time, T 4e fiow, Was determined to be the time at which the
diameter of the hole at the centre of the half-torus decreased to half its original size,
with simulations performed until 7poge) 0w Was Within 1% of Teyp, fiow-

Simulations were performed using estimates of the physical properties of SOM
(i.e. particle-substrate slip length, surface tension, particle-substrate contact angle, and
density) (Table S2). In addition, images of each experiment were used to determine the
dimensions of each particle and its value of 7, 7, Contact angles were determined
using 3-D images of the super-micron particles suspended on hydrophobic surfaces
using a confocal fluorescence microscope (Leica SP5 Il, with an excitation wavelength
of 458 nm) with a 20x objective, a schematic of which is shown in Fig. S2a in the
Supplement. A z stack series of images with a step size of 0.5um, was acquired
for each particle. Contact angles were subsequently measured from the 2-D cross-
sections in the y—z plane using the LB-ADSA (Low-Bond Axisymmetric Drop Shape
Analysis) plugin for Imaged (Fig. S2b). Contact angles were determined by measuring
multiple particles from each sample and are reported in Table S3. The values used
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during simulations of a given particle are those determined for particles of the
corresponding sample.

The main source of uncertainty in the viscosity of the SOM arises from uncertainty
in the physical properties of SOM that are used in simulations, including the slip
length, the particle-substrate contact angle, and the surface tension at the particle-
gas interface. The variability in viscosity from particle to particle was only a small
component of the overall uncertainty (discussed further in Sect. S2).

3 Results and discussion
3.1 Effect of relative humidity on the viscosity of SOM

The effect of relative humidity on the viscosity of SOM was determined for SOM
produced with production mass concentrations of 520 and 121 ug m~2. Shown in Fig. 2
are images of SOM produced in the flow tube with a production mass concentration
of 520 ug m~ and studied at < 0.5 and 50% RH. Shown in Fig. 2a (panels a1-a3)
is SOM being studied at < 0.5% RH. Prior to poking the SOM is in a hemispherical
geometry (Fig. 2, panel a1). The act of poking the SOM with the needle led to the
formation of a half-torus geometry (Fig. 2, panel a2). Upon removal of the needle the
material flowed and the hole began to close, with a 7g,;, 10w Of 1074 s (Fig. 2, panel a3).
Shown in Fig. 2b (panels b1-b3) is SOM being studied at 50 % RH. As for the SOM
in Fig. 2a, the SOM was hemispherical in geometry prior to being poked (Fig. 2, panel
b1), and the act of poking the SOM also lead to the formation of a half-torus geometry
(Fig. 2b, panel b2). However in this case the flow rate was clearly faster, and the SOM
was determined to have a Tq, 10w Of 4.3 (Fig. 2, panel a3).

Figure 3 summarizes the RH dependent studies. For SOM produced at a production
mass concentration of 520 ug m~> the mean Texp, flow Value was a factor of 460 lower
at 50% RH than at <0.5% RH (Fig. 3a). By comparison, for SOM produced at
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a production mass concentration of 121 ugm™ the mean Texp, flow Value was a factor of
3600 lower at 50 % RH than at < 0.5 % RH (Fig. 3b).

Based on simulations of the poke-and-flow experiments the viscosities of SOM
produced at a production mass concentration of 520 ug m~° the viscosity was between
3x10° and 2 x 10" Pa s at < 0.5% RH and between 4 x 10° and 3 x 10* Pa s at 50 %
RH (Fig. 3c). The viscosity of SOM produced at a production mass concentration of
121 pg m~2 was determined to be between 2 x 10° and 6 x 10’ Pa s at < 0.5% RH and
between 1.8 x 10° and 1.4 x 10* Pa s at 50 % RH. The results suggest the viscosity of
both samples was between that of window putty and tar pitch at < 0.5 % RH and that of
ketchup and window putty at 50 % RH. The RH-dependent results are consistent with
previous work that has shown that the viscosity of SOM can depend strongly on RH
(Saukko et al., 2012; Renbaum-Wolff et al., 2013; Bateman et al., 2015; Song et al.,
2015; Zhang et al., 2015), with the dependence of the viscosity on RH likely being
a combination of water behaving as a plasticizer and the fraction of water present in
a particle increasing with RH (Koop et al., 2011).

3.2 Effect of production mass concentration used when generating the SOM
on the viscosity of SOM

Viscosity of SOM as a function of production mass concentration used to generate
SOM was studied at 30% RH and < 0.5% RH. Figure 4 shows examples of SOM
generated at production mass concentrations of 14000, 520, and 121 g m~3 being
poked at < 0.5% RH. In all cases the SOM exhibited flow, and there is a trend of
increasing experimental flow time with decreasing production mass concentration.

A summary of the 7, 510w @nd viscosity values as a function of production mass
concentration at < 0.5 % RH is shown in Fig. 5. Considering all the data together, as the
production mass concentration decreases from 14 000 to 121 pg m~2, the mean Texp, flow
values increase by a factor of 45 (Fig. 5a). Based on simulations of the poke-and-flow
experiments the viscosities of the SOM samples are between 4 x 10% and 1.5 x 10° Pa
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s for SOM produced at a production mass concentration of 14 000 pg m~2 and between
6x 10° and 5x 10’ Pa s for SOM produced at a production mass concentration of
121 ug m~° (Fig. 5b).

The inverse relationship between viscosity and production mass concentration is
consistent with results of Shilling et al. (2009), who observed an inverse relationship
between production mass concentration and the oxidation level of the resulting SOM.
As previously mentioned, higher oxidation levels are linked to higher glass transition
temperatures and an increased likelihood that a particle rebounds from an impactor
surface.

The results for SOM produced in the flow tube (production mass concentrations of
14000 to 520 ug m'3) and produced in the chamber (production mass concentrations
of 230 and 121 ugm™2) each exhibit the same trend: Texp, flow INCreases as production
mass concentration decreases. However, the data are not perfectly aligned. If the data
from the flow tube are extrapolated to lower particle mass concentrations, slightly
higher 7, now Values are predicted compared to observations using samples from
the chamber (roughly a factor of 2—3 higher). This difference could be due to some
differences in experimental conditions. For example, the flow tube studies were carried
out in the presence of an OH scavenger, 2-butanol, whereas no OH scavenger was
used in the chamber studies. The presence of 2-butanol decreases the SOM yield
from a given amount of precursor (Jonsson et al., 2008; Henry and Donahue, 2011).
The reaction of OH with both a-pinene, as well as first generation products of a-pinene
ozonolysis, can alter the chemical composition of the SOM produced (Vereecken and
Peeters, 2012). Another difference in experimental conditions between the flow tube
and the chamber studies was the RH at which the SOM was collected — 68 £2 % in
flow tube studies and 91 £2.5% in chamber studies. The increased humidity while
SOM was being collected during the chamber studies may have resulted in a larger
fraction of the more volatile components being present in the particle phase as material
was collected, possibly explaining the lower than expected viscosity of the samples
collected during chamber studies.
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Also included in Fig. 5 are previous measurements of the viscosity of a-pinene
derived SOM measured under dry conditions. Zhang et al. (2015) studied material
produced in the same flow tube as the material used here using a production
mass concentration of =~ 70ug m~3, and Renbaum-Wolff et al. (2013) studied the
water-soluble component of SOM produced at a production mass concentration of
~ 50 ugm’3 in an environmental chamber. The results of Zhang et al. (2015) are
consistent with the results obtained here. The results from Renbaum-Wolff et al. are not
inconsistent with the current results due to the observed inverse relationship between
viscosity and production mass concentration.

Other researchers have measured diffusion rates (Cappa and Wilson, 2011; Perraud
et al., 2012; Abramson et al., 2013), or mixing times under dry conditions (Robinson
et al., 2013; Saleh et al., 2013) within SOM produced via the ozonolysis of a-
pinene. In the Supplement we have converted these measurements to viscosities using
the Stokes—Einstein relationship. It should be kept in mind that the Stokes—Einstein
relationship may break down for small molecules (Bones et al., 2012; Price et al.,
2015) and for large molecules when the viscosity is high and near the glass transition
temperature (Champion et al., 1997; Corti et al., 2008). Further discussion on the
conversion of reported diffusion coefficients or mixing times to viscosities for each of
these studies is given in Sect. S3. Figure S3 shows that most of these previous studies
(Cappa and Wilson, 2011; Perraud et al., 2012; Saleh et al., 2013) are not inconsistent
with those presented here. Some of the results are outside of the range reported here
(Abramson et al., 2013; Robinson et al., 2013) suggesting factors beyond just a simple
relationship between viscosity and production mass concentration are required to
explain previous measurements. Differences may be due to invalid assumptions made
when using the Stokes—Einstein relationship or other factors.

The effect of production mass concentration on viscosity was also studied at 30 % RH
(Fig. S4). At this RH, the effect of particle mass concentration was not as dramatic. For
the samples produced in a flow tube, as the production mass concentration decreases
from 14 000 to 520 pug m~2, the mean Texp, flow ValUEs increase by a factor of 5 (Fig. S4a).
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For the samples produced in the chamber, as the production mass concentration
decreased from 230 and 121 pg m~2, the mean Texp, flow ValUEs increase by a factor
of 1.5. Similar to the experiments at < 0.5% RH, if the results from the flow tube are
extrapolated to lower particle mass concentrations, they predict larger 7q,, fi0n Values
than observed from the chamber studies. As mentioned above, these differences may
be due to small differences in experimental conditions between the flow tube and
chamber.

Based on simulations the viscosity of the SOM at 30% RH is between 1.0 x 10°
and 9 x 10% Pa s at a production mass concentration of 14 000 Mg m~2 and between
1.2x10% and 1.2x10°Pa s at a production mass concentration of 121 g m~3
(Fig. S4b in the Supplement). The smaller dependence of viscosity on production
mass concentration at 30 % RH compared to < 0.5% RH can be explained by the
dependence of the viscosity on the water content of the SOM. Under dry conditions the
measured viscosity is due only to the viscosity of the SOM. However as RH is increased
the SOM uptakes water, and the viscosity of the different SOM samples become
increasingly dependent on the viscosity of water and converge, finally approaching
the viscosity of water, ~ 1073 Pa s, at 100 % RH.

Also included in Fig. S4b are viscosities of a-pinene-derived SOM measured at 30 %
RH by Zhang et al. (2015) and Renbaum-Wolff et al. (2013). As mentioned above
Zhang et al. (2015) studied material produced in the same flow tube as the material
used here, and Renbaum-Wolff et al. (2013) studied the water-soluble component of
SOM produced in an environmental chamber. One possible explanation of the results
shown in Fig. S4b is a very strong dependence of viscosity on production mass
concentration in the range of 50 and 121 pg m™~2. To determine if a strong dependence
of viscosity in the range of 50 and 121 ug m~2 shown in Fig. S4b exists or is due to other
factors, additional studies are needed. More importantly, additional studies are needed
to determine if the viscosity of the water-soluble component of SOM is the same as the
viscosity of the whole SOM (water-soluble and water insoluble components) produced
at production mass concentrations around 50 ug m=. In addition, further comparison
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studies using the technique introduced by Zhang et al. (2015) and the poke-and-flow
technique used here would be beneficial. Finally, the studies here are carried out at
production mass concentrations greater than those found under ambient conditions
(Hallquist et al., 2009; Slowik et al., 2010), and studies carried out using material
produced under ambient conditions would provide further useful information.

3.3 Effect of the water-insoluble component on the viscosity of SOM

To better understand the difference between the viscosity of water-soluble SOM and
SOM containing both the water-soluble and water-insoluble components, additional
measurements were carried out using just the water-soluble component of SOM
generated by the ozonolysis of a-pinene at a production mass concentration of
14000 ug m™°. Particles were generated using the flow tube as discussed in Sect. 2.1,
and particles from the outlet of the flow tube were collected on a Teflon filter. After
collection, SOM was extracted from the Teflon filter by placing it in a clean glass
jar and immersing the filter in 10 mL of Millipore (18.2MQ cm) water. The jar was
shaken for 1.5h, with the filter being flipped over half way through, after which the
filter was removed from the jar, resulting in a solution of the water-soluble component
of the SOM. The solution was then nebulized and sprayed onto a hydrophobic glass
substrate, producing super-micron sized particles. The particles were then studied
using the poke-and-flow technique and their viscosities determined using simulations
of fluid flow as described in Sects. 2.3, 2.4, and S4.

Shown in Fig. 6 are images of a particle comprised of the water-soluble fraction of
SOM (Fig. 6a) and a particle comprised of the whole SOM, both the water-soluble
and water-insoluble fractions (Fig. 6b). Both were produced at a production mass
concentration of 14000 g m~ and studied at < 0.5% RH. Although the production
of both the water-soluble SOM and the whole SOM took place using equivalent flow
tube conditions, the images of the SOM during the poke-and-flow experiments were
clearly different, with the water-soluble SOM cracking and showing no observable flow
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over the course of 14 h (Fig. 6a, panels a2 and a3), whilst the whole SOM exhibited
flow, with a 7, 70w Of 1074 s (Fig. 6b, panels b2 and b3).

Table 2 summarizes experimental results at <0.5% RH for both the water-
soluble SOM and the whole SOM produced at a production mass concentration of
14000pugm™°. The Texp, flow @Nd Viscosity of the water-soluble component were both at
least a factor of 300 greater than the 7., 50, @nd viscosity of the whole SOM.

The difference in viscosity between the whole SOM and the water-soluble SOM
may arise from differences in the extent of oxidation of the SOM. Water-soluble SOM
is assumed to be composed of the more oxidized components of the whole SOM
and literature suggests that higher oxidation is related to a warmer glass transition
temperature (Koop et al., 2011; Berkemeier et al., 2014; Dette et al., 2014), implying
that viscosity increases with oxidation level.

The results for Table 2 correspond to a high production mass concentration. At lower
SOM particle concentrations such as concentrations used by Renbaum-Wolff et al.
(2013) the difference between water-soluble SOM and whole SOM is likely smaller,
since as the production mass concentration decreases, the extent of oxidation in
the particle phase is expected to increase and hence the amount of water insoluble
material in the particle phase should decrease. In addition, literature suggests that
the SOM formed from the ozonolysis of a-pinene is largely composed of water-
soluble organic compounds (Hall and Johnston, 2011) produced using a production
mass concentration of < 500 ug m=3. Further, mass spectral analysis has revealed little
difference in the chemical composition of SOM produced via the ozonolysis of a-pinene
and extracted using either water or a methanol:water solution (Heaton et al., 2007), and
cloud condensation measurements suggest SOM generated via the ozonolysis of a-
pinene is not limited by solubility of the organic material in water (King et al., 2009) for
SOM produced at production mass concentrations of < 100 ug m~2. Based on these
arguments the results shown in Table 2 should be considered as an upper limit to the
difference between the viscosity of water-soluble SOM and whole SOM produced using
production mass concentrations lower than 14 000 pg m=3.
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4 Summary

The effect of various experimental parameters on the viscosity of SOM derived via
the ozonolysis of a-pinene have been studied. First, the effect of relative humidity on
the viscosity of the whole SOM was studied. For each sample studied the Te,, fiow
values were larger and the simulated viscosities higher as the RH was decreased from
50 to < 0.5% (Figs. 2 and 3). Specifically, for SOM produced at a production mass
concentration of 121 pg m~3, the Texp, flow INCreased by a factor of 3600 as the relative
humidity (RH) decreased from 50 to < 0.5 % RH. Based on simulations, the viscosities
of the particles were between 3 x 10% and 9 x 10° Pa s at 50 % RH and between 6 x 10°
and 5 x 10’ Pa s at < 0.5% RH.

Second, the effect on viscosity of the production mass concentration used during
the production of SOM was investigated at 30 and < 0.5% RH. The measurements
provide evidence of an inverse relationship between production mass concentration
in the reaction vessel and viscosity of the SOM material (Figs. 4 and 5). The effect
was most prominent at < 0.5% RH where 17, g, increased by a factor of 45 as the

particle mass concentration decreased from 14000 to 121 pg m~2. From simulations
of the poke-and-flow experiments, the viscosity of the SOM produced at a production
mass concentration of 14 000 pg m~ are between 4 x 10* and 1.5 x 10° Pa s and the
viscosity of SOM produced at a production mass concentration of 121 g m~2 are
between 6 x 10° and 5 x 10’ Pa s at < 0.5% RH (Fig. 5).

We also observed that 7, 7o, and viscosity of the water-soluble component of

SOM was at least a factor of 300 greater than the 7., 7., a@nd viscosity of the whole

SOM when using a production mass concentration of 14 000 pg m™~2. This result should
be considered as an upper limit to the difference between the viscosity of water-
soluble SOM and whole SOM produced at production mass concentrations lower than
14000 pgm™.

Overall the results suggest that the RH at which the viscosity was determined
and the mass concentration at which the SOM was produced should be considered
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when laboratory experiments are being compared or when used to infer viscosities of
atmospheric particles.

The Supplement related to this article is available online at
doi:10.5194/acpd-15-32967-2015-supplement.
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Table 1. Conditions used for generating and collecting samples of SOM generated via the
ozonolysis of a-pinene. The whole SOM (both water soluble and water insoluble component of

the SOM) was collected.

Sample name Samples Production mass Mode Geometric  Collection

studied concentration diameter standard time (min)

(Mgm™) (nm) deviation

Flow tube sample #1 3 (1.4+0.1)x10* 265x7 1.43 20
Flow tube sample #2 3 (5.9+0.7)x10° 194%5 1.47 20
Flow tube sample #3 3 (3.4£0.1)x10° 1632 1.46 150
Flow tube sample #4 3 (1.2+£0.2)x10° 1218 1.46 450
Flow tube sample #5 3 (5.2+0.2) x 10?2 132x2 1.52 800
Chamber sample #1 2 (2.3+0.1) x 10° 18112 95
Chamber sample #2 2 (1.2+0.1) x 10° 169+ 12 180
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Table 2. Summary of 7., ¢, times and viscosities of whole SOM and water-soluble SOM

produced in the flow tube at a production mass concentration of 14 000 ug m~ and studied
at < 0.5% RH.
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Figure 2. Optical images recorded during typical poke-and-flow experiments of whole SOM
produced at (a) production mass concentration of 520 ugm™ being poked at (a) < 0.5 %,
and (b) 50 %, RH. Images a1 and b1 correspond to SOM prior to poking. Images a2 and b2
correspond to the first frame post-poke (i.e. the first frame after the needle has been removed).
Images a3 and b3 correspond to images of the experimental flow time, 7., 104, the point at
which the diameter of the hole at the centre of the torus has decreased to 50 % of its original
size. Scale bar in Images a1 and b1: 20 um.
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Figure 5. Summary of poke-and-flow experiments performed on samples of whole SOM
at < 0.5% RH. Black symbols represent results from particles produced in a flow tube, whilst
red symbols represent results from particles produced in a chamber. (a) shows box plots of
observed 7., 1, times at different production mass concentrations for particles poked < 0.5 %
RH. Boxes represent the 25, 50, and 75 percentiles, open circles represent median values,
and whiskers represent the 5 and 95 percentiles. (b) shows the simulated lower (filled squares)
and upper (open squares) limit of viscosity for particles at each production mass concentration
poked at < 0.5 %. Symbols represent mean values. The y error bars represent 95 % confidence
intervals. The shaded regions are included to guide the eye of the reader. Also included in (b)
are literature viscosities for SOM produced via the ozonolysis of a-pinene (Renbaum-Wolff
et al., 2013; Zhang et al., 2015).
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Figure 6. Optical images recorded during poke-and-flow experiments using particles consisting
of (a) the water-soluble component of the SOM and (b) the whole SOM (i.e., both the water-
soluble and the water-insoluble components). In both experiments the SOM was produced
using a mass concentration of 14 000 pg m~ and was poked at < 0.5% RH. Images a1 and b1
correspond to the SOM prior to being poked. The brightness in Image a1 is due to reflection of
the source light by the needle positioned just above the particle. Images a2 and b2 correspond
to the first frame post-poke (i.e. the first frame after the needle has been removed). The particle Full Screen / Esc
comprised of the water-soluble component of SOM exhibited cracking behaviour and, as shown
in Image a3, no change in the size or shape of the cracks can be observed 14 h after the
particle has been poked. The particle comprised of whole SOM exhibited flow, and Image b3
corresponds to an image of the particle at its experimental flow time, 7, .., the point at which
the diameter of the hole at the centre of the torus has decreased to 50 % of its original size.
Scale bar in Images a1 and b1: 20 pm.
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