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Abstract. Aerosol–cloud interactions are considered a key
uncertainty in our understanding of climate change (Boucher
et al., 2013). Knowledge of the global abundance of cloud
condensation nuclei (CCN) is fundamental to determine the
strength of the anthropogenic climate perturbation. Direct
measurements are limited and sample only a very small frac-
tion of the globe so that remote sensing from satellites and
ground based instruments is widely used as a proxy for cloud
condensation nuclei (Nakajima et al., 2001; Andreae, 2009;
Clarke and Kapustin, 2010; Boucher et al., 2013). However,
the underlying assumptions cannot be robustly tested with
the small number of measurements available so that no re-
liable global estimate of cloud condensation nuclei exists.
This study overcomes this limitation using a self-consistent
global model (ECHAM-HAM) of aerosol radiative proper-
ties and cloud condensation nuclei. An analysis of the cor-
relation of simulated aerosol radiative properties and cloud
condensation nuclei reveals that common assumptions about
their relationships are violated for a significant fraction of the
globe: 71 % of the area of the globe shows correlation coef-
ficients between CCN0.2% at cloud base and aerosol optical
depth (AOD) below 0.5, i.e. AOD variability explains only
25 % of the CCN variance. This has significant implications
for satellite based studies of aerosol–cloud interactions. The
findings also suggest that vertically resolved remote sensing
techniques, such as satellite-based high spectral resolution
lidars, have a large potential for global monitoring of cloud
condensation nuclei.

1 Introduction

Aerosol–cloud interactions play an important role in the
global climate system through modification of aerosol and
cloud properties and abundance (Boucher et al., 2013;

Twomey, 1974; Albrecht, 1989; Lohmann and Feichter,
2005). The activation of suitable aerosols (cloud condensa-
tion nuclei, CCN) to cloud droplets is the primary aerosol
effect on warm clouds (and ice or mixed-phase clouds initi-
ated from the liquid phase). Knowledge of the global abun-
dance of aerosols suitable to act as cloud condensation nu-
clei is fundamental to determine the strength of the anthro-
pogenic perturbation causing the radiative effect of aerosol–
cloud interactions. Most estimates of the effect of aerosol–
cloud interactions on the global radiation balance rely on
global aerosol models. However, large uncertainties associ-
ated with the representation of clouds and aerosol effects on
cloud microphysics and dynamics in current climate models
(Boucher et al., 2013; Stevens and Feingold, 2009) demand
for independent observational constraints. Unfortunately, di-
rect observations of CCN are spatio-temporally sparse (An-
dreae, 2009; Spracklen et al., 2011) and provide insufficient
constraints on their global distribution. Consequently, satel-
lite retrieved aerosol radiative properties, such as aerosol op-
tical depth (AOD), have been widely used as proxy for CCN
in satellite based studies of aerosol–cloud interactions (Kauf-
man and Nakajima, 1993; Kaufman et al., 2005; Rosenfeld
et al., 2008; Grandey and Stier, 2010; Boucher et al., 2013;
Gryspeerdt et al., 2014).

Assuming identical size, shape, composition and humid-
ity, CCN concentrations at fixed supersaturation are linearly
related to aerosol light extinction, so that AOD, the column
integrated aerosol extinction, could be expected to provide
a first order proxy for CCN. However, for realistic aerosol
distributions extinction and CCN concentrations are non-
linearly related to size, complicating the retrieval of CCN
based on extinction measurements (Ghan and Collins, 2004;
Kapustin et al., 2006). It has been suggested from theory and
an analysis of satellite retrievals (Nakajima et al., 2001) that
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aerosol index (Deuze et al., 2001)

AI = AOD×α (1)

where the Ångström parameter

α=− ln(AODλ1
/AODλ2

)

ln(λ1/λ2)
(2)

provides a superior proxy of CCN, as it gives lower weight
to large (low α) aerosol and reduces the impact of large but
low number-concentration sea salt and dust particles.

A significant body of prior work has evaluated the suitabil-
ity of aerosol radiative properties as proxy for CCN based
on local in-situ data and local remote sensing using sun-
photometers or lidars. Feingold et al. (1998) developed a
technique based on a combination of Doppler radar, mi-
crowave radiometer and lidar to infer CCN from the re-
trieved cloud droplet concentration, vertical velocity and li-
dar backscatter. Ghan and Collins (2004) devised a method
for estimating CCN at cloud base from lidar retrievals and
surface CCN measurements, which they evaluated in (Ghan
et al., 2006) using aircraft, surface in-situ, and surface remote
sensing measurements. The study highlighted deteriorating
retrieval quality for higher supersaturations and for scenes
with vertical inhomogeneity. A continental-scale compilation
of co-located observations of AERONET sun-photometer
(Holben et al., 1998) retrieved AOD and ground-based CCN
measurements revealed a statistically robust power–law rela-
tionship between AOD and CCN for continental scales and
(month) long averaging periods (Andreae, 2009). Limited-
scale in-situ observations (Kapustin et al., 2006) showed that
the relationship of AI to aerosol number and CCN is also
strongly affected by relative humidity (increasing particle
size and extinction but not aerosol number) and complex
aerosol size distributions. An analysis of aircraft measure-
ments for the ARCTAS measurement campaign over Canada
showed reasonable temporal correlations between CCN and
AOD (r2 = 0.59) and a significant improvement in correla-
tion when using in-situ dry extinction instead of vertically
integrated ambient AOD (Shinozuka et al., 2015). An analy-
sis of a large compilation of aircraft measurements over the
Pacific revealed that regional campaign-average vertical pro-
files of extinction and CCN proxies show generally a strong
correlation (Clarke and Kapustin, 2010) but it is unclear how
representative this is for the temporal correlation of extinc-
tion and CCN at cloud base. Liu and Li (2014) investigated
the correlation of CCN and aerosol radiative properties using
data from five Atmospheric Radiation Measurement (ARM)
Climate Research Facility sites. They found variable correla-
tions between surface CCN and AERONET retrieved AOD
for the different sites, with lower correlations for the Azores
and Niger sites and attribute this to the dominance of large
particles. They generally found improved correlations us-
ing AI as compared to AOD and best correlations between
in-situ surface scattering/extinctions coefficients and in-situ

measured scattering aerosol index. The importance of many
of the above factors has also been realised in the context
of deriving surface aerosol mass from AOD retrievals for
air pollution applications over the continental United States
(van Donkelaar et al., 2010), employing a chemical transport
model to derive local linear conversion factors from AOD to
surface mass.

In summary, previous work on the relationship between
aerosol radiative properties and CCN has been based on in-
situ CCN data in combination with aerosol radiative prop-
erties from in-situ measurements or remote sensing. Stud-
ies have found: a variable degree of correlations for differ-
ent regions and aerosol regimes; generally improved cor-
relations between AI and CCN as compared to AOD and
CCN; a degradation of correlations in regions of high rela-
tive humidity; an impact of vertical layering on the correla-
tion of surface CCN and aerosol radiative properties. How-
ever, the limited availability of direct measurements as well
as their limited representativeness in the light of sampling
errors (Schutgens et al., 2016b, a) has made it impossible
to provide a global, statistically robust, assessment of the
suitability of aerosol radiative properties as constraint for
CCN. Consequently, no reliable global observational dataset
of cloud condensation nuclei exists and a large body of liter-
ature uses AOD/AI almost synonymously for CCN.

This work provides a global assessment of the link be-
tween aerosol radiative properties and CCN, overcoming the
insufficient global coverage of direct observations through
use of a self-consistent global model (ECHAM-HAM, Stier
et al., 2005, 2007; Zhang et al., 2012) of aerosol radiative
properties and CCN. It is clear that no perfect global model of
aerosol radiative properties or CCN exists (e.g. Myhre et al.,
2013; Mann et al., 2014) so self-consistent in this context
refers to the fact that the calculations of the aerosol radiative
properties (based on Mie theory) and CCN (based on Köhler
theory) are fully consistent in terms of the size-distribution,
composition and mixing state, unaffected by any independent
assumptions or errors common to remote sensing retrievals.
Therefore, use of this model allows to consistently assess the
relationship between aerosol radiative properties and CCN as
biases in the simulated fields are expected to affect both pa-
rameters similarly. Nonetheless, it should be noted that the
ability of models to mimic the spatial (in particular vertical)
and temporal (co-)variability of aerosol and humidity fields
introduces some quantitative uncertainty (Haywood et al.,
1997).

While the introduced methodology would lend itself to the
derivation of CCN retrieval from satellite retrieved aerosol
radiative properties, this is not the focus of this study. Like-
wise, it should be pointed out that this work does not inves-
tigate the link between aerosol radiative properties and the
number of activated cloud droplets, which additionally re-
quires the knowledge of (highly uncertain) updraft velocities
at cloud base or the point of activation. Instead, this work
aims to provide the first consistent global analysis of the suit-
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ability of aerosol radiative properties as observational con-
straint for CCN.

2 Methods

In this study we employ the aerosol-climate model ECHAM-
HAM, version ECHAM-6.1_HAM-2.2, with a prognostic
representation of the composition, size distribution, and mix-
ing state of the major global aerosol components: sulfate,
black carbon, particulate organic matter, sea salt, and min-
eral dust. More details and an extensive evaluation of this
base model can be found in (Stier et al., 2005, 2007; Zhang
et al., 2012; Schutgens and Stier, 2014) as well as part of the
AeroCom intercomparison (Myhre et al., 2013; Stier et al.,
2013; Mann et al., 2014).

2.1 The atmospheric general circulation model
ECHAM6

The atmospheric general circulation model (GCM)
ECHAM6 (Stevens et al., 2013) is the sixth-generation
climate model developed at the Max Planck Institute for
Meteorology. ECHAM6 solves prognostic equations for
vorticity, divergence, surface pressure, and temperature,
expressed in terms of spherical harmonics with a trian-
gular truncation. Non linear processes and the physical
parameterisations are solved on a corresponding Gaussian
grid. Water vapour, cloud liquid water, cloud ice, and trace
components are transported in grid-point space with a flux
form semi-Lagrangian transport scheme (Lin and Rood,
1996). ECHAM6 contains a microphysical cloud scheme
(Lohmann and Roeckner, 1996; Lohmann et al., 2007) with
prognostic equations for cloud liquid water and ice. Cloud
cover is represented using an assumed humidity distribution
function (Sundqvist et al., 1989). Convective clouds and
convective transport are based on the mass-flux scheme of
Tiedtke (1989) with modifications by (Nordeng, 1994) and
a modified triggering related to a prognostic treatment of
the temperature variance in the planetary boundary layer
(Stevens et al., 2013). Radiative transfer is represented using
the rapid radiation transfer suite of models optimised for
general circulation modeling (Iacono et al., 2008) with 16
and 14 bands in the longwave and shortwave parts of the
spectrum, respectively.

2.2 The aerosol module HAM

The microphysical aerosol module HAM (Stier et al., 2005,
2007; Zhang et al., 2012) predicts the evolution of an en-
semble of seven interacting internally- and externally-mixed
log-normal aerosol modes. In the current setup, the com-
ponents comprise: sulfate, black carbon, particulate organic
matter, sea salt, and mineral dust. The microphysical core
M7 (Vignati et al., 2004) calculates coagulation among the
modes and the condensation of gas-phase sulfuric acid on

the existing aerosol population. In the revised version HAM-
2.0, the equilibrium water update is based on κ-Köhler the-
ory (Petters and Kreidenweis, 2007) and a range of aerosol
nucleation parameterisations have been introduced by Kazil
et al. (2010) in addition to the original binary nucleation
scheme. In this study we employ a parameterisation of neu-
tral and charged nucleation Kazil and Lovejoy (2007) as de-
scribed in Kazil et al. (2010). Aerosol radiative properties,
as well as the sink processes of dry deposition, sedimen-
tation, and wet deposition, are parameterised based on the
prognostic aerosol size distribution, composition, and mix-
ing state and coupled to the ECHAM meteorology. Emis-
sions of mineral dust, sea salt and DMS from seawater
are calculated online. For all other compounds, emission
strength, distribution, and height are based on the AERO-
COM aerosol model inter-comparison (http://aerocom.met.
no) Phase II ACCMIP-MACCity emission inventory (Lamar-
que et al., 2010) for the year 2000. We implement an explicit
Köhler theory based activation scheme with empirical esti-
mation of maximum supersaturation in updrafts derived from
explicit parcel model calculations (Abdul-Razzak and Ghan,
2000). The total number of activated particles is calculated
as sum of the integrated log-normal aerosol number distri-
bution from the radius of activation for each mode. Köhler
theory requires detailed information about the aerosol com-
position. While the composition is relatively well defined
for some aerosol components, such as sea salt, the detailed
composition of other components, such as particulate organic
matter is insufficiently understood. In many measurements of
aerosol chemical composition, a non-negligible fraction of
the aerosol mass cannot be identified and is often attributed
to organics (Jimenez et al., 2009). Given the large uncertain-
ties in the identification and simulation of organics, as well as
low measured κ values (Petters and Kreidenweis, 2007), we
ignore ionic contributions of organics to the solute and treat
organics as well as dust in the hydrophilic modes as wettable
and in the hydrophobic modes as entirely hydrophobic.

2.2.1 Cloud Condensation Nuclei

In addition to the application of Köhler theory in the activa-
tion scheme of HAM, this scheme is also used for a consis-
tent diagnostics of cloud condensation nuclei at fixed, pre-
scribed supersaturations.

2.2.2 Aerosol radiative properties

Aerosol radiative properties are calculated in the frame-
work of Mie theory. For each aerosol mode, effective re-
fractive indices are calculated by volume-averaging the re-
fractive indices of all components, including aerosol water,
which is parameterised in terms of ambient relative humid-
ity. The effective complex refractive indices and the Mie
size-parameters for each mode serve as input to look-up ta-
bles for the aerosol radiative properties, providing extinc-

http://aerocom.met.no
http://aerocom.met.no
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tion cross-section, single scattering albedo, and asymme-
try parameter to the ECHAM radiation scheme. Long-wave
(LW) radiative properties have been introduced and cou-
pled to the ECHAM LW radiation scheme and black car-
bon refractive indices have been revised for version HAM-
2.0 (Stier et al., 2007). We additionally introduce diagnostics
of: Aerosol Index (AI) calculated online from the aerosol
optical depth at wavelengths comparable to the MODIS AI
product: AI=AOD×α, where the Ångström parameter α=

− ln(AOD550nm/AOD865nm)
ln(λ550nm/λ865nm) ; fine mode AOD calculated as sum

of Aitken and Accumulation mode AOD; dry AOD approx-
imated from total AOD minus the AOD times the volume
fraction of aerosol water.

We further investigate the role of the vertical aerosol distri-
bution using the local (model layer) aerosol extinction coef-
ficient (AEC) as well as the extinction aerosol index (AIAEC),
defined here as local aerosol extinction coefficient times
the local Ångström parameter: AIAEC=AEC×αAEC , where
αAEC =− ln(AEC550nm/AEC865nm)

ln(λ550nm/λ865nm) is evaluated from the local
aerosol extinction coefficients, instead of from the column
integrated aerosol optical depths used in AI .

2.3 Simulation setup

All simulations were performed from October 1999 to De-
cember 2000 and constrain the large-scale meteorology to
the year 2000 by nudging (Jeuken et al., 1996) the model
to the ECMWF ERA40 reanalysis data (Simmons and Gib-
son, 2000). Only the year 2000 data are analysed. We employ
a horizontal resolution of T63 in spectral space with a corre-
sponding resolution of 1.8◦ × 1.8◦ on a Gaussian grid. The
vertical resolution is set to 31 levels, extending from the sur-
face up to 10 hPa.

2.4 Statistical analysis

The statistical analysis is performed on 6 hourly instanta-
neous model output, unless longer averaging periods are de-
scribed. Correlations are reported as linear Pearson corre-
lation coefficient of log-transformed parameters, providing
consistency with the majority of prior work. Fits are derived
from linear regression of the log-transformed parameters to
derive power-law expressions. Note that the results remain
largely unchanged when using the non-parametric Spear-
man’s rank correlation coefficient (Fig. 7e).

3 Results

The ECHAM-HAM simulated annual-mean surface CCN
concentrations (Fig. 1) show distinct land–sea contrast, with
maxima over the main aerosol source areas. CCN concentra-
tions at the lower 0.2 % supersaturation (activating only the
larger particles of the CCN spectrum into cloud droplets) are
lower than at the higher supersaturation of 1.5 % (also acti-
vating smaller particles of the CCN spectrum).

The corresponding annual-mean AOD (Fig. 2a) shows
similar maxima in the main aerosol source areas. However,
it also shows high values over the sea-salt aerosol dominated
storm track regions, dust source regions, such as the Saha-
ran dust outflow, and generally higher levels downwind of
the source areas (mainly because AOD is a column inte-
grated quantity while (Fig. 1) shows surface CCN values).
AI, giving lower weight to large particles, is in better spatial
agreement with the annual mean CCN distribution than AOD
(Fig. 2b).

These results confirm the common understanding that
CCN are related to AOD and (better) to AI for large spatial
scales and long averaging periods. This is also confirmed in
the fit of regional annual mean AOD and CCN pairs (Fig. 4a)
for the main continents defined in Fig. 3.

The derived fit of the mean values (y = 0.0002x1.074 for
CCN0.5%) is statistically robust (r2 = 0.70) and compares
to a fit of campaign mean co-located surface based CCN
measurements and AERONET sun-photometer retrievals of
AOD (y = 0.0027x0.640 for CCN0.4%, r2 = 0.88, Andreae,
2009). The inclusion of oceanic regions dominated by large
sea salt particles with high extinction per particle, deterio-
rates the relationship of AOD and CCN0.2% (Fig. 4b) and r2

decreases from 0.65 to 0.47. The fit for land and ocean re-
gions combined (Fig. 4c) improves using AI instead of AOD
(r2 = 0.84).

Despite the good fit of the regional annual mean CCN and
AI, the fit of individual monthly means within each region
(colour coded scatter and fits in Fig. 4a) is variable, with r
ranging from 0.41 to 0.93 for individual regions.

The mean goodness of fit deteriorates from r2 = 0.57 to
r2 = 0.46 and r2 = 0.41 when varying the averaging periods
of CCN and AI pairs from monthly via daily to 6 h instanta-
neous data (Fig. 5).

The global distribution of (temporal) Pearson’s correlation
coefficients between surface CCN0.2% and vertically inte-
grated aerosol optical depth (map in Fig. 6) reveals variable
suitability of vertically integrated AOD as proxy for surface
CCN. While correlations are generally positive and exceed
r = 0.6 for large parts of the high latitudes and the tropi-
cal oceans, significant areas of the continents and subtropical
subsidence regions show low or even negative correlations.

A number of alternative aerosol radiative properties have
been proposed to provide superior proxies of CCN. Note that
maps of their correlations and the corresponding global mean
values (Fig. 7), specifically of (b) fine mode aerosol opti-
cal depth (r = 0.50), (c) dry aerosol optical depth (r = 0.45)
and (d) aerosol index (r = 0.53) do not show significantly
improved correlations as compared to (a) aerosol optical
depth (r = 0.44). Usage of the non-parametric Spearman’s
rank correlation coefficient (e) gives very similar correlations
(ρ= 0.41). Sampling CCN0.2% at the model simulated low-
est cloud base gives slightly reduced (r = 0.36) but spatially
very similar correlations with AOD (f).
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The analysis of the vertical structure of aerosol extinction
and CCN reveals the reasons for the large spatial variabil-
ity in these correlations (Fig. 6). In agreement with observa-
tions (Clarke and Kapustin, 2010), the correlation between
the annual mean vertical profiles of the aerosol extinction
coefficient (AEC) and CCN is robust (r ranges from 0.84
to 0.98 for the selected regions), even in areas for which the
temporal correlation of column integrated AOD and surface
CCN is poor, such as the South-East Atlantic. This can be
explained by vertical decoupling: while the temporal corre-
lation of surface CCN with vertically integrated AOD is low
(r ≈ 0.2) in this region, the correlation of surface CCN with
the surface extinction coefficient is robust (r > 0.6). Gener-
ally, the temporal correlation of extinction coefficients with
CCN at the same layer (orange) is significantly stronger than
the correlation of CCN at each layer with vertically inte-
grated AOD (red). The extinction coefficient is temporally
well correlated with relative humidity throughout the tropo-
sphere (pink). The correlation of vertically integrated AOD
with CCN at cloud base is generally comparable to the corre-
lation with surface CCN. For the Indian region, surface level
CCN are even anti-correlated with vertically integrated AOD.
Here, surface level extinction is strongly correlated with rela-
tive humidity (pink), while surface level CCN are efficiently
removed by scavenging during high relative humidity events
associated with strong precipitation. Over Europe and North
America, correlations of column integrated AOD and surface
CCN are generally intermediate to high, in particular north
of the sub-tropical subsidence areas. Correlations of extinc-
tion coefficients with relative humidity are higher over Eu-
rope than over North American and particularly higher than
over South America, where the predominant carbonaceous
aerosols take up relatively little water. Interestingly, corre-
lations of extinction coefficients with relative humidity are
also low for the Southern Ocean region, despite the fact that
the dominant (by extinction) sea salt aerosol is highly hy-
groscopic. This is likely due to the fact that not only aerosol
water uptake but also aerosol removal via scavenging is pos-
itively correlated to relative humidity (via clouds and pre-
cipitation). This hypothesis is supported by the drop off of
this correlation around and below cloud base (green line).
However, correlations of column integrated AOD and sur-
face CCN are consistently high for this region as well as for
the northern high-latitude oceans.

These results suggest that vertically integrated aerosol ra-
diative properties, as retrieved from satellite imagers, are of
limited suitability as proxy for global surface or cloud base
CCN: 71 % of the area of the globe shows correlation coef-
ficients between CCN0.2% at cloud base and AOD below 0.5
(i.e. AOD variability explains only 25 % of the CCN vari-
ance). The fractional area of r < 0.5 increases to 83 and 96 %
for CCN0.5% and CCN1.5%, respectively. Corresponding ar-
eas for r < 0.5 between CCN and aerosol index are some-
what lower (52, 66, 91 % for CCN0.2%, CCN0.5%, CCN1.5%,
respectively, Fig. 8).

Could vertically resolved aerosol radiative properties, e.g.
from space-born lidars, provide stronger constraints on CCN
and ultimately the radiative effect of aerosol cloud interac-
tions?

The correlation of surface CCN with surface aerosol ex-
tinction coefficients (AEC) (Fig. 9a) is significantly im-
proved for most of the globe. This highlights the important
role of the aerosol vertical distribution for determining CCN
at specific altitudes. Correlations further improve for sur-
face extinction aerosol index AIAEC (Fig. 9b) with r > 0.8
for most of the globe. This can be attributed to the lower
weight AI gives to large aerosols, reducing the impact of low
number-concentration sea salt and dust particles.

Note that correlations between surface layer CCN and
AIAEC also deteriorate for higher supersaturations (sampling
the smaller Aitken mode range of the aerosol size distribu-
tion), as expected from Mie theory, as the smaller particles
selected by higher supersaturations contribute less to total
extinction (Fig. 10). This is particularly evident over the con-
tinents with significant primary fine mode aerosol emissions.

4 Conclusions

Direct measurements of cloud condensation nuclei are lim-
ited and sample only a very small fraction of the globe so
that remote sensing from satellites and ground based in-
struments is widely used as a proxy for cloud condensation
nuclei. However, the underlying assumptions cannot be ro-
bustly tested with the small number of measurements avail-
able so that no reliable global estimate of cloud condensation
nuclei exists.

This study overcomes this limitation using a self-
consistent global model (ECHAM-HAM) of aerosol radia-
tive properties and cloud condensation nuclei.

An analysis of the correlation of simulated aerosol radia-
tive properties and cloud condensation nuclei confirms find-
ings from earlier work that continental mean CCN are related
to AOD (r2 = 0.65) for large (continental) spatial scales and
long (monthly) averaging periods but r2 drops to 0.47 when
oceanic regions are included. Use of AI improves the good-
ness of fit, including oceanic regions, to r2 = 0.84.

The mean goodness of fit for CCN and AI pairs over con-
tinental and oceanic regions deteriorates from r2 = 0.57 to
r2 = 0.46 and r2 = 0.41 varying the averaging period from
monthly via daily to 6 h instantaneous data.

However, aerosol–cloud interactions occur locally (e.g.
McComiskey and Feingold, 2012): according to this analy-
sis, the temporal correlation on the local (global-model grid)
scale 71 % of the area of the globe shows correlation co-
efficients between CCN0.2% at cloud base and AOD below
0.5 (i.e. AOD variability explains only 25 % of the CCN
variance). The areas with low correlations include the main
marine stratocumulus decks, considered most susceptible to
aerosol perturbations (Boucher et al., 2013). This suggests
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that constraints from passive satellite remote sensing are par-
ticularly limited in areas key for radiative forcing due to
aerosol–cloud interactions. Note that correlations for alterna-
tive aerosol radiative properties proposed as superior proxies
of CCN such as fine mode aerosol optical depth, dry aerosol
optical depth and aerosol index do not show significant im-
provements.

A number of reasons contribute to the low correlations
between aerosol radiative properties and CCN, in particu-
lar over sub-tropical subsidence areas: aerosol extinction is
heavily affected by humidity, in particular at cloud base, and
often the local correlation of relative humidity with aerosol
extinction coefficients is larger than the correlation of local
CCN with column integrated AOD. Satellite retrievals based
on visible wavelengths are most sensitive to larger particles,
corresponding to CCN at small supersaturations. Correla-
tions between CCN and AI decrease with increasing super-
saturations, in particular over the continents with significant
primary fine mode aerosol emissions. Additionally, surface
or cloud-base CCN and column AOD are often decoupled:
and correlations of CCN with local aerosol extinction coef-
ficients throughout the troposphere significantly exceed the
correlations with column AOD. Consequently, correlations
of surface CCN with surface AEC are significantly larger
than with column AOD and are further improved for surface
AIAEC for which r > 0.8 for most of the globe.

While the ability of this global model to mimic the spa-
tial (in particular vertical) and temporal (co-)variability of
aerosol and humidity fields introduces quantitative uncer-
tainty, it should be noted that this self-consistent approach is
free from retrieval errors, which would add additional uncer-
tainty when using real satellite data. Advances in computa-
tional capabilities now make high-resolution, large-domain
simulations of aerosols, clouds and their interactions pos-
sible. Such simulations should be increasingly used to test
common assumptions in the assessment of aerosol cloud in-
teractions from space (e.g. Gryspeerdt et al., 2015).

The findings in this work have important implications for
satellite based studies of aerosol–cloud interactions. They
suggest that vertically resolved remote sensing techniques,
such as satellite-based high-spectral resolution lidars as
ATLID on the ESA/JAXA EarthCare satellite, have a large
potential for global monitoring of cloud condensation nuclei.
The additional improvement in correlations using the dual-
wavelength extinction measurements in AI, suggests that
multi-wavelength high-spectral resolution lidars, such as the
NASA airborne HSRL (McPherson et al., 2010), could fur-
ther advance observational constraints on CCN from space.

While the sparse sampling of lidars from space (the
CALIOP space-born lidar, Winker et al., 2009, samples the
globe sparsely in 16 days, in comparison to e-folding aerosol
lifetimes ranging from about 1/2 day for sea salt to 7 days for
black carbon, Textor et al., 2006) may introduce sampling er-
rors, these could be potentially mitigated through synergistic
retrievals with co-located imaging radiometers. Ultimately,

the assimilation into global aerosol models may provide the
best observationally constrained dataset of global cloud con-
densation nuclei.
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Figure 1. Annual-mean simulated surface cloud condensation nuclei concentrations [cm�3] at a) 0.2% and b) 1.5% supersaturation.Figure 1. Annual-mean ECHAM-HAM simulated surface cloud
condensation nuclei concentrations [cm−3] at (a) 0.2 % and (b)
1.5 % supersaturation.
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Figure 2. Annual-mean simulated a) aerosol optical depth at 550nm and b) aerosol index between wavelengths of 550nm and 865nm. Note
the non-linear scale, comparable to Fig. 1.

Figure 2. Annual-mean ECHAM-HAM simulated (a) aerosol opti-
cal depth at 550nm and (b) aerosol index between wavelengths of
550 and 865nm. Note the non-linear scale, comparable to Fig. 1.
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Figure 3. Map of regions used in the analysis.
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Figure 4. a) Annual continental mean AOD [1] as function of CCN0.2% [cm�3] and their fit derived from linear regression (gray); b) as
(a) but including three ocean regions; c) annual continental mean simulated AI as function of CCN0.2% for continental and ocean regions
as in (b); Regional colour coding as in Fig. 3.

Figure 4. (a) Annual continental mean ECHAM-HAM simulated
AOD [1] as function of CCN0.2% [cm−3] and their fit derived from
linear regression (gray), (b) as (a) but including three ocean regions,
(c) annual continental mean simulated AI as function of CCN0.2%

for continental and ocean regions as in (b); Regional colour coding
as in Fig. 3.

Figure 5. Annual continental mean ECHAM-HAM simulated AI
[1] as function of CCN0.2% [cm−3] (symbols) and their fit derived
from linear regression (gray); overlay of (a) montly mean, (b) daily
mean and (c) instantaneous 6 hourly pairs of AI and CCN0.2% (scat-
ter) and their fit derived from linear regression. For visualisation,
data in scatterplot randomly sub-sampled to 10 000 pairs. Regional
colour coding as in Fig. 3.
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a) r(ln(CCN0.2%),ln(AOD)) at surface:  r =0.44
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b) r(ln(CCN0.2%),ln(AOD Fine)) at surface:  r =0.50
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c) r(ln(CCN0.2%),ln(AOD Dry)) at surface:  r =0.45
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d) r(ln(CCN0.2%),ln(AI 2D)) at surface:  r =0.53
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e) ρ(CCN0.2%,AOD) at surface:  ρ=0.41
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f) r(ln(CCN0.2%),ln(AOD)) at cloud base:  r =0.36
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Figure 7. Map of Pearson’s correlation coefficient of CCN0.2% with aerosol radiative properties for a) surface CCN0.2% with vertically
integrated aerosol optical depth, b) surface CCN0.2% with vertically integrated fine mode aerosol optical depth, c) surface CCN0.2% with
vertically integrated dry aerosol optical depth, d) surface CCN0.2% with vertically integrated AI , e) Spearman’s rank correlation coefficient
for surface CCN0.2% with vertically integrated AOD and f) Pearson’s correlation coefficient of CCN0.2% sampled at cloud base with
vertically integrated AOD. Global-mean correlation coefficients are given in the title of each plot.

Figure 7. Map of Pearson’s correlation coefficient of ECHAM-HAM simulated CCN0.2% with aerosol radiative properties for (a) surface
CCN0.2% with vertically integrated aerosol optical depth, (b) surface CCN0.2% with vertically integrated fine mode aerosol optical depth, (c)
surface CCN0.2% with vertically integrated dry aerosol optical depth, (d) surface CCN0.2% with vertically integrated AI, (e) Spearman’s rank
correlation coefficient for surface CCN0.2% with vertically integrated AOD and (f) Pearson’s correlation coefficient of CCN0.2% sampled at
cloud base with vertically integrated AOD. Global-mean correlation coefficients are given in the title of each plot.
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Figure 8. Map of Pearson’s correlation coefficient of ECHAM-HAM simulated cloud base CCN with aerosol radiative properties for (a)
CCN0.2% with vertically integrated aerosol optical depth, (b) CCN0.2% with vertically integrated aerosol index, (c) CCN0.5% with vertically
integrated aerosol optical depth, (d) CCN0.5% with vertically integrated aerosol index, (e) CCN1.5% with vertically integrated aerosol optical
depth and (f) CCN1.5% with vertically integrated aerosol index. Fractional area (A) of the globe with r < 0.3,0.5,0.7.



14 P. Stier: Limitations of passive remote sensing to constrain CCN

Stier: Limitations of passive satellite remote sensing to constrain CCN 17

a) r(ln(CCN0.2%),ln(AEC)) at surface
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b) r(ln(CCN0.2%),ln(AIAEC)) at surface

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Figure 9. Map of Pearson’s correlation coefficient of CCN with vertically resolved aerosol radiative properties: a) surfaceln(CCN0.2%)
with surface ln(AEC) and b) surface ln(CCN0.2%) with surface ln(AEC �AI) calculated for each model grid box from one year of
6-hourly pairs.

Figure 9. Map of Pearson’s correlation coefficient of ECHAM-
HAM simulated CCN with vertically resolved aerosol radiative
properties: (a) surface ln(CCN0.2%) with surface ln(AEC) and (b)
surface ln(CCN0.2%) with surface ln(AEC-AI) calculated for each
model grid box from one year of 6 hourly pairs.
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a) r(ln(CCN0.5%),ln(AIAEC)) at surface
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b) r(ln(CCN1.5%),ln(AIAEC)) at surface
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Figure 10. Map of Pearson’s correlation coefficient of surface layer ln(AIAEC) with ln(CCN) at higher supersaturations: a) CCN0.5%, b)
CCN1.5%.

Figure 10. Map of Pearson’s correlation coefficient of ECHAM-
HAM simulated surface layer ln(AIAEC) with ln(CCN) at higher
supersaturations: (a) CCN0.5%, (b) CCN1.5%.


