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Abstract  33	
  

In this work, based on the well-known formulae of classical nucleation theory 34	
  

(CNT), the temperature TNc=1
 at which the mean number of critical embryos inside a 35	
  

droplet is unity is derived from the Boltzmann distribution function and explored as 36	
  

an approximation for homogeneous freezing temperature of water droplets. Without 37	
  

including the information of the applied cooling rate γcooling 	
   and the number of 38	
  

observed droplets Ntotal _droplets 	
   in the calculation, the approximation TNc=1 	
   is able to 39	
  

reproduce the dependence of homogeneous freezing temperature on drop size V 	
   and 40	
  

water activity aw 	
   of aqueous drops observed in a wide range of experimental studies 41	
  

for droplet diameter > 10 µm and aw > 0.85, suggesting the effect of γcooling 	
   and 42	
  

Ntotal _droplets 	
   may be secondary compared to the effect of V 	
   and aw 	
   on 43	
  

homogeneous freezing temperatures in these size and water activity ranges under 44	
  

realistic atmospheric conditions. We use the TNc=1 	
   approximation to argue that the 45	
  

distribution of homogeneous freezing temperatures observed in the experiments may 46	
  

be partly explained by the spread in the size distribution of droplets used in the 47	
  

particular experiment. It thus appears that the simplicity of this approximation makes 48	
  

it potentially useful for predicting homogeneous freezing temperatures of water 49	
  

droplets in the atmosphere.   50	
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1. Introduction 57	
  

Since the summary article of McDonald (1953), it has been widely observed that 58	
  

ice nucleation of water droplets does not occur at the ice melting temperature (e.g. 59	
  

273.15 K at 1atm),	
  and liquid water is frequently observed in clouds as cold as to 238 60	
  

K (Rosenfeld and Woodley, 2000; Hu et al., 2010). Laboratory observations of 61	
  

homogeneous ice nucleation in pure water generally show that all droplets do not 62	
  

freeze at exactly the same temperature, and that the fraction of droplets that freeze in 63	
  

a given time is a function of temperature and time (hereafter we refer to this type of 64	
  

experiment as a fraction experiment) (e.g. Bigg 1953; Carte 1956; Broto and Clausse, 65	
  

1976; Earle et al., 2010; Riechers et al., 2013). Here, experimental data of the freezing 66	
  

temperatures of pure water droplets from 15 independent studies over the past 60 67	
  

years are collected (Fig. 1 and Table 1), showing a clear dependence of freezing 68	
  

temperature upon drop volume across different experiments. Over the investigated 69	
  

size interval (1-1000 μm diameter), observed freezing temperatures range from 232 K 70	
  

to 240 K. The range of freezing temperatures and the volume dependence in Fig. 1 are 71	
  

consistent with the experimental data reviewed in Pruppacher (1995). 72	
  

On the other hand, solutes, at sufficiently high concentrations, can suppress the 73	
  

homogeneous freezing temperature of water droplets. Koop et al. (2000) showed that 74	
  

the depression of freezing temperature strongly depends on the water activity aw  of 75	
  

the solution droplet, which has been confirmed in several independent experimental 76	
  

studies (e.g. Knopf and Lopez, 2009; Knopf and Rigg, 2011). In this paper, two 77	
  

aforementioned features of homogeneous ice nucleation observed in the experimental 78	
  

data are examined – (1) the volume and water activity dependence of homogeneous 79	
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freezing temperatures of water droplets Tf (V,aw ) ; (2) the distribution of 80	
  

homogeneous freezing temperatures observed in fraction experiments f (Tf ) . In this 81	
  

paper, we describe only volume-based nucleation and do not include the droplet 82	
  

surface effects on homogeneous ice nucleation as there remains considerable 83	
  

uncertainty about the importance of surface nucleation (Kay et al., 2003; Duft and 84	
  

Leisner, 2004). The unified explanations of the observed dependencies of the 85	
  

homogeneous freezing temperature on droplet size and water activity have been 86	
  

proposed by several studies based on different theoretical frameworks such as ice 87	
  

nucleation rate J
 
and density fluctuation (e.g. Pruppacher 1995; Baker and Baker 88	
  

2004; Khvorostyanov and Curry 2009; Barahona 2014). In our study, based on a 89	
  

cornerstone of classical nucleation theory (CNT), namely that a critical embryo 90	
  

existing in a droplet triggers ice crystal formation, we explore a simple approximation 91	
  

for the homogeneous freezing temperature, and seek a simpler parameterization to 92	
  

describe homogeneous ice nucleation process in the atmosphere. Section 2 describes 93	
  

the approximation; Section 3 gives the comparisons between the theoretical estimates 94	
  

and the experimental data; Section 4 is the discussion; Section 5 is the summary. 95	
  

 96	
  

 97	
  

 98	
  

 99	
  

 100	
  

 101	
  

 102	
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2. Background  103	
  

2.1 The approximation TNc=1
(V,aw )   104	
  

According to CNT, the formation of a critical embryo inside a droplet can trigger 105	
  

the freezing process in the droplet. The critical embryo defined as the i-mers having 106	
  

the highest formation energy is formed by the critical fluctuation in orientation of 107	
  

hydrogen bonds (e.g. density fluctuation) (Baker and Baker 2004), which is large 108	
  

enough to provide the formation energy of the critical embryo ΔFc (T,aw ) 	
   and 109	
  

remove metastability of supercooled water. The probability of occurrence of the 110	
  

critical fluctuation is exp(−ΔFc (T,aw )
kBT

) 	
   (Landau and Lifshitz, 1969, P.472-473; 111	
  

Pruppacher and Klett, 1997), and thus the mean number of the critical embryos inside 112	
  

a water droplet in thermal equilibrium can be predicted by a Boltzmann distribution 113	
  

(Landau and Liftshitz, 1969, P.107; Vali, 1999), 114	
  

Nc_mean (V,aw,T ) =Vρ exp(
−ΔFc (T,aw )

kBT
) 	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (1)	
  115	
  

where V 	
   is the volume of the droplet, ρ 	
   is the number density of water molecules, 116	
  

kB 	
   is Boltzmann’s constant, T 	
   is the temperature of the droplet, and ΔFc (T,aw ) 	
   is 117	
  

the formation energy of the critical embryo in the droplet with water activity aw 	
   at 118	
  

T , which	
  will be discussed in detail in Sect. 2.2. The Boltzmann distribution form of 119	
  

the critical embryo is derived from the partitioning function of the grand canonical 120	
  

ensemble, and it should be noted that the derived particle number of the Boltzmann 121	
  

distribution function is not a “constant” but is a “mean” number (detailed derivation 122	
  

and explanations can be found in Landau and Liftshitz, 1969, P.107 and Sadovskii, 123	
  

2012, Chapter 3.1). 124	
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The total freezing time τ freezing  of a water droplet can be split conceptually into 125	
  

three stages – (1) τmeta_ remove(~
1
J
)  the time needed for the occurrence of the critical 126	
  

fluctuation (2) τ formation 	
   the time needed to form a critical embryo and (3) τ growing 	
  127	
  

the growing time for the critical embryo expanding to the whole droplet body. These 128	
  

depend on V , aw  and T 	
   of the droplet (Pruppacher and Klett 1997; Bauerecker et 129	
  

al., 2008). To observe freezing of droplets with volume V 	
   and water activity aw  130	
  

occurring at temperature T , the residence time of freezing experiments τ residence 	
   at 131	
  

T  has to be longer than τ freezing(V,aw,T ) , resulting in a dependence of the 132	
  

homogeneous freezing temperature on the cooling rate γcooling  of droplets in principle. 133	
  

According to the theoretical estimates (see Pruppacher and Klett 1997, P.678), the 134	
  

time scale of τ formation +τ growing 	
   for the size of the droplets investigated here is short 135	
  

compared with the typical residence times in the laboratory studies. Thus, the 136	
  

dominant factor determining the homogeneous freezing temperatures is τmeta_ remove . 137	
  

Because τmeta_ remove 	
   is the time needed for the occurrence of the critical fluctuation 138	
  

among water molecules, τmeta_ remove  is shorter in a larger droplet with more 139	
  

molecules Vρ  or at lower temperature when the fluctuation probability 140	
  

exp(−ΔFc (T,aw )
kBT

)  is higher; τ −1
meta_ remove ∝Nc_mean (V,aw,T ) . Embryo interaction is a 141	
  

stochastic process and Nc_mean (V,aw,T ) 	
   simply expresses the mean state, so there is 142	
  

always a spread of τmeta_ remove 	
   among droplets even in a idealized case that all the 143	
  

droplets used in the experiment have exactly the same V 	
   and aw and are at exactly 144	
  

the same temperature T . The spread of τmeta_ remove  can be wider when there are 145	
  

more observed droplets Ntotal _droplets , which in principle can explain the fraction 146	
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experiments that some droplets with shorter τmeta_ remove  can always be frozen at 147	
  

higher temperature, or in shorter time for droplets at the same temperature even when 148	
  

the droplets have a monodisperse size distribution and exactly same aw . Hereafter we 149	
  

refer the distribution of homogeneous freezing temperatures owing to Ntotal _droplets  150	
  

when all the droplets have exactly same V 	
   and aw 	
   as a stochastic feature. Based 151	
  

on above-mentioned principles, the homogenous freezing temperature of water 152	
  

droplets and τmeta_ remove  can each be written as a function of V , aw , γcooling 	
   and 153	
  

Ntotal _droplets , namely Tf (V, aw, γcooling, Ntotal _droplets )  and 154	
  

τmeta_ remove(V, aw, γcooling, Ntotal _droplets ) . 155	
  

 Koop et al. (1998) reported that observed homogeneous freezing temperatures do 156	
  

not significantly depend on γcooling 	
   of the droplets for γcooling 	
   smaller than 20 K min-1 157	
  

(corresponding to vertical velocities 33.3 m s-1 in clear air). The results of Koop et al. 158	
  

(1998) actually indicate that the slope of ∂τmeta_ remove
∂T

	
   is very steep at the temperature 159	
  

when the scale of τmeta_ remove 	
   is close to τ residence 	
   in most practical experiments and 160	
  

realistic atmospheric conditions, resulting in the small dependence of Tf 	
   on γcooling 	
  161	
  

as suggested by Brewer and Palmer (1951). Based on that, in most of the practical 162	
  

freezing experiments and realistic atmospheric conditions (γcooling < 20 K min-1), the 163	
  

observed homogeneous freezing temperatures can be considered as a threshold 164	
  

temperature when ∂τmeta_ remove
∂T

→∞ . In this study, we intend to find this threshold 165	
  

temperature directly from the information given by Nc_mean (V,aw,T ) . The number of 166	
  

critical embryos derived from the Boltzmann distribution is a mean value and does 167	
  

not provide any information regarding freezing time, so it can not be used to study the 168	
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dependence of the homogeneous freezing temperature on cooling rate (i.e. time 169	
  

dependence) and number of droplets used in the experiments (i.e. stochastic feature). 170	
  

Nevertheless, since the formation of one critical embryo is required to trigger the ice 171	
  

nucleation process in a droplet, TNc=1 	
   may be a good approximation for the threshold 172	
  

temperature, the temperature at which the mean number of the critical embryos inside 173	
  

a droplet is unity, which can be given by 174	
  

Nc_mean =1=Vρ exp(
−ΔFc (TNc=1

,aw )
kBTNc=1

) 	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (2)	
  175	
  

According to the formula of ΔFc (T,aw ) , TNc=1 	
   is determined by V  and aw 	
   of 176	
  

the droplet, namely TNc=1
(V,aw ) . Figure 2 shows the mean number of critical 177	
  

embryos inside a pure water droplet ( aw =1 ) at different temperatures using Eq. (1) 178	
  

(see next section for details of ΔFc (T,aw ) 	
   used in the calculation). It indicates that 179	
  

smaller droplets require lower temperatures to reach the state that Nc_mean =1 , 180	
  

showing the volume dependence of TNc=1
(V,aw ) . Figure 3 shows the mean number of 181	
  

critical embryos inside a solution droplet with different values of water activity. The 182	
  

result indicates that more concentrated solution droplets (lower aw ) need lower 183	
  

temperature to reach the state that Nc_mean =1 . This represents the solution effect on 184	
  

TNc=1
(V,aw ) . The sensitivity of TNc=1

(V,aw ) 	
   to the variation of diameter δd 	
   and 185	
  

water activity δaw 	
   of droplets can be written as  186	
  

δTNc=1
=
∂TNc=1

∂aw
δaw +

∂TNc=1

∂ log10 d
δ log10 d                                      (3) 187	
  

where d 	
   is the diameter of droplet (μm). As shown in Fig. 1, the dependence of 188	
  

TNc=1
	
   on log10 d 	
   is nearly linear, so the decadal log is used here to simply derive the 189	
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linear dependence. The values of 
∂TNc=1

∂aw
	
   and 

∂TNc=1

∂ log10 d
	
   are about 216 K and 2.5 K 190	
  

respectively over the investigated interval of water activity and drop size, which are 191	
  

derived numerically from Eq. (2).  192	
  

2.2 Formation energy of the critical embryo ΔFc (T,aw )  193	
  

The formation energy of the critical embryo	
   ΔFc (T,aw )  can be written as  194	
  

ΔFc =
1
3
sσ i/w (T,aw )rc

2
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (4)	
   	
   	
  195	
  

rc =
2σ i/w (T,aw )v1

water

kBT ln(
eswaw
esi

)+ kBT ln(aw )
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (5) 196	
  

where σ i/w (T,aw )  is the interfacial energy between liquid water and solid ice, s 	
   is 197	
  

the shape factor of the embryo (~ 21 by assuming the shape is hexagonal prism), rc  198	
  

is the radius of the critical embryo, v1
water 	
   is the volume of single water molecule, 199	
  

esw 	
   and esi 	
   are the saturation vapor pressures over water and ice respectively 200	
  

(Murphy and Koop, 2005), and aw 	
   is the water activity of the solution droplet (see 201	
  

detailed derivations of Eq. (4) in Defour and Defay, 1963 and Pruppacher and Klett, 202	
  

1997). It should be noted that the term kBT ln(aw ) 	
   in rc (Eq. (5)) is the entropy of 203	
  

unmixing which originates from the change of the Gibbs free energy of the bulk 204	
  

solution during freezing, and is usually neglected in the previous theoretical studies 205	
  

(Bourne and Davey, 1976; Black 2007). Barahona (2014) pointed out that although 206	
  

this term is small for dilute solution, it should not be neglected when applying to high 207	
  

concentration solution droplets (see Eq. (8) in Barahona (2014)). 208	
  

The value of interfacial energy between liquid water and solid ice σ i/w (T,aw )  is 209	
  

needed for our calculation of Eq. (4) and (5). As most studies suggest that the 210	
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temperature dependence of σ i/w (T,aw )  should be linear (Ickes et al., 2015), and that 211	
  

increasing the concentration of the solution droplet increases the value of σ i/w (T,aw )  212	
  

(Jones and Chadwick, 1971; Alpert et al. 2011), σ i/w (T,aw )  can be written as 213	
  

σ i/w (T,aw ) =σ i/w,e +
∂σ i/w

∂T
(T −T0 )+

∂σ i/w

∂aw
(1− aw ) 	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (6)  214	
  

where σ i/w,e 	
   is the interfacial energy at the equilibrium temperature of pure ice-water, 215	
  

and T0 	
   is the equilibrium temperature. The direct measurement of σ i/w (T,aw ) 	
   is 216	
  

extremely difficult, so most of the estimations are based on combinations of CNT and 217	
  

laboratory measurements of Tf 	
   and observed freezing rate to retrieve the values of 218	
  

σ i/w (T,aw )  (e.g. Zobrist et al., 2007; Murray et al., 2010). These studies have shown 219	
  

considerable diversity in the reported estimations of σ i/w (T,aw ) 	
   (Ickes et al., 2015). 220	
  

Instead, we use values of σ i/w,e  and ∂σ i/w

∂T
 derived from a state-of-the-art molecular 221	
  

dynamics model that explicitly simulates the molecular configurations under 222	
  

supercooling conditions. Benet et al. (2014) gives values of σ i/w,e 	
   from the TIP4P 223	
  

water model (σ i/w,e =26.5×10-3 J m-2), TIP4P/2005 water model (σ i/w,e =27×10-3 J m-2), 224	
  

and TIP4P-Ew water model (σ i/w,e =27.5×10-3 J m-2), and these three values will all be 225	
  

used in our calculations. According to Ickes et al. (2015), the values of σ i/w,e  used 226	
  

here are about the median of all the values derived from the previous studies. 227	
  

Regarding ∂σ i/w

∂T
, Espinosa et al. (2014) provided an average value of 0.25 × 10-3 (J 228	
  

m-2 K-1) from three different water molecular models (TIP4P/ICE, TIP4P and 229	
  

TIP4P/2005) down to a supercooling of about 30K. Regarding ∂σ i/w

∂aw
, Barahona 230	
  

(2014) proposed a new thermodynamic framework approximating the interfacial 231	
  

energy of ice-solution by assuming the interface between solid ice and liquid water is 232	
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made of liquid molecules trapped by the solid matrix, which gives the relationship 233	
  

between σ i/w 	
   and aw . Based on this approximation, the solution effect on the 234	
  

interfacial energy can be written as  235	
  

∂σ i/w

∂aw
= −

Γw
2 sareakBT

1
aw

(36π (v1
water )2 )1/3

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   (7) 236	
  

where Γw 	
   is the surface excess of water (~1.46) (Spaepen 1975) and sarea 	
   is the 237	
  

surface area parameter (~1.105 mol2/3) (see Barahona 2014 for details). The values of 238	
  

σ i/w (T,aw )  estimated from above studies are used to derive the numerical result 239	
  

TNc=1
(V,aw ) 	
   presented here. 240	
  

3. Results – Comparison between the approximation and the experimental data 241	
  

3.1 Volume and water activity dependence of Tf (V,aw )  
242	
  

To test our approximation, we aim to compare the observed Tf (V,aw )  and 243	
  

f (Tf )  with TNc=1
(V,aw )  derived using the constraint in Eq. (2). First, 244	
  

TNc=1
(V,aw =1)  of pure water droplet is derived. Figure 1 shows the comparison 245	
  

between the experimentally determined homogeneous freezing temperatures 246	
  

Tf (V,aw =1)  
(details of the experiments are provided in Table 1) and the 247	
  

approximations TNc=1
(V,aw =1) . For droplet diameters > 10μm, the theoretical values 248	
  

of TNc=1
(V,aw =1)  derived by the value of σ i/w,e  from TIP4P water model agree 249	
  

very well with most of the experimental data Tf (V,aw =1) . Using the values of σ i/w,e  250	
  

from TIP4P/2005 and TIP4P-Ew leads to a shift downward of about 1~2 K of 251	
  

TNc=1
(V,aw =1) . There is one study regarding the time dependence should be 252	
  

mentioned. The laboratory observation of Murray et al. (2010) (black triangle in Fig. 253	
  

1) showed that varying of cooling rate from 2.5 K min-1 to 10 K min-1 corresponds to a 254	
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shift of 0.5 K to 1 K in observed freezing temperatures of pure water droplets, and our 255	
  

best agreement estimates TNc=1
(V,aw =1) 	
   can only explain the experimental data with 256	
  

slowest cooling rate (2.5 K min-1). The finding of Murray et al. (2010) will be 257	
  

discussed in Sect. 4. For droplets smaller than 10 μm (diameter), there are obvious 258	
  

deviations of observed freezing temperatures among the experimental studies. These 259	
  

studies do not provide enough information regarding γcooling , Ntotal _droplets 	
   and the 260	
  

spread in drop size, so we cannot evaluate what causes the disparity. We suggest that 261	
  

freezing experiments of pure droplets smaller than 10 μm (diameter) need more 262	
  

refinement and should report the potentially important dependencies such as applied 263	
  

cooling rate, size distribution of droplets and number of observed droplets used in 264	
  

experiments.  265	
  

Second, the solution effect on homogeneous freezing temperature Tf (V,aw )  is 266	
  

explored by changing the water activity in Eq. (5) and (6) to derive the approximation 267	
  

TNc=1
(V,aw ) , which will be compared with the experimental data collected in Koop et 268	
  

al. (2000), Knopf and Lopez (2009) and Knopf and Rigg (2011). Size of the droplets 269	
  

used in the collected experimental data ranges from 1μm to 10 μm in Koop et al. 270	
  

(2000), from 10μm to 80μm in Knopf and Lopez (2009) and from 20μm to 80μm in 271	
  

Knopf and Rigg (2011), and these sizes are included to calculate the approximation 272	
  

TNc=1
(V,aw ) . Figure 4 shows the comparison between the experimental data and the 273	
  

approximation TNc=1
(V,aw ) . Without considering the time dependence ( γcooling 	
  274	
  

varying from 1 K min-1 to 10 K min-1 among all the experiments) and the stochastic 275	
  

feature (i.e. Ntotal _droplets ), the result shows that the approximation TNc=1
(V,aw ) 	
   is in 276	
  

good agreement with the experimental data for aw > 0.85 . The scattering of the 277	
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experimental data between the theoretical estimates for aw > 0.85 	
   (i.e. TNc=1 	
   for 278	
  

d =1 to 80 μm) suggests that the spread of droplet size applied in the experiments 279	
  

may play an important role in the spread of homogeneous freezing temperatures. For 280	
  

the solution droplets with high concentration ( aw < 0.85 ), the observed freezing 281	
  

temperatures show considerable spread. Abbatt et al. (2006) suggests that the 282	
  

disparity of the experimental data for low aw  can be partly attributed to a variety of 283	
  

heterogeneous process, which can result in the higher observed freezing temperatures. 284	
  

In addition, as suggested by knopf and Lopez (2009), the deviations at low water 285	
  

activity may be most likely due to our incomplete understanding of aw  for certain 286	
  

aqueous solutions and the corresponding uncertainties. Future experimental study is 287	
  

suggested to focus on the freezing process of solution droplets with high solute 288	
  

concentration (aw < 0.85 ) to clarify the causes of the disparity.  289	
  

Regarding the experimental uncertainty, Knopf and Lopez (2009) reported that 290	
  

the value of aw  for supercooled aqueous solutions has the experimental uncertainty 291	
  

δaw 	
   of about ± 0.01, which can results in the variation in TNc=1
	
   of about ± 2 K based 292	
  

on Eq. (3). Riechers et al. (2013) reported that the size of droplets produced by the 293	
  

microfluidic device used in their experiment has three standard deviations (99.7%) of 294	
  

about 18 μm to 33 μm in diameter, which can cause the variation in TNc=1 	
   of about ± 295	
  

0.2 K to ± 0.5 K based on Eq. (3). Therefore, the variation in TNc=1
	
   caused by the 296	
  

experimental uncertainties δaw 	
   and δd 	
   can be both substantial and should not be 297	
  

neglected. We suggest future experimental studies should provide detailed 298	
  

information regarding experimental uncertainties δaw 	
   and δd 	
   for the purpose of 299	
  

better constraining the observed freezing temperatures.  300	
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3.2 Fraction of frozen pure water droplets as a function of temperature f (Tf )  301	
  

To further examine the application of TNc=1
(V,aw ) 	
   in homogeneous ice 302	
  

nucleation, TNc=1
(V,aw ) 	
   is compared to the experimental data of the fraction 303	
  

experiment of Riechers et al. (2013). According to CNT, the stochastic feature of the 304	
  

ice nucleation process can basically explain the distribution of freezing temperatures 305	
  

observed in the fraction experiment (Pruppacher and Klett, 1997, Eq. (7-71); Koop et 306	
  

al., 1998; Niedermeier et al., 2011). However, current technology to produce water 307	
  

droplets for such experiments introduces a spread of sizes, and the freezing 308	
  

temperatures show a clear dependence on droplet volume (Fig. 1), so the spread in 309	
  

sizes of water droplets used in the experiments may be important for explaining the 310	
  

distribution f (Tf ) . In other words, the size distribution of droplets used in a given 311	
  

experiment may be an important factor governing the observed spread of freezing 312	
  

temperatures (i.e. dotted line shown in Fig. 1). To test this, we incorporate the 313	
  

reported droplet size distribution width into the numerical calculation. Unique among 314	
  

such studies, Riechers et al. (2013) report both the spread of homogeneous freezing 315	
  

temperatures and the mean µ and standard deviation σ of droplet size. According to 316	
  

Eq. (3), the spread in the size distribution of water droplets will result in a spread in 317	
  

the fraction of frozen droplets because larger droplets have higher TNc=1
(V,aw )  (i.e. 318	
  

require less supercooling to freeze). Given the droplet size width, the distribution of 319	
  

the approximations TNc=1
(V,aw ) 	
   of droplets can be derived from Eq. (2). Given a 320	
  

Gaussian distribution of drop sizes, we estimate the fraction of drops that will freeze 321	
  

at a given temperature solely by assuming that the spread in freezing temperatures 322	
  

arises from the spread in droplet sizes based on Eq. (3). For example, we estimate 323	
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TNc=1
(V,aw )  

of the droplets with size of µ+3σ (~ the largest 0.15% of the drops) as 324	
  

the theoretical onset freezing temperature T onset
f , TNc=1

(V,aw ) 	
   of the droplets with 325	
  

size of µ+1.64σ (≈ the largest 10% of the drops) as the theoretical estimates T10%f , 326	
  

TNc=1
(V,aw ) 	
   of the droplets with mean size as the theoretical estimates T 50%

f , and 327	
  

TNc=1
(V,aw )  

of the droplets with size of µ-1.64σ (≈ the smallest 10% of the drops) as 328	
  

the theoretical estimates T 90%
f , and TNc=1

(V,aw ) 	
   of the droplets with size of µ-3σ (≈ 329	
  

the smallest 0.15% of the drops) as the theoretical estimates T end
f . The results 330	
  

presented in this section only use the value of σ i/w,e  from the TIP4P water model, 331	
  

which has the best agreement with the experimental data shown in Sect. 3.1 (Fig. 1).  332	
  

There are five experimental results from Riechers et al. (2013), each with 333	
  

different µ and σ. The comparisons (Fig. 5 and Table 2) show that our estimates 334	
  

match the experimental data fairly well. The slope of the freezing fraction versus 335	
  

temperature in the theoretical results is driven entirely by the reported spread in the 336	
  

size distribution of drops and matches fairly well with the observed slope, although 337	
  

across the experiments the theoretical slope is somewhat greater (observed values are 338	
  

shifted to the right of the blue curve at the higher temperatures but mostly to the left at 339	
  

the lower temperature), which might be attributable to the stochastic feature of the ice 340	
  

nucleation process. That said, the observational uncertainties in the experimental 341	
  

values of T on−set , T10% , T 50%  and T 90% 	
   more or less span the theoretical values 342	
  

derived from Eq. (2). Riechers et al. (2013) also reported that during cooling, the 343	
  

majority of the droplets are frozen over a temperature interval of 0.84-0.98 K, which 344	
  

is consistent with the range between the theoretical estimates T onset
f and T end

f 	
   derived 345	
  

here, namely 0.42-1.06 K from five different droplet size distributions, suggesting the 346	
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spread in droplet size (i.e. a disperse distribution) may be an important factor 347	
  

governing the spread of the homogeneous freezing temperatures observed in a given 348	
  

fraction experiment.  349	
  

 The comparison made in Sect. 3.1 to 3.2 shows that the distribution of the 350	
  

freezing temperatures among the data can mostly be explained by the dependence of 351	
  

TNc=1
(V,aw ) 	
   on V 	
   and aw 	
   for droplet diameter > 10 µm and aw > 0.85	
   without 352	
  

considering the dependence of homogeneous freezing temperature on Ntotal _droplets 	
  353	
  

and γcooling 	
   in the calculations. It suggests that in most of the practical experiments 354	
  

and for most atmospheric conditions, the time scale of τ residence  is shorter than 355	
  

τmeta_ remove  at the temperatures higher than TNc=1
(V,aw )  (i.e.	
   τ residence  < τmeta_ remove , 356	
  

when T > TNc=1
(V,aw ) ), and when the temperature of the droplets is close to 357	
  

TNc=1
(V,aw ) , the time scale of τmeta_ remove  decreases strongly with temperature 358	
  

decreases and becomes shorter than τ residence  of the experiments (i.e.	
   τ residence  > 359	
  

τmeta_ remove  when T < TNc=1
(V,aw ) ). This leads to the result that most of the 360	
  

homogeneous ice nucleation process can only be observed at temperatures close to 361	
  

TNc=1
(V,aw )  even though in principle, droplets can be frozen at any temperature.	
  362	
  

4. Discussion  363	
  

As mentioned in Sect. 2, the observed freezing temperatures with γcooling ~ 2.5 K 364	
  

min-1 reported in Murray et al. (2010) can be well described by TNc=1
(V,aw ) , but it 365	
  

also showed there is a shift of 0.5 K to 1 K in observed freezing temperatures when 366	
  

varying the cooling rate from 2.5 K min-1 to 10 K min-1. One possibility is that the 367	
  

total freezing time τ freezing  needed to freeze a droplet at TNc=1
(V,aw )  is longer than 368	
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the time scale of τ residence 	
   when γcooling  is higher than 2.5 K min-1, which may be 369	
  

attributed to τmeta_ remove , τ formation  or τ growing .	
  Without considering the experimental 370	
  

uncertainty associated with the thermal equilibrium time τ thermal , these 0.5K to 1K 371	
  

shifts corresponds to 3s to 6s shifts (for γcooling = -10 K min-1), which may be partly 372	
  

caused by τ formation +τ growing . Bauerecker et al. (2008) (hereafter Ba08) explored an 373	
  

advanced method providing time series of water droplet temperature during the entire 374	
  

cooling and freezing process (from supercooled water to completely freezing) using 375	
  

an infrared camera. The results of Ba08 showed that for the droplet sized 3mm 376	
  

(diameter), τ growing 	
   is around 20s and τ thermal 	
   is around 60s. The droplet used in 377	
  

Ba08 is much larger than the size normally used in the freezing experiments because 378	
  

of the limitation of IR camera sensitivity. If τ growing 	
   linearly depends on drop radius, 379	
  

we may expect it to be several tenths of a second for the drops sized 10-100 μm in 380	
  

diameter. We suggest that the infrared camera technique should be used more widely 381	
  

in the future experimental studies of ice nucleation with smaller droplets, which can 382	
  

add significant insights into the time dependence study of ice nucleation, and clarify 383	
  

the importance of τmeta_ remove , τ formation  and τ growing 	
   observed in the experiments. On 384	
  

the other hand, Koop et al. (1998) suggested that when the cooling rate is smaller than 385	
  

about 2K min-1, mass transport of water can take place between the frozen ice 386	
  

particles and supercooled droplets, but if the cooling rate is too large, it can cause an 387	
  

offset between the measured temperature and the actual temperature of the drops, 388	
  

which can both cause a bias of the observed freezing temperatures. Therefore, we 389	
  

suggest that in future experimental studies, in order to precisely measure 
∂Tf

∂γcooling
, 390	
  

potential biases at high cooling rate and the shift caused by τ formation +τ growing 	
   should 391	
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be better constrained. Since Koop et al. (1998) and Murray et al. (2010) showed 392	
  

different dependencies of homogeneous freezing temperatures on γcooling , future 393	
  

experiments should reexamine and perform the same experiments for γcooling > 	
   2.5 K 394	
  

min-1. The results shown in Fig. 1 and Fig. 4 suggest that the time consideration may 395	
  

be more important when droplet volume and water activity are low where the 396	
  

experimental data show considerable inconsistency (i.e. aw < 0.85 	
   and d <10μm), 397	
  

and future experiments are suggested to emphasize these droplet size and water 398	
  

activity ranges. 399	
  

5. Summary  400	
  

The limitation of our method proposed here is that the time dependence and the 401	
  

stochastic feature of homogeneous freezing temperature cannot be considered because 402	
  

the Boltzmann distribution applied here is a average distribution and does not provide 403	
  

any information regarding time. Combining the well-known Boltzmann distribution 404	
  

function for the mean number of critical embryos Nc_mean (V,aw,T )  and their 405	
  

formation energy ΔFc (T,aw ) 	
   from CNT formulae, TNc=1
(V,aw )  is derived as a 406	
  

function of volume and water activity of water droplets. With the comparison made in 407	
  

Sect. 3.1 to 3.2, it can be summarized that under most atmospheric conditions, 408	
  

homogeneous freezing temperatures can be well described by the new approximation 409	
  

TNc=1
(V,aw )  proposed here without considering information of the applied cooling 410	
  

rate (i.e. time dependence) and the number of droplets used in the experiment (i.e. 411	
  

stochastic feature) for d  > 10μm and aw 	
   > 0.85. Future experimental study is 412	
  

suggested to focus on the homogeneous freezing process of droplets with high solute 413	
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concentration ( aw < 0.85 ) and small volume ( d  < 10μm). The experimental spread 414	
  

in homogeneous freezing temperatures of water droplets may be partly explained by 415	
  

the size distribution of droplets used in the experiments. The advantage of our 416	
  

approximation in the cloud modeling is “the temperature history” of droplets is not 417	
  

required to calculate the homogeneous freezing temperature as it is when using the ice 418	
  

nucleation rate (i.e. Eq. (7-71) in Pruppacher and Klett, 1997). When using the ice 419	
  

nucleation rate J(T (t)) , the complete temperature history of droplets is needed to 420	
  

calculate the integration of J(T (t))  with respect to time in order to consider the time 421	
  

dependence and the stochastic feature, which can introduce considerable complexity 422	
  

in cloud modeling. However, based on the experimental studies of homogeneous 423	
  

freezing temperature collected and discussed in our study, we suggest in most of the 424	
  

practical experiments and realistic atmospheric conditions (i.e. γcooling < 	
   20 K min-1), 425	
  

the time dependence and the stochastic feature of homogeneous freezing temperature 426	
  

may be a secondary factor compared to the effect of volume and water activity for 427	
  

droplet diameter > 10 µm and aw > 0.85. The approximation proposed here is 428	
  

relatively simpler to be implemented into cloud models and may improve the 429	
  

representation of homogeneous ice nucleation in the atmosphere.  430	
  

 431	
  

 432	
  

 433	
  

 434	
  

 435	
  

 436	
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References Diameter 

(µm) 

Tf (K) Diameter 

Range (µm) 

Range of freezing  

temperatures (K) 

Cooling rate Uncertainty 

(K) 

Pound et al. (1953) 30+  233.15a [10 50] [231.15 235.15] n/a n/a 

Mossop (1955)  530+  238.65a [220 840] [238.65 242.15] 0.5K/ min 0.2 

Carte (1956) 15+  236.25a [10 20] [235.15 237.15] 1K/min 0.2 

 231.3d  238.45b n/a n/a 0.5K/min 0.2 

 279.4d 238.55b n/a n/a 0.5K/min 0.2 

 292.9d 238.35b n/a n/a 0.5K/min 0.2 

 321.9d 238.45b n/a n/a 0.5K/min 0.2 

 362.2d 238.55b n/a n/a 0.5K/min 0.2 

 427.3d 238.65b n/a n/a 0.5K/min 0.2 

 469.7d 238.55b n/a n/a 0.5K/min 0.2 

 498.2d 238.95b n/a n/a 0.5K/min 0.2 

 567.3d 238.95b n/a n/a 0.5K/min 0.2 

 623.6d 238.85b n/a n/a 0.5K/min 0.2 

 718.5d 238.85b n/a n/a 0.5K/min 0.2 

 818.1d 238.95b n/a n/a 0.5K/min 0.2 

 965.2d 239.15b n/a n/a 0.5K/min 0.2 

 1179.8d 239.45b n/a n/a 0.5K/min 0.2 

 1408.4d 239.65b n/a n/a 0.5K/min 0.2 

Langham and Mason (1958) 66.1d 237.35a n/a n/a 0.33K/min n/a 

 92.3d 237.65a n/a n/a 0.33K/min n/a 

 115.3d 238.15a n/a n/a 0.33K/min n/a 

 144d 238.25a n/a n/a 0.33K/min n/a 

 171.8d 238.15a n/a n/a 0.33K/min n/a 

 270.5d 238.55a n/a n/a 0.33K/min n/a 

Hoffer (1961) 110+ 236.55a [100 120] [235.65 238.15]  1K/min 0.5 

 130+ 237.25a [125 145] [235.65 238.15]  1K/min 0.5 

Kuhns and Mason (1967) 1d 233.05a n/a n/a 6K/min 0.1 

 5d 234.65a n/a n/a 6K/min	
   0.1 

 8d 235.15a n/a n/a 6K/min 0.1 

 10d 235.45a n/a n/a 6K/min	
   0.1 

 20d 236.15a n/a n/a 6K/min 0.1 

 30d 236.75a n/a n/a 6K/min	
   0.1 
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 40d 237.05a n/a n/a 6K/min 0.1 

 50d 237.25a n/a n/a 6K/min	
   0.1 

 60d 237.35a n/a n/a 6K/min 0.1 

 70d 237.45a n/a n/a 6K/min 0.1 

 80d 237.55a n/a n/a 6K/min	
   0.1 

 90d 237.65a n/a n/a 6K/min 0.1 

 100d 237.65a n/a n/a 6K/min	
   0.1 

 120d 237.65a n/a n/a 6K/min 0.1 

Broto and Clausse (1976) 3d 234.35a n/a n/a 1.25K/min 0.5 

Cziczo and Abbatt (1999) 0.35d 234.15d n/a n/a n/a n/a 

Bertram et al. (2000) 8.3+ 235a [5.6 11.0] n/a 10k/min 1.5 

Prenni et al. (2001) 0.6+ 234.95d n/a n/a 1K/increment 0.2 

Larson and Swanson (2006) 40+ 237.15a [30 50] n/a n/a  n/a 

Stan et al. (2009) 80 d 236.25a n/a [235.35 237.15] 2~100K/sec 0.21 

Earle et al. (2010) 2+ 236.35a [0.8 4] [236 236.75] n/a   n/a 

 3.4+ 236.35a [1.2 10] [236 236.75] n/a  n/a 

 5.8+ 236.15a [2 14] [235.5 236.75] n/a  n/a 

Murray et al. (2010) 25+ 236.25a [10 40] [235.9 236.7] 2.5K/min 0.6 

 25+ 236.05a [10 40] [234.75 237.75] 5K/min 0.6 

 25+ 235.75a [10 40] [236.45 237.75] 7.5K/min 0.6 

 25+ 235.51a [10 40] [234.45 237.75] 10K/min 0.6 

Riechers et al. (2013)  53m 236.65c [35 71] [236.55 237.44] 1K/min 0.3 

 63m 236.65c [33 93] [236.49 237.5] 1K/min 0.3 

 82m 236.85c [58 106] [236.67 237.63] 1K/min 0.3 

 85m 237.15c [67 103] [236.93 237.77] 1K/min 0.3 

 96m 237.35c [63 129] [236.89 237.91] 1K/min 0.3 

Table 1. Information regarding the details of the homogeneous ice nucleation 621	
  
experiments used in the comparison, including the size, the freezing temperature, as 622	
  
well as the cooling rate and uncertainty of the experiments. Homogeneous freezing 623	
  
temperature Tf , <a>: freezing temperature when half of the water droplets freezing	
  624	
  

T50% , <b>: freezing temperature when 95% of the water droplets freezing T95% , <c>: 625	
  
freezing temperature when most of the droplets freezing (peak signal) TMode , and <d>: 626	
  

not defined or provided by the experiments. Diameter of water droplets used in the 627	
  
experiments, <+> median size, <m> mean size, and <d> not provided by the 628	
  



	
   28	
  

experiments.     629	
  
 630	
  

Diameter 

µ±σ 

96±11(µm) 85±6 (µm) 82±8 (µm) 

 Experiment 

values (K)  

TNc=1
(K) Experiment 

values (K)  

TNc=1
(K) Experiment 

values (K)  

TNc=1
(K) 

T onset
f  237.91± 0.2 237.74 237.77± 0.2 237.53 237.63± 0.2 237.55 

T10%f  237.87± 0.2 237.59 237.76± 0.2 237.43 237.63± 0.2 237.42 

T 50%
f  237.4± 0.3 237.46 237.28± 0.3 237.34 237.13± 0.3 237.31 

T 90%
f  236.89± 0.3 237.31 236.93± 0.3 237.25 236.67± 0.3 237.18 

T end
f  N/A 237.05 N/A 237.11 N/A 236.97 

Diameter 

µ±σ 

63±10 (µm) 53±6 (µm) 

 Experiment 

values (K)  

TNc=1
(K) Experiment 

values (K)  

TNc=1
(K) 

T onset
f  237.50± 0.2 237.43 237.44± 0.2 237.17 

T10%f  237.46± 0.2 237.23 237.40± 0.2 237.02 

T 50%
f  236.94± 0.3 237.05 236.94± 0.3 236.88 

T 90%
f  236.49± 0.3 236.83 236.55± 0.3 236.72 

T end
f  N/A 236.4 N/A 236.46 

Table 2. Comparison between the experimental results of the fraction experiment 631	
  

from Riechers et al. (2013) and the theoretical estimates TNc=1
 derived here. 632	
  

 633	
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 634	
  

Figure 1. Freezing temperatures of pure water droplets: comparison between the 635	
  

approximations TNc=1
(V,aw =1) 	
   and the collected experimental data. Experimental 636	
  

data: the uncertainties and ranges of the drop size and the freezing temperatures are 637	
  

presented by the dotted line if information is provided by the studies (details in Table 638	
  

1). The approximations TNc=1
(V,aw =1) : blue line - σ i/w,e 	
   from TIP4P model, green 639	
  

line - σ i/w,e 	
   from TIP4P/2005 model and red line - σ i/w,e 	
   from TIP4P- Ew model.  640	
  

 641	
  

Figure 2. Mean number of critical embryos Nc_mean 	
   (by Eq. (1)) in a pure water 642	
  

droplet ( aw =1) with different size (diameter) as a function of temperature. Solid 643	
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circle: the approximations TNc=1
(V,aw )  derived by Eq. (2) (using σ i/w,e 	
   from TIP4P 644	
  

model).  645	
  

 646	
  

Figure 3. Mean number of critical embryos Nc_mean 	
   (by Eq. (1)) in a solution droplet 647	
  

(diameter=1μm) with different water activity as a function of temperature. Solid circle: 648	
  

the approximations TNc=1
(V,aw )  derived by Eq. (2) (using σ i/w,e 	
   from TIP4P 649	
  

model). 650	
  

 651	
  

Figure 4. Comparison between the experimental data of freezing temperatures of 652	
  

solution droplets (Koop et al., 2000; Knopf and Lopez, 2009; Knopf and Rigg, 2011) 653	
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and the approximation TNc=1
(V,aw ) . 654	
  

 655	
  

Figure 5. Comparison between the experimental results of the fraction experiment 656	
  

from Riechers et al. (2013) and the theoretical estimates derived here. Red: 657	
  

experimental results with uncertainties from Riechers et al. (2013). Blue: theoretical 658	
  

estimates (σ i/w,e 	
   from TIP4P model).	
  659	
  

	
  660	
  


