

1 Potential impact of a U.S. climate policy and air quality regulations on future air
2 quality and climate change

3
4 Y. H. Lee¹, D. T. Shindell², G. Faluvegi³, and R. W. Pinder⁴

5 ¹ Laboratory for Atmospheric Research, Civil and Environmental Engineering, Washington State
6 University, Pullman, WA, USA

7 ² Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA

8 ³ NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY, USA

9 ⁴ NextClimate, Carborro, NC, USA

10

11 **Abstract**

12 We have investigated how future air quality and climate change are influenced by
13 the U.S. air quality regulations that existed or were proposed in 2013 and a
14 hypothetical climate mitigation policy that aims to reduce 2050 CO₂ emissions to be
15 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation
16 model, we look at the impacts in year 2030 and 2055. The U.S. energy-sector
17 emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with
18 MARKAL for the Purpose of Scenario Exploration), and other U.S. emissions datasets
19 and the rest of the world emissions datasets are based on the RCP4.5 scenario. The
20 U.S. air quality regulations are projected to have a strong beneficial impact on U.S.
21 air quality and public health in year 2030 and 2055 but result in positive radiative
22 forcing. Under this scenario, no more emission constraints are added after 2020,
23 and the impacts on air quality and climate change are similar between year 2030
24 and 2055. Surface PM2.5 is reduced by ~2 $\mu\text{g m}^{-3}$ on average over the U.S., and
25 surface ozone by ~8 ppbv. The improved air quality prevents about 91,400
26 premature deaths in the US, mainly due to the PM2.5 reduction (~74,200 lives
27 saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate
28 and organic matter) more than the light-absorbing species (i.e., black carbon and
29 ozone), leading to a strong positive radiative forcing (RF) over the US by both
30 aerosols direct and indirect forcing: total RF is ~0.04 W m⁻² over the globe; ~0.8 W
31 m⁻² over the US. Under the hypothetical climate policy, future CO₂ emissions cut is
32 achieved in part by relying less on coal, and thus SO₂ emissions are noticeably
33 reduced. This provides air quality co-benefits, but it could lead to potential climate
34 dis-benefits over the US. In 2055, the U.S. mean total RF is +0.22 W m⁻² due to

1 positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W
2 m⁻² due to the dominant negative CO₂ RF (instantaneous RF). To achieve a regional-
3 scale climate benefit via a climate policy, it is critical 1) to have multi-national
4 efforts to reduce GHGs emissions and 2) to simultaneously target emission
5 reduction of light-absorbing species (e.g., BC and O₃) on top of long-lived species.
6 The latter is very desirable as the resulting climate benefit occurs faster and
7 provides co-benefits to air quality and public health.

8

9 **1. Introduction**

10 The U.S. Environmental Protection Agency (EPA)'s air quality regulations have
11 historically been focused on air quality assessment in terms of public health and
12 environmental damages. With the Endangerment Finding under the Clean Air Act in
13 December 2009 (U.S. Environmental Protection Agency, 2009), the EPA sought to
14 understand and provide integrated policy approaches to both mitigate climate
15 change and manage air quality (e.g., U.S. Environmental Protection Agency, 2012).
16 This requires estimating potential climate and air quality impacts of various
17 greenhouse gases (GHG) and short-lived climate pollutants (SLCP) including some
18 "traditional" pollutants regulated under the Clean Air Act.

19 With growing interest in identifying potential energy policy that maximize
20 benefits to air quality and reduce climate change impacts, a rapid decision tool for
21 energy and environmental policy has been developed in the U.S. Environmental
22 Protection Agency: GLIMPSE (GEOS-Chem LIDORT Integrated with MARKAL for the
23 Purpose of Scenario Exploration). Under the GLIMPSE project
24 (<http://www.epa.gov/AMD/Research/Climate/GLIMPSE.html>; Akhtar et al., 2013),
25 the MARKet ALlocation (MARKAL) optimization model (Fishbone and Abilock,
26 1981; Loughlin et al., 2011) is used to estimate emissions based on energy policy
27 actions, and the Adjoint GEOS-Chem global chemical transport model and the
28 LIDORT radiative transfer model (Henze et al., 2012) is used to compute the impact
29 of emissions, chemical fate, and transport on direct radiative forcing. The GLIMPSE
30 decision-making tool examines combined constraints of greenhouse gas emissions,

1 short-lived species direct radiative forcing, and relative cost to examine the trade-
2 offs between different policy options. Akhtar et al. (2013) present the four emission
3 scenarios based on energy policy and air quality regulations and the impact of these
4 emissions on direct radiative forcing and public health: see the description of
5 emission scenarios in Section 2 in this paper.

6 A major limitation on the climate impact estimates in Akhtar et al. (2013) is that
7 they only use direct radiative forcing of sulfate, black carbon and organic carbon
8 aerosols: no direct forcing by gas pollutants and no aerosol indirect effects.
9 Moreover, their direct radiative forcing estimates cannot account for non-linear
10 behavior in the impact of emissions on direct radiative forcing (an inherent
11 limitation of an adjoint model). In order to get a more complete assessment of
12 climate impact, we investigate the impact of the GLIMPSE emission scenarios using
13 the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation
14 model, i.e., a fully coupled atmospheric chemistry-climate model. We utilize two
15 independent aerosol models coupled to the same GISS ModelE2 climate model to
16 obtain a more robust estimate of aerosol impacts on air quality and climate. Using
17 an entirely different air quality model than Akhtar et al. (2013), our study provides
18 an independent analysis for the air quality component of the impact of the same
19 GLIMPSE emission scenarios.

20 The paper is organized as follows. Section 2 provides the detailed descriptions of
21 the four emission scenarios developed from GLIMPSE. The NASA GISS ModelE2
22 description, including a bulk aerosol model and a sectional aerosol microphysics
23 model, is provided in Section 3. In section 4, we present the model results and
24 discussions including the changes of gases and aerosols budgets and their radiative
25 forcing under the four scenarios. Conclusions are in Section 5.

26

27 **2. Scenarios Descriptions**

28 To identify the climate and health impacts of US emission reductions, four
29 energy sector scenarios were developed using the Market Allocation optimization
30 (MARKAL) model and are described in detail in Akhtar et al. (2013). Each scenario is

1 specified as a set of emission constraints. MARKAL finds the least-cost set of energy
2 technologies that meet US energy demands while not exceeding the specified
3 emission constraints. Output from MARKAL includes both energy technologies and
4 associated emissions for air pollutants and greenhouse gases. For example, if a
5 scenario is specified only as a reduction in CO₂ emissions, and the least-cost way to
6 achieve those emission reductions included less coal combustion for electricity
7 generation, the results from MARKAL would include the reductions in emissions of
8 SO₂, NO_x, and related air pollutants from coal combustion. Emissions from sources
9 other than the energy sector are from the RCP (Representative Concentration
10 Pathway) 4.5 scenario (Thomson et al., 2011). Here we describe each scenario
11 briefly (see Fig. 1 for the emission trajectories of SO₂, Black Carbon (BC), Organic
12 Carbon (OC), CH₄, CO, NO_x, Alkenes and Paraffin from 2005 to 2055).

13 **2.1 Baseline (bs)**

14 This bs emission scenario (blue solid line in Fig. 1) is based on the U.S. air quality
15 regulations affecting the electricity sector and the transportation sector. For
16 example, it includes Clean Air Interstate Rule (CAIR), state-level renewable portfolio
17 standards (RPSs), the new Corporate Average Fuel Economy (CAFE) standard, Tier
18 II light duty emission standards, heavy-duty engine emission standards, and diesel
19 sulfur limits (see Akhtar et al. 2013; the details of each regulation can be found in
20 <https://www3.epa.gov/air/oarregul.html>). The scenario does not assume any
21 future air quality regulations beyond those that existed or were proposed in 2013.
22 After 2020, there are no more emission constraints added. No CO₂ specific
23 regulation, such as the Clean Power Plan, is included in this scenario though CO₂
24 emissions are influenced indirectly by some of the regulations included here. These
25 regulations do not lead to a significant change in energy sources or the amount of
26 electricity. Natural gas is added when needing additional electricity, and coal,
27 nuclear, and renewable electricity production remain at approximately current
28 level. Notably, the CO₂ emission rate in 2055 is almost same as 2005 in this scenario,
29 partly because growing energy usage due to higher demands is offset by better fuel
30 efficiency.

31 **2.2 No air quality regulations (noaq)**

1 This noaq emission scenario (red solid line in Fig. 1) removes existing and
2 proposed air quality regulations, which means no emission reduction strategies.
3 Under this scenario, most pollutant emissions either stay similar to their 2005 level
4 or increase slightly by 2055. Similar to the bs scenario, there is no effort to reduce
5 CO₂ emissions.

6 **2.3 50% CO₂ cap in the bs scenario (c50)**

7 This c50 emission scenario (blue dashed line in Fig. 1) is the same as the bs
8 scenario, but additionally includes a hypothetical climate change mitigation target,
9 which applies a linear reduction in CO₂ emissions from the 2005 level at 2005 to
10 50% of 2005 levels at 2050 (called “50% CO₂ cap”). With the 50% CO₂ cap, there are
11 major fuel source changes in the electricity sector: switching from coal-power plants
12 to natural gas-fired plants, applying carbon sequestration technology for all fossil
13 fuel production, and increasing wind/solar power based on regional source
14 availability. The 50% CO₂ cap applied in the US contributes about 10% reduction in
15 the global CO₂ emissions of the RCP4.5 scenario in 2050.

16 Starting in 2020, the 50% CO₂ cap results in less SO₂ and OC emissions but more
17 BC emissions compared to the air quality regulation (i.e., the bs scenario). Note that
18 larger BC emissions are due to increased biomass fuel usage in the residential,
19 commercial, and industrial sectors as a bridge fuel. CO emissions are also slightly
20 reduced but only after 2040.

21 **2.4 50% CO₂ cap in the noaq scenario (c50nq)**

22 This c50nq emission scenario (red dashed line in Fig. 1) is the same as the noaq
23 scenario, but includes the 50% CO₂ cap. This scenario also leads to significant
24 changes in energy sources and electricity production by 2055. For some pollutants,
25 the impact of the 50% CO₂ cap can be quite different under the noaq scenario than
26 the bs scenario. For instance, SO₂ emissions are significantly reduced under this
27 scenario mainly because of retiring coal-power plants, which have high SO₂
28 emissions. Without the air quality regulations, the SO₂ emission reductions result
29 solely from the 50% CO₂ cap, and thus occurs more slowly over time than in the c50
30 scenario (e.g., the SO₂ emission reductions reach to the bs scenario level in 2040).

1 Except for CH₄, most gas pollutant emissions deviate from the noaq scenario after
2 around 2040.

3 Note that the US emission scenarios are not same in year 2005, even though they
4 may appear so in Fig. 1. For instance, the bs emissions are not identical to the c50
5 emissions in year 2005.

6

7 **3. Model descriptions**

8 We used two independent aerosol models that coupled to the same host climate
9 model, NASA GISS ModelE2 (Schmidt et al., 2014): ModelE2-OMA (One Moment
10 Aerosol model with no aerosol microphysics) and ModelE2-TOMAS (Two-Moment
11 Aerosol Sectional) microphysics model. The host climate model has 2° latitude by
12 2.5° longitude resolution, with 40 vertical hybrid sigma layers from the surface to
13 0.1 hPa (80 km). Tracers, heat, and humidity are advected using the highly
14 nondiffusive Quadratic Upstream Scheme (Prather, 1986). The radiation scheme
15 accounts for size-dependent scattering properties of clouds and aerosols based on
16 Mie scattering (Hansen et al., 1983) and non-spherical light scattering of cirrus and
17 dust particles based on T-matrix theory (Mishchenko et al., 1996). In the model,
18 clouds are distinguished into convective and large-scale stratiform clouds. The
19 clouds parameterizations are similar to Del Genio (Del Genio et al., 1996; Del Genio
20 and Yao, 1993) but have been improved in several respects (see details in Schmidt
21 et al., 2006, 2014). The physics time-step is 30 minutes, and the radiation
22 calculations are performed every 2.5 hours.

23 ModelE2-OMA uses a default aerosol module, which has no aerosol microphysics
24 such as coagulation, condensation and nucleation and thus does not calculate
25 aerosol size distributions. ModelE2-OMA simulates sulfate, carbonaceous aerosols,
26 secondary organic aerosols, nitrate, sea-salt (two size classes with a fine mode, 0.1
27 to 1 μm in dry radii, and a coarse mode, 1 to 4 μm in dry radii) and mineral dust
28 (five size classes for clay, 0.1 and 1 μm in dry radii, and four size classes for silts, 1 to
29 16 μm in dry radii) aerosols as well as sulfur dioxide, dimethyl sulfide (DMS),
30 methanesulfonic acid (MSA), isoprene, monoterpenes, and sesquiterpenes aerosol

1 precursor gases (see details in Schmidt et al., 2014). Heterogeneous chemistry on
2 the surfaces of mineral dust particles is included to form nitrate and sulfate (Bauer
3 and Koch, 2005). Dry deposition is based on a resistance-in-series scheme, and wet
4 deposition is determined by scavenging within and below clouds, scavenging by
5 precipitations, and evaporation of clouds and precipitating water (Koch et al., 2006).
6 ModelE2-OMA computes a dissolved species budget for large-scale clouds, so some
7 sulfate formed in clouds undergoes wet scavenging without being released in air
8 (Koch et al., 2006). Aerosol-cloud interaction is based on an empirical
9 parameterization that computes cloud droplet number concentrations as a function
10 of aerosol mass (Menon et al., 2002, 2008).

11 ModelE2-TOMAS uses a sectional aerosol microphysics approach that tracks two
12 moments of the aerosol size distribution in each size section or “bin”: total aerosol
13 number (i.e., 0th moment) and mass (i.e., 1st mass moment). A detailed description of
14 the TOMAS microphysics algorithm is in Adams and Seinfeld (2002) and Lee and
15 Adams (2012). We used TOMAS with 15 bins covering 3 nm to 10 μm . Aerosol mass
16 in each size bin is decomposed into nine aerosol species: sulphate mass, sea-salt
17 mass, mass of pure (hydrophobic) elemental carbon (EC), mass of mixed (aged) EC,
18 mass of hydrophobic organic matter (OM), mass of hydrophilic OM, mass of mineral
19 dust, mass of ammonium and mass of water. In addition, the model tracks four bulk
20 gas-phase species: sulphur dioxide (SO_2), dimethylsulfide (DMS), sulphuric acid
21 (H_2SO_4), and a lumped gas-phase tracer that represents oxidized organic vapours
22 forming secondary organic aerosol (SOA). TOMAS accounts for water uptake by
23 hydrophilic OM, sulphate and sea salt. We use binary nucleation (Vehkamaki et al.,
24 2002) with sulfuric acid concentrations reduced by five times and no additional
25 boundary-layer nucleation because it tends to overpredict aerosol number
26 concentrations in ModelE2-TOMAS (Lee et al., 2015). Dry and wet deposition in
27 ModelE2-TOMAS are similar to those in ModelE2-OMA, but, when needed, using
28 size-dependent processes such as gravitational settling, size-dependent resistance
29 in the quasi-laminar sublayer (Adams and Seinfeld, 2002; Seinfeld and Pandis,
30 1998), a modified Köhler theory for in-cloud scavenging (Pierce et al., 2007) and a
31 modified first-order removal scheme for below-cloud scavenging (Adams and

1 Seinfeld, 2002). For the aerosol-cloud interactions, we compute a critical
2 supersaturation and cloud droplet number concentrations (CDNC) using a physical-
3 based activation parameterization from Nenes and Seinfeld (2003) with feeding a
4 model updraft velocity that is computed based on a large-scale vertical velocity and
5 sub-grid velocity. In ModelE2-TOMAS, size-resolved AOD is computed using a
6 volume-averaged refractive index, based on Mie theory.

7 Both ModelE2-OMA and ModelE2-TOMAS use the same tropospheric and
8 stratospheric gas chemistry model, which includes 156 chemical reactions among
9 51 gas species (Shindell et al., 2013a). In ModelE2, gas chemistry and aerosols are
10 interactive, which means aerosol chemistry is computed with online oxidant fields
11 (e.g., H_2O_2 , OH, and NO_3 for sulfur aerosol; see Bell et al., 2005b). Photolysis rates are
12 computed using the Fast-J2 scheme (), and aerosol optical depth in ModelE2-OMA
13 affects photolysis rates (not for ModelE2-TOMAS). Ozone in the ModelE2 was
14 previously evaluated in Shindell et al (2013a), which found that around 900 hPa
15 ozone tended to be overpredicted in the model by around 5-8 ppbv. Though ozone
16 in this version of the model was improved at higher altitudes, values near the
17 surface were similar to the prior ModelE, which displayed little mean bias relative to
18 a network of 40 surface ozone measurements although the correlation was only
19 $R=0.7$ (Shindell et al., 2006). The atmospheric residence time of methane in
20 modelE2 is in excellent agreement with the value inferred from observations,
21 indicating that OH levels are also well simulated. Additional analysis of seasonal
22 maximum 8-hourly surface ozone showed that the model captures the summertime
23 observed levels in the western US very well, but substantially overestimates values
24 in eastern North America (Schnell et al., 2015)

25 The detailed description and evaluation of ModelE2-TOMAS and the difference
26 between OMA and TOMAS is available in Lee et al. (2014). In brief, the ModelE2-
27 TOMAS and ModelE2-OMA models capture the observed sulfur species and other
28 aerosol species as well as aerosol optical depth mostly within a factor of two.
29 However, anthropogenic aerosols in both models differ from each other by a few
30 percent to a factor of 2 regionally due to differences in aerosol processes such as
31 deposition, cloud processing, and emission parameterizations.

1 The climate impact of each scenario is based on radiative forcing estimated using
2 ModelE2, except for CO₂ RF. Since ModelE2 does not simulate a carbon cycle and
3 cannot estimate the CO₂ RF as result of CO₂ emission changes, we use the same
4 approach as Collins et al. (2013), which utilizes the CO₂ impulse response function
5 representing the multiple timescales involved in the carbon cycle as in the 2007
6 IPCC Assessment (Forster et al., 2007). The impulse response function characterizes
7 the complex behavior of the climate response to CO₂ emission changes as a first-
8 order approximation. Due to the linear system assumption in the function, it has a
9 limitation on representing non-linear and path dependent processes (e.g., Joos et al.,
10 2013). However, CO₂ emission changes in our scenarios are much smaller than 1 Gt
11 C per year whereas an impulse response function is likely in a linear regime when
12 the CO₂ impulse size is below 100 Gt C (Joos et al., 2013; Olivié and Peters, 2013).
13 Nevertheless, in order to estimate the variation in CO₂ RF associated with the choice
14 of an impulse response function, we have estimated CO₂ RF using additional impulse
15 response functions derived from multi-model intercomparison projects such as
16 C⁴MIP and CMIP5, which are obtained from Olivié and Peters (2013). We found that
17 our CO₂ RF differs only by 3-4% when using the impulse response functions fitted to
18 the multi-model mean of CMIP5 and by 10-17% when using impulse response
19 functions fitted to the multi-model mean of C⁴MIP.

20 Both ModelE2-OMA and ModelE2-TOMAS have participated various inter-
21 comparisons studies for global-scale atmospheric chemistry models such as the
22 Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) and
23 AeroCom (e.g., Lamarque et al., 2013; Lee et al., 2013; Mann et al., 2014; Naik et al.,
24 2013; Shindell et al., 2013b).

25

26 **3.1. Simulation setup**

27 All simulations were performed as timeslices with three years spin-up, targeting
28 year 2005, 2030, and 2055. Aerosols and short-lived gases emissions were from the
29 given time period. Three types of simulations were performed to isolate the impact
30 due to emissions changes alone from other factors such future warm climate

1 conditions and rapid adjustments as a result of the emission changes. A brief
2 description of simulations is provided in Table 1, and the detailed description is
3 below.

4 In order to assess the impact of each emission scenario on air quality and
5 climate, we set our climate model to have identical meteorology among all emission
6 scenarios by 1) disabling the influence of aerosols and gases on radiation and clouds
7 in the model (i.e., turning off aerosols-climate and gases-climate interactions) and 2)
8 prescribing observed monthly mean sea surface temperatures (SST) and sea ice
9 (SICE) coverage averaged from 2001 to 2010 in all FIXMET runs. We denote these
10 simulations as FIXMET. Since the model meteorology is identical, emissions are the
11 only contributing factor to the difference among the runs. This type of run is used
12 here because the impact of U.S. emissions on radiative forcing is likely too small to
13 distinguish from model internal noise that can be large via clouds. We performed
14 three-year simulations for FIXMET because the model meteorology is identical
15 among the simulations and their year-to-year variation is small enough. Our FIXMET
16 simulations with ModelE2-OMA were run with a newer ModelE2 version, which
17 included some updates relative to ModelE2-TOMAS because nitrate aerosols in
18 ModelE2-OMA were unrealistically high in the same version of ModelE2 as
19 ModelE2-TOMAS (Lee et al., 2015; Shindell et al., 2013b).

20 Since future warm climate alone can have a significant impact on gas pollutants
21 (e.g., O₃, CO, NO_x, and CH₄), we ran FIXMET 2030 and 2055 simulations but with
22 prescribed monthly mean SST and SICE from 2026-2034 and 2051-2059 means
23 from ModelE2 RCP4.5 simulations, respectively. We denote these runs as FUTURE.

24 Finally, we ran simulations with allowing aerosols and gases to interact with
25 radiation and clouds (referred to as INTERACT runs) to find out the impact of
26 emission controls including the atmospheric response to emissions. The same SST
27 and SICE fields used for FIXMET were also used in these simulations. With this fixed
28 SST method, we can estimate the radiative response following “rapid” adjustments
29 in the atmosphere due to a forcing agent. It is important to note that this method has
30 been used to estimate aerosol effective forcing (e.g., Shindell et al., 2013b), but only
31 allowing aerosol emissions changes from the reference period. In this study, both

1 aerosol and gas emissions are changed from the reference period (i.e., 2005) and the
2 resulting cloud radiative forcing is also influenced by gas forcing. Thus it cannot be
3 used to estimate aerosol effective forcing. We performed the runs for 20 years to
4 remove the model internal noise.

5 The ModelE2 version used in this study does not compute CH_4 RF with simulated
6 concentrations, if the CH_4 -radiation interactions are turned off, which is the case in
7 the FIXMET and FUTURE simulations. Thus, we use CH_4 RF from the INTERACT
8 simulations and other RFs from the FIXMET simulations in Section 4.3. This
9 inconsistency would little influence to overall RFs, since the CH_4 RF signal is small
10 compared to other RFs.

11 **3.2. Air quality related mortality calculations**

12 We calculated the health impacts of air pollutants as premature deaths due to
13 increased lung cancer (LC), cardiovascular disease (CVD), and respiratory disease
14 and infections (RESP) for PM2.5 exposure, based on concentration-response
15 functions (CRF) derived from epidemiological studies. For O_3 exposure, CVD and
16 RESP are used to compute annual mortality. The change in premature deaths is
17 calculated using Eq. (1):

18
$$\Delta M = M_b \cdot P \cdot AF \quad \text{Eq. (1)}$$

19 where M is the number of premature deaths due to PM2.5 or O_3 , M_b is the cause-
20 specific baseline mortality rate, P is the relevant population, and AF is the
21 attributable fraction of premature deaths due to PM2.5 or O_3 exposure, which is
22 defined as:

23
$$AF = (RR-1)/RR \quad \text{Eq. (2)}$$

24 where RR is relative risk of death from a cause-specific disease (i.e., LC, CVD, or
25 RESP) as a result of exposure to PM2.5 or ozone increase. RRs are the main
26 parameter estimated from epidemiological studies, but are subject to a large
27 uncertainty.

28 To characterize the uncertainties in CRF, we used three different CRF equations
29 (called $\text{CRF}_{\text{low,pm}}$, $\text{CRF}_{\text{base,pm}}$, and $\text{CRF}_{\text{high,pm}}$) to compute PM2.5-related mortality and
30 two different equations ($\text{CRF}_{\text{low,o3}}$ and $\text{CRF}_{\text{base,o3}}$) for O_3 -related mortality. For

1 PM2.5-related mortality, we used annual mean PM2.5 concentrations that exclude
2 sea-salt and dust aerosols. Since 1) sea-salt and dust aerosols are mostly naturally
3 emitted and highly varied due to wind-dependence of their emissions and 2) the
4 toxicity of sea-salt and dust particles is weaker than anthropogenic aerosols
5 (Anenberg et al., 2012), the health impact of a policy-driven measure is obtained
6 without them. For O₃-related mortality, we used simulated hourly surface ozone
7 concentrations for CRF_{low,O3} and CRF_{high,O3}. We summarize the key equations and
8 parameters for each CRF below and in Table 2.

9 Our CRF_{base} (CRF_{base,pm} and CRF_{base,O3}) method is based on the case 1 in Anenberg
10 et al. (2012), which computes RR using $\exp(\beta\Delta C)$; where β is the estimated slope of
11 the log-linear relationship between PM2.5 or O₃ and premature deaths, and ΔC is the
12 change in PM2.5 or O₃. The CRF_{base,pm} is based on long-term RR derived from an
13 American Cancer Society (ACS) cohort study (Pope et al., 2002): Every 10- $\mu\text{g m}^{-3}$
14 increase in PM2.5 is associated with 14% and 9% increases in LC and CVD/RESP
15 mortality, respectively. However, Anenberg et al. (2012) increase the RRs from Pope
16 et al. (2002) by 1.8 to scale up to the mean of the expert elicitation (Roman et al.,
17 2008). Epidemiological studies indicate that the CRF slope derived from U.S. data is
18 log-linear over the concentration range from low to ~ 40 $\mu\text{g m}^{-3}$ [Krewski et al.,
19 2009; Laden et al., 2006]. This suggests that the CRF_{base,pm} (i.e., log-linear CRF) might
20 be most appropriate for the US. For O₃, CRF_{base,O3} uses long-term RR from the ACS
21 cohort (Jerrett et al., 2009): every 10-ppb increase in the seasonal (6-month)
22 average of 1-hr daily maximum O₃ is associated with a 4% increase in respiratory
23 disease mortality.

24 The CRF_{high,pm} is based on the case 2 in Anenberg et al., (2012), which uses a log
25 CRF from Pope et al. (2002). In this method, pre-scaling β is 0.2322 and 0.1552 for
26 LC and CVD/RESP, respectively, following Cohen et al. (2004). These are scaled, as
27 in the CRF_{base} case, by a factor of 1.8. The RR in CRF_{high,pm} is computed using changes
28 in log of PM2.5 ($\Delta \ln C$). Compared to the other CRFs used here, this tends to predict
29 larger changes in premature deaths (thus, we name it CRF_{high,pm}).

1 Our CRF_{low} ($CRF_{low,pm}$ and $CRF_{low,o3}$) is based on Marlier et al. (2013). For
2 $CRF_{low,pm}$, a power-law relationship is assumed between premature death and high
3 PM2.5, including cigarette and ambient pollution, following Pope et al. (2011). The
4 RRs for PM2.5 in this method are computed quite differently: as a function of the
5 PM2.5 concentration rather than the concentration change; see the equations in
6 Table 2. Note that $CRF_{low,pm}$ does not include PM2.5-related premature deaths
7 caused by RESP. This CRF tends to predict the smallest change in premature deaths
8 among the three CRFs used here. For $CRF_{low,o3}$, a log-linear relationship is assumed
9 between O_3 and premature deaths with 1.11 for β , based on Bell et al., (2005a): a 10
10 ppb increase in daily-averaged O_3 concentrations is associated with 11% increase in
11 cardiovascular disease mortality.

12 We use baseline mortality rates (M_b in Eq.1) for all persons age 15 and older
13 from the World Health Organization (available via
14 http://www.who.int/healthinfo/global_burden_disease/estimates_country_2004_2_008). For all health calculations, to obtain the relevant population (P in Eq 1), we
15 use the year 2005 population data from the Center for International Earth Science
16 Information Network (2005) and scale on a per country basis to obtain population
17 for people age 30 or older, based on United Nations Population Division (2011)
18 estimates. This inconsistency in age limit (ages 15+ in M_b vs. 30+ in P) is inevitable
19 due to the coarseness of age categories in the mortality data, but any bias from this
20 inconsistency is expected to be small compared to the differences across CRFs. We
21 would like to mention that our health impacts can be computed with future
22 populations, scaled by country from the 2015 gridded population using a medium
23 fertility scenario (United Nations Population Division, 2011). In this study, we
24 confine the mortality change to air quality causes, rather than population changes,
25 so a year 2005 population data is used for all cases. Economic impacts can also be
26 computed, but are not shown in this paper.

28 As the horizontal resolution in our model is relatively coarse, we redistribute the
29 BC and OM components of simulated PM2.5 output in a model 2 x 2.5 grid cell onto a
30 0.5 x 0.5 grid, using a subgrid parameterization of urban/rural differences

1 developed by the European Commission's Joint Research Center. This approach has
2 been used in previous studies (Anenberg et al., 2012; Shindell et al., 2011, 2012).
3 The downscaled surface PM2.5 was used to estimate the PM-related mortality rate.

4

5 **4. Impact of the air quality regulations and CO₂ reduction policy**

6 We estimate the changes in air quality and radiative forcing due to the US air
7 quality regulations and a hypothetical CO₂ reduction target, using the FIXMET runs
8 (see Table 3 for our method). The changes from the FIXMET runs are entirely due to
9 the emissions and do not include any impact of the rapid atmospheric adjustments
10 due to the emissions or future warming climate conditions. We present the results
11 from 2030 and 2055 simulations relative to the 2005 simulations, as indicated in
12 Table 3, i.e., 2030-2005 and 2055-2005. We use acronyms for simulations used to
13 assess the impact of the air quality regulations and CO₂ reduction policy: the
14 simulations used to obtain the impact of the air quality regulation in 2030 and 2055
15 are denoted as AQ30 and AQ55, respectively; for the impact of CO₂ reduction policy
16 in the presence of the air quality regulations as CO₂30 and CO₂55; for the impact of
17 CO₂ reduction policy in the absence of air quality regulations as CO₂NQ30 and
18 CO₂NQ55; for the impact of both air quality regulation and CO₂ reduction policy as
19 BOTH30 and BOTH55 (see Table 3 for the exact pair of simulations used for each
20 case). We performed the FIXMET runs with ModelE2-OMA and ModelE2-TOMAS.
21 Since the emission perturbation is over the US continent, we mainly examine a
22 change over the US. It is important to mention that all 50 states are used for air
23 quality and public health estimates but only 48 states excluding Alaska and Hawaii
24 for radiative forcing. The magnitudes of air quality and mortality rate changes are
25 larger when excluding Hawaii and Alaska, as the two states have relatively clean air.

26 **4.1. Air pollution**

27 Air pollution is mainly examined using the simulated PM2.5, CO, O₃, and NO_x in
28 the model surface air. Along with total PM2.5, we also present a chemical
29 composition of PM2.5 such as sulfate (SU), black carbon (BC), organic matter (OM),

1 and nitrate (NO_3). Using the model surface air pollutant concentrations, PM-related
2 and ozone-related mortality rates are computed.

3 We examine the impact of the air quality regulations and CO_2 reduction policy on
4 air pollution using US averages (Figure 2) and a spatial distribution over the globe
5 (Figure 3). Since no more emission constraints are added after 2020, impacts on air
6 quality in 2030 and 2055 are quite similar (see Figs 1 and 2). Due to this, Fig. 3
7 presents only the 2030-2005 cases. To emphasize the future air quality changes
8 over the U.S. in 2030 and 2055, the 2005 baseline air quality level (i.e., bs05 run) is
9 used as a reference (see Table 4). In other words, the impact of policies is divided by
10 the bs05 air quality level (e.g., AQ30/bs05): the bs05 level is presented in S-Table 1
11 in the supplementary materials.

12 Figures 2 and 3 show a large improvement in U.S. air quality in 2030 and 2055
13 due to the air quality regulations (i.e., AQ30, AQ55, BOTH30, and BOTH55). For
14 PM2.5 in Fig. 2, the air quality regulations lead to about $1.5\text{-}2.5 \mu\text{g m}^{-3}$ reduction in
15 2030 and 2055, which is about 20-25% of the bs05 PM2.5 concentrations. All
16 aerosol types (SU, BC, OM, and NO_3) are reduced by roughly 30-60% of the bs05
17 level. Due to the air quality regulations, surface PM2.5 is reduced over the
18 continental US (especially eastern US) and neighboring areas significantly and
19 somewhat slightly over Eurasia ($0.01\text{-}0.1 \mu\text{g m}^{-3}$) due to less long-range transport of
20 US-origin PM and PM precursor gases. Gas pollutants such as O_3 , VOC, NO_x , and CO
21 are also effectively reduced: on U.S. average, $\sim 8 \text{ ppb}$ for surface O_3 ($\sim 15\%$ of the
22 bs05 level); $\sim 2 \text{ ppb}$ for NO_x (60-70% of the bs05 level); $\sim 20\text{-}25 \text{ ppb}$ for CO ($\sim 10\%$
23 of the bs05 level). The spatial distributions reveal that NO_x changes are mostly
24 localized over the North America but O_3 and CO are reduced more than 1 ppb
25 throughout the Northern Hemisphere (NH) due to the longer lifetime of these
26 pollutants.

27 For the CO_2 reduction policy (i.e., CO_230 , CO_255 , $\text{CO}_2\text{NQ30}$, and $\text{CO}_2\text{NQ55}$),
28 impacts on air pollution are more complex than those of the air quality regulations.
29 Firstly, except for SO_4 , most pollutants show a distinct spatial pattern driven by
30 emissions, i.e., increasing concentrations over the southeastern US and decreasing

1 concentrations over the northwestern US. The changes in energy sources under the
2 CO₂ policy differ by each region (depending on regionally specific conditions). For
3 instance, the increases over the south central US states can be explained by the
4 increases in energy production. In 2030, these US states reduces their coal usage
5 and the adoptions of renewable energy such as solar and wind power happens after
6 2030. Thus, SO₄ is the only air pollutant strongly reduced under the CO₂ reduction
7 policy in 2030 over the south central US. Secondly, since the CO₂ emissions are
8 gradually reduced until 2050, larger impacts are predicted in 2055 than 2030. Also,
9 the changes in an air pollutant are not always same between 2030 and 2055, in term
10 of magnitude and sign of the changes. Ozone is initially increased slightly in 2030
11 but then decreased in 2055, following the emissions trend of the precursor gases
12 (NO_x, CO and VOC) (Fig.1). However, the changes in O₃ by the CO₂ policy are quite
13 small. For surface PM2.5, it is reduced both in 2030 and 2055, mainly due to SO₂
14 emission reductions via the fuel switch from coal to renewable energy resources.
15 Interestingly, despite the expected anti-correlation between nitrate and sulfate
16 formation via thermodynamics, nitrate is reduced along with sulfate possibly
17 because of the stronger influences of NO_x emissions reductions (in Fig. 3, the spatial
18 distribution of nitrate closely follows that of NO_x). Lastly, impacts of measures
19 targeting CO₂ on air quality are larger in the absence of the air quality regulations
20 (i.e., CO₂NQ), because using less coal reduces SO₂ emissions effectively without the
21 air quality regulations. For instance, when the air quality regulations are applied
22 (i.e., CO₂30 and CO₂55), the U.S. averaged PM2.5 concentration is reduced by 0.13-
23 0.34 $\mu\text{g m}^{-3}$ (about 1-5% of the bs05 level) mainly driven by sulfate reduction.
24 Without the air quality regulation (i.e., CO₂NQ30 and CO₂NQ55), PM2.5 is reduced
25 by 0.36-0.81 $\mu\text{g m}^{-3}$ (about 5-10% of the bs05 level). To be clear, the absolute
26 pollution level is higher in the CO₂NQ cases than the CO₂ cases. In the case of O₃ in
27 2055, the CO₂NQ55 case shows a reduction (-1.1 ppbv) while the CO₂55 case shows
28 a slight increase (+0.03 ppbv). The same pattern is also observed in ModelE2-
29 TOMAS.

1 The results presented above are based on ModelE2-OMA. Using ModelE2-
2 TOMAS aerosol microphysics model, we observe similar changes in air pollutions by
3 the air quality regulations and CO₂ reduction policy (see Fig. 4). However, there are
4 some differences in the magnitudes of their PM2.5 changes, largely due to missing
5 nitrate aerosols in ModelE2-TOMAS (only ModelE2-OMA simulates nitrate
6 particles). Besides the nitrates, ModelE2-TOMAS tends to simulate more sulfate
7 reduction and less OM reduction. These effects cancel each other and overall PM2.5
8 difference between the models is almost equivalent to the amount of nitrate shown
9 in Fig. 2. The changes in gas pollutants are very similar between the models, as the
10 same gas chemistry module is used for both models.

11 **4.2. Health Impacts**

12 Figure 5 shows the number of prevented PM2.5-related premature deaths in the
13 US due to LC, CVD, and RESP by the impact of the air quality regulations and CO₂
14 reduction policy. Based on CRF_{base,PM}, the PM2.5 reduction with the air quality
15 regulations prevents about 74,200 and 78,500 deaths over the U.S in 2030 and
16 2055, respectively. For the CO₂ reduction policy, about 5,500 and 19,600 PM2.5-
17 related deaths are avoided in 2030 and 2055, respectively. Since the CO₂ policy
18 improves air quality more significantly in later years, the prevented deaths in 2055
19 are much larger than that in 2030. As discussed in Section 4.1, the relative impact of
20 the CO₂ reduction policy on air quality is larger without the air quality regulations
21 (i.e., CO₂NQ30 and CO₂NQ55). Thus, the prevented deaths are about 2-3 times larger
22 under the CO₂NQ cases: ~17,100 vs. ~5,500 in 2030 and ~36,100 vs. ~19,600 in
23 2055. We find that there is about an order of magnitude a difference in total
24 mortality rate between CRF_{low,PM} and CRF_{high,PM}, indicating large uncertainties in CRF
25 methods. However, all CRF cases show that CVD is the major contributor to overall
26 PM2.5-related mortality, and the contributions by LC and RESP are quite similar to
27 each other.

28 The O₃-related premature deaths are presented in Figure 6. Based on the
29 CRF_{base,o3} method that includes only RESP, the air quality regulations prevent about
30 17,200-18,400 deaths over the U.S. in 2030 and 2055, while the CO₂ reduction policy

1 leads to ~1,600 fewer deaths in 2030 and ~400 deaths in 2055. However, the
2 CO_2NQ case prevents ~2,700 deaths in 2055, following the surface O_3 trends
3 discussed in Section 4.1. Compared to $\text{CRF}_{\text{base},\text{O}_3}$, $\text{CRF}_{\text{low},\text{O}_3}$ includes mortality due to
4 CVD and overall mortality computed with this method is about a factor of two less.
5 For the premature deaths owing to RESP, the two CRF methods are different by 1.5-
6 2 orders of magnitude.

7 The US mortality rates contribute global mortality rate approximately 80-90% of
8 PM-related mortality and 30-40% for O_3 -related mortality (see S-Table 4 in the
9 supplementary materials for the global mortality rate). Compared to PM, the
10 benefits of controlling US ozone precursor emissions are being spread out to the NH
11 region, as ozone is a secondary air pollutant with a longer lifetime than aerosol
12 constituents. For AQ30, $\text{CO}_2\text{30}$, and $\text{CO}_2\text{55}$, its global distributions are presented in
13 Figs 7a, 7d, and 7g, respectively. Note that the spatial distribution in AQ55 is almost
14 identical to AQ30 (not shown). Eastern US shows the strongest changes in mortality.
15 There are noticeable impacts over Canada, Mexico, European and Asian countries
16 but no impacts on the Southern Hemisphere. Unlike $\text{CO}_2\text{55}$, $\text{CO}_2\text{30}$ shows increasing
17 mortality in the Southeastern US due to the increase in O_3 , BC, OM, and NO_3 aerosols
18 (see Fig. 3).

19 Figure 8 shows the difference between ModelE2-TOMAS and ModelE2-OMA in
20 overall PM-related mortality estimated from three CRF methods, i.e., (ModelE2-
21 TOMAS - ModelE2-OMA). The sign of mortality changes generally agrees well
22 between the two aerosol models, but they are different in term of the magnitudes.
23 For instance, the AQ and BOTH cases with the air quality regulations result in
24 significantly less number of prevented deaths in all CRF approaches using ModelE2-
25 TOMAS: ~25% less prevented deaths for $\text{CRF}_{\text{low},\text{PM}}$; ~40% for $\text{CRF}_{\text{base},\text{PM}}$; ~15% for
26 $\text{CRF}_{\text{high},\text{PM}}$. This is due to missing nitrate aerosol in ModelE2-TOMAS, which leads
27 more than half of PM2.5 reduction in ModelE2-OMA. We note that the cases of
28 $\text{CO}_2\text{30}$ and $\text{CO}_2\text{NQ55}$ in Fig. 8 show inconsistent changes among the CRF approaches,
29 which is a result of having non-linearity in each CRF.

30 For the AQ30, $\text{CO}_2\text{30}$, and $\text{CO}_2\text{55}$ cases, the spatial distributions of the model
31 differences are shown in Fig. 7. ModelE2-TOMAS tends to simulate lower number of

1 prevented PM-related deaths over the US but larger deaths over some part of
2 Eurasia including India. For ModelE2-TOMAS, despite the increase in BC and OM in
3 the CO₂30 case, the premature deaths are reduced everywhere in the US because
4 SO₄ decrease is stronger than the combined BC and OM increase (thus, a different
5 spatial pattern than ModelE2-OMA). It demonstrates how uncertainties in aerosol
6 modeling can play an important role, emphasizing the importance of utilizing more
7 than one aerosol models for estimating health benefits from pollutant emission
8 controls.

9

10 **4.3. Climate impacts**

11 We estimate the climate impact using aerosol direct forcing (ADF), aerosol first
12 indirect forcing (AIF), BC-albedo forcing, ozone RF (radiative forcing), methane RF,
13 and CO₂ RF in this study. Note that the ozone RFs are referenced at the tropopause,
14 where they provide a better indicator of global temperature response, while the
15 others are at the top of atmosphere. Figure 9 presents individual RF averaged over
16 the globe as well as over the U.S. (48 states only) in 2030 and 2055 relative to 2005.
17 Note that BC-albedo forcing is added to ADF in Fig. 9, and AIF and ozone RF are from
18 the FIXMET runs, methane RF from the INTERACT runs, CO₂ RF from the simple
19 carbon cycle model, and total RF is summed over all aerosols, ozone, methane and
20 CO₂. The RF spatial distributions in 2030 relative to 2005 are presented in Fig. 10
21 for the impact of CO₂ reduction policy and in Fig. 11 for the impact of the air quality
22 regulations. The RF spatial distributions in 2055 are very similar to those in 2033
23 (not shown).

24 In the case of the impact of CO₂ policy in the presence of the air quality
25 regulation (the CO₂ cases), both ADF and AIF are positive throughout the globe
26 (0.009 W m⁻² as the global mean) due to reduction of light-reflecting species such as
27 SO₄, OM, and NO₃. Sum of ozone and methane RFs is negligible in both global and US
28 means because their RFs are small and cancelled each other. There is overall
29 negative RF globally (-0.015 W m⁻² in 2030 and -0.056 W m⁻² in 2055) but positive
30 over the US regions (0.14 W m⁻² in 2030 and 0.22 W m⁻² in 2055) because of positive

1 aerosol RF. The localized aerosol RFs is due to its short lifetime, while the well-
2 distributed negative CO₂ RF over the globe is due to its long lifetime. The strong
3 positive RF from aerosols are mostly localized over the U.S. especially over the
4 eastern US (in Figure 10 for the 2030 case). Previous studies show a large influence
5 of regional RF on the regional climate response (i.e., surface air temperature) over
6 the US (Leibensperger et al., 2012) or the NH mid-latitude regions (Shindell and
7 Faluvegi, 2009). Our regional RF over the US is only 0.22 W m⁻² in 2055 and
8 therefore the resulting climate response would be small. Nevertheless it is likely to
9 contribute to warming rather than cooling at least in the near term and thus the CO₂
10 reduction policy used in our study could potentially lead to mild regional climate
11 dis-benefits over the US, especially during the summer (Shindell et al., 2016). For
12 the CO₂ reduction policy in the absence of the air quality regulation (the CO₂NQ
13 cases), total RF is slightly more positive than the CO₂ cases due to larger reduction
14 in SO₂ emissions.

15 Since the air quality regulations remove light-reflecting species more effectively
16 than light-absorbing species without affecting CO₂ RF, total RF is positive both
17 globally (0.035 W m⁻² in 2030 and 0.036 W m⁻² in 2055) and U.S. regionally (0.83 W
18 m⁻² in 2030 and 0.82 W m⁻² in 2055). Note again that the impact of the air quality
19 regulations is quite similar between 2030 and 2055, so the 2055 cases are not
20 shown. In Fig. 11, the light-reflecting aerosols such as SO₄ and OM show a positive
21 RF, and the light-absorbing species such as BC and O₃ show a negative RF. In 2030
22 relative to 2005, overall ADF is positive (global mean, 0.023 W m⁻²; US mean, 0.55 W
23 m⁻²) mainly due to dominant positive RF by sulfate, and AIF is also positive (global
24 mean, 0.029 W m⁻²; US mean, 0.38 W m⁻²) due to reduced cloud droplet number
25 concentrations (CDNC). We find the US air quality regulations have a moderate
26 impact on radiative forcing over the Atlantic Ocean and the Pacific Ocean nearby
27 California, roughly 0.1~0.5 W m⁻² in 2030, and a mild impact throughout the NH,
28 roughly 0.01~0.05 W m⁻². We also find that the magnitude of AIF is comparable to
29 that of ADF, which means it is critical to include the AIF to assess the climate impact
30 of an emission policy.

1 Compared to ModelE2-OMA, overall RF in ModelE2-TOMAS tends to be less
2 positive in most cases, which can be mainly explained by the difference in sulfate,
3 nitrate, and aerosol indirect effects. The global mean and US mean RF values are
4 presented in S-Tables 5 and 6 for ModelE2-OMA and S-Tables 7 and 8 for ModelE2-
5 TOMAS, respectively. Given that the difference in nitrate is simply due to missing it
6 in ModelE2-TOMAS, we focus on the model difference in sulfate and AIF. Regardless
7 of emission scenarios, ModelE2-OMA simulates more positive sulfate ADF than
8 ModelE2-TOMAS for both global and US means. For AIF, ModelE2-OMA tend to
9 predict more positive AIF both global and US means in all scenarios except for the
10 US mean of the CO₂ and CO₂NQ cases. It is worth note that the differences of surface
11 PM between the two aerosol models shown in Fig. 4 cannot explain the RF
12 differences. For example, the US mean surface nitrate is reduced under these
13 scenarios but the US mean nitrate ADF is negative. Since aerosol RFs (and aerosol
14 optical depth) depend on a vertical distribution of aerosols and assumed aerosol
15 optical properties, the surface PM alone are not sufficient to explain RFs.

16

17 **5. Impact of future climate conditions and rapid adjustments**

18 We discover that the impact of policies on radiative forcing over the US is
19 affected only a little by using the future climate conditions (i.e., FUTURE runs). As
20 shown in Fig. 13, ADF averaged over the US (including BC-albedo RF, which is much
21 weaker than ADF) is generally less positive than that in the FIXMET runs (shown in
22 Fig. 9), and the changes are a few percent. US mean AIF is more strongly influenced
23 by the future climate conditions, becoming more positive by 20-40% from the
24 FIXMET runs. Ozone RF is changed less than 10% except for the CO₂ policy cases.

25 Looking at the individual scenario (e.g., bs30, bs55, c5030, c5055; not by the
26 policies), the impact of future climate condition is quite similar among the scenarios,
27 which lead to increase ADF (including BC-albedo RF) by 0.12-0.17 W m⁻² and O₃ RF
28 by 0.07-0.1 W m⁻² and to decrease AIF by 1.9-2.1 W m⁻² over the US. The positive O₃
29 RF can be explained by increased O₃ in the middle and upper troposphere (where its
30 radiative forcing per unit change is largest) that closely follows NO_x changes, which

1 might be explained by the fact that the lightning NO_x sources are increased by 10-
2 14% in 2030 and 2055, compared to in 2005. We find that surface ozone is
3 decreased with a warmer future climate over most of the globe (including the US)
4 except for a few areas such as Eastern Europe, India and Southeast Asia where
5 surface ozone pollution is particularly high in the model (not shown). This suggests
6 that future warm climates tend to lead to less ozone in most areas due to increased
7 loss of reactive oxygen with water vapor, and more ozone in highly polluted areas
8 related to increased thermal decomposition of PANs, both of which are consistent
9 with the finding by Doherty et al. (2013). There is some disagreement with the GISS
10 GCM model results presented in Doherty et al. (2013) in term of the detailed spatial
11 patterns of the changes in ozone pollution due to the warmer temperatures, which
12 is not surprising given the difference in emission scenarios (year 2001 TF-HTAP
13 emissions used for Doherty et al. (2013) whereas year 2030/2055 RCP4.5 emissions
14 used in this study).

15 Using the INTERACT runs, we find that no large changes in ADF and ozone RF
16 are found by allowing model climate/meteorology to be influenced by aerosols and
17 gases (shown in Fig. 14). Nevertheless, we observe some systematic changes such as
18 a) the impact of the atmospheric rapid adjustments on O₃ RF is relatively large
19 under the CO₂ reduction policy (i.e., CO₂30, CO₂55, CO₂NQ30, and CO₂NQ55), and b)
20 the relative changes are larger in O₃ RF than ADF. The latter is also shown in the
21 FUTURE simulations, and this might be due to the fact that O₃ is a greenhouse gas
22 that interacts with the outgoing longwave radiations which depends on temperature
23 whereas the aerosols interact with only solar radiation via aerosol direct effects in
24 our forcing calculation. For example, in the CO₂30 cases, ADF increases by 26%,
25 whereas O₃ RF decreases by 3 times. In the case of AQ30, ADF decreases by 8%
26 while O₃ RF increased by 54%. Note that AIF is not included here because the cloud
27 radiative forcing in the INTERACT runs is also influenced by gas tracers such as
28 ozone and methane.

29

1 **6. Conclusions**

2 We have investigated the impact of future U.S. emission scenarios, based on air
3 quality regulations and a hypothetical CO₂ reduction target, on air quality, public
4 health and climate change. The four GLIMPSE emission scenarios developed from
5 the U.S. EPA are used here, which are hypothetical scenarios with and without the
6 air quality regulations and/or a climate policy that reduces the 2005 U.S. CO₂
7 emissions by 50% by 2050 (see Akhtar et al., 2013). We have performed various
8 simulations with these scenarios, using the NASA GISS ModelE2 climate model with
9 default aerosol model (ModelE2-OMA; no aerosol microphysics model in ModelE2;
10 Schmidt et al., 2014). To find out the uncertainties in aerosol modeling, we have
11 used the sectional-based aerosol microphysics model (ModelE2-TOMAS; Lee et al.,
12 2015) that also coupled to the NASA GISS ModelE2. Since the host climate model is
13 identical, the differences in their results originate solely from the differences in
14 aerosol modeling.

15 We have found that the U.S. air quality regulations are projected to have a strong
16 beneficial impact on U.S. air quality and public health in the future but result in a
17 positive local radiative forcing. For U.S. air quality, we find significant reduction
18 across the pollutant species: on average, $\sim 2 \text{ } \mu\text{g m}^{-3}$ reduction for surface PM2.5; ~ 8
19 ppbv reduction for surface O₃. We observe a slight reduction of surface PM2.5 in
20 Eurasia ($0.01\text{--}0.1 \text{ } \mu\text{g m}^{-3}$) and more than 1 ppbv reduction in surface O₃ throughout
21 the NH. Based on the CRF_{base} (most appropriate CRF for U.S), the improved air
22 quality prevents about 91,400 premature deaths in the US, which is combined from
23 $\sim 74,200$ and $\sim 17,200$ deaths as a result of the PM2.5 and O₃ reductions,
24 respectively. However, the estimate is significantly affected by the choice of the
25 CRFs (e.g., a factor of two less with the CRF_{low} case and a factor of 4-5 higher using
26 the CRF_{high} case), indicating that the mortality estimate is very sensitive to the
27 uncertainties in the concentration-response functions. The air quality regulations
28 have strong climate dis-benefits over the U.S., resulting in an overall RF of $\sim 0.8 \text{ W m}^{-2}$,
29 which is strongly positive due to reflective aerosols.

1 We have discovered that the CO₂ reduction policy has some benefit to air quality
2 via reducing SO₂ emissions. Under this policy, the US relies less on coal, which
3 reduces SO₂ emissions significantly. Surface PM2.5 is reduced by 0.4 $\mu\text{g m}^{-3}$ on
4 average over the continental U.S. in year 2055, which is about 20% of the impact of
5 air quality regulations (0.4 vs. 2 $\mu\text{g m}^{-3}$). According to our estimates with CRF_{base}, it
6 prevents \sim 19,200 premature deaths (\sim 19,600 deaths for PM2.5 decrease and \sim
7 400 deaths for O₃ increase); ozone is slightly increased in 2055 but it is almost
8 negligible. This indicates that a potentially substantial benefit associated with air
9 quality improvement takes place under the CO₂ reduction policy. Our findings agree
10 well with other studies showing air quality co-benefits of a climate policy (e.g.,
11 Groosman et al., 2011; Nemet et al., 2010; Thompson et al., 2014). These studies
12 estimate a substantial cost benefit when the health benefits resulted from a CO₂
13 policy is monetized. For instance, Thompson et al. (2014) find that the monetized
14 health co-benefits can be greater than the climate policy implementation costs.

15 In our study, the CO₂ reduction policy results in a net cooling on a global-scale
16 due to the loss of cooling aerosols, but the policy leads to a net positive forcing over
17 the US on a regional scale. Under the CO₂ reduction policy, future US energy
18 resources come less from coal (thus, reducing SO₂ emissions), which is the main
19 reason for reducing the health impacts from air pollution, but, at the same time,
20 could lead to climate dis-benefits over the US potentially. In the year 2055 (when
21 U.S. CO₂ emissions reach half of their 2005 emissions), the U.S. mean total RF is
22 $+0.22 \text{ W m}^{-2}$ due to aerosol RF, while the global mean total RF is -0.06 W m^{-2} due to
23 the dominant negative CO₂ RF (instantaneous RF). Using the equilibrium CO₂ RF
24 (i.e., year 2150), the CO₂ RF increases from -0.07 W m^{-2} to -0.17 W m^{-2} , but still it is
25 not large enough to cancel the positive forcing from aerosols in U.S regions.

26 Utilizing two independent aerosol models in the same host GCM, we have found
27 that overall conclusions agree well between the two aerosol models, but missing
28 species such as nitrate can influence the air quality and climate impact moderately.
29 Our climate estimates reinforce that aerosol RF is a dominant forcing agent for
30 regional climate change, and AIF is as important as ADF. A climate impact only

1 based on aerosol direct forcing can be misleading, and we strongly suggest including
2 AIF for more complete assessment of the climate impact of emission scenarios. Since
3 our study utilized a single host GCM, and we recognize that there are large model-to-
4 model differences among GCMs (e.g., Shindell et al., 2013b), we encourage other
5 modeling groups to perform similar work using other host GCMs, to obtain more
6 robust results.

7 Due to their long lifetime of CO₂ (or other long-lived GHGs), the climate benefit
8 from a local CO₂ emission reduction is spread spatially (over large areas) and
9 temporally (occurs slowly). This is why it is difficult to achieve regional-scale short-
10 term climate benefits with the CO₂ reduction policy alone. It is important to mention
11 that air quality and health co-benefits from the climate policies could be potentially
12 substantial, and these benefits are immediate and hence within a timeframe
13 relevant for policymakers.

14 There are a few options that could help to achieve regional-scale climate benefits
15 under a climate policy. First, as discussed by Akhtar et al. (2013), setting the 50%
16 CO₂ cap in an earlier year than 2030 can help to reduce regional warming by
17 bringing the cooling effects of reductions in CO₂ emissions sooner (so that the
18 climate system would have less time to respond to the near-term warming from
19 aerosol reductions). Second, our hypothetical CO₂ reduction policy does not target
20 CH₄ emissions reductions, but if there is CH₄ mitigation, it would lead to a
21 considerable climate benefit both globally and regionally. Rogelj et al. (2015) shows
22 a potentially large climate benefit by very stringent CH₄ mitigations, although these
23 might be extremely ambitious. Lastly, all nations taking action to reduce long-lived
24 GHGs emissions is the clearest way to achieve regional-scale climate benefits. Along
25 with CO₂ reductions, a more comprehensive climate policy with additional reduction
26 targets for light-absorbing aerosols and gases (SLCPs; e.g., BC, CH₄ and O₃) would
27 help to achieve additional regional climate benefits while increasing the co-benefits
28 to air quality and public health.

29
30

1 **Acknowledgements**
2

3 The authors thank Dan Loughlin for assistance with interpreting emission scenarios
4 developed using MARKAL. Also, the authors acknowledge Farhan Akhtar in
5 Department of State for his contribution to GLIMPSE project; preparing the
6 GLIMPSE emissions files for ModelE2 and providing useful comments for this
7 manuscript.

8

9

10 **References**
11

12 Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general
13 circulation models, *J. Geophys. Res.-Atmospheres*, 107, 4370,
14 doi:doi:10.1029/2001JD001010, 2002.

15 Akhtar, F. H., Pinder, R. W., Loughlin, D. H. and Henze, D. K.: GLIMPSE: A Rapid
16 Decision Framework for Energy and Environmental Policy, *Environ. Sci. Technol.*,
17 47(21), 12011–12019, doi:10.1021/es402283j, 2013.

18 Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z.,
19 Janssens-Maenhout, G., Pozzoli, L., Van Dingenen, R., Vignati, E., Emberson, L., Muller,
20 N. Z., West, J. J., Williams, M., Demkine, V., Hicks, W. K., Kylenstierna, J., Raes, F. and
21 Ramanathan, V.: Global Air Quality and Health Co-benefits of Mitigating Near-Term
22 Climate Change through Methane and Black Carbon Emission Controls, *Environ.*
23 *Health Perspect.*, 120(6), 831–839, doi:10.1289/ehp.1104301, 2012.

24 Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at mineral dust
25 surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space
26 Studies general circulation model, *J. Geophys. Res.-Atmospheres*, 110, D17, doi:doi:
27 10.1029/2005jd005870, 2005.

28 Bell, M. L., Dominici, F. and Samet, J. M.: A Meta-Analysis of Time-Series Studies of
29 Ozone and Mortality With Comparison to the National Morbidity, Mortality, and Air
30 Pollution Study, *Epidemiol. Camb. Mass.*, 16(4), 436–445, 2005a.

31 Bell, N., Koch, D. and Shindell, D. T.: Impacts of chemistry-aerosol coupling on
32 tropospheric ozone and sulfate simulations in a general circulation model, *J.*
33 *Geophys. Res. Atmospheres*, 110(D14), D14305, doi:10.1029/2004JD005538,
34 2005b.

35 Center for International Earth Science Information Network - CIESIN - Columbia
36 University and Centro Internacional de Agricultura Tropical - CIAT: Gridded
37 Population of the World, Version 3 (GPWv3): Population Density Grid, Future
38 Estimates, [online] Available from: <http://dx.doi.org/10.7927/H4ST7MRB>, 2005.

1 Cohen, A., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N.,
2 Gutschmidt, K., Pope III, C. A., Romieu, I., Samset, J. M. and Smith, K. R.: Urban air
3 pollution, in Comparative Quantification of Health Risks: Global and Regional
4 Burden of Disease due to Selected Major Risk Factors (Ezzati M, Lopez AD, Rodgers
5 A, Murray CJL, eds), pp. 1353–1434, World Health Organization. [online] Available
6 from: <http://www.who.int/publications/cra/chapters/volume2/1353-1434.pdf> (Accessed 9 September 2015), 2004.

8 Collins, W. J., Fry, M. M., Yu, H., Fuglestvedt, J. S., Shindell, D. T. and West, J. J.: Global
9 and regional temperature-change potentials for near-term climate forcers, *Atmos*
10 *Chem Phys*, 13(5), 2471–2485, doi:10.5194/acp-13-2471-2013, 2013.

11 Del Genio, A. D. and Yao, M.-S.: Efficient Cumulus Parameterization for Long-Term
12 Climate Studies: The GISS Scheme, in *The Representation of Cumulus Convection in*
13 *Numerical Models*, edited by K. A. Emanuel and D. J. Raymond, pp. 181–184,
14 American Meteorological Society. [online] Available from:
15 http://link.springer.com/chapter/10.1007/978-1-935704-13-3_18 (Accessed 7
16 August 2015), 1993.

17 Del Genio, A. D., Yao, M.-S., Kovari, W. and Lo, K. K.-W.: A Prognostic Cloud Water
18 Parameterization for Global Climate Models, *J. Clim.*, 9(2), 270–304,
19 doi:10.1175/1520-0442(1996)009<0270:APCWP>2.0.CO;2, 1996.

20 Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. J., Fiore,
21 A. M., Stevenson, D. S., Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G. and
22 Keating, T. J.: Impacts of climate change on surface ozone and intercontinental ozone
23 pollution: A multi-model study, *J. Geophys. Res. Atmospheres*, 118(9), 3744–3763,
24 doi:10.1002/jgrd.50266, 2013.

25 Fishbone, L. G. and Abilock, H.: Markal, a linear-programming model for energy
26 systems analysis: Technical description of the bnl version, *Int. J. Energy Res.*, 5(4),
27 353–375, doi:10.1002/er.4440050406, 1981.

28 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood,
29 J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van
30 Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing. Chapter
31 2, [online] Available from:
32 http://inis.iaea.org/Search/search.aspx?orig_q=RN:39002468 (Accessed 7 August
33 2015), 2007.

34 Groosman, B., Muller, N. Z. and O'Neill-Toy, E.: The Ancillary Benefits from Climate
35 Policy in the United States, *Environ. Resour. Econ.*, 50(4), 585–603,
36 doi:10.1007/s10640-011-9483-9, 2011.

37 Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis,
38 L.: Efficient 3-Dimensional Global-Models for Climate Studies - Model-I and Model-II,
39 *Mon. Weather Rev.*, 111(4), 609–662, 1983.

1 Henze, D. K., Shindell, D. T., Akhtar, F., Spurr, R. J. D., Pinder, R. W., Loughlin, D.,
2 Kopacz, M., Singh, K. and Shim, C.: Spatially Refined Aerosol Direct Radiative Forcing
3 Efficiencies, *Environ. Sci. Technol.*, 46(17), 9511–9518, doi:10.1021/es301993s,
4 2012.

5 Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E.
6 and Thun, M.: Long-Term Ozone Exposure and Mortality, *N. Engl. J. Med.*, 360(11),
7 1085–1095, doi:10.1056/NEJMoa0803894, 2009.

8 Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V.,
9 Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R.,
10 Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M.,
11 Plattner, G.-K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann,
12 K., Tanaka, K., Timmermann, A. and Weaver, A. J.: Carbon dioxide and climate
13 impulse response functions for the computation of greenhouse gas metrics: a multi-
14 model analysis, *Atmos Chem Phys*, 13(5), 2793–2825, doi:10.5194/acp-13-2793-
15 2013, 2013.

16 Koch, D., Schmidt, G. A. and Field, C. V.: Sulfur, sea salt, and radionuclide aerosols in
17 GISS ModelE, *J. Geophys. Res.-Atmospheres*, 111(D6),
18 doi:doi:10.1029/2004jd005550, 2006.

19 Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., Turner, M. C., Pope
20 3rd, C. A., Thurston, G., Calle, E. E., Thun, M. J., Beckerman, B., DeLuca, P., Finkelstein,
21 N., Ito, K., Moore, D. K., Newbold, K. B., Ramsay, T., Ross, Z., Shin, H. and Tempalski,
22 B.: Extended follow-up and spatial analysis of the American Cancer Society study
23 linking particulate air pollution and mortality, *Res. Rep. Health Eff. Inst.*, (140), 5–
24 36, 2009.

25 Laden, F., Schwartz, J., Speizer, F. E. and Dockery, D. W.: Reduction in fine particulate
26 air pollution and mortality: Extended follow-up of the Harvard Six Cities study, *Am.
27 J. Respir. Crit. Care Med.*, 173(6), 667–672, doi:10.1164/rccm.200503-443OC, 2006.

28 Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D.,
29 Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y.
30 H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode,
31 S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D. and Nolan, M.: Multi-
32 model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and
33 Climate Model Intercomparison Project (ACCMIP): evaluation of historical and
34 projected future changes, *Atmos Chem Phys*, 13(16), 7997–8018, doi:10.5194/acp-
35 13-7997-2013, 2013.

36 Lee, Y. H. and Adams, P. J.: A Fast and Efficient Version of the Two-Moment Aerosol
37 Sectional (TOMAS) Global Aerosol Microphysics Model, *Aerosol Sci. Technol.*, 46(6),
38 678–689, doi:10.1080/02786826.2011.643259, 2012.

1 Lee, Y. H., Lamarque, J. F., Flanner, M. G., Jiao, C., Shindell, D. T., Berntsen, T., Bisiaux,
2 M. M., Cao, J., Collins, W. J., Curran, M., Edwards, R., Faluvegi, G., Ghan, S., Horowitz, L.
3 W., McConnell, J. R., Ming, J., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie,
4 R. B., Sudo, K., Takemura, T., Thevenon, F., Xu, B. and Yoon, J. H.: Evaluation of
5 preindustrial to present-day black carbon and its albedo forcing from Atmospheric
6 Chemistry and Climate Model Intercomparison Project (ACCMIP), *Atmospheric*
7 *Chem. Phys.*, 13(5), 2607–2634, doi:10.5194/acp-13-2607-2013, 2013.

8 Lee, Y. H., Adams, P. J. and Shindell, D. T.: Evaluation of the global aerosol
9 microphysical ModelE2-TOMAS model against satellite and ground-based
10 observations, *Geosci Model Dev*, 8(3), 631–667, doi:10.5194/gmd-8-631-2015,
11 2015.

12 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W. T., Seinfeld, J. H., Nenes, A.,
13 Adams, P. J., Streets, D. G., Kumar, N. and Rind, D.: Climatic effects of 1950–2050
14 changes in US anthropogenic aerosols - Part 2: Climate response, *Atmospheric*
15 *Chem. Phys.*, 12(7), 3349–3362, doi:10.5194/acp-12-3349-2012, 2012.

16 Loughlin, D. H., Benjey, W. G. and Nolte, C. G.: ESP v1.0: methodology for exploring
17 emission impacts of future scenarios in the United States, *Geosci Model Dev*, 4(2),
18 287–297, doi:10.5194/gmd-4-287-2011, 2011.

19 Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A.,
20 Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J.,
21 Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E.,
22 Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson,
23 C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A.,
24 Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U.,
25 Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen,
26 Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.-C., Swietlicki, E.
27 and Henzing, J. S.: Intercomparison and evaluation of global aerosol microphysical
28 properties among AeroCom models of a range of complexity, *Atmos Chem Phys*,
29 14(9), 4679–4713, doi:10.5194/acp-14-4679-2014, 2014.

30 Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell,
31 D. T., Chen, Y. and Faluvegi, G.: El Nino and health risks from landscape fire
32 emissions in southeast Asia, *Nat. Clim. Change*, 3(2), 131–136,
33 doi:10.1038/nclimate1658, 2013.

34 Menon, S., Del Genio, A. D., Koch, D. and Tselioudis, G.: GCM Simulations of the
35 aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden, *J.*
36 *Atmospheric Sci.*, 59(3), 692–713, doi:10.1175/1520-
37 0469(2002)059<0692:gsotai>2.0.co;2, 2002.

38 Menon, S., Del Genio, A. D., Kaufman, Y., Bennartz, R., Koch, D., Loeb, N. and
39 Orlikowski, D.: Analyzing signatures of aerosol-cloud interactions from satellite

1 retrievals and the GISS GCM to constrain the aerosol indirect effect, *J. Geophys. Res.-*
2 *Atmospheres*, 113(D14), doi:D14s22 10.1029/2007jd009442, 2008.

3 Mishchenko, M. I., Travis, L. D. and Mackowski, D. W.: T-matrix computations of light
4 scattering by nonspherical particles: A review, *J. Quant. Spectrosc. Radiat. Transf.*,
5 55(5), 535–575, doi:10.1016/0022-4073(96)00002-7, 1996.

6 Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather,
7 M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
8 Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H.,
9 MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M.,
10 Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S.
11 and Zeng, G.: Preindustrial to present-day changes in tropospheric hydroxyl radical
12 and methane lifetime from the Atmospheric Chemistry and Climate Model
13 Intercomparison Project (ACCMIP), *Atmos Chem Phys*, 13(10), 5277–5298,
14 doi:10.5194/acp-13-5277-2013, 2013.

15 Nemet, G. F., Holloway, T. and Meier, P.: Implications of incorporating air-quality co-
16 benefits into climate change policymaking, *Environ. Res. Lett.*, 5(1), 014007,
17 doi:10.1088/1748-9326/5/1/014007, 2010.

18 Nenes, A. and Seinfeld, J. H.: Parameterization of cloud droplet formation in global
19 climate models, *J. Geophys. Res. Atmospheres* 1984–2012, 108(D14),
20 doi:10.1029/2002JD002911, 2003.

21 Olivié, D. J. L. and Peters, G. P.: Variation in emission metrics due to variation in CO₂
22 and temperature impulse response functions, *Earth Syst. Dyn.*, 4(2), 267–286,
23 doi:10.5194/esd-4-267-2013, 2013.

24 Pierce, J. R., Chen, K. and Adams, P. J.: Contribution of primary carbonaceous aerosol
25 to cloud condensation nuclei: processes and uncertainties evaluated with a global
26 aerosol microphysics model, *Atmospheric Chem. Phys.*, 7(20), 5447–5466,
27 doi:10.5194/acp-7-5447-2007, 2007.

28 Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K. and Thurston, G.
29 D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine
30 particulate air pollution, *JAMA*, 287(9), 1132–1141, 2002.

31 Pope, C. A., Burnett, R. T., Turner, M. C., Cohen, A., Krewski, D., Jerrett, M., Gapstur, S.
32 M. and Thun, M. J.: Lung cancer and cardiovascular disease mortality associated with
33 ambient air pollution and cigarette smoke: shape of the exposure-response
34 relationships, *Environ. Health Perspect.*, 119(11), 1616–1621,
35 doi:10.1289/ehp.1103639, 2011.

36 Prather, M. J.: Numerical Advection by Conservation of 2nd-Order Moments, *J.*
37 *Geophys. Res.-Atmospheres*, 91(D6), 6671–6681, 1986.

1 Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R. and Riahi, K.: Impact of short-
2 lived non-CO₂ mitigation on carbon budgets for stabilizing global warming, *Environ.*
3 *Res. Lett.*, 10(7), 075001, doi:10.1088/1748-9326/10/7/075001, 2015.

4 Roman, H. A., Walker, K. D., Walsh, T. L., Conner, L., Richmond, H. M., Hubbell, B. J.
5 and Kinney, P. L.: Expert Judgment Assessment of the Mortality Impact of Changes in
6 Ambient Fine Particulate Matter in the U.S., *Environ. Sci. Technol.*, 42(7), 2268–
7 2274, doi:10.1021/es0713882, 2008.

8 Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns,
9 B., Canuto, V., Cheng, Y., Del Genio, A., Faluvegi, G., Friend, A. D., Hall, T. M., Hu, Y.,
10 Kelley, M., Kiang, N. Y., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L.,
11 Nazarenko, L., Oinas, V., Perlitz, J., Perlitz, J., Rind, D., Romanou, A., Russell, G. L.,
12 Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D. and Yao, M.-S.:
13 Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ,
14 Satellite, and Reanalysis Data, *J. Clim.*, 19(2), 153–192, doi:10.1175/JCLI3612.1,
15 2006.

16 Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M.,
17 Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del
18 Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch,
19 D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller,
20 R. L., Oinas, V., Oloso, A. O., Perlitz, J. P., Puma, M. J., Putman, W. M., Rind, D.,
21 Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K.,
22 Unger, N., Voulgarakis, A., Yao, M.-S. and Zhang, J.: Configuration and assessment of
23 the GISS ModelE2 contributions to the CMIP5 archive, *J. Adv. Model. Earth Syst.*,
24 6(1), 141–184, doi:10.1002/2013ms000265, 2014.

25 Schnell, J. L., Prather, M. J., Josse, B., Naik, V., Horowitz, L. W., Cameron-Smith, P.,
26 Bergmann, D., Zeng, G., Plummer, D. A., Sudo, K., Nagashima, T., Shindell, D. T.,
27 Faluvegi, G. and Strode, S. A.: Use of North American and European air quality
28 networks to evaluate global chemistry–climate modeling of surface ozone, *Atmos*
29 *Chem Phys*, 15(18), 10581–10596, doi:10.5194/acp-15-10581-2015, 2015.

30 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics*, John Wiley and
31 Sons, New York., 1998.

32 Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during
33 the twentieth century, *Nat. Geosci.*, 2(4), 294–300, doi:10.1038/ngeo473, 2009.

34 Shindell, D., Faluvegi, G., Walsh, M., Anenberg, S. C., Van Dingenen, R., Muller, N. Z.,
35 Austin, J., Koch, D. and Milly, G.: Climate, health, agricultural and economic impacts
36 of tighter vehicle-emission standards, *Nat. Clim. Change*, 1(1), 59–66,
37 doi:10.1038/nclimate1066, 2011.

38 Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont,
39 Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi,

1 G., Pozzoli, L., Kupiainen, K., Hoeglund-Isaksson, L., Emberson, L., Streets, D.,
2 Ramanathan, V., Hicks, K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V. and
3 Fowler, D.: Simultaneously Mitigating Near-Term Climate Change and Improving
4 Human Health and Food Security, *Science*, 335(6065), 183–189,
5 doi:10.1126/science.1210026, 2012.

6 Shindell, D. T., Faluvegi, G., Unger, N., Aguilar, E., Schmidt, G. A., Koch, D. M., Bauer, S.
7 E. and Miller, R. L.: Simulations of preindustrial, present-day, and 2100 conditions in
8 the NASA GISS composition and climate model G-PUCCINI, *Atmospheric Chem.
9 Phys.*, 6, 4427–4459, 2006.

10 Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.
11 F., Bowman, K., Milly, G., Kovari, B., Ruedy, R. and Schmidt, G. A.: Interactive ozone
12 and methane chemistry in GISS-E2 historical and future climate simulations,
13 *Atmospheric Chem. Phys.*, 13(5), 2653–2689, doi:10.5194/acp-13-2653-2013,
14 2013a.

15 Shindell, D. T., Lamarque, J.-F. F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J.,
16 Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W.
17 J., Conley, a. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G.,
18 Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T.,
19 Voulgarakis, a., Yoon, J.-H. H. and Lo, F.: Radiative forcing in the ACCMIP historical
20 and future climate simulations, *Atmospheric Chem. Phys.*, 13(6), 2939–2974,
21 doi:10.5194/acp-13-2939-2013, 2013b.

22 Shindell, D. T., Lee, Y. and Faluvegi, G.: Climate and health impacts of US emissions
23 reductions consistent with 2 °C, *Nat. Clim. Change*, advance online publication,
24 doi:10.1038/nclimate2935, 2016.

25 Thompson, T. M., Rausch, S., Saari, R. K. and Selin, N. E.: A systems approach to
26 evaluating the air quality co-benefits of US carbon policies, *Nat. Clim. Change*, 4(10),
27 917–923, doi:10.1038/nclimate2342, 2014.

28 Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias,
29 S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E. and Edmonds, J. A.: RCP4.5: a pathway
30 for stabilization of radiative forcing by 2100, *Clim. Change*, 109(1-2), 77–94,
31 doi:10.1007/s10584-011-0151-4, 2011.

32 United Nations Population Division: *World Population Prospects: The 2010
33 Revision*, CD-ROM Edition., 2011.

34 U.S. Environmental Protection Agency: Endangerment and cause or contribute
35 findings for greenhouse gases under section 202(a) of the clean air act, [online]
36 Available from:
37 [http://www.epa.gov/climatechange/Downloads/endangerment/Endangerment_TS
38 D.pdf](http://www.epa.gov/climatechange/Downloads/endangerment/Endangerment_TS.pdf) (Accessed 6 November 2015), 2009.

1 U.S. Environmental Protection Agency: Air, Climate, and Energy, [online] Available
2 from: <http://www2.epa.gov/sites/production/files/2014-06/documents/strap-ace2012.pdf> (Accessed 6 November 2015), 2012.

4 Vehkamaki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M. and
5 Laaksonen, A.: An improved parameterization for sulfuric acid-water nucleation
6 rates for tropospheric and stratospheric conditions, *J. Geophys. Res.-Atmospheres*,
7 107(D22), 4622, doi:DOI: 10.1029/2002JD002184, 2002.

8

1 Table 1. Summary of simulations used in this study.

2

Run type	Climate conditions	Emission year	Model	Length of run	Air quality and radiative forcing due to	
FIXMET	2005	2005	ModelE2-OMA and ModelE2-TOMAS	3	Aerosols and non-CO ₂ gases emissions	
		2030				
		2055				
FUTURE	2030 RCP4.5	2030	ModelE2-OMA	3	Aerosols, non-CO ₂ gases, and GHGs emissions	
	2055 RCP4.5	2055				
	2005	2005				
INTERACT		2030	ModelE2-OMA	20	Aerosols and non-CO ₂ gas emissions and resulting atmospheric response (rapid adjustments)	
		2055				

3

4

1
2 Table 2. Concentration-Response Functions (CRF) used to compute mortality due to
3 PM2.5 and ozone. LC stands for Lung cancer; CVD for Cardiovascular disease; RESP
4 for respiratory disease and infections. See Section 3.2 for the details.

Species	LC	CVD/RESP	Notes
PM2.5	$CRF_{high,PM}$ $RR = \exp(\beta \Delta \ln C)$ $\beta = a(=0.2322)*1.8$	$RR = \exp(\beta \Delta \ln C)$ $\beta = a(=0.1552)*1.8$	a is from Chen et al. (2004).
	$CRF_{base,PM}$ $RR = \exp(\beta \Delta C)$ $\beta = \log(1.14)/10*1.8$	$RR = \exp(\beta \Delta C)$ $\beta = \log(1.09)/10*1.8$	The division by 10 is to apply numbers derived for $10 \mu\text{g m}^{-3}$ changes of PM2.5 to $1 \mu\text{g m}^{-3}$ changes.
	$CRF_{low,PM}$ $RR = 1 + 0.3195 * (\lnh * C)^{0.7433}$ $\lnh = \text{inhalation rate}$ $(18 \text{ m}^{-3} \text{ d}^{-1})$	$RR = 1 + 0.2685 * (\lnh * C)^{0.2730}$ $\lnh = \text{inhalation rate}$ $(18 \text{ m}^{-3} \text{ d}^{-1})$	1. Instead of ΔC , total concentration, C, is used. 2. RESP is not included.
Ozone	$CRF_{base,O3}$ N/A	$RR = \exp(\beta \Delta C)$ $\beta = \log(1.04)/10$	1. The division by 10 is to apply numbers derived for 10 ppb changes of ozone to 1 ppb changes. 2. Seasonal (6-month) maxima of daily 1-hr maxima ozone are used. 3. Only RESP is included.
	$CRF_{low,O3}$ N/A	$RR = \exp(\beta \Delta C)$ $\beta = 1.11/10$ for Cardiovascular disease $\beta = 0.47$ for Respiratory Infections	1. ΔC is the change in daily O3. 2. The division by 10 is for increase in RR per a 10 ppb.

1 Table 3. Pair of the FIXMET simulations used to compute the impact of policies. In
 2 the “Simulations” column, the first letters represent the US emission scenarios and
 3 the last two numbers represent the emission year (“bs” for the baseline, “noaq” for
 4 the no air quality regulations, “c50” for the 50% CO₂ cap in the baseline, and “c50nq”
 5 for the 50% CO₂ cap in the noaq scenario).

6

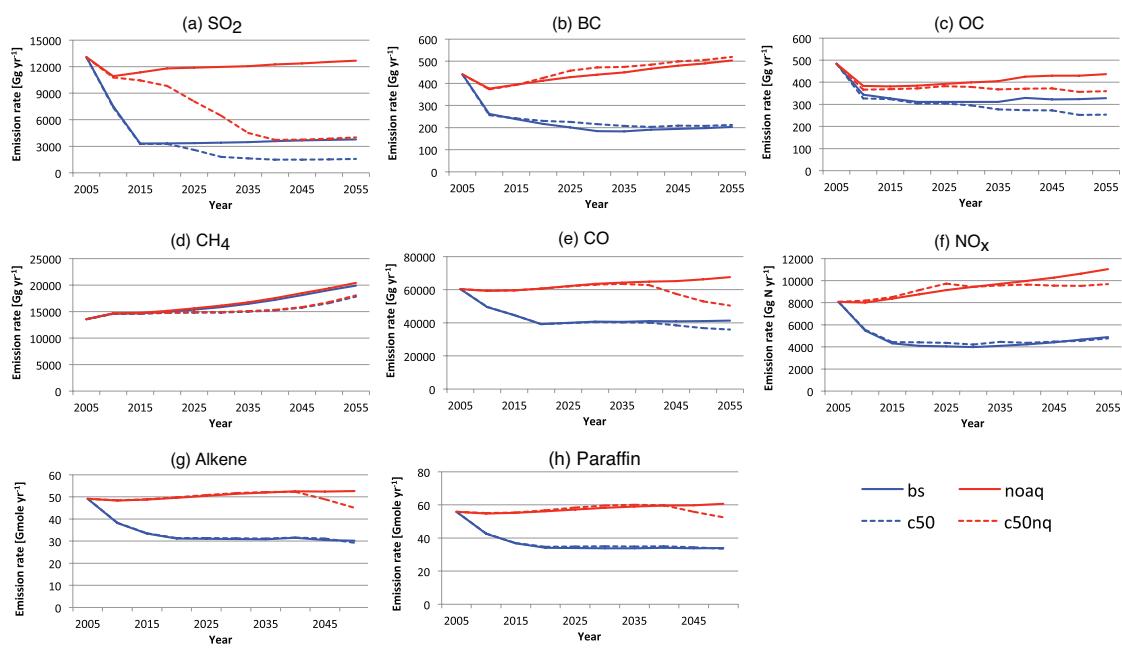
Impact of	Simulations	Short name
Air quality regulation	(bs30– bs05) – (noaq30 – noaq05)	AQ30
	(bs55– bs05) – (noaq55 – noaq05)	AQ55
CO ₂ reduction policy	(c5030-c5005) –(bs30-bs05)	CO ₂ 30
	(c5055-c5005) –(bs55-bs05)	CO ₂ 55
CO ₂ reduction policy w/o air quality regulation	(c50nq30- c50nq05) – (noaq30 –noaq05)	CO ₂ NQ30
Air quality regulation and CO ₂ reduction policy	(c50nq55- c50nq05) – (noaq55 –noaq05)	CO ₂ NQ55
Air quality regulation and CO ₂ reduction policy	(c5030-c5005) – (noaq30-noaq05)	BOTH30
Air quality regulation and CO ₂ reduction policy	(c5055-c5005) – (noaq55-noaq05)	BOTH55

7

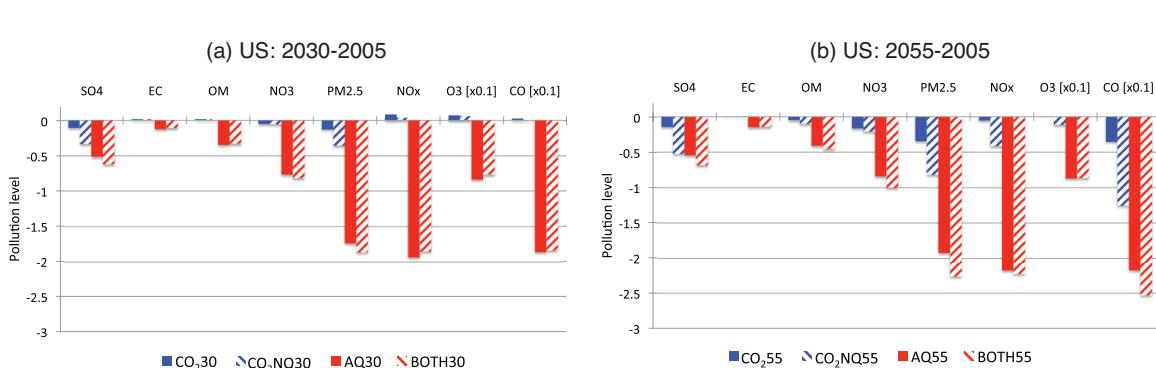
8

9

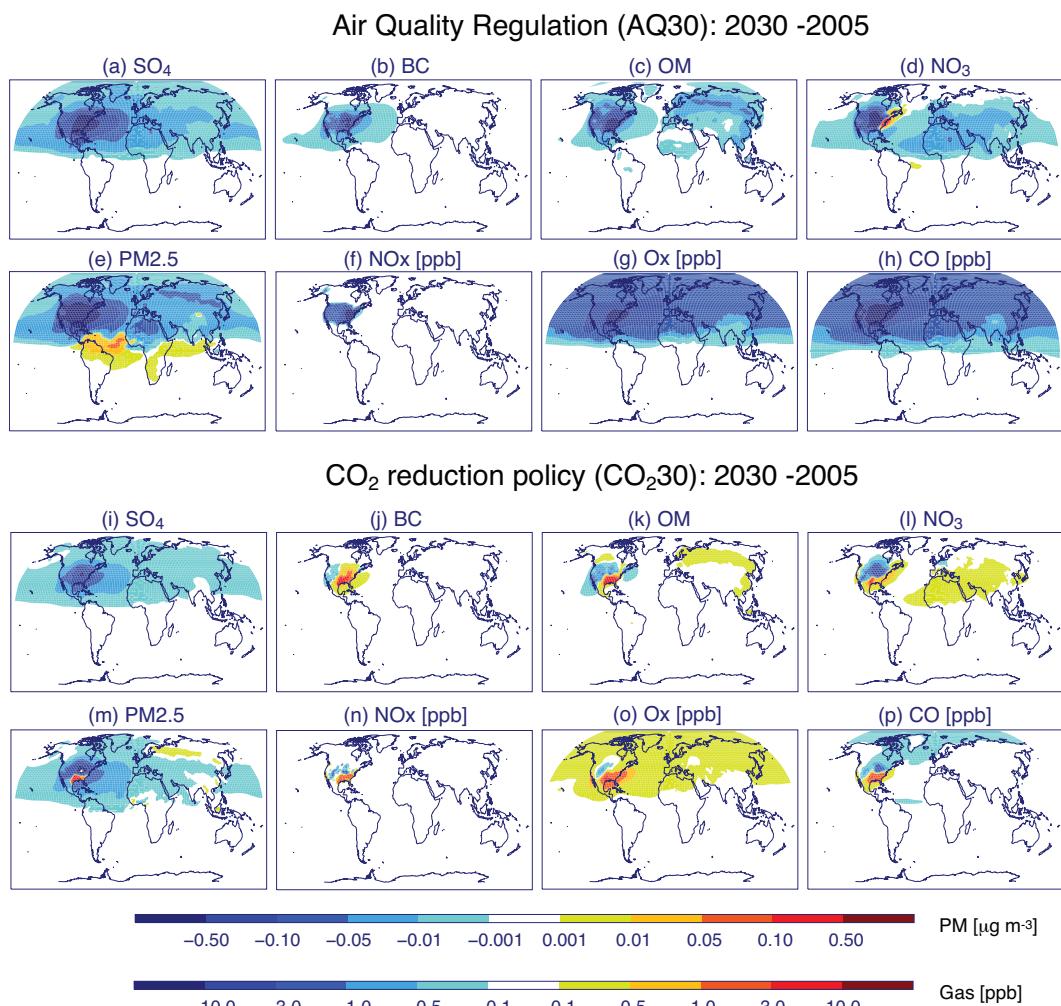
10 Table 4. Changes in the US mean air pollution in 2030 and 2055 in respect to 2005
 11 (averaged over the 50 states) due to the air quality regulations and CO₂ reduction
 12 policy that are divided by the model baseline 2005 (bs05) level.

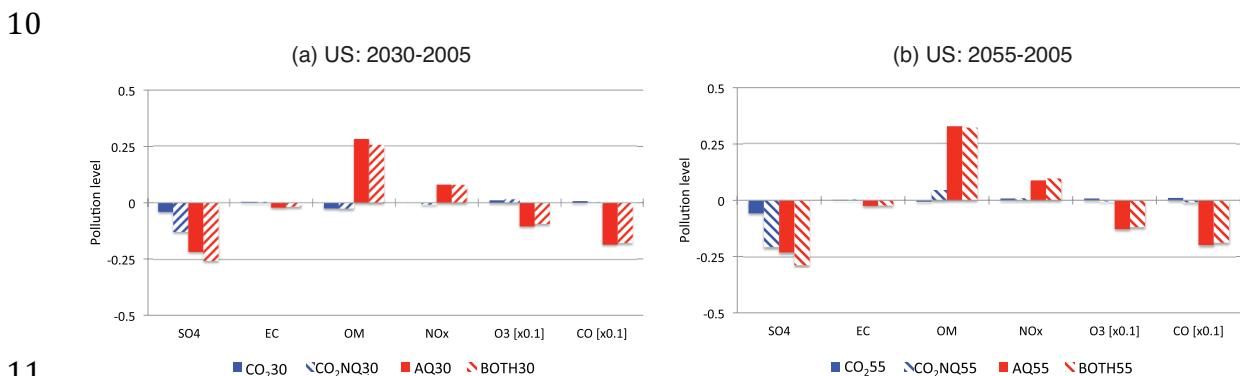

13

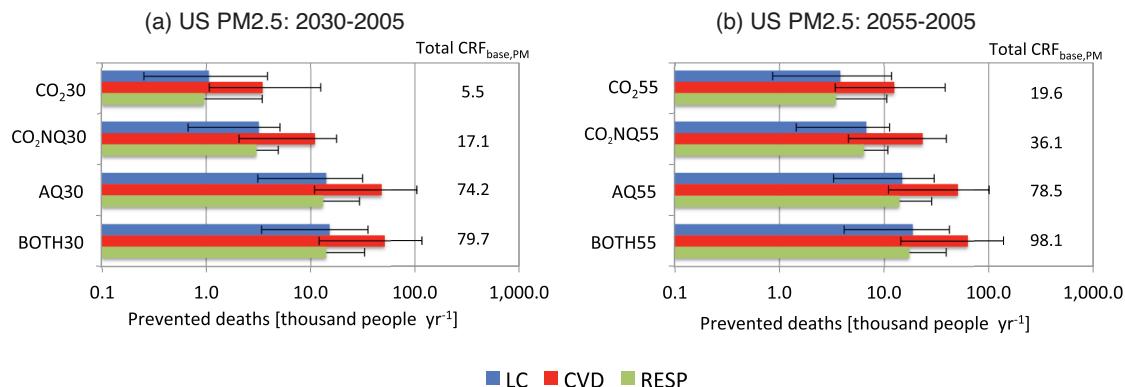
Species	bs05 level [$\mu\text{g m}^{-3}$ or ppb]	(2030 – 2005)/bs05 [%]				(2055-2005)/bs05 [%]			
		CO ₂ 30	CO ₂ NQ30	AQ30	BOTH30	CO ₂ 55	CO ₂ NQ55	AQ55	BOTH55
PM2.5	8.5	-1.5	-4.2	-20.4	-21.9	-4.1	-9.6	-22.6	-26.6
SO ₄	1.2	-9.2	-28.9	-44.4	-53.6	-12.3	-45.2	-46.8	-59.1
EC	0.25	6.4	6.6	-50.2	-43.8	2.2	3.3	-59.0	-56.8
OM	1.3	1.2	1.0	-27.0	-25.9	-3.7	-7.7	-31.9	-35.6
NO ₃	1.4	-3.6	-3.9	-54.5	-58.1	-11.6	-14.8	-59.8	-71.4
NO _x	3.2	2.6	1.1	-61.2	-58.6	-1.6	-13.0	-68.9	-70.5
O ₃	57	1.2	1.0	-14.6	-13.4	0.1	-2.0	-15.2	-15.1
CO	174	0.1	0.0	-10.7	-10.6	-2.0	-7.2	-12.5	-14.5

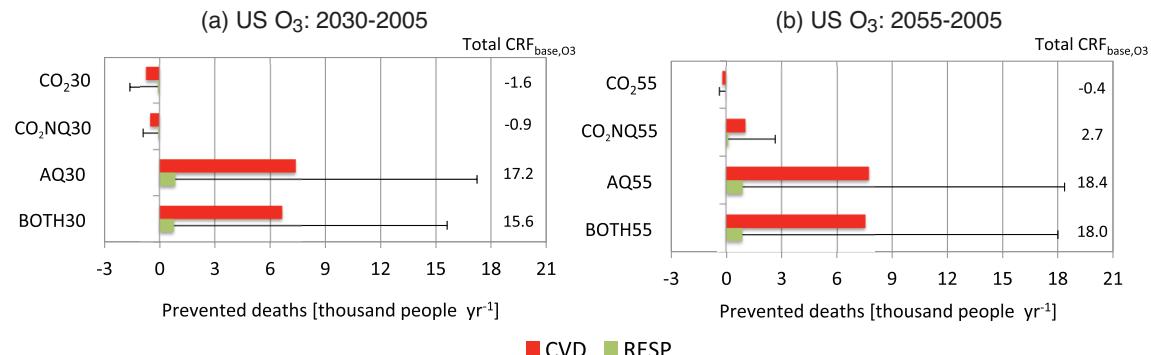

14

15

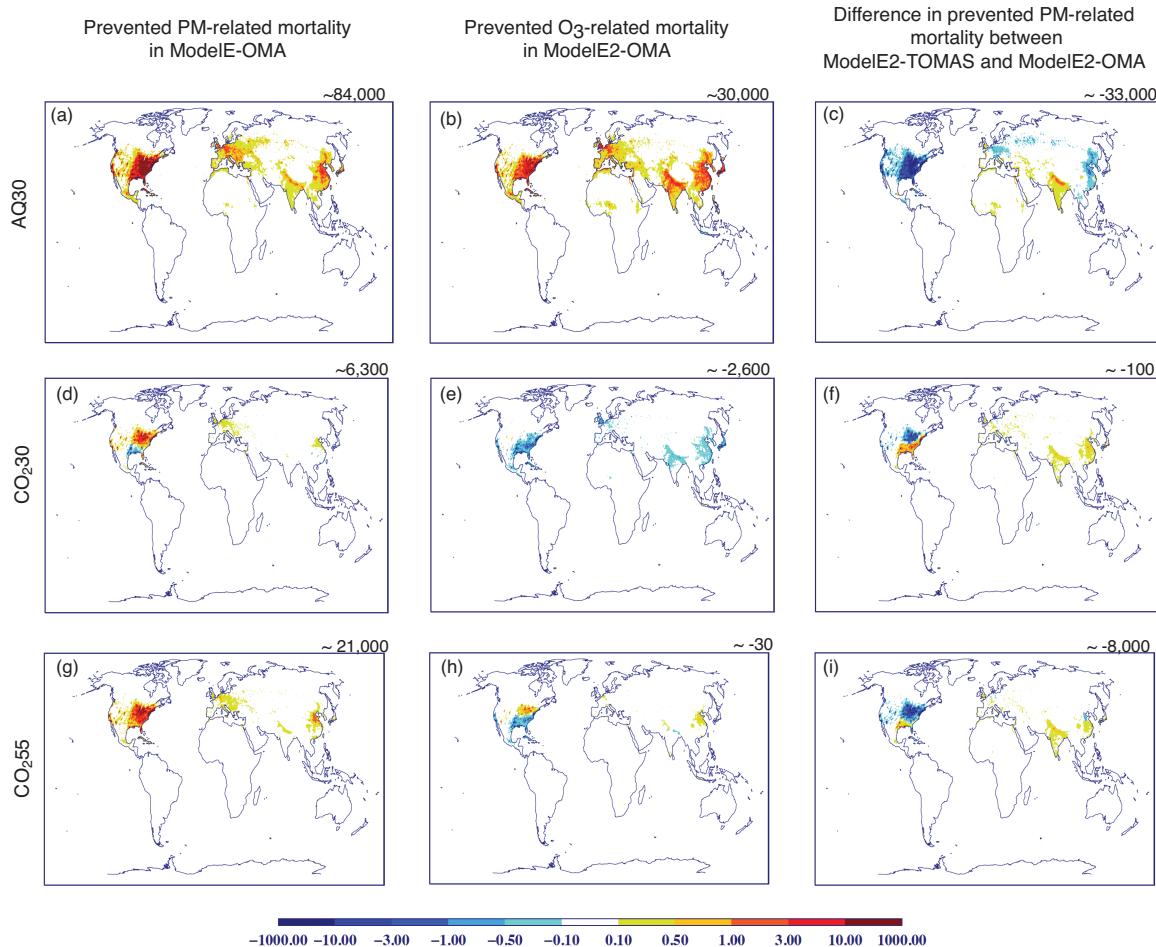

1 Figure 1. Emission plots of the four GLIMPSE US scenarios. See Section 2 for the
 2 details.
 3


4
 5 Figure 2. Changes in the US mean air pollution in 2030 and 2055 respect to 2005
 6 due to the air quality regulations and CO₂ reduction policy (averaged over the 50 U.S
 7 states). All PM has a unit of $\mu\text{g m}^{-3}$, and gases have a unit of ppb. O₃ and CO are
 8 multiplied by 0.1 to plot in the same Y-axis scale as others. See S-Table 2 in the
 9 supplementary materials for the exact values.
 10

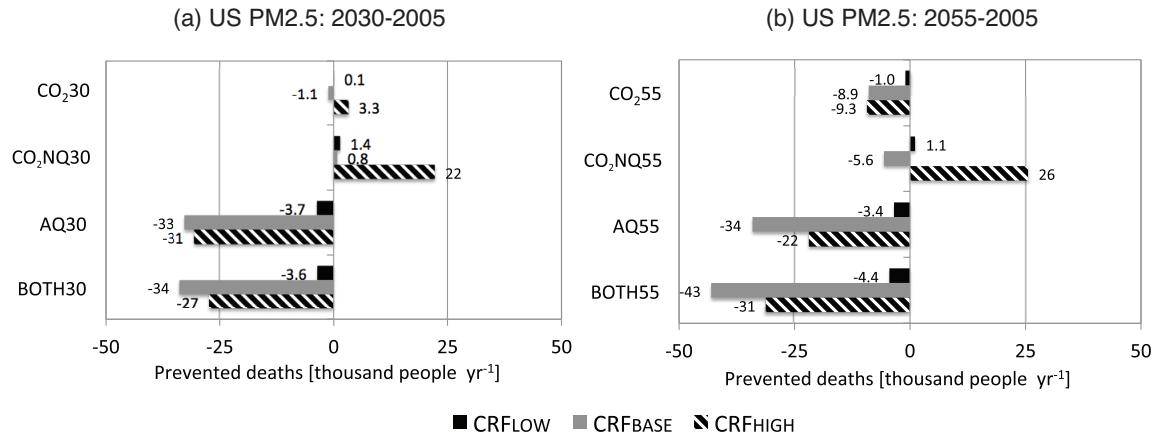

1 Figure 3. Spatial distributions of changes in surface PM and gas pollutants
 2 concentrations due to impact of (a-h) the air quality regulations (AQ30) and (i-p)
 3 CO₂ reduction policy (CO₂30).
 4


5
 6 Figure 4. Same as Figure 2 but for the difference between ModelE2-TOMAS and
 7 ModelE2-OMA. See S-Table 3 in the supplementary materials for the exact values for
 8 ModelE2-TOMAS.
 9

1
2 Figure 5. Impact of the air quality regulations and CO₂ reduction policy on U.S.
3 mortality related to PM2.5. Colorbar shows the mortality rate using CRF_{base,PM}. The
4 higher (CRF_{high,PM}) and lower (CRF_{low,PM}) bars indicate the spread in mortality
5 change predicted using the range of concentrations-response functions used in the
6 study (see Table 2). Note that the x-axis is log-scale and has a unit of thousand
7 people per year. The total mortality rate using CRF_{base,PM} is presented in the right
8 side.
9



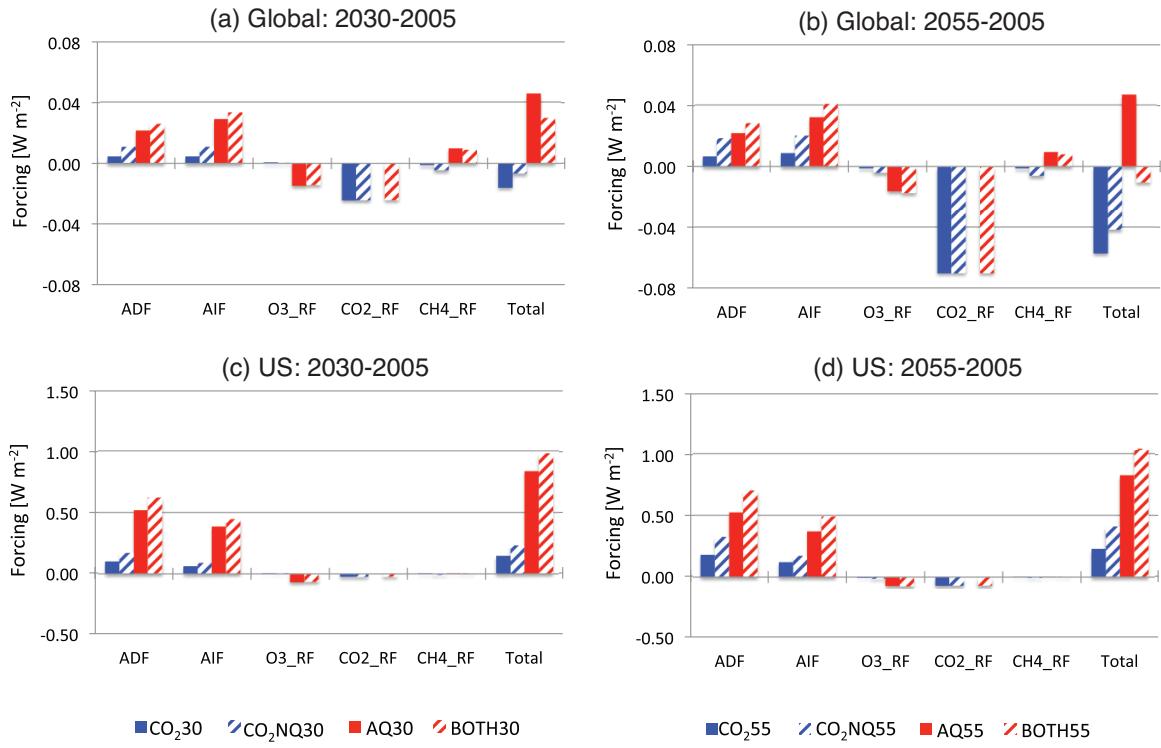
10
11 Figure 6. Impact of the air quality regulations and CO₂ reduction policy on U.S.
12 mortality related to ozone. Important note that colorbar shows the mortality rate
13 using CRF_{low,O3}, and the horizontal upper bars are for mortality rates using CRF_{base,O3}
14 because CRF_{base,O3} only include RESP. It has a unit of thousand people per year. The
15 total mortality rate using CRF_{base,O3} is presented in the right side.
16
17


18
19
20

1 Figure 7. Global distributions of prevented PM- and O₃-related mortality due to
 2 impact of (a and b) the air quality regulations in 2030 (AQ30), (d and e) CO₂
 3 reduction policy in 2030 (CO₂30), and (g and h) CO₂ reduction policy in 2055
 4 (CO₂55). The differences between two aerosol models are shown in (c) for AQ30, (f)
 5 for CO₂30, and (i) for CO₂55. In each panel, globally summed mortality is presented
 6 in the right upper corner.
 7

8
 9
 10

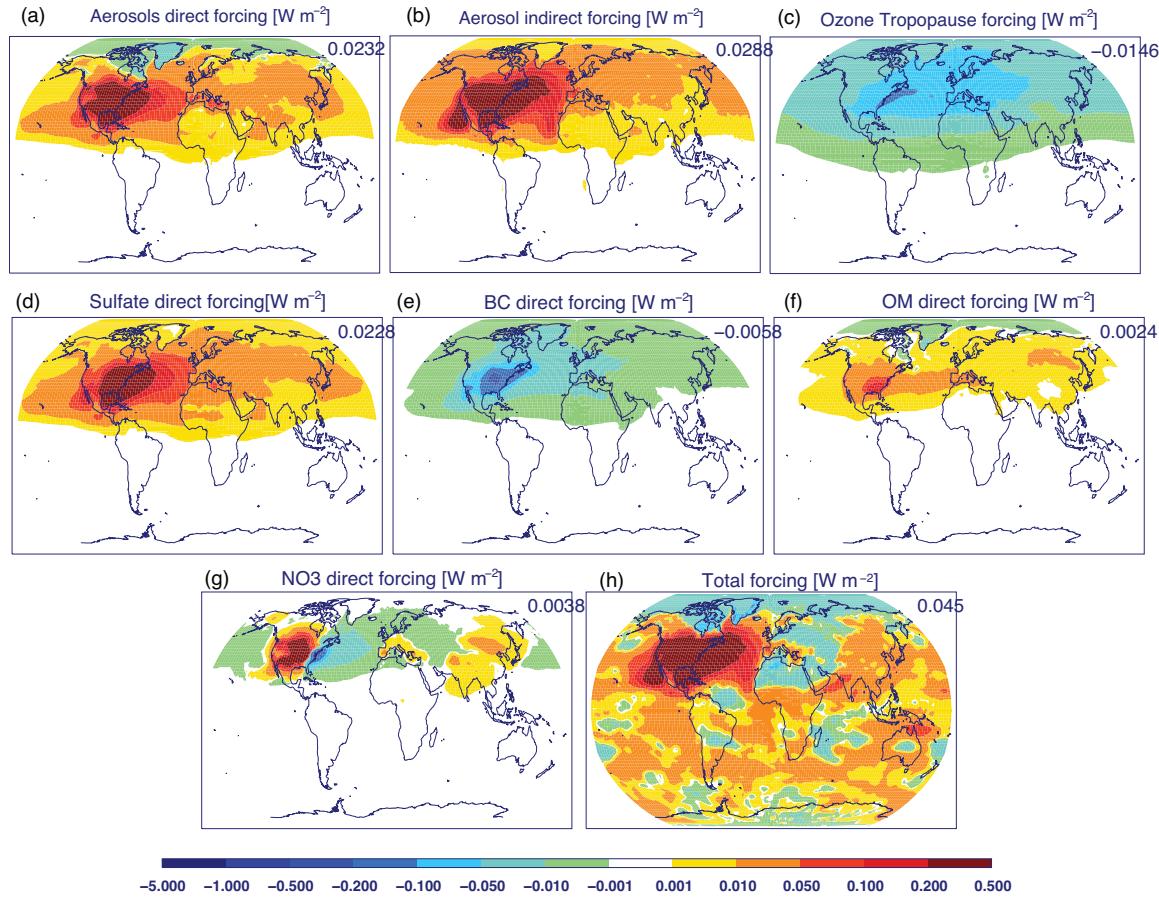
1 Figure 8. Same as Figure 5 but for the difference between ModelE2-TOMAS and
 2 ModelE2-OMA.

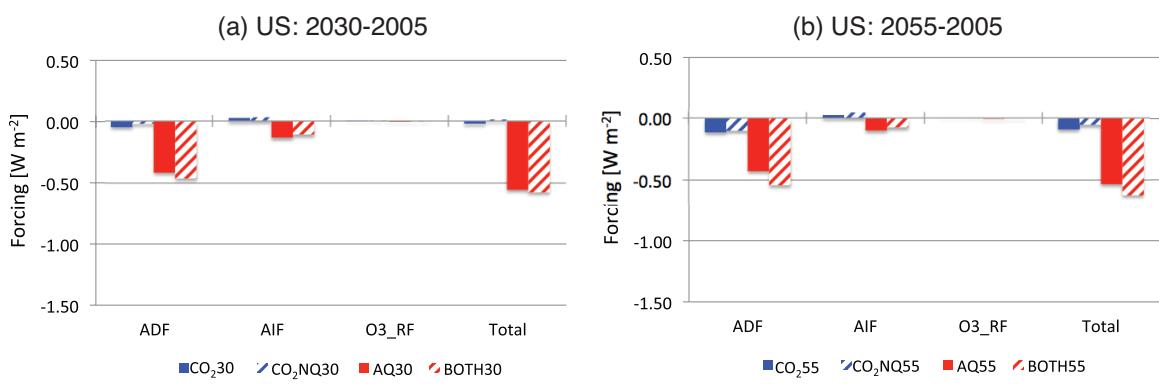


4


5

6 Figure 9. Impact of the air quality regulations and CO₂ reduction policy on global (a
 7 and b) and U.S. (c and d) averaged radiative forcings in 2030 and 2055 relative to
 8 2005. Note that BC-albedo forcing is added into aerosol direct forcing (ADF). The
 9 exact value of RFs is presented in S-Tables 5 and 6 for global mean and US mean,
 10 respectively.


11


1 Figure 10. Impact of the CO₂ reduction policy (CO₂30) on radiative forcing in 2030
2 relative to 2005.

1 Figure 11. Impact of the air quality regulations (AQ30) on radiative forcing in 2030
 2 relative to 2005.

5 Figure 12. Same as Figure 9 but for the difference in the US mean between ModelE2-
 6 TOMAS and ModelE2-OMA.

1 Figure 13. Impact of future warm climate conditions on U.S. averaged radiative
 2 forcings in (a) 2030 and (b) 2055 relative to 2005. Note that BC-albedo forcing is
 3 added into aerosol direct forcing (ADF).

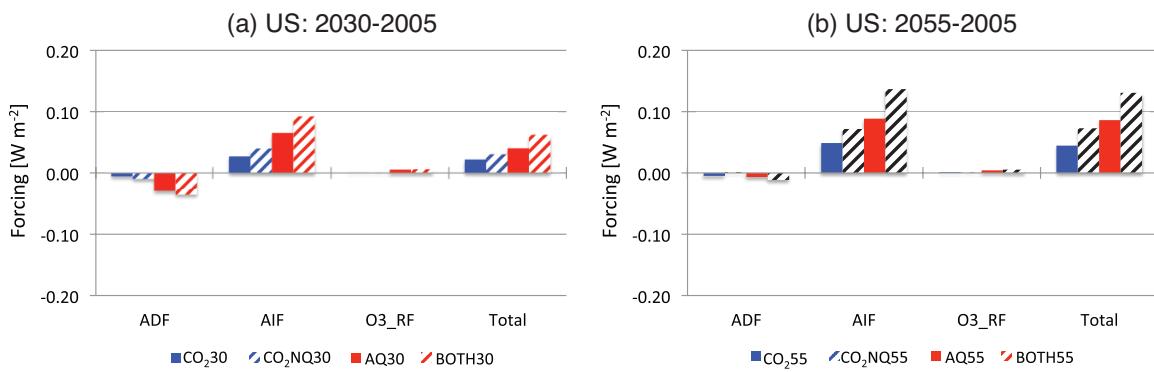
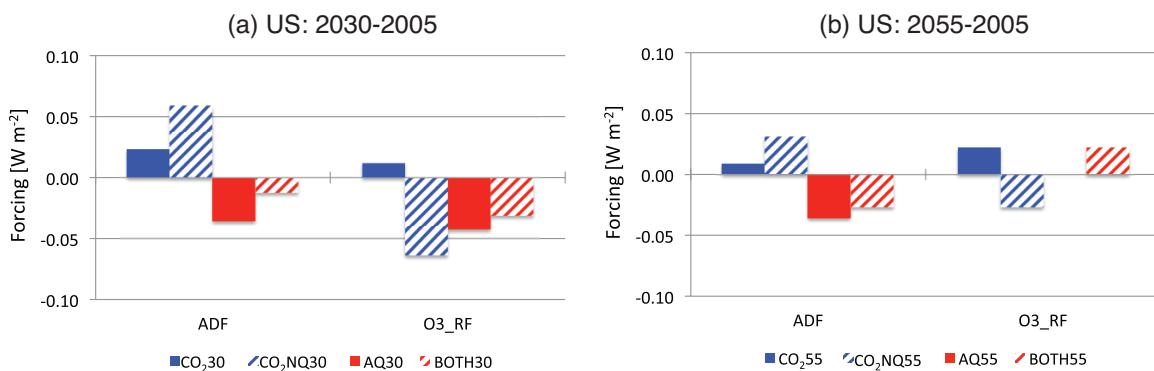



Figure 14. Impact of climate response due to emissions on U.S. averaged radiative
 forcings in (a) 2030 and (b) 2055 relative to 2005. Note that BC-albedo forcing is
 added into aerosol direct forcing (ADF).

