
Response to comments on “Atmospheric inversion 
for cost effective quantification of city CO2 

emissions” by L. Wu et al. 

 
We thank the three referees for their very detailed reviews. Their comments have allowed us to 

improve the manuscript by better emphasizing its strength and simplifying secondary 

discussions in Appendix. As detailed below, this revision focuses on OSSEs as suggested by the 

reviewers, and accordingly the title was changed to “What would dense atmospheric 

observation networks bring to atmospheric inversion for the quantification of city CO2 

emissions?” A marked-up manuscript is also provided in this response.  

 

Anonymous Referee #1 
 
COMMENT: 
 
Overview: Wu et al. present a manuscript assessing the ability of different observing networks (with 
different costs) to quantify city CO2 emissions. The paper is appropriately placed in AMT. There is a 
core of work that appears sounds, and would be a useful contribution to the community.  
 
RESPONSE: 
 
We thank the reviewer for his/her positive assessment of our pseudo-data analysis and for 
his/her suggestions that have helped improving the manuscript significantly. As detailed below, 
the paper now focuses on OSSEs, and accordingly the title was changed to “What would dense 
atmospheric observation networks bring to atmospheric inversion for the quantification of city 
CO2 emissions?” 
 
COMMENT: 
 
However, as currently presented the manuscript is misleading and improperly substantiated. Most 
importantly, the paper is written as though it assesses different cost systems for quantifying urban 
CO2 emissions and derives answers for optimal instrument and network design with wide 
implications.  
 
RESPONSE: 
 
In the revision, we better separated the pseudo-data analysis on one hand and the discussions 
on the practical solutions for deploying dense networks on the other hand. The text mainly 
focused on the former, and we followed the reviewer’s suggestion to re-organize the latter into 
discussions on the performance requirements for the instruments and inverse modeling 
framework. 
 
COMMENT: 
 
This is not substantiated.  
 
RESPONSE: 
 



Our study compares networks with few current research-grade instruments to potential future 
networks with higher density. In this context, it is critical to discuss the development of low cost 
medium precision (LCMP) sensors (we replaced the term “cheap”). Although LCMP sensors with 
the precision, systematic error and cost assumed in the initial manuscript are not commercially 
available yet, present testing with different versions of prototypes within our laboratory (by co-
authors of this paper) provide encouraging results for the repeatability and reproducibility of 
CO2 measurements, when external influences are properly corrected for. As the test will be 
continued to verify the performance for a least one year, the full study on the sensors shall be 
published in 2016. Still, we have attached a figure illustrating preliminary work for the 
reviewers. It indicates that LCMP sensors could yield measurements uncertainties of about 1 
ppm for hourly values if regularly calibrated (every few days or weekly). This motivates us to 
assume that we could use LCMP sensors in the near term to construct dense monitoring 
networks for atmospheric inversion.  
 
COMMENT: 
 
The authors have done a nice pseudo-data experiment which could be the basis of a re-written 
publication. I therefore would only recommend publication after major revisions. Writing a 
manuscript focused on a pseudo-data study evaluating different network performances in a specific 
inversion framework would be interesting and useful. This should simply state performance of 
instrument and model that are needed/assumed  
 
RESPONSE: 
 
The text was deeply reorganized in order to avoid misunderstanding about the interpretation of 
our results. The new text primarily focuses on the pseudo data experiments and on checking the 
potential of inversions using dense networks within and around city with an accent on targeting 
precise total and sectorial estimates of the emissions. For such inversions to be practical, we 
discuss requirements on the instrument performances (Sect. 4.3). Concerning the cost of the 
atmospheric inversion system, we demonstrated in the new draft that it is impossible to operate 
very dense monitoring networks if using expensive high precision sensors (~50 k€) currently 
employed in climatic studies. Running such dense monitoring network would necessitate the use 
of LCMP sensors (1-5 k€). Please see Appendix B for discussions on the cost requirements of the 
inversion system if using LCMP sensors. Note that now we do not assume the pre-existence of 
LCMP sensors for operational use but evaluate the potential of dense networks in improving 
inversion performance, although we have preliminarily tested such LCMP sensors within our lab. 
 
 
COMMENT: 
  
(with the model performance equally important to clearly discuss - as unknown biases within are 
likely the biggest challenge) –  
 
RESPONSE: 
 
The model performance in this study follows Bréon et al. (2015) who assimilated real 
measurements. Therefore, this performance should be seen as a requirement per se which 
represents the present skill of mesoscale transport models. Still, we now better acknowledge the 
problems raised by potential model biases (Sect. 4.3) and perform sensitivity studies that 
partially account for the unresolved model error (Sect. 3.2).   
 
COMMENT: 
 



and eliminate all the discussion of cost of sensor or network and the discussions and assumptions 
for MRV. 
 
RESPONSE: 
 
Please see the answer above regarding the cost of the sensors.  
 
The discussion on the cost of future infrastructures for large networks of LCMP sensors was 
greatly simplified and turned into a series of requirements (Sect. 4.3 and Appendix B). The 
discussion on the cost of the inventories was also simplified and kept as an indicator for the cost 
requirements on networks and sensors (Appendix B). All of this is needed to evaluate the 
relevance of testing 30 to 70 sensors networks in this study but was moved in Appendix and 
briefly summarized in the discussion section of the paper. 
 
Last, we also significantly revised the MRV part. We provided a brief introduction on MRV 
systems in order to provide a useful background for city scale atmospheric inversion of fossil 
fuel CO2 emissions in the introduction, and discussed the relevance of applying the inversion 
results using dense monitoring networks in the MRV context (Sect. 4.2). Assumptions  on MRV 
(e.g. target definition) have been removed from the text. 
 
COMMENT: 
 
Major Issues: 
 
My major concerns are centered largely on the context and conclusions drawn in the paper. This 
manifests most notably for a couple topics: Cheap vs. expensive sensors (much of discussion on page 
30706, though found throughout): The authors act as though they are rigorously assessing the use 
of different cost sensor. However, they simply assert a performance capability of cheap sensors that 
has yet to be demonstrated or tested. This is the extent of the real comparison. The authors 
basically assert that cheap sensors can work as well as expensive ones in the context of inversions, 
and then do inversions where the cheap sensors ‘win’ simply because they are cheaper. This is not 
any type of real analysis or test. I suggest the authors remove all mentions of cost of sensors and 
assessment of that. They should instead focus on the pseudo-data study that relies on observations 
of a certain, assumed quality. 
 
RESPONSE: 
 
Our reply to the general comment underlines that we followed the reviewer’s suggestion to 
better focus on the pseudo-data study. The comparison between cheap vs. expensive sensors 
was removed from the text. Instead, we explained that it is impossible to set up dense networks 
(e.g. 30-70 sites) using expensive sensors under acceptable cost. Instead, we discussed 
requirements in sensor performance and cost on cheap sensors for the inversion system using 
dense networks to be practical. These were moved into the appendix and shortened in the 
discussion section. The abstract, introduction and conclusions were revised accordingly. 
 
COMMENT: 
 
Assessment of cost of inventories and networks (mostly on page 30705): This is a very simplistic 
and naïve assessment. It really seems to be focused on concluding cheap sensors are better, in 
particular by asserting that original purchase cost dominates total cost.  
 
RESPONSE: 
 
We clarified our discussions on the cost of infrastructure. 



 
COMMENT: 
 
In reality, we don’t really know what is needed or necessary for urban co2 emissions quantification.  
 
RESPONSE: 
 
Even though this is an emerging activity, experiments with real data such as that of Bréon et al. 
(2015) give us robust insights on the requirements for urban CO2 emission quantification.   
 
 
COMMENT: 
 
This is why a pure pseudo-data study would be useful (and is what I recommend this manuscript be 
turned into)! Making simple assumptions about cost that ignore practical experiences about 
measurement location cost and access and calibration/maintenance needs let alone ignoring 
possible operational personnel costs for mainlining networks and inversion systems renders really 
makes this analysis portion not relevant and useful. 
 
RESPONSE: 
 
Through the deployment and maintenance of the CO2 Paris network since 2010, we have 
acquired some solid experience about the requirements and issues for setting-up such urban 
networks. Also note that the co-authors of this paper gather modelers and experimentalists. The 
new draft clarified our discussions on the network requirements and we moved them to the 
appendix and in few sentences of the discussion section. 
 
COMMENT: 
 
Assumptions/assertions of what inversion error is useful: This is again a simplistic analysis that is 

not robust or really helpful. I would prefer if the authors focus on the capability of different 

inversion systems as determined by the pseudo-data study with clearly defined assumptions about 

error and performance of the modeling system. 

RESPONSE: 
 
As suggested, we now focus on the capability of the inversion system in our pseudo-data study. 
The new draft reverted the logic flow for the analysis of the different scores of uncertainties in 
the inverted emissions. While the analysis of the result ignored any uncertainty target, the 
discussion section evaluated annual uncertainties (not putting too much weight on such an 
evaluation) by using different assumptions on the impact of monthly mean uncertainties for the 
derivation of annual budgets or trends. By such, the new manuscript avoided giving the 
impression of building its analysis on strong assumptions. We better discuss the assumptions 
about the error and performance of the modeling system (which is based on real-data studies; 
Breon et al., 2015; Staufer et al., 2016), and performed sensitivity studies that partially take into 
account the impact of unresolved model errors. 
 
COMMENT: 
 
As constructed, the author’s gives strong weight to total annual CO2 fluxes. These are perhaps not 

the most useful value from a city network, nor the most robust result from inversions.  

RESPONSE: 



As indicated previously, we focus more on inversions for the one-month period, and annual 

uncertainties are discussed only in the final section. Annual estimates provide both the baselines 

and the trends, which are both required for the analysis of the impact of climate plans. Note that 

such an application has been the main justification for deploying CO2 urban networks.  

COMMENT: 
 
There is relatively little discussion of the bias error problem in inversions in trying to get accurate 

net annual fluxes.  

RESPONSE: 

Remember that our inversion configuration follows Bréon et al. 2015 who did not detect major 

model biases when analyzing misfits between simulated afternoon CO2 gradients and real 

afternoon CO2 gradients measurements. In particular, data are assimilated in the afternoon only 

to avoid well known model biases on the vertical transport during nighttime. This supports our 

assumption that the model is not strongly biased.  

Regarding potential biases in the measurements: the paper now better explains requirements on 

how calibration strategies should allow preventing large biases in the measurements for periods 

longer than several days to a week. As a consequence, the measurement “biases” are rather seen 

as error correlations with a timescale of about several days to a week.  

We showed sensitivity tests with higher observation (i.e. model + measurement) errors to 

account for long temporal scales of correlations (which is a better characterization of what could 

be considered as “model or measurement biases”). These tests are now analyzed and discussed 

in the main text. 

COMMENT: 
 
Actually trends have been though to be easier to detect and help with bias errors- and this is not 

addressed in here (McKain et al., PNAS). 

RESPONSE: 

We addressed the matter of detecting trends in section 2.1 of the first version of the manuscript.  

Further, model errors are barely “biased” in a mathematical sense. They have tendencies to 

under-estimate or over-estimate some processes strongly influenced by the large to local scale 

meteorological conditions and which thus hardly summarize into absolute or relative errors that 

could be similar for month to month or from year to year or even constant over short time scales. 

Therefore, it seems difficult to assume that trends could be far more easily monitored than the 

annual emissions.   

COMMENT: 
 
How exactly fluxes are derived, and the details of the ‘gradient’ method are not clear. This would be 
much more valuable and useful to spend time discussing in the revision than all the time on cost 
and MRV. 
 
RESPONSE: 
 



We improved the presentation of the gradient inversion method. Please see our previous 
responses on cost and MRV. 
 
COMMENT: 
 
Detailed Issues: 
 
Abstract, line 8: This is not really what the authors are doing in this paper Line 14: This is an 
unsubstantiated claim about cheap sensors  
 
RESPONSE: 
 
The abstract was strongly revised in line with the general corrections to the manuscript 
discussed above. 
 
COMMENT: 
 
Line 19: Performing the analysis only in January (when biosphere is weakest), and extrapolating to 
the whole year is an iffy proposition that relies on large assumptions  
 
RESPONSE: 
 
The connection between typical uncertainties at the monthly scale and at the annual scale is now 
assessed by two extreme cases on the month to month correlations (independent and perfectly 
correlated), as results in a wide range of annual uncertainties that should cover most realistic 
month to month correlation scenarios. Our assumption that the scores of uncertainty in winter 
can be extrapolated to summer month is based on sensitivity tests where the uncertainty in the 
biogenic fluxes was artificially increased to typical levels for summer months. This would be due 
to using the gradient approach, which levels down the sensitivity of the inversion to the natural 
fluxes. This is now better discussed in Sect. 4.2. 
 
COMMENT: 
 
Line 26: Based on the level of assumptions made, would seem unfair to asset the system can meet 
the requirement on bias errors are essentially unaddressed. Final sentence of Abstract: This is an 
assertion that is unsubstantiated in this manuscript.  
 
RESPONSE: 
 
Again, the abstract has been strongly revised in line with the general corrections to the 
manuscript discussed above. Regarding the biases, see our answers to the general comments 
above. 
 
COMMENT: 
 
The authors have really conducted a pseudo-data experiment and not determined that networks of 
cheap sensors could actually inverted emissions to within 5% uncertainty. 
 
RESPONSE: 
 
The uncertainty target aimed at helping to analyze the results in the original draft. It is not 
defined a priori anymore in the new draft, and it was ignored in the result section. As mentioned 
above, we just gave highlights on the levels of posterior uncertainties in Sect. 4.2 based on the 



extrapolation of the uncertainties at the monthly scale into a wide range of typical uncertainties 
at the annual scale.  
 
COMMENT: 
 
p. 30698 line 27-28. This is not a new type of data.  There is long literature cited in this paper that 
is using this data. 
 
RESPONSE: 
 
We meant that the city scale inversion is a recent activity and a source of new types of data for 
the community of the anthropogenic emissions inventories. Still, we removed “new type of data” 
in the new manuscript for clarity. 
 
COMMENT: 
 
p. 30699 line 15,15: Should also probably mention at least Salt Lake City which has the longest 
running urban CO2 network. 
 
RESPONSE: 
 
We agree with the reviewer. We added information on the Salt Lake city network. 
 
COMMENT: 
 
P. 30700 Line 10-11: This really undermines any assessment of cheap versus expensive sensors. 
 
RESPONSE: 
 
See our general answer to the major comments of the reviewer. The large modifications of the 
text was to better focus on the pseudo data experiments. 
  
COMMENT: 
 
The writing is quite labored and redundant at times, and could really use revision to improve 
clarity and succinctness. Example of redundancy page 30701, Lines 1-5. 
 
RESPONSE: 
 
Thank you for your suggestions. We checked the redundancy and improved the succinctness and 

quality of the text. 

 

Anonymous Referee #3 

COMMENT: 
 
Overall comments. The paper is an interesting observational system simulation experiment (OSSE) 
exploring observational network design for estimates of urban emissions of CO2 using atmospheric 
inversions.  
 
RESPONSE: 



 
We thank the reviewer for his/her comments that helped improving this paper significantly and 
for his positive assessment of our OSSEs.  
 
COMMENT: 
 
As written, however, the paper has many serious problems. It is limited by a number of severe 
assumptions embedded in the inversion system, and by the lack of discussion of the vertical 
resolution of the atmospheric transport model. 
 
RESPONSE: 
 
We now better clarify that the assumptions underlying the configuration of the transport model 
and of the atmospheric inversion. Our configuration is based on the experiments with real data 
by Bréon et al. 2015 and a recent publication (Staufer et al., 2016) using year-long real data for 
the inversion of Paris CO2 emissions. We provided discussions in details on the model error in 
Sect. 2.5.2 and 4.3. Sensitivity studies with inflated observation error would partially take into 
account the influence of unresolved model error in inversions. 
  
COMMENT: 
 
The overall conclusions regarding “cheap” vs. “expensive” sensors are invalid,  
 
RESPONSE: 
 
As detailed below in answer to specific comments, this discussion was based on current results 
regarding the performances of low cost medium precision (LCMP) sensors. We now draw no 
conclusion regarding “cheap” vs. “expensive” sensors, but focus on the potential of inversion 
system with dense networks. 
 
COMMENT: 
 
and the alleged ability to deploy sensors at 25m AGL is misleading.  
 
RESPONSE: 
 
25 magl correspond to the typical height of recent buildings in the Paris region. We have already 
installed measurement sites at the top of such buildings. Please check our responses below as 
this issue was raised several times in the review. 
 
 
COMMENT: 
 
The target uncertainties quoted are entirely dependent on the assumed prior uncertainties, 
 
RESPONSE: 
 
No, there were derived independently. However, we removed the definition of uncertainty 
target from the introduction. 
 
COMMENT: 
 
and these uncertainty assumptions are often unjustified and untested. 
 



RESPONSE: 
 
They are consistent with those used in Bréon et al. (2015) and Staufer et al. (2016). We also 
conducted sensitivity experiments where observation (model + measurement) uncertainties are 
inflated to check the robustness of the results. The results of sensitivity tests were discussed in 
the supplementary material but they are now shown in the main text (Sect. 3.2). 
 
COMMENT: 
 
 The discussion of the cost of measurement networks is unrealistic in the extreme and should be 
deleted.  
 
RESPONSE: 
 
The discussion on the cost of future infrastructures for large networks of LCMP sensors was 
greatly simplified and turned into a series of requirements (Sect. 4.3 and Appendix B). 
 
COMMENT: 
 
The manuscript contains a core of worthwhile research – an assessment of the sensitivity to a 
highly idealized inversion system to the network of instruments deployed - but the paper claims to 
be much more than this. This manuscript requires serious revision before it should be considered 
for publication. More detail on these points follows. 
 
RESPONSE: 
 
In the new manuscript, we follow this suggestion and focus this study on OSSEs. Accordingly the 
title was changed to “What would dense atmospheric observation networks bring to 
atmospheric inversion for the quantification of city CO2 emissions?” 
 
COMMENT: 
 
1. The argument concerning “cheap” vs. “expensive” sensors is misleading, lacks content, and must 
be deleted.  
 
RESPONSE: 
 
Although LCMP sensors with the precision, systematic error and cost assumed in the initial 
manuscript are not commercially available yet, present testing with different versions of 
prototypes within our laboratory (by co-authors of this paper) provide encouraging results for 
the repeatability and reproducibility of CO2 measurements, when external influences are 
properly corrected for. As the test will be continued to verify the performance for a least one 
year, the full study on existing LCMP sensors shall be published in 2016. Still, we have attached a 
figure illustrating preliminary work for the reviewers. It indicates that LCMP sensors could yield 
measurements uncertainties of about 1 ppm for hourly values if regularly calibrated (every few 
days or weekly). This motivates us to assume that we could use LCMP sensors in the near term 
for atmospheric inversion. Nevertheless, in the new draft, the arguments on favoring one against 
the other between cheap vs. expensive sensors have been deleted. Instead, we discussed about 
the requirements on LCMP sensors for the construction of dense monitoring networks in the 
urban environment. 
 
 
COMMENT: 
 



The authors state that transport errors are larger than instrument errors, thus instrumental error 
doesn’t matter, and thus “cheap” sensors are just as good as more expensive CO2 sensors. The 
authors, however, present no quantitative assessment of any real “cheap” sensor or atmospheric 
transport errors. 
 
RESPONSE: 
 
We improved the presentation of the observation (model + measurement) error configuration in 
Sect. 3.5.2. Our assumptions/assertions of atmospheric transport errors are based on the works 
of Breon et al. (2015) and Staufer et al. (2016) in which real data were used to evaluate the 
model performance. We reverted the logic in that, instead of blindly ignoring the role of the 
instrument error in the original draft, the requirements are imposed in the new draft on the 
performance of the LCMP sensors so that inversions would not be greatly affected by poor LCMP 
sensors.  
 
COMMENT: 
 
The abstract makes it sound like low-cost sensors exist and have been tested and have been shown 
to perform well. This is wrong. Unjustified assumptions have been made so that sensor performance 
is irrelevant. This isn’t science; it is wishful thinking. Wishful thinking should not be published in 
ACP. 
 
RESPONSE: 
 
As indicated above, we based our discussion on the cost and precision of the next generation of 
sensors on actual lab testing, and our assumptions on the accuracy of the model on previous 
studies using real data. However, following the reviews of our manuscript, we now discuss 
requirements and expectations on the cost and precision of LCMP instruments in Appendix and 
briefly in the discussion section, while most of the text focuses on the OSSEs. The abstract was 
revised accordingly. 
 
COMMENT: 
 
2. The results concerning performance of the inversion system as a function of the number of 
sensors is defensible within the limits of the many assumptions made by the inverse system, 
including the uncertainties assumed within the inversion. 
 
RESPONSE: 
 
Again, they have been derived from the diagnostics of Bréon et al. 2015. However, we better 
highlight the assumptions underlying the OSSEs in the new draft. 
 
COMMENT: 
 
 These assumptions, however, are buried deep in the document and in sections that are often very 
difficult to read.  
 
RESPONSE: 
 
The presentation of the inversion technique and configuration were improved, and we 
highlighted the inversion results are conditioned on the assumptions made in the abstract. 
 
COMMENT: 
 



The assumptions include prior flux errors, atmospheric transport errors, and assumed coherence in 
the prior flux errors. Very large coherence is assumed in the prior flux errors. The final error levels 
are highly dependent on these largely unjustified assumptions.  
 
RESPONSE: 
 
We control budgets of emissions over large areas, but this does not mean that we assume that 
uncertainties in the distribution of the emissions at high resolution are entirely coherent over 
such areas. It means that the fine spatial scales of the uncertainty in the emissions should not 
much affect the type of observation that we select for assimilation (downwind-upwind gradients 
between distant 25magl sites for elevated wind speeds). Still, the diagnostic of observation 
errors by Bréon et al. 2015 accounts for the impact of uncertainties in the distribution of the 
emissions at high resolution (i.e. the so-called “aggregation errors”), see the answer to the 
detailed comment by the reviewer on this topic). We clarified these in Sect 2.5.1 and 2.5.2. 
 
COMMENT: 
 
As the authors state, deep in the discussion section, these results “should not be over-interpreted.” 
But the abstract says nothing about the numerous assumptions that limit the validity of these 
results, and states that 5% flux uncertainty can be achieved with 70 sensors: : :with no caveats 
given whatsoever about the large volume of assumptions that condition this finding. It is even 
difficult to determine from the abstract that this study is an OSSE. 2.1) These limiting assumptions 
should be presented prominently and clearly in the methods section. 2.2) These important caveats 
about the significance of the study results should be made clear in the abstract. The abstract is very 
misleading and should not be published in its current form. 
 
RESPONSE: 
 
The abstract and the method section were highly modified to better highlight our assumptions, 
and to be consistent with the strong reorganization of the manuscript.  
 
COMMENT: 
 
3. The method of relating CO2 mixing ratio differences to fluxes is not clear, and is of critical 
importance to the paper. The method of choosing upwind and downwind sites is described, but how 
these are related to emissions of CO2 is not described. 
 
RESPONSE: 
 
The presentation of the method, as well as that of the inversion configuration, has been strongly 
improved. In brief, the atmospheric transport model makes the link between the emissions and 
the selected concentration gradients as traditionally done in atmospheric inverse modeling, with 
the difference that instead of sampling concentrations at individual sites from the output of the 
transport model, here, we sample the differences of concentrations between these sites from the 
outputs of the model, when the wind criteria for the gradient selection are verified. 
 
COMMENT: 
 
4. The paper is based on a pseudo-measurement network that, as noted in the abstract, collects 
data at 25 m above ground. The study is based, however, on an atmospheric model that has very 
coarse resolution – 15 km in the horizontal  
 
RESPONSE: 
 



The horizontal spatial resolution of our atmospheric transport model CHIMERE for Paris 
metropolitan area is 2 km, with meteorological forcing by ECMWF products at a 15 km 
resolution.  
 
 
COMMENT: 
 
and, as best I can determine, about 250 m in the vertical.  
 
 
RESPONSE: 
 
For efficiency, in general, meteorological, transport, or ocean models do not have regular grid on 
the vertical in geometric height. They have a much refined grid near the ocean/land-atmosphere 
boundary. In particular, here, the thickness of the first vertical levels of CHIMERE is about 25 m, 
and there are ~7 vertical levels in the PBL during the afternoon. Most of the 25 magl stations are 
located in the second vertical level of the model. We now clarified these in Sect. 2.4.2. 
 
 
COMMENT: 
 
The model has no demonstrated capacity to represent the complexity of an urban surface either in 
the vertical or in the horizontal.  
 
RESPONSE: 
 
Bréon et al. (2015) have used this CHIMERE(2km)–ECMWF(15km) model to simulate real 
measurements of concentrations at less than 25magl in the Paris area. Their model showed 
similar capability to fit the measurements than the 2km resolution meteorological and transport 
simulations by Lac et al. (2013) who used a specific scheme to account for the urban heat island 
in the urban area. The CHIMERE(2km)–ECMWF(15km) model capacity to simulate the 
measurements is quantified by the estimates of the model errors by Bréon et al. (2015) which 
are used in our study (i.e. accounted for in the configuration of the observation errors in our 
inversion system). 
 
COMMENT: 
 
An OSSE is limited by the quality of the modeling system applied to the system design. The authors 
have no basis for claiming that their results are valid for an observational network deployed at 25 
m above ground with a model that has no demonstrated capacity to resolve the details of 
atmospheric transport in the environment of interest. If the authors must 4.1) discuss the vertical 
resolution of the model; 4.2) describe how the model simulates the atmospheric surface layer; 4.3) 
explain the true limits on observational altitude in their study given 3.1 and 3.2; and 4.4) at a 
minimum note how the complexity of the urban surface in the horizontal, unresolved by their 
modeling system, could complicate the meteorology in ways that cannot be captured by their 
modeling system. 
 
RESPONSE: 
 
See the answers above. We added model details on atmospheric surface layer and on how 
meteorological fields are preprocessed in Sect. 2.4.2. We now better discuss in Sect. 2.5.2 the 
difficulties related to the modeling or CO2 transport in the Paris area, as is reflected by the high 
estimates of model errors for the inversion configuration. We now better emphasize that our 
modeling configuration is derived from that of Bréon et al. (2015) and better present it. And we 



better highlight the fact that the difficulties related to the modeling of CO2 transport over urban 
areas explain why we assimilate data under the condition of high wind speed during the 
afternoon only, when the vertical mixing is high. By this way, the complex impact of local sources 
and transport should be decreased.  
 
In particular, we now better discuss our assumptions (in Sect. 2.5.2) and corresponding 
requirements (in Sect. 4.3) regarding the capability to model measurements in the core of the 
Paris urban area. The networks tested in our OSSEs include a significant number of sites in this 
core. However, Bréon et al. 2015 diagnosed very high model errors for such measurements and 
thus avoided assimilating them in their inversions (see more detailed discussions on this topic in 
our answer to specific comments 3 and 38 as well as Sect. 4.3 in the text).   
 
Finally, the sensitivity tests where the observation (model + measurement) errors are inflated 
are now presented in Sect. 3.2 rather than in the supplementary material to better discuss the 
weight of model errors. 
  
COMMENT: 
 
5. The manuscript needs further editing. It is full of detail that is hard to follow and at times 
extraneous to the central message of the paper. The figures are out of order, and often the figure 
quality is marginal. The writing quality is poor and must be improved before this manuscript is 
suitable for publication. 
 
RESPONSE: 
 
We now focus on the central message about the potential of atmospheric inversion using dense 
networks with OSSEs. We improved the quality and concision of the text and the quality of the 
figures.  
 
COMMENT: 
 
6. The economic justification for “cheap sensors” contains a great deal of unjustified wishful 
thinking.  
 
RESPONSE: 
 
See our answers to the comment 1. 
 
COMMENT: 
 
For example, Appendix B states that, “The cost of calibration is estimated to be of the same order 
for high precision and cheap sensors. The calibration for cheap sensors can be more frequent (e.g. 
two days) than for high precision sensors (e.g. one week), but needs less samples of calibration gas. 
In addition, innovative calibration oprocedures for cheap sensors are possible for further 
reductions of the calibration cost and the temporal correlation in instrument bias. For instance, a 
calibration center can be set up using high precision sensors to calibrate cheap sensors. One can 
manage two sets of cheap sensors: one in the calibration center and the other in situ in measuring. 
The calibration is simply performed by replacing the measuring sensors with recently calibrated 
ones from the calibration center. Since this new calibration method is free of calibration gas, and 
since the cost of replacing sensors is very limited, one can maintain a high frequency of calibration 
(e.g. daily). Note that the network cost can, furthermore, be reduced when pre-existing 
infrastructure is available, for instance the installation could be free of cost if sharing with existing 
air quality monitoring platforms.” 



The authors are thus proposing that a 70-instrument network sprawling across a large 
metropolitan region would have all of the instruments replaced every 1-2 days. The cost, however, 
is cited to be “very limited,” and Table B1 shows no added cost for personnel for replacing 70 
instruments every day. I would expect that such a schedule for instrument replacement alone would 
take 2-3 full time personnel. Further, Table B1 assumes that 70 free platforms with suitable 
characteristics for monitoring greenhouse gas emissions are available! This discussion is 1) 
unrealistic in the extreme and 2) unsuitable for publication. This unrealistic and misleading 
attempt at evaluating the economics of observational systems must be deleted from this document. 
It has no scientific value that I can discern. 
 
RESPONSE: 
 
We improved and simplify the discussions on the network cost and turned it into series of 
requirements. They were put into Appendix and summarized in the discussion section. The aim 
of this cost analysis is now to provide insights on whether the deployment of 30 to 70 sensor 
networks could be envisaged in the near future. We think that it is critical to develop this 
discussion after having analyzed results of OSSEs with such networks. 
  
COMMENT: 
 
Detailed comments. 
 
1. Page 2, Lines 13-15. What sensors are “currently developed?” As best I can tell, no actual sensors 
are evaluated. This text is extremely misleading and must be modified to represent the actual 
content of the paper, which assumed instruments with no bias and insignificant random error exist. 
 
RESPONSE: 
 
We clarified the fact in the discussion section that new prototypes of LCMP sensors are presently 
tested at LSCE and yield promising results regarding the requirements that the manuscript 
derives from the OSSEs. Note that now we do not assume the pre-existence of LCMP sensors for 
operational use but evaluate the potential of dense networks in improving inversion 
performance, although we have preliminarily tested such LCMP sensors within our lab. We 
strongly revised the abstract. 
 
COMMENT: 
 
2. Page 2, Lines 13-15 What defines expensive?  
 
RESPONSE: 
 
The new abstract now explain that the deployment of dense networks makes it necessary to 
decrease the price of the sensors whose typical cost is presently 50 k€. 
 
COMMENT: 
 
What defines a “megacity?” Is this different than the cities that emit 44% of global CO2 emissions? 
 
RESPONSE: 
 
The world “megacity” was deleted from the abstract. The 44% direct emissions correspond to all 
urban areas. The megacities are usually referred to urban areas whose total population exceeds 
10 million people. 
 



COMMENT: 
 
3. Page 2, Line 17. “25 m above ground level.” Why are the imagined sensors located at 25m above 
ground?  
 
RESPONSE: 
 
We have chosen 25 magl since this is the common height for high public or private buildings in 
the Paris area, and since much of them are convenient to install measurement sites on their roof. 
Building and managing dedicated tower sites for measuring CO2 at higher heights would be 
impossible (too expensive) if considering 30 to 70 site networks. We also selected this height 
since Bréon et al. 2015 assimilated measurements from stations at less than 25magl (the 
modeling skills generally increase with the height). 
 
COMMENT: 
 
Can this altitude be treated realistically in the inversion system? This is a strong recommendation 
that is not justified by the content of the paper. This must be carefully justified by showing that the 
model can simulate measurements collected at 25 m AGL or deleted. 
 
RESPONSE: 
 
As said above, Bréon et al. (2015) assimilated data from stations at less than 25magl. Local 
sources and transport may impact the concentration measurements at 25 magl in a way that is 
difficult to characterize using a mesoscale atmospheric transport model. This is why we select 
data under conditions of high wind speed for the afternoon only when the vertical mixing is high. 
Of note is that most of the site locations investigated in the study are outside the dense parts of 
the city, and they are all located without a precise definition of their specific location within the 
2km x 2km grid cells of CHIMERE. This means that specific studies can be led to select locations 
less prone to a complex local situation (using mobile campaigns of measurements and local scale 
transport modeling), which has been recently done at LSCE when setting up new sites around 
Paris.  
 
Still, assimilating 25magl measurement in the core of the urban area (which corresponds to a 
considerable number of sites in this study) is challenging and had not been attempted by Bréon 
et al. (2015) even though they derived typical estimates of the model error for such 
measurements (that have been used to set-up our inversion system). This requires being able to 
filter the local scale signal from the measurements at such locations (there are definitely some 
ideas for such filtering). These considerations are now better discussed in Sect. 2.4.3 and 4.3. 
 
 
COMMENT: 
 
4. Page 3, lines 5-12. These statements are not justified or quantified, thus not useful. 1) Certainly 
additional measurements such as CO might improve an urban inversion, but this is not a new result. 
This paper adds nothing to the body of literature on this topic. Without new results, this should be 
deleted.  
 
RESPONSE: 
 
Following your suggestion, the statements about CO were deleted in the abstract. 
 
COMMENT: 
 



2) The statement that “cheap” sensors can improve urban emissions estimates says nothing about 
the quality or characteristics of the so-called “cheap” sensors. Sensor performance should be 
quantified, or this text should be deleted. This is wishful thinking, not a conclusion from any 
research performed in this manuscript. 
 
RESPONSE: 
 
The whole abstract was rewritten in line with the general reorganization of the paper that is 
explained in answer to the previous comments of the reviewer.  
 
COMMENT: 
 
5. Page 3, line 26 – page 4 line 3. This is a run-on and confusing sentence. 
 
RESPONSE: 
 
We rewrote this sentence.  
 
COMMENT: 
 
6. Page 4, line 4. What is the “city mitigation potential?” 
 
RESPONSE: 
 
We have clarified it.  
 
COMMENT: 
 
7. Page 4, Line 6. English needs work. 
 
RESPONSE: 
 
We rewrote this paragraph to improve the language and avoided such a use of the terminology 
from climate economics. 
 
COMMENT: 
 
8. Page 4, line 29. economics. 
 
RESPONSE: 
 
We kept “climate economy” to be consistent with existing publications (please check some paper 
titles in the reference). 
 
COMMENT: 
 
9. Page 6, line 10. “required qualities”? What are “qualities?” Please be more precise. 
 
RESPONSE: 
 
We rewrote the sentence and changed required qualities to “accurate emission accounting 
method”. 
 
COMMENT: 



 
10. Page 6, line 14. Involves. 
 
RESPONSE: 
 
Corrected.  
 
COMMENT: 
 
11. Page 6, line 27. The use of continuous CO2 measurements to monitor urban emissions is far 
from a new idea. Please do not claim that this is a “new type of data.”  
 
RESPONSE: 
 
We removed “new type of data”. 
 
COMMENT: 
 
12. Page 8, lines 3-7. The authors do not employ an economic model to determine the costs of MRV 
vs. atmospheric inversions. They simply take the costs of these systems today, and make many 
unrealistic assumptions about these costs. Costs are not fixed, and today’s costs should not be used 
to plan tomorrow’s monitoring systems. Further evaluation of this text (Appendix B) reveals many 
other problems, noted above in point 6 of the overall comments. 
 
RESPONSE: 
 
The present costs of inventories are still indicative about the typical order of magnitude of the 
costs in the near term. However we now improve and shorten this analysis to provide very 
simple notions regarding the typical requirements on the cost of the sensors and networks in 
appendix, and, briefly, in the discussion section.  
 
Please see also our responses above to overall comment 1 and 6. 
 
COMMENT: 
 
13. Page 8, line 10. “are currently developed.” If they are currently developed, please provide some 
citations that describe the performance characteristics of these sensors. Some imagined sensor 
characteristics are described in Appendix A, but without any evidence of the realism of these claims. 
 
RESPONSE: 
 
As detailed in our responses to the main point 1, currently prototypes for such LCMP sensors are 
tested at LSCE and we illustrate first results that are promising regarding the potential for 
having instruments with such specifications in the near term. This work has been funded by the 
climate KIC innovation projects, such as MIRIADE and SMEVOUCHER (http://www.climate-
kic.org/projects/miriade/), and publications are planned for 2016.  See also our answer to 
overall comment 1. 
 
COMMENT: 
 
14. The introduction has a long discussion of greenhouse gas emissions targets and issues, but 
presents little insight into the performance of existing urban inversions. 
 
RESPONSE: 

http://www.climate-kic.org/projects/miriade/
http://www.climate-kic.org/projects/miriade/


 
The discussion on the uncertainty targets was removed (as discussed above). We feel that the 
discussions on MRV systems provide useful insights on the context for the monitoring of city 
CO2 emissions. Therefore we would like to keep it but we tried to clarify it. 
 
COMMENT: 
 
15. Page 9, lines 17-24. This text needs considerable editing. It is very difficult to understand. 
 
RESPONSE: 
 
We have deleted discussions on target derivation for MRV of city CO2 emissions. 
 
COMMENT: 
 
16. Page 9, lines 23-24. What are “city inventories that would not have access to the same level of 
information as national inventories.”? 
 
RESPONSE: 
 
This was removed due to the reorganization of the manuscript. 
 
It was connected to the part of the introduction stating that “Admittedly, inventories of city 
emissions are known to suffer from incomplete and uncertain data (see Appendix A for a brief 
review of city inventories). For instance, there is usually a lack of precise statistics regarding the 
total amount of fossil fuel that has been consumed within the cities.” 
 
COMMENT: 
 
17. This entire paragraph on “notional targets” should be simplified and clarified. 
 
RESPONSE: 
 
We do not define such notional targets a priori anymore. Instead, we just give highlights on the 
levels of posterior uncertainties from the different OSSEs in Sect. 4.2 based on the extrapolation 
of the uncertainties at the monthly scale into a wide range of typical uncertainties at the annual 
scale. 
 
COMMENT: 
 
18. Page 10, line 25 – page 11, line 2. I believe these are hypotheses, not statements of fact. Please 
clarify. If they are facts, please include appropriate citations. 
 
RESPONSE: 
 
These are not statements of facts, neither hypothesis. They are deduction based on physical 
basis (sectoral emissions are driven by different dominant factors) and mathematical reasoning 
(split of budgets for different sectors implies negative correlations). We modified the text 
accordingly and we better discussed the assumptions underlying this derivation (now in Sect. 
3.1). 
 
COMMENT: 
 
19. Page 11, lines 2-3. I don’t understand this sentence. 



 
RESPONSE: 
 
We do not discuss notional target anymore, and this sentence was deleted. 
 
COMMENT: 
 
20. Page 11, line 8. reducing the reduction? 
 
RESPONSE: 
 
We corrected the text. We wanted to write “reducing the emission”. These lines of text was 
moved into into Sect. 4.2. 
 
COMMENT: 
 
21. Page11, line 4. What is the purpose of this paragraph? 
 
RESPONSE: 
 
We wanted to connect the uncertainties in the monthly to annual budgets of the emissions to 
that in the trend monitoring, since trends are key indicators for climate plans. This analysis was 
moved into Sect. 4.2.  
 
COMMENT: 
 
22. Page 11, line 14. This paragraph is very difficult to follow and requires significant editing.  
Please explain the methods and assumptions clearly. 
 
RESPONSE: 
 
The connection between typical uncertainties at the monthly scale and at the annual scale is now 
assessed by two extreme cases on the month to month correlations (independent and perfectly 
correlated), as results in a wide range of annual uncertainties that should cover most realistic 
month to month correlation scenarios. Our assumption that the scores of uncertainty in winter 
can be extrapolated to summer month is based on sensitivity tests where the uncertainty in the 
biogenic fluxes was artificially increased to typical levels for summer months. This would be due 
to using the gradient approach, which levels down the sensitivity of the inversion to the natural 
fluxes. This is now better discussed in Sect. 4.2. 
 
COMMENT: 
 
23. Page 12, line 11. I don’t understand the purpose or content of this paragraph. 
 
RESPONSE: 
 
The aim of this paragraph (now sketched in the discussion section) was to provide a way of 
extrapolating (with a wide range of uncertainty) results of uncertainties at the monthly scale to 
the annual scale since the inversion are applied to a 1-month period only while the annual scale 
is more relevant politically and correspond to that of most of the inventories.  
 
Now we do not rely on such definition of levels of uncertainty for discussions of the inversion 
results, but assess what are the implications and the relevance of the uncertainties in emissions 
estimates brought down by inversions in the context of MRV (Sect. 4.2).  



 
COMMENT: 
 
24. Section 2.2. Notional costs. This section of the paper has serious problems. There is little 

information that serves as the basis for the cost of conducting an urban emissions inventory of a 

given accuracy. There are questionable assumptions about the cost of an atmospheric inversion 

(e.g. cost of sensors is the primary cost). The assumption about “cheap” sensor accuracy and 

precision makes the distinction among sensors meaningless, but there is no actual evaluation of any 

sensors. There are no assessments of actual transport errors. Assumptions about costs made in 

Appendix B appear to be extremely unrealistic. The claim that this study examines the benefits of 

low cost, poor performance vs. high cost, high performance sensors is false and should be 

eliminated from the paper. The assumptions about the costs of inventory vs. inversion are also 

highly questionable and should also be deleted. 

RESPONSE: 
 
As already mentioned in answer to the overall comments 1 and 6 and detailed comment 12 by 
the reviewer, we now focus the paper on OSSEs. These discussions on the costs were greatly 
shortened and took form of requirements. See our response to overall point 6 for the aim of this 
cost analysis. 
 
COMMENT: 
 
25. Section 3.1. This introduction to the mathematics needs to utilize terminology that is specific to 
an urban atmospheric inversion. A “background” estimate of what, for example? Observations of 
what? The theory is not new. The application must be clear. 
 
RESPONSE: 
 
The atmospheric inverse modeling community has hardly managed to use common 
mathematical terminology and we cannot say that, today, urban atmospheric inversion has 
already developed into a widespread activity involving a large community. However, we tried to 
clarify this section and modified our terminology. 
 
COMMENT: 
 
26. Page 15, line 8. “control a vector x?” What does that mean? 
 
RESPONSE: 
 
The control vector is the set of variables that are controlled by the inversion, and we tried to 
improve its presentation. There is no misuse of the term control here. The atmospheric inverse 
modeling community generally erroneously call it the state vector even though it is not the state 
vector of a dynamical system (because of adopting the vocabulary of meteorological data 
assimilation for which the control vector is the state vector of the meteorological dynamical 
system, while, in atmospheric inversion, this is the input vector of the considered dynamical 
system i.e. the transport model). 
  
 
COMMENT: 
 
27. Section 3.2 The terminology in the section “control variables” should be replaced with physically 
meaningful terms. 



 
RESPONSE: 
 
The inversion controls scaling factors to be applied to emission budgets over various time 
periods, areas and set of sectors of activity. We tried to replace control variables by emissions 
wherever the text does not need to be rigorous (which we have done as in Fig. 1) but some parts 
of the text have to stick to the mathematical reality.  
 
COMMENT: 
 
28. Page 16, line 14-15. I do not believe that computational constraints are a primary limit on the 
resolution of the inversion. Either modify this discussion or provide a citation that demonstrates 
this claim. 
 
RESPONSE: 
 
The inversion relies on the full computation of the matrix corresponding to the linear 
observation operator. This full computation requires in principle as many transport simulation 
over 1 month as the number of control variables. The inversion also requires the inversions of 
matrices whose size is the number of control variables, which is another source of computing 
limitations. This is now better explained in Sect. 2.2. 
 
COMMENT: 
 
29. Page 16, line 27. “rest” is an unfortunate choice, since it has another meaning. “Remainder” 
would be better. 
 
RESPONSE: 
 
We followed your suggestion and change “rest” to “remainder”. 
 
COMMENT: 
 
30. Page 17, line 1. Again, why are computational constraints invoked? What computational 
constraints? It is entirely possible to resolve an urban region at high resolution given current 
computing resources. This is not a real limit on urban inversion systems. The true reasoning for this 
coarse spatial resolution should be explained.  
 
RESPONSE: 
 
Without spending too much time on discussing each type of inversion systems, we just remind 
that some of them are easily limited, due to computational constraints, in term of the size of the 
observation vector (e.g. analytical systems which base the computation of the matrix 
corresponding to the observation operator on computations of the sensitivity of each 
assimilated data to the fluxes), others in term of the size of the control vector (e.g. analytical 
systems which base the computation of the matrix corresponding to the observation operator on 
computations of the impact of each controlled flux into the atmospheric concentration). At first 
glance, variational system could appear not to be limited for the size of the control vector nor for 
that of the observation vector, but actually, it is limited in terms of number of minimization 
iteration, and the larger the control space is, the more iterations should be needed to converge. 
And computing uncertainty covariance matrices from variational systems requires a large 
number of OSSEs which is extremely difficult due to computational limitations. Finally, all types 
of system need to address the inversion of covariance matrices whose size is a function of the 



number of control variables. Addressing the computation of HTR-1H can be another source of 
limitation regarding the size of the problem. 
 
Here, we use the type of inversion that is the most adapted to the test of a very large number of 
different observation networks with a large number of station locations. See above for the 
description of its computational limitations. 
 
COMMENT: 
 
The atmospheric transport resolution applied for this study is exceptionally coarse. 
 
RESPONSE: 
 
Again the horizontal resolution of CHIMERE simulations for the Paris area is 2 km. There are 19 
vertical layers up to 500 hPa with a 25m resolution close to the surface. The original ECMWF 
15 km meteorological data were interpolated to the CHIMERE grid. See our answer to overall 
comment 4 on this topic. 
 
COMMENT: 
 
31. Figure 2. The regional colors and regional boundaries are not clear. There are lines on the map 
that do not correspond to the colors. What are the regional boundaries? 
 
RESPONSE: 
 
The colors marked out five zones of (2 km x 2 km) grid cells actually used for the definition of 
the control vector in the inversions. These five zones are meant to evenly split the Ile-de-France 
region, and do not necessarily follow the boundaries of the different administrative borders in 
this region (black lines in Fig. 2). It is now clarified in the caption of Fig. 2. 
 
COMMENT: 
 
32. Page 17, line 18. Nordbo et al (2012) reported no flux tower measurements that were carbon 
neutral. Every observational data point in their paper reported a net annual carbon source to the 
atmosphere. The paper cannot be used to justify that urban areas are carbon neutral. (Nordbo et al 
(2012) also referred to Minnesota as a city, and used 500 m resolution data to derive urban 
fraction for flux tower sites.) 
 
RESPONSE: 
 
Nordbo et al (2012) performed regressions between green-area fraction and urban emissions 
and estimated that a city with 80% green-area fraction would be carbon-neutral. We rewrote 
this sentence for clarity. 
 
 
COMMENT: 
 
33. Page 18, lines 4-5. Please define afternoon and high wind speeds. The details are important. 
 
RESPONSE: 
 
They were detailed in Sect. 2.4.3 in the revision. We added a pointer (“see Sect. 2.4.3 for details”) 
to the text. 
 



COMMENT: 
 
34. Page 18, line 3. How are upwind and downwind sites defined? 
 
RESPONSE: 
 
This was also detailed in Sect. 2.4.3 in the revision. 
 
COMMENT: 
 
35. Figure 3 caption. “uniform” not unifrom. 
 
RESPONSE: 
 
Corrected. 
 
COMMENT: 
 
36. Page 19, line 3. What is the purpose of random selections of networks? It isn’t likely that 
networks will be determined via a random process. 
 
RESPONSE: 
 
Indeed, the idea of comparing random samples is to investigate whether one can improve the 
results by conducting network design studies with OSSEs. Presently, the design of the network is 
more generally driven by practical issues regarding the infrastructure (agreements with 
potential hosts of the site, ability to fix inlets at height, and the rest of the infrastructure at a 
given site). Both considerations could contribute to the design of the network. Here, the samples 
are driven by some practical consideration so they are not totally random. Still, in some cases we 
see significant sensitivity to the sampling and thus the asset of conducting network design 
studies. This is now better discussed in Sections 3.1 and 4.4. 
 
COMMENT: 
 
37. Page 19, line 6. Figure 5 is referenced before Figure 4. 
 
RESPONSE: 
 
We rearranged the order of figures. 
 
COMMENT: 
 
38. Page 19, lines 13-15. How does sampling at 25m above ground, “avoid dominant influence of 
local emissions on concentration observations?” I don’t know of any published work that shows that 
25m is high enough above the surface to avoid being dominated by local emissions. I don’t know 
how “avoiding dominant influence” or “local emissions” are defined. See the 4th main comment 
above. This is an unjustified and highly misleading claim that should not be published. 
 
RESPONSE: 
 
See our answers to the general comment 4 and minor comment 3 on the same topic. Again, 
Bréon et al. successfully assimilated real measurements from peri-urban sites at less than 
25 magl by selecting data under specific wind conditions and during the afternoon only, and we 
derive our estimate of the model transport errors at such sites from their diagnostics. We rely on 



assumptions regarding the ability to exploit 25magl measurements in the core of the city (by 
filtering the local scale signal from urban measurements), which was termed as requirements in 
the new version of the manuscript. 
 
Furthermore, the 25 magl height corresponds to the installation of the sensors on pre-existing 
infrastructures such as the roof of public/private buildings.  
 
We improved the text to better discuss these points. 
 
COMMENT: 
 
39. Page 19, line 18. I cannot understand what the authors are trying to say about H1. Please 
rewrite in clear language. 
 
RESPONSE: 
 
We tried to clarify this section.  
 
COMMENT: 
 
40. Page 20, line 7. Is a 15km resolution ecosystem flux model appropriate for an urban scale study? 
This seems exceptionally coarse. 
 
RESPONSE: 
 
Paris is an intensive urbanized area. As the computation and gradient assimilation technique 
focus on the urban area where ecosystem plays small role, the coarse resolution of the 
vegetation flux simulation should not have significant impact on our inversion results. Indeed, 
we use the same vegetation flux simulation as in Bréon et al. 2015 where real data are 
assimilated.  Furthermore, the spatial resolution of the NEE should not have a high impact on the 
assessment from OSSEs. The role of having high resolution product is to increase the fit with the 
“actual” fluxes but the gain from this improvement for inversion would be small, as can be seen 
by our sensitivity studies about NEE.  
 
COMMENT: 
 
41. Page 20, line 28. Figure 4? The figures are out of order. 
 
RESPONSE: 
 
We now pay attention to the order of figures. 
 
COMMENT: 
 
42. Page 21, line 16-18. What is the area covered at 2km x 2km resolution? There are 2km x10km 
grid boxes? Why? 
 
RESPONSE: 
 
As we used the same modeling framework as Breon et al. (2015), we referred to it for details 
about the CHIMERE model grid (see Fig. 1 in Breon et al. (2015) and Supplementary Fig. S1). The 
2 km x 2 km area covers Ile-de-France, and the 2 km x 10 km grid boxes are defined for areas 
outside of Ile-de-France. We used coarser resolution for these outside areas (our objective is 



Paris urban emissions) to save computational time. A figure showing the model grid is now 
provided in supplementary material. 
 
COMMENT: 
 
43. Page 21, H2: The transport model is only a 15km resolution model with 19 levels up to 500 hPa? 
This is very coarse resolution. Each vertical level, if evenly spaced, is approximately 250m. It is not 
unusual for coarse resolution models to have very unrealistic surface layer behavior when they are 
applied to CO2 simulations, and a 15 km horizontal resolution model cannot take into account 
realistic structures in the urban surface energy balance and changes in urban roughness. How can 
this model be used to evaluate the suitability of measurements 25 m AGL over the highly complex 
urban surface? What is the profile of CO2 close to the surface? The lack of description of the fidelity 
of this model for this task is a major weakness of the document. The OSSE is only as good as the 
model used for the OSSE. No relevant model evaluation is presented in this document. 
 
RESPONSE: 
 
Again, we use the same modeling framework as Breon et al. (2015) where model evaluation is 
presented. Please see our responses to specific comments 3, 30 and 38 and to general comment 
4 for details on model resolutions and on our assumptions regarding the ability to fit with 25 
magl measurements. We now emphasize that the configuration of our inversion system is 
strongly connected to that of Bréon et al. (2015). 
 
COMMENT: 
 
44. Page 21, lines 25-27. I don’t understand “depending on the simulation: : :” Sometimes 
you have initial and boundary conditions, and sometimes you don’t? Please clarify. How are 
boundary and initial conditions optional? What determines whether or not you include CO2 
boundary and initial conditions? 
 
RESPONSE: 
 
When willing to compare the model to the data, we need to account for boundary and initial 
conditions. However, for OSSEs, we do not need to account for CO2 boundary initial and 
conditions (i.e. they are not included in the control vector) if assuming that uncertainties in such 
conditions can be accounted for in the observation error R (as done here). The mathematical 
framework of the inversion explains it. We tried to make it clearer through improving the 
explanation of the mathematical framework (see Sect. 2.4.2). 
 
COMMENT: 
 
45. Page 23, line 1. What does “read from the ECMWF meteorological product” mean? 
 
RESPONSE: 
 
We rephrased it. 
 
COMMENT: 
 
46. Page 23, line 11. Why 22.5 degrees? Is there any justification for this value? Plume dispersion 
widths will vary with wind speed, wind shear and turbulent intensity. What is the origin of this fixed 
value? What limitations does this fixed value place on the results of this study? 
 
RESPONSE: 



 
22.5° is clearly resulting from a trade-off between the need to select enough data so that the 
observational constraint is strong and not too much hampered by model and measurement 
errors, and the need for ensuring that we do not depart too much from the objective of 
assimilating “downwind-upwind” gradients. This value has definitely some arbitrary nature. But 
we recently publish results from a 1-year inversion experiment using real data demonstrating 
that this yield very good results unlike wider wind ranges for the selection of gradients (Staufer 
et al., 2016). 
 
Having an even more complex strategy defining the wind range as a function of other 
meteorological conditions could be more adapted, but this is a first step in this direction and for 
the OSSEs here, it would not have been relevant. 
 
It is now better discussed in Sect. 2.4.3. 
 
COMMENT: 
 
47. Page 23, line 13. Is that 7-16% of observations once the afternoon hours have been selected? Or 
is that 7-16% of the total number of possible observations? 
 
RESPONSE: 
 
It is for the total number of possible observations. We clarified it. 
 
COMMENT: 
 
48. Figure 6. The wind rose graphics are too small to read. 

RESPONSE: 
 
We improved Figure 6. 
 
COMMENT: 
 
49. Page 23, line 21. This paragraph is incomprehensible. 
 
RESPONSE: 
 
We rewrote the paragraph to clearly present how we assess the contribution of individual flux 
components to CO2 concentrations. 
 
COMMENT: 
 
50. Figure 7. Why are any differences that are not in the afternoon hours displayed? They are 
irrelevant to this OSSE. 
 
RESPONSE: 
 
We removed plots of data that are not in the afternoon hours. 
 
 
COMMENT: 
 



51. Page 24, lines 5-9. A modeling system with 250m vertical resolution will have difficulty 
representing mole fraction differences at 25m above ground at any time of day. Figure 7 displays 
time series and differences that might be seriously influenced by the ability or inability of this 
modeling system to represent vertical mixing very close to strong sources and sinks at the earth’s 
surface. Evaluation of the near-surface vertical profiles created in the model is essential to ensure 
that these results are not simply artifacts of unrealistic surface layer mixing. The quantitative 
horizontal gradients (the focus of the following paragraph) are very dependent on this vertical 
mixing. 
 
RESPONSE: 
 
Please see our response to specific comments 3, 30 and 38 and general comment 4 on the 
vertical resolution of the model. We generally have something like 7 model vertical levels within 
the PBL during the afternoon. 
 
COMMENT: 
 
52. Page 25, line 16, delete “can”. “Even though a few cities: : :” Why is this relevant? 
 
RESPONSE: 
 
We deleted “can”. We just wanted to indicate that the setup of the prior uncertainties may have 
to be higher for other cities for which the quality of the prior knowledge (of the available bottom 
up inventories) is not as good. Our posterior uncertainties in the inverted emissions could thus 
be viewed as being optimistic for the “average city case”. This is now rewritten in Sect. 2.5.1.
  
 
COMMENT: 
 
53. Page 26, line 2. I do not see how Figure 9a illustrates the point being made in the text. This 
needs significant work. What happened to figure 8? I see that Figure 9 is a correlation matrix, but 
no dimensions are described. As presented, this is nearly incomprehensible. It is very good that the 
authors are trying to explain these critical assumptions, but the presentation is not sufficient to 
understand the assumptions. 
 
RESPONSE: 
 
We improved the text related to the original Fig. 9 (now Fig. 8 in the new draft) as well as its 
caption. The dimension in Fig. 8 in the new draft is 834, same as the dimension of the control 
vector. The corresponding scaling factors are grouped by sectors. Prior sectoral estimate errors 
were assumed to be independent, as can be read in Fig. 8a in the new draft as zero correlations.  
 
COMMENT: 
 
54. Section 3.5.2 states that the R matrix is assumed to be diagonal, but then notes that the errors 
are reduced for intersite differences because of the large coherence in space in errors between 
stations. This is inconsistent. What is the impact of this inconsistency on the validity of the results? 
 
RESPONSE: 
 
The R matrix applies to “downwind-upwind” gradients. Assuming that R is diagonal means that 
there is no temporal autocorrelation for such gradients between two sites, or that there is no 
correlation of the errors in the direction orthogonal to the wind. When we claimed that there is a 
large coherence in space of the errors, we meant that this error was highly correlated when 



following an air parcel, i.e. along the wind direction. We still acknowledge that some source of 
model error could be correlated between different gradients corresponding to close locations. 
However, formulating the spatial correlation in model error is a very challenging. Its detailed 
investigation would be beyond the scope of this paper. We followed Breon et al. (2015) to set a 
diagonal R. We now clarify and better discuss this in Sect. 2.5.2. 
 
 
COMMENT: 
 
55. Page 27, lines 8-10. The assumed transport errors are huge, and are a critical set of 
assumptions in your study.  
 
RESPONSE: 
 
This comment that the assumed transport errors are huge contradicts the previous concerns 
raised by earlier comments 30 and 38, the corresponding general comment regarding the ability 
of the model to fit the observation. Those numbers arise from diagnostics by Bréon et al (2015). 
They account for the difficulty to model the measurements in the Paris area with our inverse 
modeling configuration. 
 
COMMENT: 
 
The lack of spatial and temporal correlation is also a significant assumption.  
 
RESPONSE: 
 
Bréon et al. 2015 did not account for such spatial and temporal correlations. See also our answer 
to the previous comment on the spatial correlations of the observation errors. 
 
However, the sensitivity tests (originally presented in the supplementary material and now in 
Sect. 3.2 of the paper) check the impact of inflating R, which can be viewed as a test of sensitivity 
of temporal correlations in R. Indeed increasing the standard deviation of the observation errors 
instead of modeling their autocorrelations is a common technique in atmospheric inversion, e.g. 
see Chevallier, GRL, Impact of correlated observation errors on inverted CO2 surface fluxes from 
OCO measurements, 2007. When analyzing the fluxes at the monthly scale, it is critical to know 
what is the resulting observation error for data averaged at the weekly to daily scale. Whether a 
given uncertainty on these averages arises from a high STD of the observation error at the 
hourly scale but low temporal correlations or a lower STD but significant temporal correlations 
should not play a critical role for monthly mean results. This is now better discussed in Sect. 3.2 
and 4.3 . 
 
COMMENT: 
 
I find it very surprising that the sensitivity of your results to these assumptions is insignificant (line 
10). I do not have supplementary figure S1. The results of the paper should depend heavily on these 
assumed errors. A statement that says the dependence is insignificant with no results presented to 
justify this statement is not defensible. 
 
RESPONSE: 
 
If assuming a 0D inversion problem (with one control variable and one observation) where the 
observation operator is an identity matrix, the posterior variance will be written BR/(B+R). 
Depending on the relative weight between B and R, we can see that the result can be weakly 
impacted by large changes to R (if the weight of B is far larger). The problem is even more 



complex when accounting for the transport. It is not surprising to find such a low sensitivity to R 
at the monthly scale, which is a scale at which the projection of the uncertainty in the prior 
emission into the concentration space is very high. This is now discussed in the Sect. 3.2. 
 
COMMENT: 
 
Results. 56. How is the mixing ratio difference between two sites attributed to a flux correction? 
This is not clear. This is fundamental and must be defined. 
 
RESPONSE: 
 
The link between flux and gradients is based on the sampling of the gradients from the output of 
the atmospheric transport model forced by the fluxes, and recovering flux from measured 
gradients relies on the inversion approach. In this study, we focus on the diagnostic of the 
uncertainty reduction enabled by the inversion (since the inversion is a statistical approach), 
and for this we do not need to derive, in practice, flux corrections.  This is now better explained 
in the beginning of Sect. 2. 
 
COMMENT: 
 
57. Page 27, lines 19-22. Airlines, power plants and nighttime emissions from all sectors will have 
essentially no observational constraints from the methods proposed, save for extreme assumptions 
about the coherence of the errors. While there is some reason to believe that corrections to daytime 
emissions from roads or buildings might have some coherence with nocturnal emissions from roads 
and buildings, there is no reason to believe that airport emissions will be detected by two sites that 
are located in a region that contains an airport, but which do not encompass the emissions from 
the airport. It is fundamentally incorrect to say that the proposed network would reduce 
uncertainty in total emissions. 
 
RESPONSE: 
 
We have defined specific control variables for the airports and the power plants. Therefore, if 
the system diagnoses uncertainty reduction for these sources, it is because their signature is 
detectable in the set of observation that is assimilated. It does not rely on extreme assumptions 
regarding the correlations between uncertainties in airport or power plant emissions and in 
other sectors since we ignore such correlations in our inverse modeling set up. 
 
Regarding daytime and nighttime emissions, we control them separately. As mentioned by the 
reviewer, there is some reason to believe that corrections to daytime emissions from roads or 
buildings might have some coherence with nocturnal emissions from roads and buildings. 
 
Finally, if we reduce strongly the emissions for some specific sectors, mathematically, we reduce 
uncertainties in the total emissions. Reducing the uncertainty in total emissions does not require 
reducing uncertainties for all sectors of emissions. 
 
 
COMMENT: 
 
58. Page 28, line 4. Define “gain.” Or do you mean uncertainty reduction? 
 
RESPONSE: 
 
Yes, it is uncertainty reduction in percentage compared to prior uncertainty. However we 
removed “gain” to avoid unnecessary complication.  



 
COMMENT: 
 
59. Figure 8. The total uncertainty in your inversion approaches an asymptote as the total number 
of sites increases. Why? What is the limiting factor in your inversion system? 
 
RESPONSE: 
 
We examined in details this slowdown effect in Sect. 3.1 using DFS which quantifies the 
efficiency of the observations assimilated. As the number of sites increases, it was shown that 
the information from observations becomes more redundant, in a manner specific to the 
network type. When using denser networks, the overall observation constraint from the 
network on inversions increases, but such observation constraint becomes less efficient because 
the approaching stations raise some redundancy in representing areas of emissions within IDF. 
Still, the densification of the network up to 70 sites cannot totally bridge lack of sensitivity to 
fluxes for periods other than daytime, to emissions when the wind conditions do not correspond 
to the gradient selection criteria, and to sectors dominated by local sources for which 
assimilating gradients between sites that are distant by less than 5km would be required.  This is 
now better discussed in Sect. 3.1. 
 
 
COMMENT: 
 
60. Page 29, line 8. DFS/d <10%? When you divide DFS by d, you get a number less than 10%? 
Please clarify. Do you mean DFS gained per measurement pair added is less than 10%? 
 
RESPONSE: 
 
We mean the DFS gained per measurement (concentration gradient) is less than 10%. Each 
measurement has a maximal DFS of 1, and a minimal value of 0. The maximal DFS value for the 
inversion system equals to the number of measurements (d), hence DFS/d accounts for the 
percentage of observations (related to the signal but not the noise) that are effectively 
assimilated by inversions. We clarified this in Sect. 3.1. 
 
COMMENT: 
 
61. Page 29, line 10. English, “the Iowa state of USA?” 
 
RESPONSE: 
 
We removed it from the text. 
 
COMMENT: 
 
62. Page 29, lines 11-12. The authors state, “Such small amounts result from the diffuse nature of 
atmospheric transport and from the uncertainty in atmospheric modeling.” The authors, however, 
have utilized only crude assumptions about atmospheric transport modeling. Their assumptions 
are not the truth about atmospheric transport errors. This statement appears to be unjustified. 
 
RESPONSE: 
 
Again, see our previous answers to your comments atmospheric transport errors. 
 
COMMENT: 



 
63. Page 29, line 13. “the rate of effectively assimilated gradients decreases.” What does this mean? 
This does not make sense. 
 
RESPONSE: 
 
It is related to the slowdown effect discussed in answer to comments 59 and 60. We commented 
in the text that this is related to the redundancy of the gradient information. 
 
COMMENT: 
 
64. Page 29. Lines 12-17. I cannot understand this sentence. Is this a comparison to the network 
studied in the Wu et al (2011) paper? 
 
RESPONSE: 
 
These lines explain how the redundancy (quantified by DFS) of the information from 
observations for inversions evolves with denser networks. This paragraph was improved for 
clarity. 
 
COMMENT: 
 
65. Page 29, line 28. “this corresponds to a level 1 quality.” What does this mean? What is a “level 1 
quality?” 
 
RESPONSE: 
 
In the original draft, we introduced three levels of quality for the convenience of discussions on 
uncertainty targets in the MRV context. We deleted such discussions on levels of quality, as the 
concept of uncertainty target has been removed from the new draft. 
  
 
COMMENT: 
 
66. Page 30, line 3. The entire discussion of network design vs. uncertainty reduction is entirely 
dependent upon the assumed nature of coherence in the flux errors. Huge spatial coherence is 
assumed (entire regions have a single correction factor for a single sector of emissions). This 
assumption is severe and is likely to dominate any results regarding optimal spatial network design. 
The results, however, do not note any dependence on the assumed uncertainties in the prior flux 
errors. The results also reportedly show insignificant dependence on very large assumed 
atmospheric transport errors, but this lack of sensitivity is not shown. Page 32, line 24, admits these 
limitations, but this is buried into the recesses of the paper. It is dishonest not to present these 
limitations prominently in the abstract. As noted by the authors, “The results obtained in this study 
should not be over-interpreted.” That sentence belongs in the abstract, and it needs to be explained 
in the abstract. 
 
RESPONSE: 
 
Regarding the coherence of the error, controlling large regions with a single correction factor 
does not mean assuming that errors at higher resolution are entirely correlated. This means that 
uncertainties in the emissions at higher resolution must be accounted for in the computation of 
the model errors (we call it the aggregation errors, see Kaminski et al. (2001)). The diagnostics 
of model error by Bréon et al. (2015) include a diagnostic of the aggregation errors since in their 



framework they apply emission correction factors for the full Ile-de-France region. Here, the 
control resolution is higher and smaller aggregation errors could be expected. 
 
The list of networks to be tested and the control areas have been built consistently to avoid 
artefacts from the aggregation. With our configuration, even though a single correction factor for 
a large area is used, having as much sites as possible around the most prominent sources of the 
area would give a better control on the average budget. And, indeed, in the end, as would have 
been expected with a high resolution inverse modeling system, the “best” networks definitely 
correspond to those providing a strong constraint on most the largest sources within the areas. 
So the results do not seem to be biased by the coarse scale of the control vector. 
 
The total prior uncertainty is fixed to 20% in this study and follows the setup of Bréon et al. 
(2015). This number is based on the expert judgement regarding uncertainties in regional 
inventories such as that of AIRPARIF for the Ile de France area as discussed in Appendix A. This 
prescription on prior uncertainty was also followed by Staufer et al. (2016) in which year-long 
real data were successfully assimilated to estimate the budget of emissions from IDF.   
 
Still, some approximations in our setup of the sectorial uncertainties can impact the results of 
the computation of uncertainty reduction. It could raise concerns regarding the analysis of the 
absolute values of uncertainty reduction for a given network. However, the comparative analysis 
of the uncertainty reductions when using different networks but the same inversion setup (i.e. 
the network design analysis) should bring more robust conclusions. 
 
Regarding the lack of sensitivity to the observation errors, see our previous answers to 
comments on atmospheric transport error.  
 
We better discussed all these points in Sect. 2.5.1, 2.5.2, 3 and 4.3 and better focus on the 
network design (OSSE) component of the study. We rewrote the abstract accordingly. 
 
 
COMMENT: 
 
67. Page 33, line 3. From this point on, the text has no specific connection to the results of this study. 
This text is extraneous and should be deleted. 
 
RESPONSE: 
 
We agree that these texts are not directly related to the results. These are about the perspectives 
on how to further improve inversion performances for practical atmospheric inversion of 
citywide CO2 emissions. They were considerably shortened and reoriented to discussions on 
sectoral inversions in the new draft. We kept the discussions concerning inventories and 
inversions in the end of the paper. 
 
 

Anonymous Referee #4 

 
COMMENT: 
 
The paper by Wu et al., entitled “Atmospheric inversion for most effective quantification of city CO2 
emissions” seeks to answer the question: how much uncertainty reduction in carbon emissions from 
cities can urban networks observing atmospheric CO2 yield? This is a very timely topic, as the 
COP21 meeting is underway in Paris as I write this review. The paper is written well, and the 



inversion methodology is sound. However, I have one major concern regarding the assumptions 
underlying cheaper sensors that may render results from the “cheap” network overly optimistic. I 
would like the authors to address this concern before the paper is published in its final form. 
 
RESPONSE: 
 
We thank the reviewer for this positive general comment on the paper, and for having helped 
the paper better focusing on its strongest material and better discussing the assumptions on the 
low cost sensors.  
 
COMMENT: 
 
MAJOR COMMENT:  
 
The authors appear to be making a lot of assumptions regarding “cheap sensors” that are not 
substantiated by evidence. In short, I am not aware of cheap sensors that can perform as well as the 
authors assumed. Can the authors cite specific peer-reviewed references that illustrate the ability 
for these sensors to perform as well as assumed? 
 
RESPONSE: 
 
This study analyzes the potential improvement on inversion performance when using much 
denser networks. This raises the need for low-cost medium precision (LCMP) sensor instead of 
state of the art high-precision instruments. Although LCMP sensors with the precision, 
systematic error and cost assumed in the initial manuscript are not commercially available yet, 
present testing with different versions of prototypes within our laboratory (by co-authors of this 
paper) provide encouraging results for the repeatability and reproducibility of CO2 
measurements, when external influences are properly corrected for. This and previous work 
have been funded by the climate KIC innovation projects, such as MIRIADE and SMEVOUCHER 
(http://www.climate-kic.org/projects/miriade/). As the test will be continued to verify the 
performance for a least one year, the full study on the sensors shall be published in 2016. Still, 
we have attached a figure illustrating preliminary work for the reviewers. It indicates that LCMP 
sensors could yield measurements uncertainties of about 1 ppm for hourly values if regularly 
calibrated (every few days or weekly). 
 
The paper now better focuses on the OSSEs. Accordingly the title was changed to “What would 
dense atmospheric observation networks bring to atmospheric inversion for the quantification 
of city CO2 emissions?” We do not assume the pre-existence of LCMP sensors any more, but 
discuss now the accuracy of the LCMP sensors and the cost of network infrastructure in terms of 
requirements in the discussion section and in appendix. 
 
 
COMMENT: 
 
If there are systematic errors in the cheap sensors there could very well be erroneous emissions that 
would be solved for by the inversion system. For instance, if the cheap sensors measure 
systematically higher CO2 mixing ratios over several hours, the inversion would retrieve higher 
emissions, naturally. This could require such sensors to be calibrated at significantly higher 
frequency (e.g., hourly), rather than the multi-day frequency assumed by the authors. Would this be 
feasible? 
 
RESPONSE: 
 

http://www.climate-kic.org/projects/miriade/


When analyzing the fluxes at the monthly scale, it is critical to know what is the resulting 
observation error for data averaged at the weekly to daily scale. Whether a given uncertainty on 
these averages arises from a high standard deviation (STD) of the observation error at the 
hourly scale but low temporal correlations or a lower STD but significant temporal correlations 
would not play a critical role for monthly mean results.  
 
A consideration has led inverse modelers to compensate (assuming it would raise exactly the 
same results over monthly to seasonal scales) 1-hour to several day temporal autocorrelations 
of the measurement errors that they could not explicitly set up in their systems by increasing the 
STD of the measurement errors at the hourly scale (Chevallier, 2007). With that in mind, we 
consider that our tests of sensitivity to the observation errors, increasing the STD of the hourly 
scale errors, which are now described in the main text, address the potential impact of 
systematic errors on 1-month mean results. In these tests, we implicitly require calibrations to 
prevent systematic errors with temporal autocorrelation of more than a few days/week. 
Therefore, we now use these sensitivity tests to raise requirements on the accuracy and 
frequency of the calibration for the sensors rather than derive a fixed measurement errors based 
on assumption for such an accuracy for a given calibration strategy. We remark that, actually,  
our preliminary calibration results with LCMP sensors favor achieving such requirement. This is 
now better discussed in Sect. 4.3. 
 
COMMENT: 
 
Note that the comment about “systematic errors should not have long autocorrelation timescales” 
on Page. 30706 Lines 9_10 is erroneous. By definition, systematic errors have a non-negligible 
autocorrelation timescale! 
 
RESPONSE: 
 
Calibrations prevent systematic errors from having long autocorrelation timescales. There is no 
strict definition of systematic errors. But for such sensors, they characterize the instrument 
drifts and biases that can be corrected for through regularly applied calibrations, with a residual 
error that haves some temporal autocorrelations whose timescales should not exceed the 
calibration periods. 
 
COMMENT: 
 
A type of measurement network that the authors have yet to explore is the combination of 
deploying both high-precision and cheap sensors in the field, which may be a likely way forward in 
the near-term, while the cheaper sensors are still undergoing improvement. The high precision 
sensor(s) would help detect gross errors in the cheap sensors, helping to prevent systematic errors 
in the retrieved fluxes, as mentioned in the aforementioned scenario. 
 
RESPONSE: 
 
This is a very nice suggestion. We can see that potential of using travelling high-precision 
instruments (Hammer et al. 2013, http://www.atmos-meas-tech.net/6/1201/2013/amt-6-
1201-2013.pdf) within the network to verify the LCMP performance. This would be consistent 
with what has been done for the atmospheric CO2 European network. In fact, in the original 
draft, we mentioned such strategy of a mix use of expensive high precision sensors and LCMP 
sensors in appendix. In this new draft, as we now focus on the OSSEs and address the cost and 
accuracy of the LCMP sensors in terms of requirements, these instrumental details have been 
removed from the text and appendix. 
  
 



COMMENT: 
 
MINOR COMMENTS: 
 
1) Page 30696, Line 12: The “Glaeser and Kahn 2010” reference appears to be missing 
 
RESPONSE: 
 
Thank you for pointing out this. We added this reference. 
 
COMMENT: 
 
2) Page 30701, first paragraph: I found this paragraph difficult to follow, and it took several 
readings for me to rasp the main ideas. Reword? 
 
RESPONSE: 
 
We do not rely on the uncertainty target any more in the new draft. This paragraph have been 
greatly shortened and moved it into Appendix A. 
 
COMMENT: 
 
3) Sect. 3.4.3 H3: It would help the reader to explain here the scientific reason for why the CO2 
gradients are considered. I realize that the reason can be found in the Breon et al. (2015) paper, 
but it helps the reader with a sentence like what is mentioned later: “”: : :large spatial coherence of 
the errors from the model boundary conditions and from the estimate of the fluxes outside the IDF 
area, whose cancelling is the main aim of the gradient computation.” I suggest this point to be 
mentioned earlier, in Sect. 3.4.3 
 
RESPONSE: 
 
Thank you for your suggestion. We followed it. More generally, we improved the general 
presentation of the method.  
 
COMMENT: 
 
5) Page 30718, Line 21: “not correlated in time neither in space” => “not correlated in time or in 
space” 
 
RESPONSE: 
 
We rewrote the text. 
  
COMMENT: 
 
6) Page 20725, Line 20: a missing key reference on the use of stable carbon isotope measurements 
to partition anthropogenic vs biogenic sources is Pataki et al. [2003]: Pataki, D. E., D. R. Bowling, 
and J. R. Ehleringer (2003), Seasonal cycle of carbon dioxide and its isotopic composition in an 
urban atmosphere: Anthropogenic and biogenic effects, Journal of Geophysical Research, 108(D23), 
4735, doi:4710.1029/2003JD003865-004735, doi:003810.001029/002003JD003865. 
 
RESPONSE: 
 
Thank you for your suggestion. We added this reference. 
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Abstract 15 

Cities, currently covering only a very small portion (<3%) of the world’s land surface, 16 

directly release to the atmosphere about 44% of global energy-related CO2, andbut are 17 

associated with 71-76% of CO2 emissions from global final energy use. Although many 18 

cities have set voluntary climate plans, their CO2 emissions are not evaluated by the 19 

Monitoring, Reporting and Verification (MRV) procedures that play a key role for 20 

market- or policy-based mitigation actions. Here we proposeanalyse the potential of a 21 

monitoring tool that could support the development of such procedures at the city scale. It 22 

is based on an atmospheric inversion method that exploits inventory data and continuous 23 

atmospheric CO2 concentration measurements from a network of stations within and 24 

around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the 25 

performance of such a tool. The instruments presently used to measure CO2 26 

concentrations at research stations are expensive. However, cheaper sensors are currently 27 

developed and should be useable for the monitoring of CO2 emissions from a megacity in 28 
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 2 

the near-term. Our assessment of the inversion method is thus based on the use of several 1 

types of hypothetical networks, with a range of numbers of sensors sampling at 25 meters 2 

above ground level. The study case for this assessment is the monitoring of the emissions 3 

ofThis monitoring tool is configured for the quantification of the total and sectoral CO2 4 

emissions in the Paris metropolitan area (~12 million inhabitants and 11.4 TgC emitted in 5 

2010) during the month of January 2011. The performance of the inversion is Its 6 

performances are evaluated in terms of uncertainties in the estimates of total and sectoral 7 

CO2 emissions. These uncertainties are compared to a notional ambitious target to 8 

diagnose annual total city emissionsuncertainty reduction based on Observing System 9 

Simulation Experiments (OSSEs). They are analyzed as a function of the number of 10 

sampling sites (measuring at 25 meters above ground level) and as a function of the 11 

network design. The instruments presently used to measure CO2 concentrations at 12 

research stations are expensive (typically ~50 k€ per sensor), which has limited the few 13 

current pilot city networks to around ten sites. Larger theoretical networks are studied 14 

here to assess the potential benefit of hypothetical operational lower-cost sensors. The 15 

setup of our inversion system is based on a number of diagnostics and assumptions from 16 

previous city scale inversion experiences with an uncertainty of 5% (2-sigma). real data. 17 

We find that, given our assumptions underlying the configuration of the OSSEs, with 10 18 

stations only, which is the typical size of current pilot networks that are deployed in some 19 

cities, the the uncertainty for the 1-month total city CO2 emissions emission during one 20 

month is significantly reduced by the inversion, by ~42% but still corresponds to an 21 

annual uncertainty that is two times larger than the target of 5%. By%. It can be further 22 

reduced by extending the network, e.g. from 10 to 70 stations, the inversion can meet this 23 

requirement. Aswhich is promising for major sectoral CO2 emissionsMRV applications. 24 

With 70 stations, the uncertainties in the inverted emissions using 70 stations are reduced 25 

significantly over thatthose obtained using 10 stations by 32% for commercial and 26 

residential buildings, by 33% for road transport and, by 18% for the production of energy 27 

by power plants, respectively. With 70 stations, the uncertainties from the inversion 28 

become of 15% 2-sigma annual uncertaintyand by 31% for dispersed buildingtotal 29 

emissions, and 18%. These results indicate that such a high number of stations would be 30 

likely required for the monitoring of sectoral emissions from road transport and energy 31 

production. The inversion performance could be further improved by optimal design of 32 

station locations and/or by assimilating additional. They demonstrate some high potential 33 
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 3 

that atmospheric measurements of species that are co-emitted with CO2 by fossil fuel 1 

combustion processes with a specific signature from each sector, such as carbon 2 

monoxide (CO). Atmospheric inversions based on continuous CO2 measurements from a 3 

large number of cheap sensors can thus deliver a valuable quantification tool 4 

forcontribute to the monitoring and/or the verification of city CO2 emissions (baseline) 5 

and CO2 emission reductions (commitments).) and the advantage that could be brought 6 

by the current developments of lower-cost medium precision (LCMP) sensors. 7 

 8 

1 Introduction 9 

At the 2010 Cancun summit, parties from the United Nations Framework Convention on 10 

Climate Change (UNFCCC) agreed to set up a target of keeping global warming under 2°C 11 

compared to pre-industrial levels (UNFCCC, 2011; Meinshausen et al., 2009; Ciais et al., 12 

2013). Shah et al. (2013) showed that this 2°C global warming target is economically and 13 

technically feasible, albeit demanding a mitigation of the Greenhouse Gases (GHG) emissions 14 

across all sectors of anthropogenic activities. Many developed and developing countries 15 

consequently makehave made commitments/pledges to reduce their emissions under the 16 

UNFCCC. National commitments/pledges focus on the land use sector or on economy-wide 17 

activities such as electricity production and industrial processes, nevertheless appear to be 18 

insufficient for achieving the. There is however a gap between these commitments and the 19 

requirements on the emission reductions (often referred to as “emission gap”) for achieving 20 

the 2°C global warming target (UNEP, 2013). 21 

Cities occupy only less than 3% of the world’s land surface (Liu et al., 2014), but directly 22 

release about 44% of the global energy-related CO2 and are responsible for 71-76% of CO2 23 

emissions from global final energy use (Seto et al., 2014). This urban share of the 24 

anthropogenic emissions will continue to increase (IEA, 2008) in the context of an 25 

accelerating urbanization process: the  (IEA, 2008).  The global urban population havinghas 26 

grown from 746 million in 1950 to 3.9 billion in 2014 while, by 2050,, and it is expected to 27 

grow by 2.5 billion people by 2050, with nearly 90% of them living in Asia and Africa (UN, 28 

2014). 29 

Unlocking the cityCity mitigation potential mayoptions, such as the improvement of public 30 

transportation infrastructures using Mass and Rapid Transit (MRT) systems, of building 31 

retrofits, and of energy/waste recycling, and the development of district heating/cooling plants 32 
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(Sugar and Kennedy, 2013; Erickson and Tempest, 2014), can significantly reducecontribute 1 

to bridging the gap of emission reductions between national commitment/pledges and 2 

scenarios consistent with a 2°C limit. Agap. This plausible additional city contributions to 3 

global emission mitigation was estimated to contribution could cover ~15% of the total 4 

emission reduction required to reach the 2°C global emissions reduction, whichwarming 5 

target, and represents up to two-thirds of the level of emission reduction covered by the 6 

national commitments/pledges (Erickson and Tempest, 2014). Large urban areas have a 7 

strong potential to achieve economies of scale indecrease per capita CO2 emissions for some 8 

important sectors (e.g. transportation and heating) where clusters of population and economic 9 

activities can share common infrastructures (Bettencourt et al., 2007; Dodman, 2009; Glaeser 10 

and Kahn, 2010; CDP, 2012). Practical city mitigation actions are for instance the 11 

improvement of public transportation infrastructure such as Mass and Rapid Transit (MRT) 12 

systems, building retrofits and energy/waste recycling, and district heating/cooling plants 13 

(Sugar and Kennedy, 2013; Erickson and Tempest, 2014). 14 

Thousands of cities declared to be willing to take actions to report and reduce their CO2 15 

emissions (Rosenzweig et al., 2010; Reckien et al., 2013). Such efforts can decrease their 16 

climate vulnerability and foster co-benefits in terms of air quality, energy access, public 17 

health, and city livability (Seto et al., 2014). They may also may foster significant local 18 

economic development through advances in green technology. For instance, the London low 19 

carbon environmental goods and services sector is estimated to have generated more than £25 20 

billion revenue for 2011/12 (BIS, 2013). 21 

To check whether claimed reduction targets are fulfilled, the present-day city emissions will 22 

have to be known accurately for present-day conditions to define a baseline upon which 23 

reductions are defined, and then these emissions will have to be monitored over time during 24 

anythe agreed-upon reduction commitment period. Such quantification of emissions and 25 

emission reduction echoes the concept of Monitoring, Reporting, and Verification (MRV) that 26 

is the cornerstone of most market- or policy-based mechanisms in climate economy 27 

(Bellassen and Stephan, 2015). The MRV concept integrates three independent processes, 28 

namely Measuring or Monitoring (M), Reporting (R), and Verification (V). It ensures that the 29 

mitigation actions are properly monitored and reported, and that the mitigation outcomes can 30 

be verified. The MRV has been widely applied in many contexts such as projects, 31 

organizations, policies, sectors, or activities within territories (see Bellassen and Stephan 32 
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(2015) and the references therein). For diverse applications, MRV can rely upon different 1 

standards, but requires transparency, quality, and comparability of information about emission 2 

accounting and the mitigation action implementations.  3 

The first urban mitigation actions relevant for MRV are those whose impacts are relatively 4 

easy to measure, e.g., projects and Programmes of Activities (PoA) under the Clean 5 

Development Mechanism (CDM) as well as efforts on emission reductions for large factories 6 

and buildings under the Tokyo Emission Trading Scheme (ETS) (Clapp et al., 2010; IGES, 7 

2012; Marr and Wehner, 2012; UNEP, 2014). However, there is a lack of technical capacity 8 

for accurate accounting of diffuse sources, e.g. transportation and residential buildings. This 9 

lack of capacity makes MRVs for citywide emissions challenging (Wang-Helmreich et al., 10 

2012; UNEP, 2014), and may hinder citywide mitigation implementation in the absence of 11 

strong political will, sufficient institutional governance and financial support. Hitherto MRV 12 

practices for urban mitigation actions are still limited and the majority of sources within the 13 

city territory remain uncovered. For instance, the Tokyo ETS – the most advanced urban ETS 14 

scheme – only regulates less than 20% of the city’scity total emissions (TMG, 2010).  15 

As suchIn this context, there is a keen need to scale up policy instruments and market 16 

mechanisms to foster broader access of supports at various scales from international to local, 17 

for enablingbetter support citywide mitigation actions (World Bank, 2010; Wang-Helmreich 18 

et al., 2012; The Gold Standard, 2014). This gap may be reduced by new mechanisms such as 19 

the Nationally Appropriate Mitigation Actions (NAMAs; recent move to raise pre-2020 20 

emission reduction ambitions by increasing access to climate financing) and the New Market-21 

based Mechanism (NMM; currently in negotiation for post-2020 carbon financing about 22 

crediting and trading of mitigation outcomes). Both mechanisms are designed under 23 

UNFCCC to increase the flexibility of mitigation actions so that broader segments of 24 

economy or policy-making can be included in developed and developing countries (Howard, 25 

2014; UNEP, 2014). Based on estimates of emissions from the major sectors, a conceivable 26 

approach would be to set up city overall city mitigation targets and then negotiate specific 27 

targets for individual sectors or groups of sources. Empowered by city-scale MRV (see UNEP 28 

(2014) for current developments), city mitigation implementation could be (1) credited or 29 

traded under designed mechanisms, and (2) registered for receiving international aide through 30 

climate finance. ImportantlyHowever, ultimately, all these provisions for citywide mitigation 31 
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actions and their MRV necessitate the availability of accurate emission accounting methods 1 

with required qualities (moderate or stringent; an issue we will discuss in following sections).. 2 

The emission accounting methods that are usually suggested are inventories based on 3 

statistical data (World Bank, 2010; Wang-Helmreich et al., 2012). Developing city-scale 4 

inventories, and updating them over time, involveinvolves extensive collection of consistent 5 

and comparable emissions data, which measures the level of activities (e.g. energy use 6 

statistics, or in a more sector-specific manner, kilometers driven by vehicles, and volume of 7 

waste provided to landfill) and the activity-to-carbon conversion rates (i.e. emission factor). 8 

In the past, cities have followed diverse guidelines or protocols for emission inventory 9 

compilation, and recently there is a trend of centralization e.g. with the newly proposed 10 

Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC; Fong et 11 

al., (2014)) and the UNFCCC reporting platform NAZCA (climateaction.unfccc.int). 12 

Admittedly, inventories of city emissions are known to suffer from incomplete and uncertain 13 

data (see Appendix A for a brief review of city inventories). For instance, there is usually a 14 

lack of precise statistics regarding the total amount of fossil fuel that has been consumed 15 

within the cities. This issue of data availability and qualityThis limitation impedes the 16 

practical use of city inventories in climate economy. 17 

To improve the quality of An improved emission accounting, here we propose using a new 18 

type of data –  could rely on continuous CO2 concentration atmospheric measurements in the 19 

atmosphere made on a networkof CO2 concentrations by networks of stations around and 20 

within cities. Accurate measurementsIndeed, accurate measurement of the atmospheric 21 

signals, e.g. the CO2 concentration gradients, containprovides information about the emissions 22 

that areis independent offrom the inventories. AThe statistical method known as atmospheric 23 

inversion, which has been used for decades for improving the knowledge of global and 24 

continental scale natural CO2 fluxes (Enting, 2002; Bousquet et al., 2000; Gurney et al., 2002; 25 

Peters et al., 2007; Chevallier et al., 2010; Broquet et al., 2013), can be used to exploit this 26 

information from actual atmospheric measurements for quantifying CO2 emissions at the city 27 

scale (McKain et al., 2012; Kort et al., 2013; Lauvaux et al., 2013; Hutyra et al., 2014; Bréon 28 

et al., 2015). The principle of an inversion is to combine information from inventory data with 29 

atmospheric CO2 measurements to deliver improved emission estimates, i.e. 30 

emissionsestimates with a reduced uncertainty, compared to the prior inventory. An inversion 31 

generally uses a 3D model of atmospheric transport to relate emissions withto observations. In 32 
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just a few years, a number of city atmospheric CO2 measurement networks have been 1 

deployed for pilot studies. Examples of cities where such networks have been deployed are 2 

Toronto (with 53 sites), Paris (with 5 sites), Recife (with 2 sites), Sao-Paulo (with 2 sites), 3 

Salt Lake City (~7 sites), Los Angeles (~10 sites), and Indianapolis (with 12 sites). This 4 

creates a need to better document the theoretical potential of atmospheric inversions to 5 

monitor emissions and their changes or to independently verify inventories, with a quality 6 

relevant for city MRV applications. 7 

In this paper, we assess the performance of atmospheric inversions for the monitoring of total 8 

and sectoral fossil fuel emissions in the Paris metropolitan area (the Île-de-France (IDF) 9 

region, which has ~12 million inhabitants). The most resolved regional bottom-up inventory 10 

estimates that this area emitted 11.4 TgC in 2010 (AIRPARIF, 2013), an amount equivalent to 11 

~12% of the fossil fuel CO2 emissions from the whole France (Boden et al., 2013). Urban 12 

emissions are mainly connected to emissions from fossil fuel combustion, as other sources of 13 

urban emissions such as biofuel uses are usually very limited. Hence, for simplicity, we 14 

assume that urban emissions are all from fossil fuel combustion in our study.  15 

In general, there exists no formal agreed-upon minimum requirement about desirable 16 

uncertainties in emissions estimates relevant for MRV use. However, such requirements 17 

would give some solid basis to MRV practice for citywide emission mitigation. Therefore, we 18 

will first attempt at defining notional targets in terms of uncertainties in the emissions 19 

estimates for inversion systems at city scale (Sect. 2.1). In Sect. 2.2, we will then discuss the 20 

cost of the observing and modeling systems that are required for atmospheric inversions. This 21 

cost, ideally, should be comparable to or even smaller than that of high quality inventories. 22 

The observation networks to be tested will be dimensioned to ensure that they fit within this 23 

cost. The CO2 measurement instruments presently used for atmospheric inversion in the 24 

scientific community are rather expensive which explains the limited size of the existing city 25 

networks. However, cheap sensors are currently developed and we assume here that such 26 

sensors will be useable for the inversion of city emissions in the near-term. We will thus 27 

assess the performance of the inversion that relies on hypothetical networks similar to the 28 

existing ones (limited number of sensors at current cost), or includes a larger number of cheap 29 

sensors. The theoretical framework of the inversion allows for the derivation of uncertainty 30 

reduction from such hypothetical networks given the statistical description of the sources of 31 

error in the inversion configuration. This study is based on the inversion configuration and 32 
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results using CO2 measurements from 3 stations in the Paris area, published by Bréon et al. 1 

(2015) (hereafter referred to as B15). Taking into account the limited information content 2 

from this small network, B15 did not attempt to estimate sectoral emissions separately but 3 

rather focused on quantifying total CO2 emissions from the Paris urban area. The principle of 4 

our inversion system extends that of B15 to separate sectoral emissions using larger networks 5 

of measurement sites. The use of a large numbers of stations also leads us to conduct network 6 

design studies in order to optimize, for a given number of stations, the performance of the 7 

inversion as a function of these station locations. 8 

Sections 3 and 4 describe how we use an Observing System Simulation Experiments (OSSE) 9 

framework to analyze whether this Bréon et al. (2015), hereafter referred to as B15, used CO2 10 

measurements from 3 stations in the Paris area and a Bayesian inversion methodology to 11 

estimate CO2 fossil fuel emissions in the Paris metropolitan area (the Île-de-France – IDF – 12 

region, which has ~12 million inhabitants) in winter 2010. The most resolved regional 13 

bottom-up inventory estimates that this area emitted 11.4 TgC in 2010 (AIRPARIF, 2013), an 14 

amount equivalent to ~12% of the CO2 fossil fuel emissions from the whole France (Boden et 15 

al., 2013). B15 did not attempt to estimate sectoral emissions separately due to the very 16 

limited size of the measurement network they used. They rather focused on quantifying total 17 

CO2 emissions from the Paris urban area. Staufer et al. (2016) refined the configuration of the 18 

inversion system of B15 and applied it for a one-year inversion of the Paris emissions.  19 

In this paper, we assess the performance of atmospheric inversion for the monitoring of total 20 

and sectoral fossil fuel emissions in the Paris metropolitan area when using denser networks, 21 

based on Observing System Simulation Experiments (OSSEs). The objective is to analyze the 22 

sensitivity of this performance to the size and design (i.e. the location of the stations) of such 23 

networks, and thus to derive requirements on the configuration of the atmospheric inversion 24 

to provide different levels of accuracy on the estimates of the total and sectoral city emissions. 25 

We base our inversion methodology and the configuration of the OSSEs – notably the 26 

assimilation of concentration gradients and the practical configuration of the inversion 27 

parameters – on the system, expertise and diagnostics documented in B15 and Staufer et al. 28 

(2016). The use of much larger measurement networks still necessitates some assumptions 29 

regarding the inversion framework and the characterization of the sources of errors. 30 

The CO2 measurement instruments presently used for atmospheric inversion in the scientific 31 

community are rather expensive (typically ~50 k€ per sensor) which explains the limited size 32 
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of the existing city networks. To bridge this data gap, national and European innovation 1 

projects (e.g. http://www.climate-kic-centre-hessen.org/miriade.html, MIRIADE-ANR: ANR-2 

11-ECOT-0004) have been proposed to test lower cost (typically ~1 k€ per unit) sensors 3 

(called hereafter low-cost medium precision – LCMP – sensors) and to develop a 4 

corresponding calibration strategy which would enable the measurement of CO2 5 

concentrations with a precision and an accuracy that would be acceptable for city scale 6 

inversions (but maybe not for other scales, for which more expensive instruments may still be 7 

needed for the foreseeable future). This motivates our tests, in this study, of networks with up 8 

to 70 sensors.  9 

The principle of the inversion framework can achieve the uncertainty targets, principally with 10 

respect to the number of measurement sensors and their spatial distribution. Theperformance 11 

assessment, the inversion methodology and the OSSE setup are described in Sect. 32. The 12 

inversion results are presentedanalyzed in Sect. 4, and finally some discussions and 13 

conclusions are drawn in 3. Based on these results, Sect. 5. 14 

 15 

2 Notional4 discusses requirements on the configuration of the observation 16 

network for the inversion framework 17 

2.1 Notionalachieving different targets for uncertaintiesof accuracy in 18 

inversionthe estimates 19 

This section aims at defining a notional target of emission uncertainty for an inversion to be 20 

useful in the context of MRV applications. We set the target uncertainty of city annual 21 

emissions to be similar to the one of national inventories in OECD countries, reported under 22 

UNFCCC and the Kyoto protocol. The main rationale for such setting is that MRVs at 23 

national and city scales have similar objectives: supporting determination of baselines and/or 24 

reduction of emissions from various sources (e.g. transportation, building, and industries) for 25 

a given geographical area. Hence, the knowledge and experiences accumulated from national 26 

MRVs can provide basis for future MRV at city scale. More specifically, the “name and 27 

shame” mechanism that was established for countries under UNFCCC and the Kyoto protocol 28 

(Chang and Bellassen, 2015) could apply to MRV of citywide mitigations, and lead to 29 

uncertainty level in citywide emission estimates similar to that in national inventories. The 30 

derivation of uncertainty targets for cities from uncertainties of national inventories may look 31 
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stringent for inversions. Such derived targets are likely stricter than the requirements in 1 

uncertainty level for the MRV of emission reductions by actions/policies at city scale, in a 2 

situation similar to the MRV practice at national scale (Ninomiya, 2012). However, 3 

respecting such strict targets ensures the reliability of the annual estimates from atmospheric 4 

inversion: the inversion-based estimates of city emissions would then be equivalent or better 5 

than that of city inventories that would not have access to the same level of information as 6 

national inventories. 7 

The uncertainty of of national inventories is country-specific, but for the seven Annex I 8 

countries surveyed by Pacala et al. (2010), the uncertainty in CO2 fossil fuel emissions is 9 

consistently lower than 10% (2-sigma). For France, the uncertainty of the CITEPA national 10 

inventory (annually reported to UNFCCC) is estimated to be of 5% (2-sigma) for year 2012 11 

according to CITEPA (2014). This uncertainty quantification is based on expert judgments as 12 

well as error propagation calculations with the IPCC Tier 1 method. Consequently, here we 13 

define a 5% 2-sigma annual notional target for the level of uncertainties in annual total fossil 14 

fuel CO2 emission estimates over the territory of a French city (or urban area) to be reached or 15 

surpassed by atmospheric inversions. In this study, we investigate the ability of inversions to 16 

reach such a target for the Paris metropolitan area. 17 

The uncertainty levels for estimates of emissions from different sectors can vary significantly 18 

at the national scale (Pacala et al., 2010; CITEPA, 2014). For instance, uncertainties for some 19 

activities such as mineral, metal and chemical productions are considerably larger than the 5% 20 

value for total emissions, but the share of these emissions in the total fossil fuel emissions is 21 

usually small. However, uncertainties for other sectors are closer to 5% according to CITEPA 22 

(2014). The sectoral distribution of uncertainty levels at the city scale can be different from 23 

that at the national scale, because the data collected for a given sector in city inventory 24 

compilation can have a different level of quality from that in national inventories for the same 25 

sector. A recent census by National Physical Laboratory (NPL) based on a group of 26 city 26 

inventories reported to the carbonn Climate Registry (cCR) suggested that the data collected 27 

for different sectors can actually have a similar level of quality (report available from 28 

www.carbonn.org).  29 

The annual notional target for uncertainties in total CO2 emissions can be inappropriate for 30 

and sectoral CO2 emissions. The sectors of emissions are usually driven by different dominant 31 

factors (e.g. temperature for building heating/cooling and commute/vocation timing for road 32 
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traffic). Consequently the uncertainties in emission estimates from inventories for different 1 

sectors are generally weakly correlated. They can even be anti-correlated when the individual 2 

sectoral estimates are based on the split of estimates of budgets derived from fossil fuel 3 

consumptions that are shared by these sectors. These weak or negative correlations explain 4 

why the uncertainties in individual sectoral emission estimates are in general larger than the 5 

uncertainties in the aggregated total emission estimate. Due to these reasons, we set notional 6 

uncertainty target only for city total emissions estimates in this study.  from the Paris area. 7 

Conclusions are drawn in Sect. 4. 8 

Succeeding in delivering a 5% annual uncertainty target for the total emissions of a city 9 

would translate into an ability to assess a 25% reduction of total emissions on a 15-year 10 

horizon at 95% confidence level (detection interval [18%, 32%], p = 0.05 for linear trends of 11 

emissions; see Appendix C for numerical details). The Paris climate plan for example, aims at 12 

reducing the GHG emission reduction by 25% by 2020 and by 75% by 2050 relative to the 13 

2004 baseline (Mairie de Paris, 2012). This means that a 5% annual uncertainty is also 14 

satisfactory to monitor the trend of Paris emissions over time. However, the 5% target is not a 15 

requirement for such trend detection, since, with an annual estimate bearing 10% uncertainty, 16 

a 25% reduction in 15 years would still remain detectable at 95% confidence level (detection 17 

interval [11%, 39%], p = 0.05). 18 

So far, practical atmospheric inversion of the Paris city emissions have been performed over 19 

1-month periods, with an interest in inferring monthly emissions, even though emissions have 20 

been actually inverted at a higher temporal resolution (B15). However, our notional target of 21 

5% uncertainty is defined at the annual scale. One can nevertheless relate monthly 22 

uncertainties to annual uncertainty based on one intermediate and two extreme assumptions 23 

regarding the temporal correlations between monthly uncertainties: that all monthly 24 

uncertainties are independent from one another, that the timescale of these correlations is 25 

approximately 2-months, and that all monthly uncertainties are fully correlated. Based on 26 

these three assumptions, the annual uncertainty related to the monthly uncertainties can be 27 

obtained by simple error propagation. The two extreme cases of null and full positive 28 

temporal correlations would hardly happen in reality, but they provide an estimate of the 29 

range for such targets. We will consider in control runs a 2-month temporal error correlation 30 

of uncertainties in monthly inversion emission estimates in order to derive the most likely 31 

corresponding uncertainty in the annual inversion estimates. For instance, a 20% 1-sigma 32 
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monthly uncertainty corresponds to 12%, 23%, 40% 2-sigma annual emission uncertainties, 1 

given null, 2-month timescale, and full temporal error correlations respectively. In this 2 

example of 20% 1-sigma monthly uncertainty, the most likely annual emission uncertainty is 3 

considered to be 23%, which is much larger than the 5% 2-sigma target and would not meet 4 

our notional requirement. Here, for simplicity, we hypothesize a same level of uncertainty in 5 

inversion estimates of the fossil fuel CO2 emissions for each month of the year. For instance, 6 

months with significant natural vegetation uptake are characterized by a larger influence of 7 

the natural vegetation and soil CO2 fluxes (or Net Ecosystem Exchange, NEE) in the total flux 8 

of IDF and a larger uncertainty in NEE fluxes: we checked that both features marginally 9 

affect our inversion results (see the supplementary sensitivity analysis). 10 

To facilitate subsequent discussions, we define three levels of 1-sigma uncertainty for 11 

monthly emissions estimates, going from less to more stringent levels: Level 1 = 15%, level 2 12 

= 10%, and level 3 = 5%. The corresponding most likely 2-sigma annual uncertainties are 13 

17%, 11% and 6% respectively. It can be observed that only level 3 monthly uncertainties can 14 

yield annual uncertainties that meet the 5% uncertainty target for annual estimates. In contrast, 15 

monthly estimates with level 1 and 2 uncertainties could be useful for sectoral emissions, for 16 

the verification of emission trends, and for the verification of the emission reductions by 17 

mitigation policies/actions.  18 

2.2 Notional costs about a city-scale atmospheric inversion system 19 

The main cost of atmospheric inversion of city emissions being related to the observation 20 

network on which it relies, the typical size of the networks to be investigated in this study 21 

must be constrained by the definition of a limit for this cost. The order of magnitude of this 22 

cost should not exceed that of city inventories that could deliver emission estimates 23 

complying with the 5% notional annual uncertainty. Such high quality inventories at city scale 24 

do not exist yet (see Appendix A). However, the cost of national inventories could give 25 

insights on the cost of such city inventories since both types of inventories would adopt 26 

similar methodologies and would require similar types of data with the same level of quality.  27 

The cost of an inventory involves mainly data collection, and the design and implementation 28 

of the inventory methodology. The data (e.g. statistics on energy fuel consumption, transport 29 

and industrial activities) required for the development of a national inventory are in general 30 

available from national agencies, and the cost of its collection is on the order of several 31 
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million euros per country per year (Chang and Bellassen, 2015). However, most of the cost 1 

incurs from collecting socio-economic data that are primarily obtained for other 2 

political/economical/social purposes than emission inventory. The CITEPA is the agency 3 

responsible for preparing the French national inventory along the IPCC guidelines. The 4 

budget of the activities at CITEPA related to this inventory is on the order of 1 M€ per year 5 

(CITEPA, personal communications). This cost covers the compilation of the fossil fuel CO2 6 

emissions inventory but also (1) the compilation of the inventory for other GHG gases, (2) the 7 

compilation of the inventory for GHG emissions due to land use, land use change and forestry 8 

(LULUCF), and (3) activities other than monitoring such as the reporting, archiving and 9 

annual communication to UNFCCC reviews that are imposed by the IPCC guidelines. It is 10 

therefore complicated to assess the part of the cost that is dedicated to the compilation of the 11 

CO2 fossil fuel emissions inventory by CITEPA. As for the city inventory compilation, 12 

tracking fuel use statistics from different origins and types and for different sectors might in 13 

fact prove more complicated than for a state where national statistics are already firmly 14 

established by governmental agencies. As a result of the above discussions, we will assume in 15 

this study that building and updating each year a city inventory for the Paris metropolitan area 16 

that could possibly achieve the 5% notional annual uncertainty target would cost around 0.5 17 

M€ per year. 18 

The cost of the observation network for atmospheric inversion is related to that of the 19 

measurement instruments and to that of the calibration and maintenance procedures that 20 

ensure limited drift and biases in the measurements. We consider two types of sensors that 21 

could equip the city observation networks: “high precision sensors” (e.g. existing cavity ring 22 

down spectrometers employed by current research networks) and “cheap sensors” currently 23 

still in development but likely available in the near future (see Appendix B for details). High 24 

precision sensors are instruments with a precision of 0.1 ppm (1-sigma) on hourly 25 

measurements. Given the present calibration procedures, such hourly measurements bear 26 

additional systematic errors that are smaller than 0.13 ppm for hourly measurements. “Cheap 27 

sensors” are expected to have lower precision. The threshold for such precision will be 28 

defined in this study to be 1 ppm on hourly measurements, and the precision target will be 29 

actually 0.5 ppm (1-sigma). We also hypothesize that calibration procedures for the cheap 30 

sensors, with costs that are comparable to that for high precision sensors, should ensure that 31 

the systematic error in hourly measurements is smaller than 1 ppm. Given that the systematic 32 

errors should not have long autocorrelation timescales and that precision errors are not 33 
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autocorrelated in time (see Appendix B), these different errors for both the high precision 1 

instruments and the cheap sensors should be far smaller than the errors associated with 2 

atmospheric transport modeling and they are thus ignored hereafter (see Sect. 3.5.2 for 3 

details). Hence, in this study, the only impact of using one or the other type of sensor is thus 4 

related to their cost. Given the consideration regarding the limitation of the cost of the 5 

atmospheric inversion, this leads to different numbers of stations allowed for the network of 6 

measurement sites. With the notional budget of 0.5 M€ per year, one could afford to operate a 7 

network of either ~10 high precision sensors or ~70 cheap sensors (see Appendix B). We thus 8 

evaluate the performance of the inversion in terms of uncertainty reduction when using 9 

hypothetical measuring networks of 10 to 70 sensors.  10 

 11 

32 Methodology 12 

The principle and the configuration of our atmospheric inversion system are close to those of 13 

B15. The general principle is to estimate the emission budgets for different sectors of 14 

anthropogenic activity, areas and time windows, which all together constitute the total 15 

emissions of IDF for the month of January 2011. It corrects a prior estimate of these emission 16 

budgets given by an inventory to better fit observed concentration gradients between pairs of 17 

sites along the wind direction, in and around the Paris area, since such gradients characterize 18 

the enhancement of atmospheric CO2 due to the Paris emissions. An atmospheric transport 19 

model is used to simulate the gradients corresponding to a given estimate of the emissions.  20 

The atmospheric inversion theory relies on a statistical framework which accounts for the 21 

uncertainties in the prior estimate of the emissions, in the transport model and in the 22 

measurements, and which diagnoses the uncertainty in the estimate of the inverted 23 

(“posterior”) emissions as a function of the observation location and time, of the atmospheric 24 

transport, and of these prior, model and measurement uncertainties. This diagnostic is used in 25 

this study as a natural indicator of the inversion performance. Since it depends neither on the 26 

actual value of the observations that are assimilated, nor on the actual value of the prior 27 

estimate of the emissions, nor on the actual value of the corrections applied by the inversion 28 

on the prior emission estimates, it allows conducting OSSEs without generating synthetic 29 

gradient observations for the hypothetical networks that are tested and without conducting 30 

practical emission estimates.  31 
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3.12.1 Theoretical framework of the Bayesian inversion 1 

By Bayesian inversion, the information from an observation vector 𝐲 of CO2 concentration 2 

gradients is combined with a prior (background) estimate 𝐱b of a control parameterof the CO2 3 

emissions budget for various sectors, areas and time windows (i.e. of the vector 𝐱 about CO2 4 

emissions of parameters controlled by the inversion  𝐱, or “control vector” hereafter) to 5 

provide an updated estimate of the control vector 𝐱a (Enting, 2002): 6 

 𝐱a  =  𝐱b  +  BHT(R + HBHT )−1(𝐲 −  𝐇𝐱b), (1) 

where 𝐇 theis a linear matrix operator linking 𝐲 with 𝐱 based on the modeling of the spatial 7 

and temporal distribution of the emissions and at high resolution and the modeling of the 8 

atmospheric transport. at high resolution. The errorsuncertainties in 𝐲, 𝐇 and 𝐱b are assumed 9 

to have statistical distributions that are Gaussian, unbiased and independent of one another. 10 

We denote by R and B the covariance matrices of the observation and background errors 11 

respectively.each other. The observation error is alinking of 𝐲 with 𝐱 in general suffers from 12 

some deficiencies in the measuring instruments and the atmospheric modeling. The sum of 13 

the measurement and model errors. Similar to B15, we control a vector 𝐱 of the budgets of 14 

emission estimates, which all together constitute the total emissions of IDF  is called the 15 

observation error whose covariance matrix is denoted R. We denote B the error covariance 16 

matrix for the month of January 2011. These emissions are defined on a spatial horizontal grid 17 

same as that of the atmospheric transport model (see Sect. 3.4.2 for the definition of this grid 18 

covering IDF). Here, the observation operator 𝐇 can be decomposed into a chain of three 19 

operators: the spatial and temporal distribution of the budgets of emissions within a 20 

corresponding area and period of control, the atmospheric transport of CO2 given these spatial 21 

and temporal distributions of the emissions, and a sampling of the resulting simulated CO2 to 22 

be compared with the observations (Fig. 1). These three 𝐇 components will be detailed later 23 

in Sect. 3.4. According to the theory of Best Linear Unbiased Estimation (BLUE), the 24 

inversion system (Eq. (1)) provides an emissionprior estimate 𝐱a with reducedof the control 25 

parameters. The uncertainty (i.e. within the estimate 𝐱a given by (Eq. (1)) is Gaussian and 26 

unbiased and its covariance matrix (which is “smaller” error covariance matrix compared 27 

tothan B):) is: 28 

 A =  (B−1 + HTR−1H )−1. (2) 
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Here we assess the inversion performance by evaluating the ability of inversion to reduce 1 

uncertainties in emission estimates, which can be computed by Eq. (2) usingThe comparison 2 

between this posterior error covariance matrix and the prior one, starting from realistic prior 3 

and observation error statistics. This assessment is done , allows us to quantify the inversion 4 

performance. We pay a specific attention to the diagnostic of the relative difference between 5 

the posterior and the prior uncertainties for the estimationtotal and sectoral budgets of the 6 

emissions during the month of January 2011.  7 

In the following sections, we detail each component of theour inversion system for this 8 

computation underlying Eq. (2) (see Fig. 1).  9 

3.22.2 Control vector 10 

Formally, even though this is equivalent in principle, 𝐱 Our control vector 𝐱 does not directly 11 

contain emission budgets, but rather scaling factors that are to be applied to the emission 12 

budgets which are included in the observation operator 𝐇. For the sake of simplicity, Fig. 1 13 

presents the inversion framework as if the emission budgets themselves were controlled, 14 

which is quite equivalent to the strict implementation of the inversion system. Each scaling 15 

factor in the control vector 𝐱 corresponds to the emission budget of emissions for a given 16 

spatial area of the IDF domain, a given temporal window, and a given sector or group of 17 

sectors of CO2 -emitting activity. The corresponding ensemble of areas, temporal windows 18 

and sectors form partitions of the IDF domain, of the month of January 2011 and of the full 19 

range of emitting activities respectively, so that the different control variables are associated 20 

with a partitioning of the total emissions in IDF during January 2011.. Hereafter, we will call 21 

a “control tile” the combination of an area, a temporal window and a sector (or group of 22 

sectors) associated with a control variable. While it is desirable to solve for the emissions at 23 

high spatial, temporal and sectoral resolution (in order to avoid aggregation errors, see 24 

below), the size of the control vector, and thus this partitioning, must be limited due to 25 

computational constraint for inversions. In practice, the partitioning described below is 26 

adapted to the sectorial, temporal and spatial distribution of the emissions (using insights from 27 

the inventory presented in Sect. 3.4.1). We did not estimate the emissions outside of the IDF 28 

regionparameter. 29 

While it is desirable to solve for the emissions at high spatial, temporal and sectoral 30 

resolution, computational constraints, such as the inversion of B and (B−1 + HTR−1H ) in Eq. 31 
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(2) and the computation of H which requires in principle as many transport simulations as 1 

control parameters, limit the size of the control vector 𝐱. We group the various sectors usually 2 

provided by inventories (detailed in Sect. 3.4.1) according to the New Format Reporting 3 

(NFR) nomenclature defined by the Long-range Transboundary Air Pollution (LRTAP) 4 

Reporting Guidelines (EEA, 20132.4.1) into seven groups of sectors (see Appendix A for 5 

details), namely 1) surface commercial and residential building heating/cooling, 2) road 6 

transport, 3) energy production (power plants), 4) combustion and production processes in 7 

industries, 5) combustions from agricultural activities, 6) airline traffic, and 7) the 8 

restremainder of all other sectors with smaller emission budgets (e.g. railway, navigation, 9 

fugitive emissions, and several minor production processes). These seven sectors are labeled 10 

for short as building, road, energy, production, agriculture, airline, and restremainder, 11 

respectively. 12 

In order to save computations, for most of thesethe less important sectors (isolated energy and 13 

production point sources, agriculture, airline and restremainder), we consider that the spatial 14 

area of control for the inversion is the whole IDF area. However, for the two important 15 

building and road emissions, we spatially partition IDF into five zones for which the fluxes 16 

willcan be optimized: a central zone (approximately the administrative definition of the city 17 

of Paris, which is very densely populated) and four surrounding areas (the North-West, South-18 

West, North-East and South-East areas of the remaining IDF region, with borders adapted to 19 

the distribution of the building and road emissions, see Fig. 2).  20 

Regarding the temporal partitioning, for the three sectors which have the smallest budgets of 21 

emissions (agriculture, airline, and restremainder), the temporal resolution of the control 22 

vector is daily. For the four other sectors (building, road, energy and production), we refine 23 

the temporal resolution to 12h and control separately the daytime (7–19h) and night-time (19–24 

7h) emissions for each day, in order to account for the large diurnal variations in the 25 

emissions. 26 

Atmospheric CO2 observations are sensitive to vegetation-atmosphere CO2 fluxes in addition 27 

to fossil fuel CO2 emissions. For cities surrounded by vegetation or containing green areas, 28 

the impact of vegetation-atmosphere CO2 fluxes on city carbon balance can be significant. For 29 

instance, Nordbo et al. (2012) estimatedextrapolated from their measurements, that a city is 30 

carbon-neutral when itsan 80% green-area fraction is about 80%. However the impact of 31 

natural vegetation on our results for the highly urbanized IDF region is found limited (see the 32 
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supplementary material).would approximately make cities carbon-neutral. In our 1 

inversioninversions, we account for the influence of the natural vegetation and soil CO2 fluxes 2 

(or Net Ecosystem Exchange, NEE) by including, in the control vector, the scaling factors for 3 

the budgets of NEE in the full modeling domain (see Sect. 32.4) and for the four different 6-4 

hour windows of the day (i.e. 0-6h, 6-12h, 12-18h, and 18-24h local time) over different 5-5 

day periods during January 2011. The number of NEE scaling factors included in the control 6 

vector is thus 24, and the total number of scaling factors is 834 (see Table 1 for details). 7 

3.32.3 Observations 8 

We use an inversion system similar to that of B15, in which observations are taken to be CO2 9 

atmospheric concentration gradients between city upwind and downwind stations.upwind and 10 

downwind stations (see Sect. 2.4.3 for details). The use of concentration gradients rather than 11 

concentrations well cancels out the pervasive large scale influence from remote fluxes outside 12 

of the city domain and informs about the local emissions between upwind and downwind 13 

stations. B15 also suggested assimilating only afternoon gradients when the wind speed is 14 

above a given threshold. By selecting afternoon gradients, we avoid biases in the vertical 15 

mixing during nighttime, mornings and evenings when mesoscale transport models have 16 

difficulties in representing the planetary boundary layer (Seibert et al., 2000; Steeneveld et al., 17 

2008). Selecting data for high wind speed limits the signature in the atmospheric 18 

measurements of local sources that are in the vicinity of the measurement sites and that 19 

cannot be represented correctly by the transport model. 20 

For investigating the potential of the inversion as a function of the observation network, we 21 

consider three strategies to deploy a given number of stations. These strategies define three 22 

corresponding types of networks: the Elliptical (E), Uniform (U) and Random-even (R) 23 

networks (Fig. 3). The E networks surround emissions in the city center, and appear suitable 24 

to the assimilation of city upwind-downwind-upwind gradients. The E networks consist in 25 

three concentric ellipses or rings of stations around the main part of the Paris urban area (the 26 

Paris administrative city and its 3 surrounding administrative circumscriptions), 27 

encompassing almost all the whole urban area of IDF. The U networks are defined by a 28 

positioning ofposition the stations on a regular grid. The R networks aim at balancing the 29 

positioningposition of stations near the city center and in the surrounding areas. The R 30 

networks have thus denser coverage over the city center and fewer stations in the surrounding 31 

zones than the U networks, but they still cover the whole IDF domain. Apart from the E 32 
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networks, the U and R networks have stations both close to the emissions in the Paris urban 1 

area and in rural areas in its vicinity.  2 

We assess the potential of the inversion when using these networks withof either 10, 30, 50, 3 

or 70 stations. For a given network, the station locations are chosen as a sub-set of a 4 

predefined set of 90 candidate locations, depending on the type of the network. For example, 5 

14, 24 and 52 of the 90 candidate stations for R networks are located in the urban center, the 6 

suburban area, and the rural area respectively. For each type of network andFor a given 7 

number of stations 𝑛, 10 networks are selected for the inversion out of an ensemble of 100 8 

networks that are generated by randomly selecting randomly 𝑛 stations from the set of 90 9 

candidate locations. The selection of such sets of 10 networks is based on ad hoc verifications 10 

that the station locations should be evenly distributed in the urban, suburban and rural areas. 11 

Fig. 5 shows an example of an R network of 10 stations resulting from the above selection 12 

procedure. as would have been done for the design of real networks. This selection limits the 13 

range of the random generation of networks to a set of sensible networks for which a further 14 

discrimination should rely on the type of network performance assessment that is conducted 15 

in this study. Fig. 4 shows an example of an R network of 10 stations resulting from the above 16 

selection procedure. The design of current real city networks is much influenced by 17 

administrative and technical issues (e.g. agreements with potential hosts of the site and ability 18 

to fix inlets at desired height). Here we simplify such considerations and assume that the 19 

measurements are taken at 25 meters above ground level (magl) at all stations as discussed in 20 

more details in Section 2.4.3.  21 

The strategy to properly combine stations from the different selected networks for city 22 

upwind-downwind-upwind gradient computation (and thus for the precise definition of the 23 

observation vector) is detailed in Sect. 3.4.3 as part of the description of the observation 24 

operator. In this synthetic study, we assume that the measurements are taken continuously at a 25 

height of 25 meters above the ground level at all stations during the month of January 2011. 26 

Sampling at this height would be feasible in the urban environment with existing or new 27 

infrastructure and avoid dominant influence of local emissions on concentration 28 

observations.2.4.3 as part of the description of the observation operator.  29 
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3.42.4 Observation operator 1 

In this section, we detail the three operators that jointly construct the The observation operator 2 

(𝐇 = 𝐇1𝐇2𝐇3, Fig. 1). 𝐇1 provides𝐇 that links the scaling of surface emission budgets to 3 

CO2 concentration gradients in the atmosphere can be decomposed into a chain of three 4 

operators (𝐇 = 𝐇1𝐇2𝐇3; Fig. 1): the spatial and temporal distribution of the anthropogenic 5 

emissions or of the naturalCO2 fluxes within eacha corresponding control tile. This 6 

distribution is given at the resolution of the  H1, the atmospheric transport model and is based 7 

on an emission inventory or on an ecosystem model simulation. It implicitly bears flux 8 

budgets within each control tile.  Applying H1 to of CO2 given these spatial and temporal 9 

distributions of the fluxes 𝐇2, and a sampling of the resulting simulated CO2 to be compared 10 

with the observations 𝐇3.  11 

H1 maps the scaling factors in the control vector consists in rescaling the flux map and time 12 

series in a uniform way within each control tile, and, as a consequence, the flux budgets, 13 

using the control scaling factors. This generates fields of CO2 to the CO2 fluxes on the 14 

transport modeling grid (see Sect. 3.4.2). 𝐇2 . It uses an emission inventory and an ecosystem 15 

model simulation to prescribe the small-scale spatiotemporal distribution of the gridded CO2 16 

fluxes. Applying  𝐇1 to a scaling factor uniformly rescales the prescribed CO2 fluxes within 17 

each control tile, and thus adjusts the emission budget of that control tile. 𝐇2 is the mesoscale 18 

atmospheric transport model that maps from the gridded fluxes from H1generated by 𝐇1 to 19 

simulations of the CO2 concentration fields on the transport model grid (at 2 to 10 km 20 

horizontal resolution and 1h temporal resolution, infor a Northern France area encompassing 21 

the IDF region.). 𝐇3 is a linear algorithm that computes Paris upwind-downwind-upwind CO2 22 

gradients between measurement stations, extracting the simulated observation 23 

vectorobservations from the CO2 field fromsimulated by 𝐇2. 24 

3.4.12.4.1 𝐇1 25 

For the distribution of NEE at the spatiotemporal resolution of the atmospheric transport 26 

model, we interpolate theThe NEE simulations from C-TESSEL – the land surface model of 27 

the short-range forecasts of the European Centre for Medium range Weather Forecasts 28 

(ECMWF) at a spatiotemporal resolution of 15 km and 3 h  (Boussetta et al., 2013).) – is 29 

interpolated to derive the distribution of NEE at the spatiotemporal resolution of the 30 

atmospheric transport model.  31 
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For the distribution of sectoral fossil fuel CO2 emissions, weWe rely on an inventory of the 1 

French emissions from the Institute of Energy Economics and the Rational Use of Energy 2 

(IER) at the University of Stuttgart to derive the distribution of sectoral fossil fuel CO2 3 

emissions in IDF at a high spatial resolution of 1 km × 1 km (Latoska, 2009). This IER 4 

inventory accounts for direct CO2 emissions within IDF. It disaggregates the annual emissions 5 

of France in 2005 (according to the national inventory submissions 2007 from UNFCCC, 6 

http://www.unfccc.int) into IDF,), making use of extensive data from diverse databases for 7 

point, line, and area emissions, and of proxy information such as population and land cover 8 

maps. As for the temporal distribution of the emissions, we apply monthly, weekly and hourly 9 

temporal profiles, which are also fromproduced by IER, to derive hourly emission maps. 10 

These temporal profiles are defined for France as functions of each sector but not of the 11 

spatial location. There are 51 sectors indexed by NFR code in the IER inventory. 12 

There are 51 sectors indexed by NFR code in the IER inventory. We compute the emission 13 

budgets for all these 51 NFR sectors of the IER inventory, and re-aggregate them into the 14 

seven groups of sectors defined in Sect. 32.2 (see Table A1). The emission budget of the three 15 

major sectors (energy, road, and building) represents ~84.4% of total fossil fuel CO2 16 

emissions over IDF according to the IER inventory. Fig.Figure 2 shows, for the seven sectors, 17 

the spatial distribution of the emissions among the 5 distinct geographic zones of IDF that are 18 

used to define the control tiles. The northwest and southeast zones have more emissions than 19 

the other three zones, mainly due to the presence of large point sources, e.g. the EDF power 20 

plants and the TOTAL Grandpuits refinery, in these zones (see Fig. 2 and Fig. 4c5c). Building 21 

and road emissions, on the other hand, are distributed rather evenly in space over the five 22 

zones. The budgets of the emissions related to production (7.4% of total), agriculture (3.7%), 23 

airline (3.3%) and restremainder sectors (1.2%) are relatively small compared to that of the 24 

first three sectors. Fig. 4 5 shows the spatial distributions of the emissions from the seven 25 

sectors derived for January based on the IER inventory and on the temporal profiles from 26 

IER. The IER inventory is not fully faithful to the actual emissions from IDF, for instance, 27 

data corresponding to the year 2005 were used to simulate the emissions in 2011, but this 28 

would havebut in principle, this has very limited impact on the theoretical computation in our 29 

OSSE framework of inversion.  30 

 31 
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3.4.22.4.2 𝐇𝟐 1 

Following B15, we use the mesoscale atmospheric chemistry-transport model CHIMERE 2 

(Menut et al., 2013) to simulate the signature of CO2 fluxes in the atmosphere over the IDF 3 

area. This model has successfully served for air quality applications in megacities (Couvidat 4 

et al., 2013; Zhang et al., 2013). The CHIMERE model domain in this study, which is the 5 

same as that in B15, covers an area of about 500 x 500 km
2
 in northern France that is centered 6 

on IDF. Its horizontal resolution is 2 km × 2 km over IDF and its vicinity, and 2 km ×10 km 7 

to 10 km × 10 km over the rest of the domain (see supplementary Fig. S1).1 in B15). As such  8 

In total, there are 118 x 118 cells in the model horizontal grid. Vertically there are 19 sigma-9 

pressure (terrain-following) layers from the surface up to 500 hPa. The top level of the first 10 

layer is at about 25 magl, and there are at least 6 layers below 250 magl. The meteorological 11 

fields driving the CHIMERE simulationsimulations come from the ECMWF analysisanalyses 12 

at 15 km resolution. The CHIMERE modeling system prepares meteorological data on its 13 

model grid by diagnosing sub-grid processes, such as turbulent mixing and convection 14 

(Menut et al., 2013). We use Global Land Cover Facility (GLCF) land use data at 15 

1 km x 1 km resolution for such diagnosis. Simple urban parameterization is adopted to 16 

correct wind speed in the surface layer taking into account the increased roughness in the 17 

urban area (Menut et al., 2013), since B15 found no significant differences in the simulation 18 

of CO2 mole fractions when advanced urban scheme is used. 19 

The exchange of CO2 between the CHIMERE 3D regional domain and the surrounding 20 

atmosphere depends on the wind conditions from the ECMWF product and the CO2 21 

concentrations at the domain boundaries. These exchanges characterize the signature of 22 

remote fluxes outside the modeling domain that impact the observed and simulated 23 

atmospheric CO2 in IDF. Depending on the simulations, we mayWe need to account for these 24 

CO2 boundary concentrations and for the CO2 concentration field at the initial date of the 25 

simulations (i.e. the CO2 initial condition). The) when simulating concentrations, which is not 26 

the case when applying the analytical computation of the uncertainties in the inverted 27 

emissions budgets through Eq. (2). When simulating CO2 concentration fields for the 28 

preliminary illustration of the CO2 variations in IDF in Sect. 2.4.3, the boundary conditions 29 

are derived from the interpolation of athe global inversion product of Chevallier et al. (2010). 30 

This product has a resolution of 3.75° (longitude) × 2.5° (latitude), which gives about 2-3 31 

cells at each CHIMERE domain lateral boundaries, yielding a smooth influence in both space 32 
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and time from the CO2 boundary conditions. The CO2 initial condition is built from the 1 

interpolation of CO2 given by that global inversion product. Note that weWe do not control 2 

these CO2 boundary and initial concentrations in our inversion system. Therefore, in 3 

principle, they should be associated with an affine term which explains why these components 4 

do not appear in the observation operator that is separated from the linear operator 5 

H.computation of the posterior uncertainties given by Eq. (2). However, mathematically, they 6 

can be ignoredas detailed in Sect. 2.5.2, uncertainties in the OSSE framework (we only need 7 

to account for potential errors from these conditions still impact the accuracy of the inversion 8 

and have to be accounted for in the configuration of the observation error), which explains 9 

why we simplifymodel uncertainty. Anthropogenic emissions within the notations of the 10 

observation operator. The initial and boundary conditions will thus only be used for 11 

illustrating the CO2 variations in modeling domain but outside IDF based on model 12 

simulationsare not estimated in our inversions. 13 

 14 

3.4.32.4.3 𝐇𝟑 15 

For a given network, the operator 𝐇𝟑 consists in a combination of three operations: the linear 16 

interpolation of concentrations from the transport model grid to the actual point at which CO2 17 

measurements are collected, the selection of afternoon CO2 concentration data (12-17h) at 18 

each station (upwind or downwind) when the wind speed from the transport model is higher 19 

than 3  m  s
-1

 at the downwind station, and the CO2 city upwind-downwind-upwind gradient 20 

computation. While B15 consider gradients between pairs of stations downwind and upwind 21 

the full Paris urban area, this study assesses the potential of assimilating gradients between 22 

stations that are located within either urban or rural area. The gradients are thus representative 23 

of local urban emissions, butand not limited tonecessarily of the citywide emissions as in B15. 24 

The assimilation of all gradients should help better constrain the spatial and sectoral 25 

distribution of the emissions. 26 

In this synthetic study, we assume that the measurements are taken continuously at the height 27 

of 25 magl at all stations during the month of January 2011. This height can correspond to the 28 

setup of these stations at the top of existing buildings for which 25 magl is a common height 29 

in the Paris area. The deployment of large networks with up to 70 stations at this height would 30 

thus not have to rely on new infrastructures as if the targeted sampling height was 31 
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significantly higher (which would be a critical barrier for the practical implementation of the 1 

network). Local sources and transport that are poorly represented with a 2 km resolution 2 

model may have large impact on the concentration measurements at such a height. However, 3 

all real data assimilated by B15 were sampled at peri-urban stations at less than 25 magl. By 4 

selecting the data during the afternoon only and for high wind speeds, B15 limited such a 5 

local impact. Furthermore, their diagnostic of the model error which is used to set-up the 6 

OSSEs in this study (see Section 2.5.2) implicitly accounted for this impact. Still, assimilating 7 

25 magl measurement in the core of the urban area (which corresponds to a significant 8 

number of the hypothetical sites investigated in this study) is likely challenging due to the 9 

high density of strong sources and to the complexity of the urban canopy, and had not been 10 

attempted by B15 even though they derived typical estimates of the model error for urban 11 

measurements (see Sect. 2.5.2). This will be further discussed in Sect. 4.  12 

The CO2 gradient computation requiresdemands selecting pairs of upwind and downwind 13 

stations. For each observation at a given time, the station at which that observation is made is 14 

first considered to be a downwind station. We then select, for that observation, a matching 15 

observation at an upwind station, based on the wind direction at the downwind station (read 16 

fromgiven by the ECMWF meteorological product).data, also used to drive the CHIMERE 17 

model). We impose that the direction angle between the direction from the upwind andto the 18 

downwind stations should be comprised between ±11.25° of the and the wind direction at the 19 

downwind station (definingis comprised between ±11.25°. The choice of such a 22.5° 20 

anglerange of angles for the gradient selection is a trade-off between the need to select enough 21 

data to constrain the inversion, and the need for ensuring that we do not depart too much from 22 

the objective of assimilating “downwind-upwind” gradients. It is derived from the study of 23 

Staufer et al. (2016) who analyzed the impact of such a choice on the results of the inversion 24 

when using real data. Fig. ). Figure 5 shows4 illustrates the principle of the gradient selection 25 

by showing the wind direction for a downwind observation and the area that covers its 26 

corresponding upwind candidate stations. Then we 27 

We further impose that the distance between the upwind and downwind stations should be 28 

larger than 5 km (to avoid assimilating gradients that are mostly representative of local 29 

sources) and as close as possible to 10 km. This 10 km distance would correspond to the 30 

advection of an air parcel during 1 h with a wind speed of 3 m s
-1

 (i.e. our threshold on the 31 

wind speed for the assimilation of gradients). Here, we ignorethe gradient computation in the 32 
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reference inversion ignores the time lag needed to advect an air parcel from upwind to 1 

downwind stations and compute gradientsit is based on the difference between simultaneous 2 

hourly mean observations. This explains why the 10 km distance is seen as a good trade-off 3 

between the need for being representative of large scale emissions and the need to limit the 4 

impact of ignoring the time required for transporting air masses from an upwind to a 5 

downwind site. We discard the downwind observations for which no upwind station can be 6 

found based on our selection rules. About 7-16% of total observations are retained for 7 

gradient computation with this data selection procedure, depending on the size and type of the 8 

networks. 9 

Fig.Figure 6a shows statistics on the afternoon hourly wind conditions at an example station 10 

called EVE26 during January 2011, and Fig. 6b shows the wind directions 11 

correspondingrestriction of this statistics to the selection of upwind stations wind conditions 12 

at EVE26 when EVE26 is selected as a downwind. site for gradient computation. Winds 13 

overat station EVE26 blow prevailingly along the southwest-northeast direction for this 14 

period (Fig. 6a). Since EVE26 is located to the northeast of the urban center (Fig. 6c), the 15 

corresponding upwind stations for gradient computation are mostly selected in the southwest 16 

direction (FiguresFig. 6b and 6c-c).  17 

EightAs the observation operator is linear, one can evaluate the contribution of a flux 18 

component to the CO2 mixing ratio at the measurement stations by applying the observation 19 

operator to that specific flux component, cancelling all other flux components. We thus 20 

perform eight CHIMERE simulations with, in input, respectively the simulation of the NEE in 21 

Northern France and the inventories for the 7 sectors of the fossil fuel emissions in IDF 22 

described in Sect. 32.4.1 are used to checkevaluate the contributionscontribution of eachthese 23 

different types of flux component to the CO2 mixing ratio variations during January 2011 at 24 

network stationsthe hypothetical station locations considered in this study. This corresponds 25 

to applying H to control vectors with scaling factors corresponding to the NEE or to a specific 26 

sector of emission set to 1 and others to 0, and ignoring CO2 boundary conditions. FigureFig. 27 

7 plots the resulting time series of CO2 mole fractions corresponding to the different types of 28 

flux at 10 stations of an R network (which are indicated by red triangles in Fig. 54) including 29 

2 urban stations (EVE07 and EVE11 in Fig. 6c) and 8 rural stations.  30 

CO2 series from Northern France NEE in January have small daily variations compared to 31 

that of CO2 from the fossil fuel emissions in IDF and show very similar patterns at all the ten 32 
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stations. During night-time, CO2 emitted by the ecosystem respiration or by the anthropogenic 1 

activities is trapped within the usually stratified nocturnal planetary boundary layer, which 2 

generates peaks in the CO2 time series (.Fig. 7). However, as explained in Sect. 32.3, the 3 

representation of the nighttimenight-time variations (in particular of their amplitude) by the 4 

transport model is not reliable. The diurnal variations of CO2 are driven by the diurnal 5 

variations of the NEE (with a sink of CO2 due to photosynthesis during daytime) and of), the 6 

CO2 emissions from major sectors (building, road and energy sectors), and the meteorology 7 

within the planetary boundary layer. 8 

There are strong positive CO2 concentration gradients between the urban-urban and urban-9 

rural pairs of stations when analyzing the signature of the mainmajor sectors of anthropogenic 10 

emissions (Fig. 7). FigureFig. 7i shows histograms of simulations of the concentration 11 

gradients corresponding to the observation vector when using this 10-stations R network for 12 

inversion. These simulations are obtained by forcing CHIMERE with the estimates of the 13 

total NEE and anthropogenic emissions described in Sect. 3 2.4.1 (i.e. by applying H to 14 

control vectors with all scaling factors set to 1 and accounting for the CO2 boundary 15 

conditions described in Sect. 3 2.4.2). The three different histograms contain the gradients 16 

between 2 rural, 2 urban or 1 rural and 1 urban station, respectively. All the concentration 17 

gradients between downwind urban and upwind rural stations are positive, carrying a mean 18 

CO2 gradient of ~14 ppm with a standard derivation of ~4 ppm. In contrast, the concentration 19 

gradients between downwind rural and upwind urban stations have 20% negative values, with 20 

a mean of about -~3 ppm and a standard deviation of ~7 ppm. The gradients between rural 21 

downwind and rural upwind stations have a mean of ~5 ppm, a standard derivation of ~7 22 

ppm, and ~13% negative values. Most of these rural-rural negative gradients were found at 23 

station pairs where the upwind rural station is much closer to the city center than the 24 

downwind rural station (e.g. EVE34 and EVE85 whose distance is ~23 km). Ignoring the time 25 

lag that is required for an air parcel to be transported from the upwind to the downwind 26 

stations when computing the CO2 gradients explains a large portion of these negative 27 

gradients. The emissions vary in time, and, at a given time, the upwind rural station can bear a 28 

signature of a peak dominated by the emissions from the upwind nearby city center while this 29 

signature has not reached the distant downwind rural station yet for appropriate gradient 30 

computation.. Occasional changes in the wind directions between the upwind to the 31 

downwind stations may also explain that, sometimes, air masses reaching the downwind 32 

stations have not necessarily been transported over the areas with high fossil fuel emissions. 33 
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 1 

3.52.5 Accounting for uncertainties 2 

3.5.12.5.1 Prior uncertainties 3 

Formal statistical methods, such as Monte Carlo approaches, for estimatingcan be used to 4 

estimate errors due to uncertain activity data and emission factors are used to inferand thus 5 

the overall uncertainties in inventories at the global/national scale (Fauser et al., 2011; Wang 6 

et al., 2013). However, to our knowledge, there are currently no studies evaluating uncertainty 7 

in existing inventories at the city scale.  B15 used the AIRPARIF 2008 inventory as a prior 8 

emission estimate for their inversions, and assigned a 20% 1-sigma uncertainty in the monthly 9 

estimate of the total emissions from IDF. Even though few cities can benefit from such local 10 

inventories (see Appendix A), followingFollowing B15, we set a prior 1-sigma uncertainty of 11 

about 20% in monthly total emissions of about 20%, which corresponds to a 23% 2-sigma 12 

annual uncertainty, assuming a temporal correlationfrom the Paris metropolitan area. In 13 

practice, few cities benefit from such high resolution local inventories (Appendix A), and the 14 

setup of  approximately 2 months between monthlythe prior uncertainties (see Sect. 2.1).for 15 

other cities may have to be higher since the quality of the prior knowledge from their 16 

available inventories is not as good. 17 

We assume that there is no correlation between the prior uncertainties in the emission budgets 18 

(and thus in their scaling factors) for different sectors of emissions (see Fig. 9a8a). For a 19 

given sector, the correlations of the uncertainties in scaling factors for different areas and time 20 

windows are given by the Kronecker product between spatial correlations (if there are 21 

different control areas for this sector) and temporal correlations. We set a value of 0.6 for the 22 

spatial correlations between prior uncertainties in scaling factors for building or road 23 

emissions that correspond to two different geographical areas (Fig. 2). The temporal 24 

correlation of the prior uncertainties in scaling factors is modeled using an exponentially 25 

decaying function with a characteristic correlation length of 7 days for each sector (Fig. 26 

9a 8a). Uncertainties in individual scaling factors for a given control tile are derived based on 27 

these correlation settings as well asthis configuration of the correlations and on the two 28 

rulesfollowing assumptions: (1) the aggregation of uncertainties in all the individual scaling 29 

factors leads to an overall 20% 1-sigma uncertainty in total 1-month emissions for January 30 

2011, and (2) the 1-sigma uncertainties for the seven sectorsbudget for January 2011 of 1-31 
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monththe seven sectors of emissions are approximately equal to one another as . The latter 1 

assumption is supported by a recent census, which was conducted by National Physical 2 

Laboratory (NPL) based on a group of 26 city inventories reported to the carbonn Climate 3 

Registry (cCR) suggesting that the data collected for different sectors can actually have a 4 

similar level of quality (report available from www.carbonn.org). The sensitivity of the 5 

inversion results to the configuration of B and thus the robustness of the inversion are 6 

discussed in Sect. 2.1 4. By construction, the resulting 1-sigma uncertainties in the budgets for 7 

the seven sectors of emissions are larger than that in the total emission estimate, each. They 8 

are approximately equal to 36% (Fig. 8). We9). As B15, we set, similar to B15, a prior 9 

uncertainty in the NEE scaling factors of about 70%. 10 

Controlling large control tiles with a single scaling factor does not mean that the uncertainties 11 

in the emissions at higher resolution are assumed to be entirely correlated within a control tile. 12 

The uncertainties in the distribution of the emissions at higher resolution given by the 13 

observation operator must actually be accounted for in the computation of the observation 14 

error as indicated in the following section. This part of observation error is generally called 15 

the aggregation error. 16 

3.5.22.5.2 Observation uncertainties 17 

As explained in Sect. 2.2, we ignore measurement errors for the configuration of the 18 

observation errors since these measurement errors should be dominated by the model errors 19 

(i.e. the errors from the observation operator). Model errors are mainly a combination of the 20 

aggregation errorsObservation uncertainties arise from both the measurement errors and the 21 

model errors associated with the observation operator (including the transport model errors). 22 

The precision of the instruments presently used (typically cavity ring down spectrometers) for 23 

the climate studies can have a high precision that is better than 0.1 ppm (1-sigma) on hourly 24 

mean data. When properly calibrated, typically every 2 weeks to 2 months, these high 25 

precision instruments do not bear any significant drifts or biases, and the systematic errors 26 

borne by their hourly measurements are smaller than 0.13 ppm. This level of measurement 27 

error is negligible compared to the current transport model errors that are detailed later in this 28 

section. Even though the deployment of dense networks with up to 70 sites would rely on 29 

LCMP sensors and on a different calibration strategy, we conduct the main inversion 30 

experiments assuming that they would measure CO2 with a precision and accuracy still 31 
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negligible compared to the model error. However, some sensitivity tests will be performed to 1 

assess the impact of much larger measurement errors (Sect. 3.2).  2 

The model error, which applies to “downwind-upwind” CO2 gradients in this study, is mainly 3 

a combination of the aggregation error due to uncertainties in the spatial and temporal 4 

distribution of the fluxes within a control tile that is not resolved by the inversion, of the 5 

representativeness error (the difference in terms of spatial representativeness between the 6 

measurements and the CO2 simulated with a 2 km to 10 km horizontal resolution model), 7 

andof the atmospheric transport modeling error., and of the errors in the model CO2 initial and 8 

boundary conditions.  9 

Following B15, we assume that the observation error covariance matrix R is diagonal, which 10 

means that the model errors for the CO2 gradient observations gradients are not correlated in 11 

time neitheror in space. The R matrix is thus diagonal This implies that there is no correlation 12 

of the model errors in our inversion configuration.the direction orthogonal to the wind (see 13 

later in this paragraph for a discussion about the direction parallel to the wind). Based on 14 

statistics on the model-measurement misfits, B15 diagnosed that the model error should be on 15 

the total model error when simulating CO2 hourly concentrations at individual urban and rural 16 

sites and for hourly city downwind-upwind gradients between rural stations. They found that 17 

this error is of the order of 5 ppm and 10 ppm for individual hourly CO2 data at rural and 18 

urban stations respectively, and of 3 ppm for hourly city upwind-downwind gradients 19 

between rural stations. Theygradients between rural stations. The high model error at 20 

individual stations characterizes the difficulties of atmospheric models to represent the CO2 21 

transport within and in the vicinity of urban areas, even when selecting data during the 22 

afternoon and for high wind speed only. B15 explain the smaller model errors for gradients 23 

than for individual CO2 data by the high spatial correlations between model errors at different 24 

stations.upwind and downwind sites. These spatial correlations are due to the large spatial 25 

coherence of the errors from the model boundary conditions and fromalong the estimate of the 26 

fluxes outside the IDF areawind direction, whose cancelling is the main aim of the gradient 27 

computation. Even thoughIn principle, this is not incompatible with the assumption 28 

mentioned above that there is no correlation of model errors in the direction orthogonal to the 29 

wind since it bases on the idea that the correlation follows the advection of air parcels and of 30 

the atmospheric signature of remote sources and sinks. Still, the diffusion of the signature of 31 

remote sources and sinks through their system potentially bears higheratmospheric transport 32 
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could correlate the model error between different gradients corresponding to close locations. 1 

Characterizing such spatial correlations is very challenging and falls beyond the scope of this 2 

paper. 3 

The diagnostics of model error by B15 account for the transport and representativeness errors 4 

and of errors in the CO2 initial and boundary conditions of the same transport configuration as 5 

that used in our study. It also accounts for aggregation errors since usingtheir inverse 6 

modeling framework solves for emissions at a coarser control vector, this resolution than in 7 

this study (they apply scaling factors for the 6-hour mean budget of the emissions in IDF). 8 

Smaller aggregation errors should not be highly significant and apply in our configuration but 9 

we derive the estimateconservatively use their diagnostic to assign the model errors in our 10 

OSSEs. This setup of the model errors forin our study is also based on their diagnostics and 11 

on a simple derivation of the spatial correlations of the model error for individual 12 

measurements between theupwind and downwind stations that can lead to based on their 13 

results. This leads us to assign a standard deviation of 3.5, 5.6, and 7 ppm respectively for the 14 

observation error on gradients between rural stations, between rural and urban stations and 15 

between urban stations. Alternative settings such as inflated (50% larger) or shrunk (50% 16 

smaller) standard deviation of the observation errors lead to insignificant changes in inversion 17 

results (see Supplementary Fig. S1). 18 

 19 

43 Results 20 

3.1 Results with the reference inversion configuration 21 

We conduct a series of inversions of sectoral and total emissions during the month of January 22 

2011 using E,-, R- and U-type networks with 10, 30, 50 and 70 stations. The inversion results 23 

are analyzed in terms of posterior uncertainties in the inverted fluxes and in terms of 24 

uncertainty reduction by the inversion (Fig. 89). The uncertainties discussed here are relative 25 

uncertainties, which are defined as the uncertainty budgets in percentage toof the budgets of 26 

the corresponding prior emissions obtained from the IER inventory. (and included in the 27 

observation operator).  28 

We find that, withWith small E, R or U networks of 10 stations (i.e. the size of some of the 29 

existing networks), inversions are effective in reducing uncertainties in total emissions as well 30 

as in the emissions from the three major sectors (building, road and energy). The inversion 31 
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reduces on average reduces the 1-sigma uncertainty in the total emissions estimates from 1 

~19% a priori down to ~11% a posteriori (a 42% uncertainty reduction). This posterior 2 

uncertainty would correspond to a 13% 2-sigma uncertainty in annual inverted emissions if 3 

assuming approximately 2-months temporal correlation between monthly uncertainties (see 4 

Sect. 2.1). This level of posterior uncertainty does not meet the notional target of 5% 2-sigma 5 

annual uncertainty. The 1-sigma uncertainties in building, road and energy emission estimates 6 

for the month of January 2011 are reduced on average from ~36% (prior uncertainty) down to 7 

about 23%, 27% and 24% respectively. Even though it represents high uncertainty reductions 8 

(about 35%, 23% and 31% of gainuncertainty reduction respectively over the prior 9 

uncertainty), these levels of posterior uncertainties are above the threshold of level 1 quality 10 

that has been defined in Sect. 2.1.). In contrast, the uncertainty reduction is very limited for 11 

emissions from agriculture, airline, production, and restremainder sectors. However, the 12 

contribution of these four sectors of emissions to the total budget is rather small, whichand 13 

represents only ~16% of the total emissions in IDF according to the IER inventory (Fig. 8e). 14 

Note that, in 9e). 15 

In order to limit the influence of specific station locations, and to weight the sensitivity to the 16 

network design (and thus the need for network design studies), we performed inversions with 17 

10 random networks of the same type and size. These random networks differ from one 18 

another in their station locations, but still keep the feature of the type of follow their 19 

respective network type (see Sect. 32.3 on how we generatedgenerate these random 20 

networks). The variation (error bars in Fig. 8) in9) of the inversion performance due to 21 

changes in the influence of station locations is in general small, compared to the variations 22 

influenced by due to the changes of the network type and size (see Fig. 8).  This9).  The 23 

influence of the station locationslocation is large for the agriculture sector is significant, but 24 

theemission budget of agriculture emissionsfor this sector is very small.  25 

The gain in uncertainty reduction by inversions increases with larger networks. However, this 26 

increase generally slows down and is rather weak once the networks have more than 30 27 

stations (Fig. 8a9a-c). While there is not much difference between the uncertainty reduction 28 

for energy emission estimates when using 30-station or 70-station E networks (Fig. 8a9a), the 29 

increase in uncertainty reduction for building emissions when using 30-station or 70-station 30 

compared to 30-station U networks is still significant. To further illustrate this 31 

saturationslowdown effect, we assess the number of Degrees of Freedom for the Signal (DFS) 32 
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of the ; Rodgers, 2000) for inversions using different networks (Fig. 10a). The DFS describes 1 

how many degrees of freedomscharacterizes the number of independent pieces of information 2 

brought by the observations and therefore the relative weight of the signal from the 3 

observations against the noise from the observations in the analysis. If the uncertainty in the 4 

measurement is very high or if the measurements are related to the signal. The simplest 5 

illustrating case is that a measurement 𝑦 estimates an emission 𝑥 with an error 𝜖: 𝑦 = 𝑥 + 𝜖, 6 

where the prior and measurement errors are independent of each other with variances being 7 

𝑣𝑏  and  𝑣𝜖  respectively. The measurement 𝑦 bring redundant information, the measurements 8 

will provide one degree of freedom about 𝑥 if there is no measurement error (𝑣𝜖 = 0) or if 9 

there is no prior information ( 𝑣𝑏 = ∞ ).a small DFS. In the case of highly uncertain 10 

measurements (𝑣𝜖 = ∞), the measurement 𝑦 will provide zero DFS, or one degree of freedom 11 

for the noise. Thepractice, the overall DFS for this simplest case is 𝑣𝑏/(𝑣𝑏 + 𝑣𝜖), and for 12 

general cases of BLUE analysis (Eq. (1)) the DFS equals to the is the trace of the matrix 13 

(𝐁 − 𝐀) 𝐁−1 (Rodgers, 2000). Inversion systems with larger DFS values assimilateand has a 14 

value between zero and the number of observations more effectively.𝑑 (Wu et al., 2011). For 15 

our Paris case study, we find that the amount of information extracted from the DFS per 16 

concentration gradient observation (i.e. the ratio DFS/𝑑) is less than 10%, that is, only a small 17 

percentage of observations are effectively assimilated concentration gradient observations is 18 

small (DFS/𝑑 < 10%, where 𝑑  is the number of gradient observations). We also found a 19 

small amount of extracted information in a regional inversion study using eight towers from 20 

the Ring 2 network located around the Iowa state of USA ( DFS/𝑑 < 20% ; Wu et al. 21 

(2011)).and correspond to the signal but not the noise. Such small amounts resultDFS results 22 

from the diffuse nature of atmospheric transport (which weakens the atmospheric signature of 23 

the emissions from specific sources and spreads it throughout the different concentration 24 

gradients) and from the uncertainty in atmospheric modeling. When using denser large 25 

networks, the rate of effectively assimilated gradients decreases. In this case, (which weakens 26 

the constraint given to observations during the inversion analysis). When using denser 27 

networks, the DFS per observation decreases, and the information brought by the different 28 

gradient observations on the budgets of sectoral or total emissions over the full IDF area has 29 

more redundancy. This is due to the decrease of the distances between the upwind and 30 

downwind stations , and between the different upwind (or downwind) stations that are 31 

selected for gradient computations are smaller, and the distances between different upwind 32 

stations or between different downwind stations are also smaller, as yields some redundancy. 33 
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Despite such a densification of the network, many isolated and local sources, which dominate 1 

some sectors of emissions, are yet difficult to catch, in particular with our 5 km threshold on 2 

downwind-upwind site distance (see Sect. 2.4.3). Additionally, the selection of daytime 3 

observations for high wind speed dramatically reduces the observational constraint on the 4 

emissions at other periods of time (see Sect. 2.2 for the temporal discretization of the control 5 

vector), which, altogether have a large weight on the total emission budget. Therefore, the 6 

slowdown of the information from the gradients regarding the budgets of sectoral or total 7 

emissions over the full IDF area. This is especially true with the E network for energy 8 

emissions, where the candidate locations of stations are closer to one another and cover only 9 

the urban area of IDF. Consequently, the average DFS decreases as the network size 10 

increases, and the gains in uncertainty reduction tend to saturate with uncertainty reduction 11 

when using larger networks (most evident for the E network).is also explained by their 12 

convergence to a value which reflects this lack of constraint. 13 

The 1-sigma posterior uncertainties obtained with 70-station networknetworks of type either 14 

E, R or U type are on average 32%, 33%, 18% and 1831% smaller than those obtained with 15 

10 stations for building, road, and energy emissionsand total emission estimates respectively 16 

(Fig. 8a9a-c). When comparedCompared to the prior uncertainties, inversions with 70-station 17 

networks achieve an uncertainty reduction of 5660% on average and a 16for the total 18 

emissions which leads to an 8% 1-sigma posterior uncertainty for the building emission 19 

estimates. This corresponds to a level 1 quality.. In contrast, the 1-sigma posterior 20 

uncertainties in building, road and energy emission estimatesemissions are 16%, 18% and 21 

20% respectively., with uncertainty reductions by 56%, 48% and 43% respectively compared 22 

to the corresponding sectoral prior uncertainties. Large networks are more promising for the 23 

estimation of dispersed surface emissions such as thatthose from the building sector. 24 

An important finding of our study is that differentDifferent types of networks show distinct 25 

ability for monitoring emissions, which is usually sector-specific. For instance, using a U- 26 

instead of a E-type 70-station network leads to 18% vs. 22%, 18% vs 19%, 15% (i.e. a level 2 27 

quality) vs. 18%, and 6% (i.e. a level 3 quality) vs. 9% (i.e. a level 2 quality)9% differences in 28 

the posterior uncertainty in the estimates of the energy, road, building and total emissions 29 

(Fig. 8d). Therefore, with 70-station U networks, the target of 5% 2-sigma annual uncertainty 30 

for the total emission estimate can be met.9d). Compared to the U networks, the E networks 31 

result in larger DFS values (Fig. 10a) but worse performances in uncertainty reduction for 32 
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total emission estimates (Fig. 10b). The stations in the E network are around the area of high 1 

emissions (in particular central Paris), therefore their concentration gradients would be overall 2 

more sensitive to the nearby emissions (hence with larger DFS values). However, focusing 3 

only on central Paris makes the E network less efficient for controlling the emissions in the 4 

rural area (see the spatial distribution of the energy, building and road emissions in Fig. 4a5a-5 

c). This is because there are large point sources (e.g. the EDF Porcheville power plant and the 6 

TOTAL Grandpuits refinery from the energy sector; Fig. 2) and considerable building 7 

emissions located outside of the largest ring of the E networks (Fig. 3 and Fig. 4). The more 8 

extended U networks perform better than the smaller U networks and the equal-sized E 9 

networks in clarifying the negative cross correlations in errors of emission estimates for 10 

different sectors (see 5).  11 

In all experiments, the prior and posterior relative uncertainties in sectoral budgets are higher 12 

than that in the total emissions due to the fact that the sectoral budgets from inventories or 13 

atmospheric inversions are based on a mix of independent information and on the split of the 14 

information on the total emissions (which is characterized by null or negative correlations 15 

between the uncertainties in the different sectors). The analysis of the negative correlations 16 

between posterior uncertainties in different emission budgets is indicative of the capability of 17 

the inversion system to well spread the attribution of an overall concentration increase 18 

between them (Fig. 8). Large negative correlations associated with high posterior 19 

uncertainties indicate that the posterior uncertainties in the individual budget for the different 20 

corresponding emission components arise from improper attributions of budget among these 21 

emission components while the sum of the emissions budget of all  components may be well 22 

constrained by the inversion. The skill of the larger U networks for separating the sectoral 23 

emissions budgets is higher than that of the smaller U networks and than that of the equal-24 

sized E networks (see Fig. 8b-d for cross correlations between building, road, and energy 25 

sectors).  26 

HoweverFig. 9b-d for cross correlations between building, road, and energy sectors). The 27 

enhanced negative correlations would lead to decreased uncertainties in the total emission 28 

estimate that is the sum of sectoral emission estimates. This is a result that can also be found 29 

in finance where diversification in assets (weak and negative correlations between assets) 30 

reduces the portfolio risk (uncertainty in total assets). Notably, the E networks perform better 31 

than the U networks for estimating emissions from the airline sector. This is due to the fact 32 
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that airport emissions (see Fig. 2 and Fig. 4f5f) are located between the two outer rings of the 1 

E networks. Moreover, the E networks perform well to reduce uncertainty in road emission 2 

estimates, although a significant portion of the road emissions can occur in rural areas (that 3 

are not covered by the E networks).. This is probably because (1) the smallest inner ring 4 

coincides with the heavy-loaded Paris peripheral boulevard (25% of the traffic in Paris); (2) 5 

the Paris road network (Fig. 4b5b) sprawls mainly atin the urban and suburban area, being 6 

enclosed bywhich are comprised within the largest outer ring; and (3) the station pairs 7 

fromconfiguration of the E networks (as well as that of the R networks; Fig. 3) may 8 

characterize sufficiently well3) is better adapted than that of the concentration gradients 9 

resulting from the differenceU networks to distinguish  between onroad and nonroadthe 10 

signature of the road emissions and that of the other emission sectors. 11 

3.2 Sensitivity to the measurement and model errors, and to the amplitude of the 12 

uncertainty in NEE 13 

The results analyzed above are based on the reference inversion configuration detailed in 14 

Sect. 2. However, as introduced in Sect. 2.5.2, observation errors could be in practice larger 15 

than assumed, either because we would need to use LCMP sensors with smaller accuracy than 16 

the present high precision instruments in order to deploy dense networks, or because our 17 

assumptions regarding the model errors (derived from the diagnostics of B15 over a small 18 

number of sites) would not be adapted to dense measurement locations. 19 

We have thus repeated the inversion tests with values for the observation error standard 20 

deviations inflated by 50% compared to those described in Sect. 2.5.2 for the reference 21 

configuration (which would corresponds to a dramatic increase of the measurement error or 22 

decrease of the modeling skills, see the discussion in Sect. 4). The 1-sigma posterior 23 

uncertainties resulting from inversions with inflated (Fig. 11) and reference (Fig. 9d) 24 

observation errors when using 70 sites and the type of network providing the best 25 

performances (depending on the sector) are (1) 7% and 6%, respectively, for total emission 26 

estimates with U networks, (2) 16% and 15%, respectively, for building emissions with U 27 

networks, (3) 19% and 18%, respectively, for road emissions with R networks, and (4) 20% 28 

and 18%, respectively, for energy emissions with U networks. The increase of the posterior 29 

uncertainty in total emission estimates resulting from this inflation of observation error 30 

standard deviation is significant (typically 1% of the budget of prior total emissions). 31 

However, these increases are relatively modest compared to the typical variations of posterior 32 
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uncertainties depending on the different networks that are tested. This is likely due to the fact 1 

that, at the monthly scale, the projection of the uncertainty in the prior emissions into the 2 

concentration space is very high compared to the observation errors, and to the fact that the 3 

observation limitation is primarily related to their spatio-temporal coverage rather than to the 4 

precision of the hourly measurements and of their simulation by the observation operator.  5 

Our reference experiments apply to a month in winter, when the CO2 signal from the NEE is 6 

low, and the heating emissions are high, which decreases the difficulty to separate it from that 7 

of the anthropogenic emissions in the concentration gradients. This could favor the 8 

monitoring of the anthropogenic emissions during this season. In order to assess whether the 9 

results obtained in this study can be indicative of the performance of the inversion during 10 

summer, when the NEE is higher (we ignore here the impact of the decrease in the heating 11 

emissions), we run inversions where the prior error standard derivation for the NEE fluxes is 12 

inflated/shrunk by 100%, or where the NEE fluxes within the observation operator H1 (see 13 

Sect. 2.4.1) are multiplied by 3 or 5 (which typically corresponds to the ratio between the 14 

NEE in July vs. January according to the C-TESSEL simulations). The differences between 15 

the uncertainty reductions for the total emission estimates obtained with the reference 16 

configuration and when applying these changes are found to be less than 1%. Actually, the 17 

correlation between the posterior uncertainties in the NEE fluxes and in the total and sectoral 18 

fossil fuel CO2 emissions (except the building emissions) are nearly zero (Fig. 8b-d), which 19 

implies that the different networks are sufficiently dense to provide a clear separation between 20 

natural and anthropogenic fluxes within our inversion framework. This explains the weak 21 

influence of the prior uncertainty in the NEE for the estimate of the fossil fuel CO2 emissions.  22 

These sensitivity analyses strengthen the confidence in the robustness of our inversion results 23 

that are based on the experiments with real data of B15 and Staufer et al. (2016). 24 

54 Discussions and conclusions 25 

4.1 Summary with complementary analysis 26 

We have developed an atmospheric inversion method to quantify city total and sectoral CO2 27 

emissions using networks of measurement sites within and around a city. This method 28 

combines a prior emission estimate from an inventory, with the information from 29 

concentration gradient measurements (independent of the inventory) to provide updated 30 

emission estimates with reduced uncertainty. Such an inventory can be obtained for instance 31 

directly from local agencies or interpolated from regional inventories developed by public 32 
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research establishments. (see Appendix A). We examine the ability of thethis inversion 1 

system to reduce uncertainty in emissionsemission estimates for diverse emitting sectors. Our 2 

study case is the monitoring of the emissions from the  of the Paris metropolitan area (~12% 3 

of France’sFrance CO2 fossil fuel emissions). The relevance) as a function of the atmospheric 4 

method in the MRV context requires enquiring the uncertainty level in emission estimates 5 

size and their associated cost. To this end, we defined a notional uncertainty target for cost-6 

effective total emission estimates based on national MRV practices: a 5% 2-sigma annual 7 

uncertainty for total emission estimates that equates to the uncertainty in France’s national 8 

inventory reported to UNFCCCdesign (i.e. location of the stations) of the observation 9 

networks. 10 

We performedperform inversions over a one-month period in winter period (January 2011) 11 

using under a framework of Observing System Simulation Experiments, in which we test 12 

several types of theoretical networks of stations sampling CO2 atmospheric concentrations at 13 

25 meters above ground level. Under When using 10 stations, which is the 14 

configurationtypical size of the few current networks of the order of 10 stations, , the 15 

inversion considerably reducedreduces the uncertainties in total emission estimates for 16 

January 2011 (by ~42%). However, if deriving the corresponding annual %) from a ~20% 1-17 

sigma prior uncertainty through the propagation of the down to ~11% 1-sigma posterior 18 

uncertainty assuming approximately 2-month temporal correlation between monthly . The 19 

uncertainty reduction for sectoral budgets is also high but the 1-sigma posterior uncertainties, 20 

the  for these budgets is ~25% i.e. more than twice as high as for total emissions. In the prior 21 

inventories as in our inversion with ~10 stations failed to meet the 5% notional annual target 22 

for MRV use. We thus extended the measuring network. Large extensions should be possible 23 

in the near term through the inclusion of sensorsexperiments, the total emissions are better 24 

constrained (in relative terms) than the sectoral budgets. The inversion is more efficient in 25 

decreasing uncertainties in the budget of dispersed emissions from residential and commercial 26 

heating than that are cheaper than the ones used presently, and whose price could allow the 27 

set-up of nearly 70 stations under a budget constraint of 0.5 M€ per year. This budget 28 

corresponds to the order of the cost to compile, for MRV use, a high quality inventory of city 29 

fossil fuel CO2 emissions. 30 

We observed further significant reductions of uncertainties in in other sectoral budgets. We 31 

observe significantly larger uncertainty reduction in sectoral emission budget estimates when 32 
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using more stations in inversions. With 70 stations, the inversion can provide total emission 1 

estimates that meet the 5% notional annual uncertainty target.. The decrease of the 2 

uncertainties in the inverted emissions when using 70 stations over usingvs. 10 stations are 3 

significant: byis of 32% for commercial and residential buildings, byof 33% for road transport 4 

and byof 18% for the production of energy by power plants, and of 31% for the total 5 

emissions, respectively. TheseThe three major sectors comprise(building, road, and energy) 6 

cover most of the emission budget according to the IER inventory used in this study. The 7 

inversion is especially efficientTherefore, while the extension of the networks does not seem 8 

to be critical for decreasing uncertainties in the budget of dispersed the verification of the city 9 

emission total budgets, it likely provides high advantages for the monitoring of sectoral 10 

emissions from residential and commercial heating. The. When using 70 sites, the 1-sigma 11 

monthly posterior uncertainty of thesein the building emission estimates can be brought down 12 

to 15%, which provides valuable information to verify sector-wide mitigation policies/actions 13 

or to check whether sectoral mitigation targets are fulfilled. In contrast, the remaining 14 

uncertainties% while that for transport and energy emissions estimates are slightly larger 15 

(with 1-sigma monthly uncertaintiesis reduced to 18%).%.  16 

4.2 Discussion on the levels of posterior uncertainties and on the relevance of the 17 

corresponding estimates 18 

We can hardly determine whether the levels of precision in emission accounting obtained by 19 

atmospheric inversions would be enough for a MRV framework since the MRV experiences 20 

for citywide CO2 emissions are still very limited (Appendix A). We still attempt at evaluating 21 

the usefulness of estimates with these different levels of uncertainties. In MRV practice, 22 

mitigation actions and climate plans are usually based on targets for the reduction of annual 23 

budgets of the emissions and should thus be evaluated based on the monitoring of annual 24 

budgets and/or of their trends. In this study, the accuracy of the inversion is analyzed for a 25 

single winter month, and inversion experiments over longer time periods are out of the scope 26 

of the paper (for reasons of computational cost). However, results from Sect. 3.2 indicated 27 

that its accuracy in spring, summer and fall should be similar. In order to get an indication on 28 

the accuracy of the inversion at the annual scale, we thus assume that the scores obtained here 29 

apply to all months during the year, and use two opposed and extreme hypotheses regarding 30 

the correlations between posterior uncertainties from month to month. The first one is that 31 

these uncertainties are fully independent, which can be supported by the independence of the 32 
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measurements used to constrain the estimates from month to month. The second one is that 1 

these uncertainties are fully correlated, which can be supported by the fact that part of the 2 

posterior uncertainty is related to residual prior uncertainties that have not been decreased by 3 

the inversion, and that the prior uncertainties can be highly correlated from month to month. 4 

Actual correlations should lie between these two extreme cases. By doing so, we obtain a 5 

simple, conservative and indicative assessment of a typical range of 2-sigma annual 6 

uncertainties in the total and sectoral emission estimates from the inversion. With such a 7 

conversion, the prior uncertainty in total emissions would range between 12% and 40% while 8 

that in the sectoral budgets of the emissions would range between 21% and 72% depending 9 

on the sectors. The 2-sigma annual posterior uncertainty in total emissions would range 10 

between 4% and 23% when using 10 to 70 sites. The 2-sigma annual uncertainty in the 11 

budgets for the three main emitting sectors (building, road, energy) would range between 13% 12 

and 59% when using 10 sites, and between 9% and 44% when using 70 sites, while it would 13 

systematically exceed 14% for the production sector even when using 70 sites. Such annual 14 

uncertainty ranges vary a lot for the secondary sectors of emissions (airline, agriculture, 15 

remainder) e.g. from between 7% and 41% for agriculture to systematically higher than 20% 16 

for the remainder emissions when using 70 sites.  17 

We compare these numbers to the diagnostic (based on expert judgments as well as error 18 

propagation calculations with the IPCC Tier 1 method) of the typical uncertainty in the 19 

national inventories in developed countries, which could apply to theoretical city scale 20 

inventories under MRV frameworks. The uncertainty in national inventories is country-21 

specific, but for the seven Annex I countries surveyed by Pacala et al. (2010), the uncertainty 22 

in CO2 fossil fuel emissions is consistently lower than 10% (2-sigma). For France, the 23 

uncertainty of the CITEPA national inventory (annually reported to UNFCCC) is estimated to 24 

be of 5% (2-sigma) for year 2012 according to CITEPA (2014). The uncertainty levels for 25 

estimates of emissions from different sectors can vary significantly at the national scale 26 

(Pacala et al., 2010; CITEPA, 2014). For instance, uncertainties for some activities such as 27 

mineral, metal and chemical productions are considerably larger than the 5% value for total 28 

emissions, but the share of these emissions in the total fossil fuel emissions is usually small. 29 

Uncertainties for other sectors are closer to 5% according to CITEPA (2014). 30 

Furthermore, succeeding in delivering a 5% or 10% 2-sigma annual uncertainty for the total 31 

emissions of a city would translate into an ability to assess a 25% reduction of total emissions 32 
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on a 15-year horizon at a 95% confidence level (detection interval [18%, 32%] or [11%, 39%] 1 

respectively, p = 0.05 for linear trends of emissions; see Appendix C for numerical details). 2 

The Paris climate plan for example, aims at reducing the GHG emissions by 25% by 2020 and 3 

by 75% by 2050 relative to the 2004 baseline (Mairie de Paris, 2012). This means that a 10% 4 

annual uncertainty would be enough to monitor the trend of Paris emissions over time.  5 

Comparing our indicative estimate of the typical range of posterior uncertainties in annual 6 

total and sectoral emissions to these 5% and 10% 2-sigma uncertainties confirms the need for 7 

dense observation networks if willing to build a valuable MRV framework. A significant part 8 

of the range of posterior uncertainties derived for the annual total emissions when using 10 9 

sites is below the 10% 2-sigma uncertainty. However, it does not reach the 5% 2-sigma 10 

uncertainty and most of this range is lying above the 10% 2-sigma uncertainty. When using 11 

more than 30 sites and U networks, the 5% 2-sigma uncertainty can be reached by the most 12 

optimistic estimates of posterior uncertainties in annual total emissions and most of their 13 

range lie below the 10% 2-sigma uncertainty. Furthermore, as far as the most optimistic 14 

derivation of annual results is concerned, inversions with more than 30 sites would be 15 

required to expect that the posterior uncertainties in annual emissions for the three major 16 

sectors can be close to 10% 2-sigma uncertainty. This level can be reached with U or R 17 

networks of more than 50 stations for building emissions, but it cannot be reached for the road 18 

and energy sectors. 70 sites are required to expect posterior uncertainties of less than 10% 2-19 

sigma uncertainty for all these 3 sectors at the annual scale. For the other types of sectors, the 20 

inversion with U, E or R networks is likely not adapted to reach the 10% 2-sigma uncertainty 21 

level at the annual scale.  22 

With 70 sites, a significant part of the ranges of 2-sigma posterior uncertainties in annual 23 

emissions for the three major sectors is below ~15% (for any type of networks). Such a 2-24 

sigma uncertainty at the annual scale still corresponds to an ability to detect the 25% 25 

reduction of emissions on a 15-year horizon at a 95% confidence (detection interval [3%, 26 

46%], p = 0.05 for linear trends of emissions; see Appendix C). The 5% and 10% 2-sigma 27 

uncertainties can thus be viewed as stringent for the monitoring of sectoral emissions but the 28 

comparisons to these levels of uncertainty indicate that dense networks would be necessary to 29 

ensure that the inversion has a high potential to verify sector-wide mitigation policies/actions 30 

or to check whether sectoral mitigation targets are fulfilled.  31 
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4.3 Robustness of the inversion configuration and requirements on the model, methods 1 

and instruments supporting such a configuration  2 

The results obtained in this study should not be over-interpreted, since (1) we worked under 3 

synthetic settings for large city networks, and (2) the configuration of our inversion system 4 

may fail to be fully faithful to reality (e.g. the idealized parameterization of the prior 5 

uncertainties in scaling factors defined for different sectors and spatial zones, and of the 6 

assumed independent errors in concentration gradient observations). Nevertheless our 7 

inversions were based on the experience from BréonB15 and Staufer et al. (20152016) in 8 

which real data from a few number of stations around Paris were used. In addition, we 9 

performed sensitivity analyses by significantly inflating the observation error to account for a 10 

potential increase of the measurement and modeling errors when deploying dense networks 11 

with many sites in the core of the urban area, and this analysis gave confidence in the 12 

robustness of the results obtained with our reference inversion configuration. 13 

Two strategies may improve the performance of atmospheric inversion for MRV use at the 14 

city scale when using real data. First, the inversion framework can incorporate much richer 15 

sets of atmospheric observations. Recently, city networks have become increasingly 16 

densified, embracing other types of CO2 measuring platforms such as eddy-covariance flux 17 

towers (Nordbo et al., 2012; Velasco et al., 2014), ground-based remote sensing instrument 18 

(Gisi et al., 2012), aircraft and satellites (Kort et al., 2012; Silva et al., 2013; Buchwitz et al., 19 

2013). The benefit from assimilating these measurements however needs to be assessed. For 20 

instance, the inversion may suffer from limited representativeness of observations in space 21 

(e.g. 0.2-5 km
2
 for eddy-covariance flux measurements (Christen, 2014)) or in time (e.g. 22 

aircraft campaigns being relatively short due to their cost), or from a weak sensitivity of the 23 

observations to emissions (e.g. satellite column measurements). In contrast, some atmospheric 24 

tracers other than CO2 can carry distinct signatures from different sectors, thereby their 25 

assimilation will certainly improve the ability of inversions to separate emissions from major 26 

sectors. For instance, radiocarbon (
14

C) measurements can serve for separating anthropogenic 27 

(fossil fuel combustion) and biogenic (biofuel and human and plant respiration) sources, and 28 

stable carbon isotope measurements (
13

C) can further distinguish combustions from gas or 29 

liquid fuel (Lopez et al., 2013; Vogel et al., 2013). CO, NOx and other co-emitted gases can 30 

be used as proxies for the estimation of sectoral CO2 emissions (Vogel et al., 2010; Lopez et 31 

al., 2013; Turnbull et al., 2015). For example, NOx has a short life time. Therefore it is an 32 
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appropriate tracer of local road transport emissions. The ratios between CO and fossil fuel 1 

CO2 vary as a function of the local emission scenarios e.g. residential heating, road transport 2 

and industrial combustions, but note that this variation is ambiguous (Ammoura et al., 2014). 3 

Second, further designs of the inversion system may be beneficial for improving the 4 

performance of the inversion. For instance, the procedure for selecting upwind stations can be 5 

refined by introducing time lags between downwind and upwind observations that are 6 

computed taking into account the wind directions and magnitudes precisely. We have shown 7 

in this study that the inversions are sensitive to the network type. This motivates optimal 8 

network design studies, which can be performed by some empirical rules (e.g. redistributing 9 

more stations along road network or around power plants to better distinguish emissions from 10 

road transport and energy production). Advanced network design topics include optimization 11 

algorithms that select optimal locations for the redistribution of stations (Wu and Bocquet, 12 

2011) and tracking algorithms that select optimal locations for mobile stations (Abida and 13 

Bocquet, 2009). Given a fixed network, the sensitivity of concentration gradients to emissions 14 

may be increased by designing an adaptive spatiotemporal resolution of the emissions to 15 

which the scaling factors apply (Wu et al., 2011). When both the network and the resolution 16 

of emissions are fixed, the errors in the observations and in the prior emissions can be 17 

estimated for more credible inversions (Wu et al., 2013). 18 

Further developing the Our tests ignored potential temporal correlations in the model and 19 

measurement errors. Increasing the standard deviation of the observation error for hourly data 20 

should have a similar impact on results at the monthly scale as accounting for short temporal 21 

autocorrelations (over timescales typically smaller than few days). Increasing the standard 22 

deviation of the observation errors instead of modeling their autocorrelations is a common 23 

technique in atmospheric inversion (Chevallier, 2007).  24 

The results from B15 and Staufer et al. (2016) support the idea that the model has no major 25 

biases or errors with large temporal correlations. However, even though B15 diagnosed model 26 

errors for measurements in the core of the urban area, they and Staufer et al. (2016) did not 27 

attempt at assimilating such measurements. We thus implicitly make the assumption that there 28 

is no major model errors with long temporal correlations associated with high local sources 29 

for 25 magl locations in the urban environment. This assumption is supported by the idea that 30 

relevant investigations (mobile measurement campaigns, high resolution transport modeling) 31 

can be led to avoid setting up sites close to such sources. In our study, the hypothetical 32 
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stations are all located without a precise definition of their specific position within the 1 

2 km x 2 km grid cells of CHIMERE, which are sufficiently large to assume that they 2 

encompass areas less prone to local sources. High resolution transport modeling can also be 3 

used to develop techniques for filtering the signal from the large scale emissions against that 4 

of local sources in the measurements. 5 

The theoretical use of LCMP sensors to allow the deployment of networks of up to 70 sites 6 

could be viewed as a source of systematic measurement errors with long temporal scales of 7 

autocorrelation. Our results from Sect. 3.2 suggest that if the measurement errors are 8 

significant and increase the observation errors by 50%, they can have a significant impact on 9 

the accuracy of the inversion. Such an inflation of the observation error would result from 10 

1 ppm systematic errors with 7 day temporal correlations in the hourly measurements (since it 11 

would result in ~1.5 ppm systematic error in weekly mean gradients, or, if converting the 12 

temporal correlations into an inflation of the hourly standard deviations, in an 8 ppm 13 

measurement error for hourly gradients). Therefore, our sensitivity tests indicate that the 14 

LCMP accuracy and calibration strategy should ensure that the systematic errors do not 15 

exceed 1 ppm, and if they are close to this value, that they are not auto-correlated over more 16 

than one week. This recommendation adds to the recommendation that the cost of LCMP 17 

sensors should not exceed 1-5 k€ euros (see the discussion in Appendix B). 18 

The choice to rescale the budgets of emissions over large areas and sectors rather than at high 19 

resolution could make our results quite optimistic. However, the aggregation errors associated 20 

with such a coarse scale rescaling are accounted for in the inversion. Furthermore, the 21 

configuration of the networks tested in this study is adapted to that of the “control tiles” which 22 

helps avoiding aggregation artefacts. With such configurations, the results show that having 23 

as many sites as possible around the most prominent sources of a tile will give a better control 24 

on the average budget of that tile. As would have been expected with a high resolution inverse 25 

modeling system, our coarse inversion system identifies the networks that can provide a 26 

strong constraint on most of the largest sources within the tiles, and it demonstrates some 27 

sensitivity to the network types and station locations.  28 

The assumptions underlying our setup of the sectoral uncertainties (in particular for the prior 29 

error covariance matrix B) can definitely impact the results of the uncertainty reduction. It 30 

could raise some concerns regarding the analysis of the absolute values of uncertainty 31 

reduction for a given network. However, the comparative analysis of the uncertainty 32 
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reductions when using different networks but the same inversion setup (i.e. the network 1 

design analysis) should bring more robust conclusions.  2 

4.4 Perspectives 3 

While the deployment of dense city networks of more than 30 sites seems presently 4 

excessively expensive, the present development and testing of LCMP sensors whose cost 5 

would not exceed 1-5 k€ give first hopes that it could become realistic in the near term (see 6 

Appendix B).  7 

The potential for monitoring sectoral budgets could be further increased by the use of isotopic 8 

measurements such as 
13

C and 
14

C (Lopez et al., 2013; Vogel et al., 2013) and of co-emitted 9 

pollutants such as NOx and CO (Ammoura et al., 2014) whose ratio to CO2 depend on the 10 

sectors of activity. 11 

Our inversions are shown to be highly sensitive to the types of networks that we have defined, 12 

and sometimes (e.g. for the agriculture sector) to the specific station location for given type of 13 

network. While the results could be improved if the stations location would follow some 14 

empirical rules (e.g. redistributing more stations along road networks or around power plants 15 

to better distinguish emissions from road transport and energy production), this motivates 16 

optimal network design studies, based on atmospheric inversion OSSEs such as in this study, 17 

potentially coupled to optimization algorithms (Wu and Bocquet, 2011). 18 

One may consider further improving the current city scale inventories isas a natural choice for 19 

emission accounting, following in the context of MRV, in a way similar to what is 20 

experienced by the applications of national inventories under UNFCCC and the Kyoto 21 

Protocol. SuchHowever such refinement requires tedious efforts in order to continuously 22 

collect detailed and high-quality local data. In this paper, we demonstrated that highlight the 23 

potential of the alternative approach of atmospheric inversion could in principle achieve the 24 

same level of quality desired forto provide accurate estimates of the total and sectorial 25 

budgets of the emissions at the same cost level..  26 

Atmospheric inversion distinguishes itself in a number of ways for the quantification of city 27 

CO2 emissions. First and foremost, itIt would provide an estimate using another method other 28 

than inventories based on IPCC guidelines. Estimating the same source of emissions with two 29 

different approaches remains the best way to detect biases, even when the approaches may not 30 

be fully independent. Second, inIn addition to the verification of inventories, atmospheric 31 
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inversion can also incorporate, whenever available, better inventories into its modeling 1 

framework to produce betterimprove their emission estimates. Third, theThe inverse modeling 2 

system assimilating a cohort of measurements can provide a unique platform to investigate 3 

the urban carbon cycle (e.g. the anthropogenic/biogenic land-atmosphere carbon exchange of 4 

the urban ecosystem, and the carbon flows into and out of the urban area) and its implication 5 

inon policy-making. Finally, with its uncertainty reduction ability for emissions from 6 

individual sectors, atmospheric inversion would bring a continuous monitoring of emissions 7 

changes (e.g. larger heating emissions during cold spells, and larger than usual traffic 8 

emissions during specific events) which offers important possibilities for infrastructure 9 

operators to take appropriate measures with a fast response time. This is in particular helpful 10 

to verify city climate mitigation actions, when their impacts could be seen objectively in 11 

measured atmospheric signals. Thanks toWith these features, atmospheric inversion 12 

couldappears to be a new promising quantification MRV tool for MRV use to mitigate city 13 

CO2 emissions.  14 

 15 

 16 

Inventories of CO2 emissions are mostly based on a calculation methodology that multiplies 17 

activity data by emission factors and sums the resulting multiplications over various sectors of 18 

sources. The level of source disaggregation ranges from very small (e.g. using an average 19 

emission factor for all vehicles and a single traffic index for transport emissions) to very 20 

detailed (e.g. using different emission factors for different vehicle types, age, driving habits, 21 

traffic types, and road states). Very detailed inventories are more costly than simple ones 22 

because they imply collections of larger datasets, often including specific field or laboratory 23 

measurements of emission factors. This is especially true for city inventories which are driven 24 

by complex socio-economic and technical factors, and can strongly vary in time and space. 25 

Such complexity may question the underlying assumption of linear emission models, and 26 

certainly leads to high uncertainties in both activity data and emission factors, with a typical 27 

case being insufficient representation of source- or context-specific activities using proxy data 28 

or default/generalized emission factors. This would raise an issue of inventory verification. 29 

Appendix A Brief review of existing city emission inventories and discussion 

on the accuracy of MRV city frameworks 
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The existing city inventories, in our opinion, can be roughly catalogued into three types 1 

depending on the methodology used to derive them, on their availability and on their 2 

uncertainty. The type 1 inventories are based on existing low cost frameworks. They only 3 

report at the annual and community resolution (Bertoldi et al., 2010; Cochran, 2015). Many of 4 

them adopt the 2006 IPCC Guidelines with adjustments to specific city context (City of Rio 5 

de Janeiro, 2011; Dienst et al., 2013) but without uncertainty quantification (Bellassen and 6 

Stephan, 2015); others follow the guidelines or methodologies developed by 7 

national/regional/local governments or non-profit local organizations/institutes (e.g. the Bilan 8 

Carbone methods in France (ADEME, 2010)), as well as by international organizations – such 9 

as the newly proposed GPC standard designed by C40, Local Governments for Sustainability 10 

(ICLEI) and World Resources Institute (WRI) in the support of the World Bank, UN-11 

HABITAT and UNEP. This type of inventories can cover not only direct city emissions (i.e. 12 

the Scope 1 emissions) but also indirect or embodied emissions that are linked with cities 13 

activities but occur outside the considered territories [(e.g. the Scope 2 emissions related to 14 

the consumption of purchased electricity, heat or stream; and the Scope 3 emissions related to 15 

the consumption of other products and services not covered in Scope 2; see WRI/WBCSD 16 

(2011)].)). In practice, the compilation of type-1 inventories can be performed with a limited 17 

cost that scales with the size of cities (e.g. ~€18k~18 k€ per year for ~1 million inhabitants 18 

excluding Scope 3 emissions (Cochran, 2015)). To date, the type-1 inventories bear high and 19 

more importantly undocumented uncertainties. 20 

The type 2 inventories are those that can be derived from global or regional gridded maps of 21 

emissions estimates which. They have been mainly used by the scientific community to model 22 

the atmospheric transport of CO2. Examples are the Emissions Database for Global 23 

Atmospheric Research (EDGAR) from the European Commission Joint Research Centre 24 

(JRC) and the Netherlands Environmental Assessment Agency (http://edgar.jrc.ec.europa.eu), 25 

the global/regional inventory developed by the Institute of Energy Economics and the 26 

Rational Use of Energy (IER) at the University of Stuttgart (Pregger et al., 2007), and the 27 

global fossil fuel CO2 emission map from the Peking University (PKU-CO2; Wang et al. 28 

(2013)). The activity data and emission factors entering infor the fabricationcompilation of 29 

type-2 inventories are usually defined from scales coarser than the city scale, which leads to 30 

large and, again, undocumented uncertainty locally. The type-2 inventories are free of charge 31 

for research purpose, and the fee for commercial use is insignificant. 32 
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The type 3 inventories are compiled based upon local data down to the building/street scale at 1 

the urban landscape. They are arguably more realistic than the two previous ones, but 2 

available for a small number of cities to our knowledge. Examples of this type are the 3 

AIRPARIF inventory for IDF (AIRPARIF, 2013), the London Atmospheric Emissions 4 

Inventory (LAEI; GLA (2012)), and the inventory from the HESTIA project for Indianapolis 5 

(Gurney et al., 2012). Developing a type-3 inventory is time consuming: it usually demands 6 

institutional efforts and requires a high level of expertise. Type-3 inventories can only be 7 

established in cities where good activity and/or fuel consumption data are accessible. The 8 

inventory quality would be better, if some central authority iswas responsible for ensuring that 9 

adequate data are consistently, transparently and timely reported by public and private players 10 

responsible for emissions. Uncertainty quantification for a type-3 inventory, being a difficult 11 

issue due to their complexity, nevertheless can be performed in an approximate way 12 

according to the expert judgment of the inventory compilers. As an example, the monthly 13 

uncertainty in the Paris type-3 inventory is estimated to be of the order of 20% by the 14 

AIRPARIF engineers (see Bréon et al. (2015)). The cost of type-3 inventories consists of data 15 

collection fee, salaries, and operation cost, and in general can be considered as at least one 16 

order of magnitude less than the notional cost target: 0.5 M€ per year. 17 

Both type 2 and 3 inventories mainly account for direct emissions generated within the 18 

considered territories, which are the Scope 1 emissions. Scope 2 emissions for cities can be 19 

obtained from Scope 1 emissions. For instance, redistributing national/regional power plant 20 

emissions from type-2 inventories to urban areas can approximate a Scope 2 analysis 21 

(Marcotullio et al., 2013). Taking into account the energy produced outside of cities but 22 

consumed by cities will complete type-3 inventories to provide Scope 3 city emissions as well 23 

(AIRPARIF, 2013). 24 

Whether belong to type-1, type-2 or type-3,. Whatever their type (1, 2 or 3), the inventories at 25 

city scale are not frequently updated because the necessary data are usually disclosed and 26 

processed long after emissions actually happened. In case of revisions in calculation methods, 27 

such as the correction of emission factors or the addition of emitting activities that were 28 

ignored in the previous versions, the entire emission inventory has to be recomputed, which 29 

imposes a traceability framework for comparing different versions. In the case of the Paris 30 

type-3 inventory, there is only a new update every 2two years with a 2-yearsyear lag between 31 

the date of release and the corresponding year of emissions. 32 
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The IER inventory used for the practical implementation of the OSSEs in this OSSE study 1 

incorporates local data to provide a gridded inventory at 1 km and 1h1 h resolution. We detail 2 

this inventory in the main text of the paper (Sect. 3 2.4.1). Here we group the 40 sectors from 3 

this IER inventory into seven aggregate larger sectors, and list their annual budgets in 4 

Table  A1.  5 

 6 

We detail the network cost in Table B1, in which both expensive high precision sensors and 7 

cheaper sensors with limited, but acceptable precision are listed. The network cost includes 8 

not only the price of the sensors, but also other supplement items of equipment, network 9 

installation, maintenance, quality assurance and data processing. The estimated sensor cost is 10 

based on commercial available and prototype sensors being tested at the Laboratory of 11 

Climate and Environmental Sciences (LSCE). The cost of calibration is estimated to be of the 12 

same order for high precision and cheap sensors. The calibration for cheap sensors can be 13 

more frequent (e.g. two days) than for high precision sensors (e.g. one week), but needs less 14 

samples of calibration gas. In addition, innovative calibration procedures for cheap sensors 15 

are possible for further reductions of the calibration cost and the temporal correlation in 16 

instrument bias. For instance, a calibration center can be set up using high precision sensors to 17 

calibrate cheap sensors. One can manage two sets of cheap sensors: one in the calibration 18 

center and the other in situ in measuring. The calibration is simply performed by replacing the 19 

measuring sensors with recently calibrated ones from the calibration center. Since this new 20 

calibration method is free of calibration gas, and since the cost of replacing sensors is very 21 

limited, one can maintain a high frequency of calibration (e.g. daily). Note that the network 22 

cost can, furthermore, be reduced when pre-existing infrastructure is available, for instance 23 

the installation could be free of cost if sharing with existing air quality monitoring platforms. 24 

The total number of deployable monitoring sites is limited by the cost of the network. Given 25 

an budget limit of ~0.5 M€ per year, one can include either ~10 high precision sensors when 26 

starting from nothing or ~70 low cost sensors with minimal installation and maintenance costs 27 

(Fig. B1). The local inventories may impose some case-specific additional cost (data fees or 28 

funding for a project), but this additional cost is at most an order of magnitude lower than the 29 

budget of ~0.5 M€ per year.The uncertainty in city emissions estimates is in general 30 

considered as larger than that in national estimates (Duren and Miller, 2012). However, the 31 

development of city scale MRV frameworks could foster the development of city scale 32 

Appendix B Network cost and instrumental details  
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inventories with an accuracy which is close to that presently diagnosed for national 1 

inventories in OECD countries, reported under UNFCCC and the Kyoto protocol (Chang and 2 

Bellassen, 2015). The underlying rationale is that MRVs at national and city scales would 3 

have similar objectives. Both would support determination of baselines and/or reduction of 4 

emissions from various sources (e.g. transportation, building, and industries) for a given 5 

geographical area. As mitigation actions against CO2 emissions are many and various, their 6 

MRVs differ from one another accordingly. Ninomiya (2012) classified different existing 7 

MRVs and suggested that the MRV of emission reductions by actions/policies would be less 8 

accurate than the MRV of national emissions using inventories. If this reasoning is also valid 9 

at the city scale, the uncertainty level for total city emissions would be stringent for the MRV 10 

of emission reductions by citywide actions/policies.  11 

 12 

The typical cost of existing inventories give ideas on the order of magnitude which could be 13 

acceptable for the cost of the overall inversion framework. Since there is presently no MRV 14 

framework at the city scale, we investigate the typical cost of national inventories in the MRV 15 

framework of UNFCCC. In order to have the same accuracy within the frame of MRV 16 

systems, city scale inventories based on similar methodologies would have to rely on data 17 

with the same level of quality. The cost of an inventory involves the collection of large 18 

datasets, and the design and implementation of the inventory model. The data (e.g. statistics 19 

on energy fuel consumption, transport and industrial activities) required for the development 20 

of a national inventory are in general available from national agencies. For the compilation of 21 

a city inventory, tracking fuel use statistics from different origins and types and for different 22 

sectors might actually prove more complicated than for a state where national statistics are 23 

already firmly established by governmental agencies. The CITEPA is the agency responsible 24 

for preparing the French national inventory following the IPCC guidelines. The budget of the 25 

activities at CITEPA related to this national inventory is about 1.5 M€ per year (République 26 

Française, 2015). This covers not only the compilation of the fossil fuel CO2 emissions 27 

inventory but also (1) the compilation of the inventory for other GHG gases, (2) the 28 

compilation of the inventory for GHG emissions due to land use, land use change and forestry 29 

Appendix B Requirements on the cost of the infrastructure and of the LCMP 

sensors underlying the deployment and operation of dense networks  
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(LULUCF), and (3) activities other than monitoring such as the reporting, archiving and 1 

annual communication to UNFCCC reviews that are imposed by the IPCC guidelines. It is 2 

therefore complicated to assess the budget of the CO2 fossil fuel emissions inventory at 3 

CITEPA. However, it indicates that a reasonable cost for a city inversion framework should 4 

not exceed 1-2 M€ on average per year.  5 

Current atmospheric GHG monitoring programs have significant investment and operational 6 

costs, for example the KIC Climate CarboCountCity program (http://www.climate-7 

kic.org/projects/carbon-emissions-from-cities/) incurred costs of ~4 M€ for a 3 year project 8 

period, which included installation of a few monitoring stations in Paris and Rotterdam (less 9 

than 10 sites overall), as well as salaries and mobile campaigns. The typical cost of 10 

infrastructure installation for 10-site networks, if excluding the cost of the sensors, is 11 

presently of the order of 200 k€ when deploying the network if it does not require the building 12 

of dedicated towers (as assumed in our study where stations are located at 25 magl), ~180 k€ 13 

euros per year for labor charges (data QA/QC, processing and modelling), and ~5-10 k€ per 14 

year per site for maintenance and calibration. From these previous experiments one would 15 

estimate the cost of a 70 site monitoring network of the current make to about 10 M€ for a 5 16 

year period. A strategy is required to decrease this cost if we are hoping to benefit from the 17 

demonstrated advantages of this study of operating a 30 to 70 site networks instead of a sparse 18 

10 site network. Data hosting, processing and QA/QC costs seem fairly uncompressible and 19 

even with more advanced data processing routines, the need to hire at least one expert 20 

modeler and field technicians to maintain the network seems unavoidable. With technological 21 

development, however, one can hope that the significant contribution of sensor cost could be 22 

reduced. Ideally, this cost of the sensors should not be significant to ensure that the budgets 23 

remains of the order of 1-2 M€ on average per year (accounting for the depreciation of the 24 

initial settings and purchases over ~10 years). Today, the sensors used by the atmospheric 25 

monitoring community need to be replaced or a major repair every 5-10 years, which presents 26 

a cost of more than 500 K€ per year for a 70 site network (accounting for the depreciation of 27 

their purchase over ~7 years). Lower-cost sensors would likely be less robust (shorter life-28 

time) which would imply that their cost need to be at least one order of magnitude smaller to 29 

be beneficial i.e. 1-5 k€.  30 

Current LCMP prototypes tested at LSCE in the framework of on-going European innovation 31 

projects have promising results regarding their fundamental measurement precision and 32 
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temporal bias structure and could cost less than 2 k€. Still, the most critical challenge will be 1 

to ensure that atmospheric monitoring networks based on such sensors can provide accurate 2 

data with a relatively (compared to the present protocols) cheap infrastructure and calibration 3 

strategy, which needs to be demonstrated in a future study.  4 

Supposing that the annual fossil fuel emissions from the Paris metropolitan area have a linear 5 

trend with a 25% reduction in 15 years, and that the annual emission estimates have an 5% or 6 

10% uncertainty, we perform Monte Carlo simulations to check to what extent that the linear 7 

trend can be detected from perturbed annual emission estimates (within the given annual 8 

uncertainty) along years. The detection results are shown in Fig. C1.  With 5% annual 9 

emission uncertainty, the 25% reduction of emissions in a 15-year horizon can be detected 10 

within [18%, 32%] at 95% confidence level. In contrast, with 10% and 15% annual emission 11 

uncertainty, the corresponding detection interval isintervals are [11%, 39%] and [3%, 46%] 12 

respectively at 95% confidence level. 13 

 14 
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 1 

Table 1 Spatiotemporal resolutions of the sectoral control factors for inversions over 30-day 2 

periods (see the main text and Table A1 for more information on aggregate sectors). 3 

Control factors Spatial 

resolution 

Time resolution Number of 

factors 

Building 5 zone Daily daytime and night-time 300 

Road 5 zones Daily daytime and night-time 300 

Energy 1 zone Daily daytime and night-time 60 

Production 1 zone Daily daytime and night-time 60 

Agriculture 1 zone Daily 30 

Airline 1 zone Daily 30 

Rest 1 zone Daily 30 

NEE 1 zone 5-day period with four daily 6h-

windows  

24 

-- -- -- 834 (total) 

  4 

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt

Mis en forme : Espace Après : 6 pt
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Table A1 Specification of all the 40 sectors in the IER inventory employed in this study. 1 

These sectors are grouped into seven aggregate larger sectors listed in Table 1. 2 

Sector NFR code Budget (TgC/yr) Comments 

Energy 1A1a       3.7205 Public Electricity and Heat Production  

1A1b       0.31007 Petroleum Refining 

1A1c       0.097906 Manufacture of Solid Fuels and Other Energy Industries 

Road 1A3bi      3.0287 Passenger cars 

1A3biii    0.78072 Heavy duty vehicles 

1A3bii     0.66808 Light duty vehicles 

Building 1A4bi      2.5757 Residential plants 

1A4ai      1.0185 Commercial / Institutional 

1A4bii     0.90577 Household and gardening (mobile) 

1A4aii 0.4489 Commercial / Institutional 

Production 1A2fi      1.0724 Fuel Combustion Activities: Manufacturing Industries and 

Construction 

1A2c       0.37312 Chemicals 

2A1        0.11867 Mineral Products 

1A2e       0.11245 Food Processing, Beverages & Tobacco 

1A2a       0.09999 Iron and Steel 

1A2d       0.088409 Pulp, Paper and Print 

Agriculture 1A4ci      0.32116 Plants in agriculture, forestry and aquaculture 

1A4cii 0.14497 Off-road Vehicles and Other Machinery 

Airline 1A3ai(i)   0.58194 International Aviation 

1A3aii(i)  0.34983 Civil Aviation (Domestic) 

Rest 2B1        0.075718 Ammonia Production 
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6Cb        0.042929 Waste Incineration 

3A2        0.038744 Paint Application 

1A3biv  0.037411 Automobile tyre and brake wear 

1A3e       0.031093 Other Transportation 

2C1        0.020038 Metal Production 

1A3c       0.019035 Railways 

2A7d       0.011561 Mineral Products 

2A4        0.0082194 Mineral Products 

2B5a       0.0075701 Chemical Industry 

3C         0.0056263 Chemical Products, Manufacture and Processing 

2A3        0.0054513 Mineral Products 

1A2b       0.00506 Non-ferrous Metals 

2A2        0.0049208 Mineral Products 

2C3        0.0044444 Metal Production 

1A3dii   0.0039965 Navigation 

2C2        0.0024742 Metal Production 

3B1        0.0017747 Degreasing and Dry Cleaning 

1B1b       0.00018562 Fugitive Emissions from Fuels 

2B3  0.00013253 Chemical Industry 

  1 
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Table B1 Specification of network cost for high precision or cheap sensors. 1 

 Cost Depreciation rate Comments 

Sensors / site High precision Cheap old 

platform 

Cheap new 

platform 

High precision Cheap High precision < 0.1 ppm and 

low systematic error < 0.13 ppm 

Low precision/high systematic 

error: 0.5-1 ppm / 1 ppm 

45 k€ 2 k€ 2 k€ 10%-20% 

(5-10 yr) 

20%-40% 

(2-5 yr) 

Infrastructure / site 

   Container 

   Inlet system 

   Calibration 

   Installation and others 

25 k€ 

10 k€ 

5 k€ 

5 k€ 

5 k€ 

25 k€ 

10 k€ 

5 k€ 

5 k€ 

5 k€ 

3 k€ 

2 k€ 

- 

1 k€ 

- 

- 

- 

10%-20% 

20%-33% 

- 

- 

- 

10%-20% 

20%-33% 

- 

Mininum (given pre-existing 

infrastructure and co-funding): 

Inlet + calibration= 10 k€ 

Annual  

   Infrastructure / site 

   1 engineer: network 

   1 engineer: data  

   1 engineer: modeling 

 

10 k€ 

60 k€ 

60 k€ 

60 k€ 

 

10 k€ 

60 k€ 

60 k€ 

60 k€ 

 

0-1 k€ 

60 k€ 

60 k€ 

60 k€ 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

Cost of e.g. rent, electricity, 

data… 

  2 
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 1 

 2 

 3 

 4 

Figure 5 

 6 

 7 

Fig. 1 Diagram of the synthetic study on atmospheric inversion of principle of the city CO2 8 

emissions.  inversion system and of the computation of uncertainties in the inverted emission 9 

budgets. Note that there is no computation of x and y vectors in this OSSE study. 10 
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 2 
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Figure1 

 2 

Fig. 2 Sectoral budgets of fossil fuel CO2 emissions from the IER inventory for the five 3 

“control” zones of(central Paris in dark blue and four other surrounding areas in light blue) 4 

partitioning the IDF region and for the month of January in 2011 (see the first seven rows in 5 

Table 1 for sector specifications). The circle area is proportional to the emission budge. The 6 

upper right largest circle shows the total sectoral budgets for all the five zonesareas of IDF. 7 

The red pentagons shows the two airports CDG and Orly, and the cyanpurple triangles show 8 

several large point emissions such as three EDF power plants and the TOTAL Grandpuits 9 

refinery. Note that these five zones in blue mark out the IDF region, but do not strictly follow 10 

the administrative borders (black lines) within IDF. 11 

  12 

Mis en forme : Anglais (États Unis)
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 1 

 2 

FigureFig. 3 Illustrative locationsLocations for the elliptical (E), random-even (R) and 3 

unifromuniform (U) networks over IDF. The brown area marks out where the population 4 

density is larger than 1250 people per km
2
. The E network marked by (green dots) consists of 5 

three rings surrounding the densely populated urban area in brown. The U network (red 6 

crosses) extends to the regular grid points of the IDF domain. The site locations of the R 7 

network are randomly selected respectively in three concentric areas: (1) the city center (the 8 

administrative “city of Paris”) within the peripheral ring (coinciding with the smallest green 9 

ring), (2) the suburban area (in brown) with central Paris clipped out, and (3) the rest of IDF.  10 
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Mis en forme : Exposant



 

 67 

 1 

  

  

  

 

 

Mis en forme : Normal
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Figure  1 

Fig. 4 Sectoral and spatial distribution of the IER inventory for IDF for January 2011. 2 

  3 

Mis en forme : Anglais (États Unis)
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 1 

 2 

Figure 5 Selection of a subset (of 10 sites marked out in (red triangles) from a cloud of 3 

candidate locations for the R network to form smaller networks. The blue circles show the 4 

sites that are not selected. from available locations. The open circles/triangles are forpresent 5 

rural sites, and the filled circles/triangles are forpresent urban sites. This figure also shows 6 

how the wind direction selects candidates of upwind sites for concentration gradient 7 

computations at a downwind station. The blue arrow indicates the wind direction at that 8 

downwind station. The two red triangles covered in the shadow area are candidate upwind 9 

sites according to the selection procedure detailed in the main text of this paperSect. 2.4.3. 10 
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(a)  

 

(b)  

Mis en forme : Titre 3

Tableau mis en forme

Mis en forme : Normal, Gauche,
Espace Avant : 0 pt,  Sans
numérotation ni puces

Mis en forme : Français (France)

Mis en forme : Normal, Gauche,
Espace Avant : 0 pt,  Sans
numérotation ni puces

Mis en forme : Français (France)
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 (c)  

 

  

 

 

Mis en forme : Justifié

Mis en forme : Français (France)

Cellules insérées
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FigureFig. 5 Sectoral and spatial distribution of the IER inventory over IDF for January 2011. 1 

  2 
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 1 

 

(a)  

 

(b)  

 

 (c)  

Fig. 6 Results of selections of upwind stations for gradient computations for one downwind 2 

stationEVE26 (see Fig. 4; R-type network of 10 stations) for the month of January in 2011. 3 

Here we use a R network of 10 stations defined in  Figure 5. The illustrative downwind 4 

station in Figure 5 (named EVE26 in this figure) is chosen for diagnosis2011. (a) The 5 

afternoon wind conditions at EVE26 during the given month; (b) the afternoon wind 6 

conditions for selectedthe observations selected for gradient calculation at EVE26; (c) the 7 

countsnumber of times a site is selected as the upwind site for gradient computations at 8 
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EVE26 for all the other nine stations.. The leftmost red cross indicates that thisa site that is 1 

never selected for gradient computation for EVE26. 2 

 3 

 4 
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Figure1 

 2 

Fig. 7 (a-d) CO2 mixing ratio series of sectoral CHIMERE simulations at four selected 3 

stations of the R network (see Figure 5Fig. 4 and FigureFig. 6c). EVE07 and EVE11 are 4 

urban sites and EVE26 and EVE43 are rural sites but close to large point emissions. The 5 

shadow marks out the night time. (e-h) The time series of the difference in model simulations 6 

sampled at  several site pairs among the four sites. (i) The histogram of afternoon 7 

concentration gradients following the data selection procedure detailed in Sect. 32.4.3 for all 8 

the 10 stations of the R network. These histograms are grouped according to the type of 9 

downwind and upwind stations. 10 
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 1 

 

 

(a)  

 

 

(b) (b)  

  

(d)  

Tableau mis en forme

Mis en forme : Police :11 pt

Mis en forme : Numéros + Niveau : 1
+ Style de numérotation : a, b, c, … +
Commencer  à : 1 + Alignement :
Gauche + Alignement :  0,63 cm +
Retrait :  1,27 cm

Mis en forme : Normal, Espace Avant
: 0 pt,  Sans numérotation ni puces

Mis en forme : Police :12 pt, Français
(France)
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(c) (c)  

 

(d)  

 

(e)  

Figure 8Fig. 8 The correlation structures in (a) the error of prior scaling factor estimates; (b) 1 

the posterior error obtained by inversion using a U network with 10 stations; (c) the posterior 2 

error obtained by inversion using an E network with 70 stations; and (d) the posterior error 3 

obtained by inversion using a U network with 70 stations. Each row or column of the pixels 4 

corresponds to the correlation between one scaling factor and all the 834 scaling factors (see 5 

Sect. 2.2). For clarity, we group these scaling factors into eight sectors and organize them for 6 

each sector according to temporal indices and spatial areas. The tickers show the name of 7 

these eight sectors. 8 

Mis en forme : Normal, Espace Avant
: 0 pt,  Sans numérotation ni puces

Mis en forme : Français (France)

Mis en forme : Centré

Mis en forme : Français (France)
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

 

(e)  
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Fig. 9 Budget of uncertainties in total and sectoral emission estimates by inversions using 1 

three types of networks of different sizes. Each sector has a distinct color. In (a-d), we show 2 

the uncertainty budgets in percentage to the corresponding emission budgets computed using 3 

the IER inventory. The points indicate the percentage of prior uncertainty budgets before 4 

inversion, and the bars demonstrate the percentage of posterior uncertainty budgets after 5 

inversion. The error bars show the variations of the uncertainty budget using 10 different 6 

networks of same size (10, 30, 50, or 70) constructed as detailed in Sect. 32.3. (a-c) Reduction 7 

of uncertainties by inversions using three different types of networks of increasing sizes. For 8 

each sector, the numbers of stations corresponding to the four bars from left to right are 10, 9 

30, 50 and 70 stations respectively. (d) Reduction of uncertainties by inversions using three 10 

different types of networks of 70 stations. The types of network corresponding to the three 11 

bars from left to right are E, R, and U respectively. (e) Comparison between the inventory 12 

budgets and uncertainty budgets (both in TgC) using the uniform network of increasing sizes. 13 

For each sector, the leftmost bar shows the inventory budget, and the four remaining bars to 14 

the right show the budget of uncertainties in posterior emission estimates by inversions using 15 

10, 30, 50 and 70 stations respectively. 16 

 17 
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 1 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 9 The correlation structures in (a) the error of prior scaling factor estimates; (b) the 2 

posterior error obtained by inversion using a U network with 10 stations; (c) the posterior 3 

error obtained by inversion using an E network with 70 stations; and (d) the posterior error 4 

obtained by inversion using a U network with 70 stations. 5 

  6 



 

 81 

 1 

 2 

FigureFig. 10 For three types of networks of different sizes, we compute (a) the average 3 

number of Degrees of Freedom for the Signal (DFS/d where d is which is total DFS divided 4 

by the total number of observations assimilated) accounting for, on average, the independent 5 

pieces of information from an observation to resolve emissions; and (b) the relative reduction 6 

of uncertainties in scaling factor estimates computed by (√𝟏T𝐁𝟏 − √𝟏T𝐀𝟏)/√𝟏T𝐁𝟏, where 7 

𝟏 is an all-one vector. The error bars show variations due to inversions using 10 different 8 

networks of same size constructed as detailed in Sect. 2.3.3.  9 
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 2 

Figure B1 Sketch diagram on the cost of networks with either high precision sensors or low 3 

cost sensors as a function of increasing number of sites. For new platform, pre-existing 4 

infrastructure is used for saving cost. The range of cost corresponds to different levels of 5 

depreciation rate listed in Table B1. 6 
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Figure  3 
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 1 

 

 

 

 

Fig. 11 Reduction of uncertainties by inversions using three different types of networks of 70 2 

stations with inflated observation error standard derivation (50% larger).  3 
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(a)  

 

(b)  

  

   (c) (d) 

 

(e)  

 

(f)  
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 1 

Fig. C1 Detection of linear trends using the Monte Carlo method with ensembles of 10000 2 

simulations. We hypothesize that the emissions decrease linearily from a value of 100 in any 3 

appropriate unit to 75 (i.e. a 25% reduction) in a 15-years time horizon. (a), (b) and (bc) show 4 

the linear trends detected by linear regressions (red lines) using series of emissions, which are 5 

obtained by perturbing the hypothesized emission values (blue lines) under 5%, 10% and 6 

1015% 2-sigma annual emission uncertainties respectively (in percentage to the emission 7 

value in the initial year). (cd), (e) and (df) show the increasing 2-sigma accuracy of the trend 8 

detections with increasingly available emission data along years. The detection accuracy is 9 

calculated from statistics of regression results for 10000 simulations. 10 
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