1 **Response to the reviewers**

- 3 <u>Reviewer #3 (Comments to Author):</u>
- 4 We would like to thank the reviewer for his/her constructive comments of the paper. We have addressed all
- 5 <u>the comments and issues below.</u>

7 This is a novel contribution to the study of SAO by using two VLF receivers during nighttime. The authors conclude that:" the main source of the SAO in the nighttime D-region is due to NOx molecules transport from 8 9 the lower levels of the thermosphere, resulting in enhanced ionization and the creation of free electrons in the nighttime D region, thus modulating the SAO signature". The weaknesses are the bad graphical presentation, 10 no explicit discussion of the robustness or influences of the used data processing methods and finally the 11 physical interpretation of the link between the seasonal dependence of NO transport and VLF amplitudes is 12 13 not examined in detail, like a simple model of the NOSC waveguide programs and comparisons with 14 experimental data. A better understanding is needed, too.

- 15 In this form I do not recommend this work for publication; may be after major and minor revisions.
- 16

2

6

- 17 Major comments:
- 18 M1- All figures are presented in unreadable form. Figure 1: Tick label to small. Connecting line is too small.
- 19 Improvement needed. Figure 2: Tick labels and axes description are unreadable. Improvement needed. It is
- 20 hard to count months in upper plots. Vertical lines are needed related to one or two months. Figure 3, 4: as
- 21 Fig. 2 need improvement!

We agree with the reviewer's comment regarding Figure 1, and we have fixed it accordingly. However, we
 have not found problems with reading Figures 2-4 (including ticks, labels, etc.). It should be mentioned that

- 24 these figures were already fixed after prior comments, and were approved.
- 25
- 26 M2- It is known that the nighttime measurements of VLF phase and amplitude are highly variable. So the

27 motivation or some robustness tests of methodical capabilities should be discussed in relation to the SAO, AO,28 SC behavior.

We agree with the reviewer and therefore performed robustness tests to examine our nighttime data and
 methodology. This was made in two ways:

- 31 <u>1. Removal of 20% of the raw data's measured points (not NaNs).</u>
- 32 <u>2. Addition of Gaussian noise into the raw data's measured points, with a standard deviation equal to the raw data's standard deviation.</u>

1	Each of these methods was performed over each dataset 100,000 times in order to examine in how many of
2	these runs, the SAO and AO were spectrally statistically significant, and if the SC trend keeps its sign.
3	The results showed that both the SAO and SC passed these robustness tests in 100% of the runs, and therefore
4	strengthen our analysis findings. The AO passed the robustness tests in 100% of the runs for the DN-NWC
5	dataset, but did not prove to be statistically significant for the MH-NSY dataset, as only 91% of the data
6	removal runs and 58% of the noise addition runs kept this oscillation statistically significant.
7	A paragraph regarding these robustness tests was added to the text.
8	
Q	M3. Furthermore the interpretation should be improved how the "normal two parameters" like high and
10	sharpness used in propagation models (McRae and Thomson 2000; e.g. MODESRCH Long Wave
11	Propagation Capability) influencing the amplitudes and phases as function of seasonal cycle including SC
11	(trend like) or AO or SAO in order to understand the physical link in a better way
12	(trend like) of AO of SAO in order to understand the physical link in a better way.
13	We have performed many Long Wave Propagation Capability runs in order to find equivalent changes in h'
14	(ionospheric base) and β (electron density profile sharpness) needed in order to gain the SAO amplitude
15	changes found in our measurements, in comparison with the standard nighttime values given by Ferguson
16	[1980] (h'=87 km, β =0.66 km ⁻¹ and 0.46 km ⁻¹ for DN-NWC and MH-NSY, respectively). We found that the
17	nighttime SAO amplitude changes are equivalent to h' change of no more than 1.8 km and 1.3 km in DN-NWC
18	and MH-NSY, respectively (see example plot attached), or 0.13 km ⁻¹ and 0.15 km ⁻¹ in β , respectively. We
19	believe that the actual solution is a combination of changes in h' and β (NO transport affects the region down
20	to ~85 km, which causes different electron density slope and lowers the reflection height), but as we do not
21	have reliable phase measurements, the actual solution cannot be calculated.
22	The results here might explain some of the differences between the h' and β parameters' values obtained by
23	Ferguson [1980], Cummer et al. [1998], and Thomson et al. [2007], as measurements were taken during
24	different seasons.
25	A few sentences regarding these LWPC runs were added to the text.
26	
77	Minor commenter
27	Minor comments:
28	
29	-m1 p2 l18: NB should be defined
30	Fixed.
31	
32	-m2 p3 l15: EUV should be defined

1	Fixed.
2	
3	-m3 p3 l21: VLF is used for 3-30 is kHz range, but MH-NSY uses 45.9 kHz, out of range!?
4	3-30 kHz is very arbitrary definition, and many authors use data from transmitters broadcasting up to ~50 kHz
5	in their VLF definitions and studies.
6	
7	-m4 p5 l2: Why is the magnetic field measured not EM?
8	Our antenna only measures magnetic field and not electric.
9	
LO L1	-m5 p5 l25 –p7 l11: The procedure of data filtering is explained but the influence on SAO not really quantified ! Numbers are needed here!
12	We have not quantified this effect, but it is irrelevant for the results and conclusions of the paper.
13	
14	-m6 p8 115: Is it a significant correlation, because the phasing is not so good, as written (see Fig. 2), and are
15	missing data examined?
16	All the correlations found are statistically significant (P value < 0.05). The phasing difference is between the
17	two data sets used, and this issue was discussed in Section 4.2.
18	Missing data were not examined (no interpolation was used during whole of the analysis process).
19	
20	-m7 p8 l27: what means "normally expected", this is not clear
21	In many of the studies on this topic, the SAO (in thunderstorm activity, TEC, etc.) peaked around the equinox.
22	We have added references into the text.
23	
24	-m8 p10 l8: Why MJO is not considered?
25	MJO has a time period of ~50 days. This 241 days oscillation might be an MJO harmonic, but in that case, we
26	would expect the lower harmonics to be pronounced as well.
27	
28	-m9 p14 l24: What about lunar tides they are larger in the ionosphere?
29	We agree, but we are not familiar with a SAO detected in lunar tides' amplitudes.

- 1
- 2 -m10 Figure caption of Fig. 2.: "30 days" is that correct, or "31 days", should be neven!

4

I

3 <u>Our choice was to use 30-days.</u>

1 <u>Reviewer #4 (Comments to Author):</u>

2 We would like to thank the reviewer for his/her comments of the paper. We have tried to answer all the

- 3 <u>comments and issues below.</u>
- 4

5 General remarks:

6 This paper describes VLF observations in two mid latitude stations of the semi-annual oscillation in the D 7 region of the lower ionosphere and suggests that NOx molecule transport from the lower atmosphere to the 8 night time D region could be at the origin of this oscillation. Such VLF observations are new and could be 9 worth for publication in ACP journal. However, some parts of the paper could be improved taking into 10 account the following remarks:

The abstract and conclusion claim that NOx transport modulates the SAO signature in VLF measurements. 11 12 The different possible origins of the observed effects are examined in chapter 4 integrating i) a short 13 discussion about dynamical transport of neutral species, ii) a comparison with satellite measurements to 14 research the origin of phase differences observed in the VLF data recorded by both stations, iii) a short analyze of possible tidal effects which could explain the observed results and amplify the SAO signature. 15 16 However, conclusion is lacking about the quantification of the different processes. The paper general 17 conclusion claiming that the NOx molecule transported from the upper level of the atmosphere produce enhanced ionization in the night time D region is interesting but this is not demonstrated. A comparative study 18 of the different processes examined in chapter 4 could significantly improve the paper. 19

- 20 We agree with the reviewer that a quantitative study which examines the different processes could
- 21 significantly improve the paper. However, in order to acquire reasonable results, we believe that a GCM with
- 22 D-region chemistry is needed. As we currently do not run such a model, this has to be left for future research,
- 23 <u>as was mentioned in the Conclusion section.</u>
- 24

25 The VLF and satellite comparison is interesting and should be better analyzed.

26 The aim of the satellite data comparison was to investigate the phase difference of SAO from the VLF

27 amplitudes. As mentioned within the text, in depth comparison is problematic, due to the latitudinal range and

28 zonal coverage differences between the two datasets, as well as the need for a MLT chemistry model for

29 specific OH^{*} and D-region ions' chemistry. Therefore, we find such an analysis beyond the scope of this

- 30 paper.
- 31

32 Suggested technical corrections:

33 Some parts of the text could be improved. For example: Page 12, lines 24 to 28; Page 14, lines 16-20.

- 1 We have refined the parts of the text mentioned by the reviewer.
- 3 The quality of the Figures could be improved. The size of the characters is too small.
- 4 As was written to reviewer #3, we agree with the reviewer's comment regarding Figure 1, and we have fixed it
- 5 accordingly. Figure 2 was also updated, so that its tick labels now marl the beginning of each year. However,
- 6 we have not found problems with reading the labels in Figures 3-4. It should be mentioned that figures 2-4
- 7 were already fixed after prior comments, and were approved.
- 8

- 9
- 10
- 11

1 List of changes made in the manuscript

- 2 (Page and line numbers follow the revised submitted manuscript)
- 3
- 4 P3, 17 word added.
- 5 P3, 120 sentence modified.
- 6 P6, 125 word modified.
- 7 P7, 119 sentence modified.
- 8 P7, 125 P8, 14 paragraph expanded (LWPC model runs information references were added).
- 9 P9, 112-120 paragraph added (regarding robustness tests).
- 10 P10, 11 + P10, 15 equation number modified.
- 11 P11, 111-120 paragraph modified (in order to improve the text).
- 12 P12, 126-129 paragraph modified (in order to improve the text).
- 13 P13, 13 word added.
- 14 P15, 15 word modified.
- 15 P21, 11 Figure 1 was modified (text were enlarged).
- 16 P22, 11 Figure 2 was modified (tick labels were fixed to beginning of each year).

I

1	
2	
3	Semi-annual oscillation (SAO) of the nighttime ionospheric D-region as detected
4	through ground-based VLF receivers
5	
6	
7	
8	
9	
10	I. Silber ¹ , C. G. Price ¹ , and C. J. Rodger ²
11	
12	[1]{Department of Geosciences, Tel Aviv University, Tel Aviv, Israel}
13	[2]{Department of Physics, University of Otago, Dunedin, New Zealand}
14	Correspondence to: I. Silber (israel0silber@gmail.com)
15	
16	
17	
18	
19	May, 2015

1 Abstract

Earth's middle and upper atmosphere exhibits several dominant large scale oscillations in many 2 measured parameters. One of these oscillations is the semi-annual oscillation (SAO). The SAO can 3 be detected in the ionospheric total electron content (TEC), the ionospheric transition height, the 4 wind regime in the mesosphere-lower-thermosphere (MLT), and in the MLT temperatures. In 5 addition, as we report for the first time in this study, the SAO is among the most dominant 6 oscillations in nighttime very low frequencies (VLF) narrow-band (NB) subionospheric 7 8 measurements. As VLF signals are reflected off the ionospheric D-region (at altitudes of ~65 km and \sim 85 km, during the day and night, respectively), this implies that the upper part of the D-region is 9 experiencing this oscillation as well, through changes in the dominating electron or ion densities, or 10 11 by changes in the electron collision frequency, recombination rates, and attachment rates, all of which could be driven by oscillatory MLT temperature changes. We conclude that the main source 12 13 of the SAO in the nighttime D-region is due to NO_x molecules transport from the lower levels of the thermosphere, resulting in enhanced ionization and the creation of free electrons in the nighttime D-14 15 region, thus modulating the SAO signature in VLF NB measurements. While the cause for the observed SAO is still a subject of debate, this oscillation should be taken into account when 16 17 modeling the D-region in general and VLF wave propagation in particular.

1 1. Introduction

Earth's middle and upper atmosphere exhibit several dominant large scale oscillations in many 2 3 measured parameters. These oscillations can be found at all latitudes, from the equator to the mid and high-latitudes. One of these oscillations is the semi-annual oscillation (SAO). Among different 4 parameters, the SAO can be detected in neutral atmospheric measures, e.g., the wind regime at the 5 mesosphere-lower-thermosphere (MLT) (e.g., Groves, 1972; Gregory and Manson, 1975; Lysenko et 6 al., 1994), MLT temperatures (e.g., Groves, 1972; Takahashi et al., 1995; Taylor et al., 2005; Huang 7 8 et al., 2006; Shepherd et al., 2006), as well as in concentrations of atmospheric species, such as atomic oxygen at 80-115 km altitudes (e.g, Russell et al., 2004) and excited hydroxyl (OH*) 9 molecules around 87 km (e.g., Takahashi et al., 1995; Marsh et al., 2006; Shepherd et al., 2006; Gao 10 et al., 2010). In addition, the charged part of the atmosphere (i.e., the ionosphere), experiences the 11 SAO, which was observed and derived in and from measurements of several parameters, e.g., the 12 13 ionospheric lower transition height at $\sim 180-260 \text{ km}$ (a level where atomic and molecular ion concentrations become equal) (e.g., Lei et al., 2004), the electron and plasma density within the 14 daytime D, E, and F regions of the ionosphere (e.g., Lauter and Nitzsche, 1967; Bremer and Singer, 15 1977; Forbes et al., 2000; Peters and Entzian, 2015), and also ionospheric total electron content 16 17 (TEC) (e.g., Zhao et al., 2008; Opio et al., 2015).

18 Measurements of the D-region of the ionosphere, which lies at altitudes of ~80-95 km during nighttime, and expands downwards to lower altitudes (~60 km) during daytime (mainly due to direct 19 solar extreme ultra-violet (EUV) and X-ray radiation) (Brasseur and Solomon, 2005; Inan et al., 20 2010), are usually made using remote-sensing techniques, because these altitudes are too high for 21 22 weather balloons, and too low for in-situ measurements by satellites. In addition, remote-sensing techniques usually do not possess the limited spatial and temporal coverage of rocket lofted 23 24 experiments (Rodger and McCormick, 2006). One of these remote-sensing techniques involves the use of very low frequency (VLF) radio waves, spanning a frequency range of 3-30 kHz. These 25 waves, which are generated both by natural and man-made sources, propagate thousands of 26 27 kilometers within the Earth-ionosphere waveguide, reflected off the Earth's surface and inside the ionosphere's D-region, while experiencing a very weak attenuation of $\sim 2 \ dB/Mm$ (Barr et al., 2000; 28 29 Wait, 1957). Due to the significant difference in the D-region's characteristics (electron and ion 30 densities) between day and night (Hargreaves, 1995), the region's conductivity changes dramatically, causing the D-region reflection height of VLF signals to change from as low as ~60 km during 31 daytime to ~85 km during nighttime (Hargreaves, 1995; Inan et al., 2010). Thus, as received VLF 32 signals inherently contain information of the ionosphere and its variability within the reflection 33

region (Inan et al., 2010; Rodger et al., 2012) these signals probe different altitudes during day and
 night.

3 Because the D-region's formation and chemistry are tightly bounded to the neutral MLT (Brasseur and Solomon, 2005), it is believed that the D-region is affected by the same forcings, experiencing 4 5 similar oscillations (e.g., Schmitter, 2011; Silber et al., 2013; Marshall and Snively, 2014). As far as the current authors know, there are no previous works showing the SAO dominating the natural long-6 7 term oscillations in the nighttime D-region, apart from the work of Toledo-Redondo et al. (2012), who presented a SAO indication within the equatorial latitudes, by using space-based ELF-VLF data 8 9 from the DEMETER micro-satellite. In this paper, we present evidence of a strong SAO, detected in 10 the low and mid-latitude nighttime D-region, through ground-based VLF measurements in both hemispheres. 11

12

13 2. Instrumentation and methodology

During this study, we used ground-based VLF narrow-band (NB) signals, which are generated by 14 15 VLF transmitters. These man-made transmitters are used nowadays worldwide primarily for communication with military submarines (Clilverd et al., 2009; Rodger and McCormick, 2006). 16 17 However, they are extremely well suited to long-range remote-sensing of the D-region, because of 18 their high radiated power, their nearly continuous operation, and their fixed location and frequency 19 band (e.g., Clilverd et al., 2009; Inan et al., 2010). As the VLF signals travel from the transmitters to 20 the receivers along a great circle path (GCP), a time series of their recorded amplitude and phase give an indication on the changes of the D-region along the GCP. 21

22 The NB signals were recorded at two VLF receiving stations. The first station is located at the Emilio Segre' Observatory of the Israeli Cosmic Ray and Space Weather Center, at Mt. Hermon (MH), in 23 the north part of Israel $(33.18^{\circ}N, 35.47^{\circ}E)$. This VLF receiving system is part of the AWESOME 24 network (Cohen et al., 2010). The antenna is built from two orthogonal triangular loop antennas that 25 measure the two horizontal components of the VLF magnetic field. Each loop has a baseline of 2.6 26 m, and 1.3 m height, giving an area of approximately 1.69 m^2 for each loop, and has a total number of 27 12 turns. The loop antenna impedance is 0.85 mH and 1 Ω . 28 29 The second VLF receiving station, which is located in Dunedin (DN), New Zealand (45.8°S,

- 30 170.5°E), is part of the AARDDVARK network (Clilverd et al., 2009) and is operated by the
- 31 University of Otago. Its antenna measures the normal component of the VLF electric field, thus

1 making both of the stations' measurements equivalent. The VLF signal is recorded by an "OmniPAL"

2 narrowband VLF receiver (Dowden et al., 1998).

3 Global lightning activity responds to the Earth's surface air temperature on both the semiannual and annual timescales, within the tropical belt and the mid to high latitudes, respectively (Williams, 4 5 1994). As most of the electro-magnetic (EM) energy generated by lightning discharges (termed 'sferics'), are radiated within the ELF (extremely low frequencies) and VLF bands (peaking between 6 7 5-10 kHz) (Cummer, 1997; Rakov and Uman, 2003), and due to the weak attenuation of VLF signals (as mentioned above), sferics originating in the tropics and mid to high latitudes can be easily 8 9 detected at MH or DN. Although lightning pulses are very powerful, their duration is very short (up to the order of 10^{-4} sec) (Rakov and Uman, 2003). Nevertheless, more than a thousand active 10 thunderstorm are present on average, at any given moment (Mezuman et al., 2014). Altogether, 11 12 global lightning activity generates significant VLF EM fields that can produce interference with the NB measurements, inducing the lightning activity natural oscillations within the NB data. Therefore, 13 in order to investigate long-term oscillations in NB amplitudes, the background VLF noise, which is 14 created mainly by lightning discharges (Barr et al., 2000), should be removed. 15

16 The MH receiving system records the NB signals continuously. However, as discussed above, these signals are potentially biased by the background VLF sferics. Thus, we decided to use the broad-17 band (BB) data, which consists of signals of the whole VLF band, and is recorded in a synoptic 18 mode, i.e., each data file is a recording for one minute every 15 minutes. For the extraction of a NB 19 signal for a certain VLF transmitter frequency from the BB data, every minute of data was filtered 20 using a Parks-McClellan finite impulse response (FIR) band-pass filter, with a pass-band width of 21 22 300 Hz, where the VLF transmitter's central broadcast frequency lies at the middle of the pass-band. In order to represent the noise at the transmitter's frequency, the original BB data was filtered again, 23 one time when the middle of the pass-band was 300 Hz above the VLF transmitter's central broadcast 24 25 frequency, and another time when the middle of the pass-band was 300 Hz below the VLF transmitter's central broadcast frequency. The average of the two filtered noise time series was then 26 27 subtracted from the filtered NB signal time series, assuming that the average noise represents the background noise in the frequency band of the transmitter's broadcast. Thus, we received the NB 28 29 data with a strongly reduced bias of the background lightning noise. We then average the resultant 30 NB signal every 10 seconds, thus receiving up to 24 values per hour made up of 10 s averages across the one in fifteen minute observation cadence. 31

32 Unlike the MH VLF receiver, the DN VLF receiving station operates the OmniPAL receiver, which

33 also records the NB signals continuously. During the data acquisition process, this receiver's

software uses a noise clipping algorithm, that reduces the effect of lightning impulses over the NB
data [*see Dowden et al.*, 1998]. Thus, there are no additional procedures needed in order to
investigate the NB received signals, which are being recorded at *1 Hz*.

In this paper, we limit ourselves to observations from two VLF transmitters; with callsigns NSY 4 (38.00°N, 13.50°E, broadcasting at 45.9 kHz), and NWC (21.82°S, 114.17°E, broadcasting at 19.8 5 kHz). These transmitters were chosen as their operating power was constant along the datasets, their 6 7 signal-to-noise-ratio was relatively high, and their data were fairly complete. The NSY transmitter's signal was recorded at MH between the years 2009-2012, while the NWC signal was recorded at DN 8 9 between the years 2005-2010 (Figure 1). We extracted from each time series of transmitter-receiver amplitudes two datasets of the average amplitude during the midday and midnight hours, when the 10 solar elevation angle at the middle of the GCP during equinox was at its maximum and minimum, 11 12 respectively. It should be mentioned that atmospheric tides, which have time periods that are subharmonics of a solar day (Oberheide et al., 2003) can possibly affect our data. Therefore, a 24-h data 13 average should have been used in order to remove the tidal effect. However, as the ionosphere (and 14 as a result, the received NB signals) changes significantly between day and night, this was not 15 possible. As a result, we used one hour mean amplitudes and not the daytime or nighttime amplitudes 16 spanning those entire time periods, in order to reduce tidal averaging effects (assuming they exist) to 17 the minimum possible. In other words, because daytime and nighttime lengths change throughout the 18 year, in the case of complete daytime and nighttime averaging, a different window size of the tidal 19 20 oscillation would have been averaged every day.

21

22 **3. Results**

The midday and midnight one-hour-mean 30-days running average time series for the MH-NSY and 23 24 DN-NWC GCPs' deviation from the mean amplitude (of the entire time series) are shown in Figure 2 (black solid curves). As can be seen, all the time series exhibit a strong oscillatory behaviour, with 25 26 higher amplitudes in the midnight data than in the midday data. The midday data in both GCPs show 27 a dominant oscillation with longer time periods than the midnight data in both GCPs. Examination of the apparent time periods of the large oscillations shows that they appear to correspond to the annual 28 29 oscillation (AO) and SAO. Therefore, we wanted to fit these harmonics to the data and examine the 30 level of agreement with the different time series.

However, in addition to these oscillations, a trend can be seen in the time series; negative in both
 DN-NWC time series, positive in the MH-NSY midnight data, but hard to determine in the MH-NSY

midday data, as the trend seems to shift from negative to positive around mid-2010. Examination of 1 2 the datasets time span shows that the DN-NWC data was acquired during a period when solar activity was dropping towards a minimum, while the MH-NSY data was acquired when the Sun 3 started to become active again, as part of its 11-year cycle. Thomson and Clilverd (2000) have 4 showed a positive correlation between VLF amplitudes and solar activity. Therefore, as both of our 5 datasets show a general positive correlation with solar activity, we may conclude that the trend is a 6 result of solar activity. Nevertheless, because we did not have enough data to cover a full 11-year 7 solar cycle, it was problematic to fit the data with an 11-year harmonic. Thus we decided that a linear 8 fit to the data would be best. Therefore, the time series were fitted with curves, described by 9 following equation: 10

11
$$A_{fit}(t) = A_0 + St + A_{SAO} \cos\left[\frac{2\pi(t - t_{SAO})}{365.25}\right] + A_{AO} \cos\left[\frac{2\pi(t - t_{AO})}{182.625}\right]$$
(1)

Where A_{fit} is the fitted curve, t represents the time steps (in days), A_0 is the mean amplitude (which is 12 equal to 0 in this case), S is the linear fit coefficient, A_{SAO} and A_{AO} are the fitted SAO and AO 13 amplitudes (respectively), and t_{SAO} (t_{AO}) represents the SAO (AO) maximum time of year, 14 respectively. Both the linear and the harmonic fits were made using a least squares method over all 15 of the data points. The fitted curves are shown in Figure 2 (dashed red). As can be seen, these simple 16 curves follow the VLF amplitude patterns fairly well. Pearson's correlation coefficients between the 17 18 time series and the fitted curves were calculated and are shown at the bottom right of each panel. As the correlation coefficients span from values of 0.53 up to 0.84 (all statistically significant), we can 19 deduce that the simple curve may explain from 28% up to $\sim 70\%$ of the midday and midnight long-20 term variability. 21 22 The simple model's parameters described in equation (1), can be investigated as well. Comparison of

23 the two oscillation amplitudes (A_{SAO} and A_{AO}) shows that during midday A_{SAO} is three times weaker 24 than A_{AO} , but during midnight it is stronger than A_{AO} by up to ~60%. Moreover, A_{SAO} appears to have a very strong peak to peak amplitude of 3.3 dB in MH-NSY and 4.2 dB in DN-NWC. By running the 25 26 Long Wave Propagation Capability (LWPC) model (Ferguson, 1998), we found that these strong amplitudes are equivalent to h' (ionospheric base) change of no more than 1.8 km and 1.3 km in DN-27 NWC and MH-NSY, respectively, or 0.13 km⁻¹ and 0.15 km⁻¹ in β (electron density profile 28 sharpness), respectively. By using the standard D-region electron number density profile (Wait and 29 Spies, 1964), 30

31
$$N_e(h) = 1.43 \cdot 10^7 \exp(-0.15h') \cdot \exp[(\beta - 0.15)(h - h')] cm^{-3}$$
 (2)

Where h is the altitude and N_e is the electron number density, it can be shown that the SAO alone is 1

- 2 equivalent to more than doubling of the electron number density at 85 km. We believe that the actual
- solution for the ionospheric profile is a combination of changes in h' and β , but as we do not have 3
- 4 reliable phase measurements, the actual solution cannot be calculated at the moment.

5 By examining the t_{SAO} values for the midnight data, it is found that the SAO maxima occur up to a

month prior to Earth's winter and summer solstices (not shown). This is quite surprising, as we would 6

7 normally expect the maxima of a SAO-driven forcing to occur around equinox (e.g. Opio et al.,

2015; Taylor et al., 2005; Williams, 1994). The fitted curve for MH-NSY GCP data shows the SAO 8

9 maxima occurs during mid-November and mid-May, while the oscillation maximizes at the

beginning of December and June in the DN-NWC GCP data. Thus, a 16 days phase difference exists 10

between the two data sets. 11

12 In order to confirm our findings of the apparent dominating SAO in the nighttime NB measurements 13 (and possibly within the nighttime D-region), spectral analysis was performed. Because the data were 14 unevenly sampled (due to transmitter off-times, receiver malfunctions, etc) it was not possible to use 15 Fast Fourier Transforms (FFT), which demand constant time steps between samples. In addition, the FFT calculated frequencies are directly determined by the dataset length and sampling rate, hence 16 there is no option to choose which exact frequencies to inspect. Moreover, a transformation of the 17 FFT frequencies into the oscillations time periods (via T=1/f) results in a very high time period 18 resolution at very low values (i.e., high frequencies) and very poor resolution at high values (i.e., low 19 frequencies, more likely to represent the SAO long-term oscillations). Therefore, we have analyzed 20 the midnight one-hour-mean data using the Lomb-Scargle (LS) periodogram (Lomb, 1976; Scargle, 21 22 1982), which results in spectral power of the data at user-determined frequencies (and hence, time

23 periods), and allows the spectral analysis of unevenly sampled data (Press and Rybicki, 1989).

Figure 3 shows the LS periodogram of the midnight (unsmoothed) MH-NSY (top panel) and DN-24 NWC (bottom panel) one-hour-mean VLF amplitude anomalies, with arbitrary power units (as a 25 26 result of the LS periodogram procedure). The dashed red line denotes 95% confidence, which was calculated using the quantile function (Wilks, 2006). The inspected time periods range from 2-730 27 28 days, thus spanning from as short as the datasets Nyquist frequency up to two years. Examination of the MH-NSY periodogram confirms that the SAO at ~180 days is by far the most dominant and 29 30 significant oscillation within the data. The second peak of the periodogram is of 343 days. We ascribe this peak to the AO, while we assume that the reason for the difference in periodicity from 31 32 365 days is attributed to our dataset covering only four years, thus containing only four AOs, which 33

1 peaks, which do not pass the 95% significance threshold, are seen at time periods of 47, 96, 137, and

2 212 days. Some of these oscillations might be higher harmonics of the SAO, but it is not possible to

3 explain them at the moment, leaving this topic for future studies.

The SAO appears at ~ 180 days to be even more pronounced and significant in the DN-NWC 4 5 periodogram and is the dominant oscillation within the midnight data. As can be seen in the lower panel of Figure 3, the second-highest peak is of time period of 241 days (~8 months), an oscillation 6 7 which is quite unexpected, but does not appear in the MH-NSY data. The probable signature of the AO seen in this periodogram is also statistically significant, peaking at 366 days. Here, the secondary 8 9 peaks which do not pass the 95% significance threshold are located at time periods of 152 and toward 730 days (~2 years), the latter might be hinting of a very weak quasi-biennial oscillation 10 (QBO) affect. 11 12 As the nighttime measurements of VLF amplitude are highly variable, robustness tests were made to

13 examine our nighttime data and methodology, by removing 20% of the raw data's measured points.

14 Later, we added Gaussian noise into the raw data's measured points, with a standard deviation equal

15 to that of the raw data. Each of these tests was repeated for 100,000 iterations. The results showed

16 that in both datasets, the SAO and the solar cycle trend passed these robustness tests in 100% of the

17 runs, and therefore strengthen our findings. The AO passed the robustness tests in 100% of the runs

18 for the DN-NWC dataset, but did not prove to be statistically significant for the MH-NSY dataset, as

<u>only 91% of the data removal runs and 58% of the noise addition runs kept this oscillation</u>
<u>statistically significant.</u>

21

22 **4. Discussion**

In this study, we analyzed several years of VLF NB data received in both hemispheres, during midday and midnight hours. The analysis shows that the AO dominates midday VLF amplitudes, and the SAO is the strongest oscillation during the hour long period centered on the GCP midnight. Both the SAO and the essential differences between daytime and nighttime dominating oscillations should be explained. We believe that the sources for both of these observations are of chemical and dynamical origin, which take place in the transport of species, and tidal forcing. These sources shall now be discussed.

30 4.1. D-region ions and dynamical transport of neutral species

When analyzing Earth's ionosphere in general (and the D-region in particular), we can assumeelectrical neutrality (Kelley, 2009):

$$n^+ = n^- + n_e \tag{3}$$

Where n^+ is the positive ion number density, n^- is the negative ion number density, and n_e is the electron number density. VLF radio signals interact and are reflected off the D-region mainly by electrons rather than ions, as a result of their much lower mass (Inan and Inan, 2000). Using equation (3), we can assume that the electron number density is determined primarily by the dominant ion densities. Therefore, we can investigate the dominant D-region's ions, their production, and distribution.

1

As mentioned in the Introduction section, VLF reflection height ranges from ~60-70 km to ~85 km 8 during daytime and nighttime, respectively (Inan et al., 2010; Rodger and McCormick, 2006). 9 Although both altitudes are part of the D-region, their chemical composition and dynamical 10 11 processes are different and both are very complicated. The lower altitudes of the D-region (below ~80 km) are dominated by positive cluster ions (mostly of the type $H(H_2O)_n^+$), due to a relatively 12 high neutral density in general, and water molecules in particular, which enable an effective three-13 body reaction (with O_2^+ and NO^+ ions), thus creating this type of ions (Glukhov et al., 1992; 14 Goldberg and Aikin, 1971; Mitra, 1981; Narcisi and Bailey, 1965). Cluster ions have a rapid 15 recombination rate, and many of the chemical reactions involving them are strongly temperature 16 17 sensitive (Kelley, 2009; Pavlov, 2014). Therefore, the ion composition of this region should be quite variable with season and latitude, and sporadic changes associated with local temperature variations 18 19 should be observable (Brasseur and Solomon, 2005).

The higher altitudes of the D-region (above $\sim 80 \text{ km}$) are dominated by NO^+ ions, mainly as a result 20 of strong ionization by the solar Lyman- α line (121.6 nm). O_2^+ ions are also abundant in this region, 21 22 and are created mostly by solar radiation in the 102.7-111.8 nm wavelengths. The three-body reactions that form cluster ions are less frequent in this region, due to the lower neutral density and 23 24 the lack of water vapor, making cluster ions much less abundant (Mitra, 1981; Narcisi and Bailey, 1965). The Lyman- α radiation scattered by the hydrogen geocorona at the uppermost part of the 25 26 atmosphere, is still a major ionization source during nighttime, though 2-3 orders of magnitude smaller than during daytime (Brasseur and Solomon, 2005). Although NO^+ and O_2^+ ion 27 recombination rates are orders of magnitude slower than cluster ions (Kelley, 2009; Pavlov, 2014), 28 the lifetime of ions in the D-region is short compared to the transport time scale, hence the ion 29 concentrations are determined by a photochemical equilibrium between production and loss 30 processes (Brasseur and Solomon, 2005). Nevertheless, in addition to the strong dependence on solar 31 radiation variability, i.e., solar activity, solar zenith angle, etc., the production rates of NO^+ and O_2^+ 32

ions are proportional to NO and O_2 neutral molecules, respectively (Pavlov, 2014). In the neutral 1 2 atmosphere, as we rise from ~60 km to ~90 km, the chemical lifetime of NO_x molecules increases, in comparison with the typical constant for vertical exchanges K_{zz} . Thus, as we reach higher altitudes 3 4 within the D-region, which coincides with these altitude levels, the role of local dynamics (vertical exchange) becomes more significant (Solomon et al., 1982a). In addition, the amplitudes of gravity 5 and planetary waves penetrating into the MLT (as a function of season (Lindzen, 1981)) grow 6 exponentially with altitude, as the ambient density drops (Ern et al., 2015; Smith, 2012). Therefore, 7 downward transport of NO molecules, which are created mainly in the lower thermosphere (Solomon 8 et al., 1982a, 1982b), can increase the D-region NO^+ concentrations, depending on the vertical wind 9 patterns (e.g., Clilverd et al., 2006). 10

Altogether, changes in neutral NO occurring by dynamical forcing will affect NO^+ ion concentrations 11 12 within the D-region, mainly at higher altitudes. Therefore, aAt lower altitudes of the D-region, where daytime VLF signals are reflected, we would expect chemical processes to dominate over NO 13 dynamics, and therefore hence a very strong signature of solar radiation insolation changes, (which 14 are seen mainly in the AO), together with relatively weak perturbations caused by other forcings and 15 temperature changes are observed (e.g., Schmitter, 2011; Silber et al., 2013). At higher altitudes 16 within the D-region, where nighttime VLF signals are reflected, dynamical processes are <u>much</u> more 17 18 pronounced, thus oscillations such as the SAO, which are driven by dynamical transport of important species as well as dynamical forcing (e.g., gravity and planetary waves) are much stronger and thus 19 20 more easily detected.

There are additional factors that can be expected to increase the detected SAO amplitudes in NB 21 22 measurements. The first factor is the SAO of atomic oxygen in the MLT (e.g., Russell et al., 2004). 23 These atoms, which can also be transported from higher regions of the atmosphere, are important for molecular ion chemistry, through numerous chemical reactions (Pavlov, 2014). Thus, they might 24 25 increase the SAO amplitude in the D-region, thus enhancing the measured oscillation in the received VLF amplitudes. An additional affect comes from the MLT temperatures that, as mentioned in the 26 27 Introduction section, are also experiencing a SAO. MLT oscillatory temperature changes can 28 influence VLF received signals, by modifying the electron collision frequency, recombination, and 29 attachment rates (see the discussion in Silber et al., 2013), thus increasing the measured SAO in the received NB amplitudes. 30

4.2. The VLF SAO phase and its comparison with satellite data

1

All of the above mentioned phenomena can explain the measured dominating SAO in the received 2 3 VLF amplitude differences at midnight. However, the phase of the measured SAO may be determined by a number of affects. The observed difference between the SAO phase in DN-NWC 4 5 and MH-NSY might originate in the phase differences between the phenomena as a function of latitude, or due to the changes of the phenomena's phases as a function of latitude and altitude (e.g., 6 7 Groves, 1972; Lysenko et al., 1994; Russell et al., 2004; Taylor et al., 2005). In order to test our hypothesis, we decided to compare the phase of SAO in the VLF measurements, to the SAO phase 8 9 detected in peak emission values of the $OH^* 2.0 \,\mu m$ emission band, using the SABER instrument onboard the TIMED satellite (Mlynczak, 1997; Russell III et al., 1999). The OH^{*} airglow layer peaks 10 around 87 km (Baker and Stair Jr, 1988), in the altitude vicinity of the VLF nighttime reflection 11 height. We used the 2.0 μm data as it is a direct measure of the chemical reaction which creates the 12 OH^* (Mlynczak, 1999; Mlynczak et al., 2013), and is tightly linked to atomic oxygen abundance as 13 well as MLT dynamics (Gao et al., 2010; Marsh et al., 2006). A 60-day running-mean of the data 14 was created, in order to obtain good local time coverage (Marsh et al., 2006). Only the SABER 15 nighttime data (in a I^0 zonal-mean resolution) was examined, as the daytime and nighttime OH^* 16 airglow layers behave differently (Gao et al., 2015; Marsh et al., 2006; Smith, 2004). An examination 17 of the 10 years (2002-2012) average peak emission is presented in Figure 4. An apparent SAO seems 18 to dominate the OH^* emission pattern, especially in the equatorial and mid-latitudes, and a strong 19 20 phase propagation of the oscillation towards the poles can be seen. It can also been seen that the OH^* 21 emission does not show a constant SAO phase as a function of latitude (see also Gao et al., 2010), similar to the analyzed VLF data. We examined the OH^* data (I^0 width) in the latitudes that match 22 the middle of the two transmitter-receiver GCPs, during the same time period as the VLF data (2005-23 24 2010 for DN-NWC, and 2009-2012 for MH-NSY), by using equation (1), and finding the SAO maximum phase. The results show that the SAO in the OH^* leads by 6 days the MH-NSY VLF data, 25 and by 17 days the DN-NWC VLF data. The differences between in the oscillation phase might be 26 due to the long GCPs, which <u>(unlike the data used from SABER measurements)</u> are over I^0 of 27 <u>latitude</u> width, to gether with the fact that In addition, the OH^* emission was zonally averaged, hence 28 and therefore it was less sensitive to local perturbations like the VLF data. Nevertheless, as the 29 30 maxima are all in the same 30-day window, we note that both parameters are affected by similar dynamics and forcing. Moreover, according to our knowledge, the exact reason for this phase lag as a 31 function of latitude, has not been investigated previously. As the dynamics of the MLT will affect 32

multiple wind and wave fields as well as species concentrations, this topic should be investigated in
 future studies.

3 4.3. Tidal effects

Finally, we should point out one caveat in this study. Marsh et al. (2006) concluded that the observed 4 SAO in OH^* emission is a result of the seasonal change in <u>atmospheric</u> tidal amplitudes, and is not 5 caused by changes in diffusive transport, as was previously proposed. This might also be a 6 significant effect in the VLF NB measurements, as tidale amplitudes also experience a SAO, driven 7 by the strong shears in zonal mean zonal winds (McLandress, 2002a, 2002b). Tides tend to break at 8 \sim 85 km (Lindzen, 1981) and like other large-scale atmospheric waves, are modifying MLT 9 temperatures by $\sim 5^{0}K$ at mid-latitudes (Marsh et al., 2006). In addition, tides are able to generate 10 several kilometers of atmospheric species transport from above and below (Marsh et al., 2006; 11 12 Smith, 2004). As we mentioned in the Methodology, we average a constant (local-time) hour in order 13 to reduce the tidal effect, as it was not possible to average 24-h of VLF data, due to the significant 14 changes in the ionosphere between day and night. However, this procedure will not have completely solved the tidal effect problem for two reasons. Firstly, non-migrating tides have phases that are non-15 Sun-synchronous. As the phases of this type of tide do not follow the Sun's apparent motion in the 16 sky, their total amplitude and phase during the midnight and midday one-hour-averaged could cause 17 leakage of the tidal oscillation into the VLF data's long-term frequencies, known as tidal aliasing 18 (Oberheide et al., 2003). Secondly, the migrating tides, which are Sun-synchronous, should have no 19 effect over the data, when using a constant local time at a single station. However, as the transmitter 20 and receiver are always located at different latitudes and longitudes, the migrating tides are in 21 22 different stages of their phase along the GCP, and they may have an additional influence over the 23 VLF received signals, amplifying the SAO.

24

25 **5.** Conclusion

A strong SAO was detected in the nighttime D-region using the amplitude of ground-based VLF NB signals. This oscillation dominates over all other long-term oscillations. We believe that the main source of the SAO is most likely to be due to NO_x molecules transported from upper levels of the atmosphere. This transport results in enhanced ionization and the creation of additional free electrons in the nighttime D-region, thus inducing the SAO signature on VLF NB amplitude measurements. Nevertheless, further research and analysis should be undertaken in order to confirm our conclusions. A good test would involve the use of both high-end chemistry and GCM models due to the complexity of the D-region, or by analysis of NO⁺ measurements from space, which might be
 acquired in the future using instruments such as NASA's Middle Atmosphere Sounder and Thermal
 Emission Radiometer (MASTER) (Mlynczak et al., 2014).

In addition, as far the authors are aware, no current VLF wave propagation model (e.g., Ferguson, 4 1980) takes into account SAO-forcing of the D-region and hence the impact on received VLF 5 signals. As we have shown in this paper, the SAO influence over VLF signal attenuation is 6 7 significant, affecting the received signal amplitudes by several dB. VLF signal studies are an important tool for understanding the D-region of the ionosphere, being low-cost, with high temporal 8 9 resolution, and potentially high spatial resolution (by using numerous receivers at many different 10 locations). Therefore, propagation models should take this oscillation into consideration, in order to acquire better and more precise results, particularly over long time periods. 11

12

13 Acknowledgments

This research was supported by the Ministry of Science and Technology, Israel. The authors wish to
thank the Stanford University VLF group for support in the construction of the VLF receiver station
at Mount-Hermon. The authors thank the TIMED/SABER team for providing the data used in this
paper.

18

19 6. References

Baker, D. J. and Stair Jr, A. T.: Rocket measurements of the altitude distributions of the hydroxyl
airglow, Phys. Scr., 37(4), 611, 1988.

Barr, R., Jones, D. L. and Rodger, C. J.: ELF and VLF radio waves, J. Atmos. Solar-Terrestrial
Phys., 62(17-18), 1689–1718, 2000.

24 Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: chemistry and physics of the

- stratosphere and mesosphere, Springer Science & Business Media., 2005.
- Bremer, J. and Singer, W.: Diurnal, seasonal and solar-cycle variations of electron densities in the
 ionospheric D-and E-regions, J. Atmos. Terr. Phys., 39(1), 25–34, 1977.
- 28 Clilverd, M. A., Seppälä, A., Rodger, C. J., Verronen, P. T. and Thomson, N. R.: Ionospheric
- 29 evidence of thermosphere-to-stratosphere descent of polar NOx, Geophys. Res. Lett., 33(19),
- 30 doi:doi:10.1029/2006GL026727, 2006.

- 1 Clilverd, M. A., Rodger, C. J., Thomson, N. R., Brundell, J. B., Ulich, T., Lichtenberger, J., Cobbett,
- 2 N., Collier, A. B., Menk, F. W., Seppälä, A., Verronen, P. T. and Turunen, E.: Remote sensing space
- 3 weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research
- 4 Konsortium network, Sp. Weather, 7(4), n/a–n/a, doi:10.1029/2008SW000412, 2009.
- 5 Cohen, M. B., Inan, U. S. and Paschal, E. W.: Sensitive Broadband ELF/VLF Radio Reception With
- 6 the AWESOME Instrument, IEEE Trans. Geosci. Remote Sens., 48(1), 3–17, 2010.
- 7 Cummer, S. A.: Lightning and Ionospheric Remote Sensing Using VLF / ELF Radio Atmospherics,
- 8 Department of Electrical Engineering, Stanford University., 1997.
- 9 Dowden, R. L., Hardman, S. F., Rodger, C. J. and Brundell, J. B.: Logarithmic decay and Doppler
- shift of plasma associated with sprites, J. Atmos. solar-terrestrial Phys., 60(7), 741–753, 1998.
- Ern, M., Preusse, P. and Riese, M.: Driving of the SAO by gravity waves as observed from satellite,
 in Annales Geophysicae, vol. 33, pp. 483–504., 2015.
- 13 Ferguson, J. A.: Ionospheric profiles for predicting nighttime VLF/LF propagation, Nav. Ocean Syst.
- 14 Cent. Tech. Rep. NOSC/TR 530, NTIS Access. ADA085399, 1980.
- 15 Ferguson, J. A.: Computer Programs for Assessment of Long- Wavelength Radio Communications,
- 16 Version 2.0: User's Guide and Source Files, Space and Naval Warfare System Center San Diego CA
- 17 92152–5001., 1998.
- Forbes, J. M., Palo, S. E. and Zhang, X.: Variability of the ionosphere, J. Atmos. Solar-Terrestrial
 Phys., 62(8), 685–693, 2000.
- 20 Gao, H., Xu, J. and Wu, Q.: Seasonal and QBO variations in the OH nightglow emission observed by
- 21 TIMED/SABER, J. Geophys. Res., 115(A6), A06313, doi:10.1029/2009JA014641, 2010.
- 22 Gao, H., Xu, J., Ward, W., Smith, A. K. and Chen, G.-M.: Double-layer structure of OH dayglow in
- 23 the mesosphere, J. Geophys. Res. Sp. Phys., 120(7), 5778–5787, 2015.
- Glukhov, V. S., Pasko, V. P. and Inan, U. S.: Relaxation of transient lower ionospheric disturbances
 caused by lightning-whistler-induced electron precipitation bursts, J. Geophys. Res. Sp. Phys.,
 97(A11), 16971–16979, 1992.
- 27 Goldberg, R. A. and Aikin, A. C.: Studies of positive-ion composition in the equatorial D-region
- 28 ionosphere, J. Geophys. Res., 76(34), 8352–8364, 1971.
- 29 Gregory, J. B. and Manson, A. H.: Winds and Wave Motions to 110 km at Mid-Latitudes. II. Mean

- 1 Winds at 52° N, 1969-73, J. Atmos. Sci., 32(9), 1667–1675, 1975.
- 2 Groves, G. V: Annual and semi-annual zonal wind components and corresponding temperature and
- 3 density variations, 60--130 km, Planet. Space Sci., 20(12), 2099–2112, 1972.
- 4 Hargreaves, J. K.: The solar-terrestrial environment An Introduction to Geospace—The Science of
- 5 the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere, Cambridge Univ. Press., 1995.
- 6 Huang, F. T., Mayr, H. G., Reber, C. A., Russell, J. M., Mlynczak, M. and Mengel, J. G.:
- 7 Stratospheric and mesospheric temperature variations for the quasi-biennial and semiannual (QBO
- 8 and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS), in
- 9 Annales geophysicae, vol. 24, pp. 2131–2149., 2006.
- 10 Inan, U. S. and Inan, A. S.: Electromagnetic Waves, Prentice-Hall, New Jersey., 2000.
- 11 Inan, U. S., Cummer, S. A. and Marshall, R. A.: A survey of ELF and VLF research on lightning-
- 12 ionosphere interactions and causative discharges, J. Geophys. Res., 115, A00E36,
- 13 doi:10.1029/2009JA014775, 2010.
- 14 Kelley, M. C.: The Earth's Ionosphere: Plasma Physics & Electrodynamics, Academic press., 2009.
- 15 Lauter, E. A. and Nitzsche, P.: Seasonal variations of ionospheric absorption deduced from A3-
- 16 measurements in the frequency range 100--2000 Kc/s, J. Atmos. Terr. Phys., 29(5), 533–544, 1967.
- 17 Lei, J., Liu, L., Wan, W. and Zhang, S.-R.: Model results for the ionospheric lower transition height
- 18 over mid-latitude, in Annales Geophysicae, vol. 22, pp. 2037–2045., 2004.
- Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res.
 Ocean., 86(C10), 9707–9714, 1981.
- Lomb, N. R.: Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci.,
 39(2), 447–462, 1976.
- 23 Lysenko, I. A., Portnyagin, Y. I., Fakhrutdinova, A. N., Ishmuratov, R. A., Manson, A. H. and Meek,
- 24 C. E.: Wind regime at 80--110 km at mid-latitudes of the northern hemisphere, J. Atmos. Terr. Phys.,
- 25 56(1), 31–42, 1994.
- 26 Marsh, D. R., Smith, A. K., Mlynczak, M. G. and Russell, J. M.: SABER observations of the OH
- 27 Meinel airglow variability near the mesopause, J. Geophys. Res., 111(A10), A10S05,
 28 doi:10.1029/2005JA011451, 2006.
- 29 Marshall, R. A. and Snively, J. B.: Very low frequency subionospheric remote sensing of

- thunderstorm-driven acoustic waves in the lower ionosphere, J. Geophys. Res. Atmos., 119(9),
 5037–5045, 2014.
- McLandress, C.: The seasonal variation of the propagating diurnal tide in the mesosphere and lower
 thermosphere. Part I: The role of gravity waves and planetary waves, J. Atmos. Sci., 59(5), 893–906,
 2002a.
- McLandress, C.: The seasonal variation of the propagating diurnal tide in the mesosphere and lower
 thermosphere. Part II: The role of tidal heating and zonal mean winds, J. Atmos. Sci., 59(5), 907–
 922, 2002b.
- 9 Mezuman, K., Price, C. and Galanti, E.: On the spatial and temporal distribution of global
 10 thunderstorm cells, Environ. Res. Lett., 9(12), 124023, doi:10.1088/1748-9326/9/12/124023, 2014.
- Mitra, A. P.: Chemistry of middle atmospheric ionization—a review, J. Atmos. Terr. Phys., 43(8),
 737–752, 1981.
- Mlynczak, M. G.: Energetics of the mesosphere and lower thermosphere and the SABER
 experiment, Adv. Sp. Res., 20(6), 1177–1183, 1997.
- Mlynczak, M. G.: A new perspective on the molecular oxygen and hydroxyl airglow emissions, J.
 Geophys. Res. Atmos., 104(D22), 27535–27543, 1999.
- 17 Mlynczak, M. G., Hunt, L. A., Mast, J. C., Thomas Marshall, B., Russell, J. M., Smith, A. K.,
- 18 Siskind, D. E., Yee, J.-H., Mertens, C. J., Javier Martin-Torres, F., Earl Thompson, R., Drob, D. P.
- 19 and Gordley, L. L.: Atomic oxygen in the mesosphere and lower thermosphere derived from
- 20 SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res. Atmos.,
- 21 118(11), 5724–5735, doi:10.1002/jgrd.50401, 2013.
- 22 Mlynczak, M. G., Scott, D., Esplin, R., Baily, S. and Randall, C.: Middle Atmosphere Sounder and
- Thermal Emission Radiometer MASTER, in AGU Fall Meeting 2014, San-Francisco, CA, USA.,
 2014.
- 25 Narcisi, R. S. and Bailey, A. D.: Mass spectrometric measurements of positive ions at altitudes from
- 26 64 to 112 kilometers, J. Geophys. Res., 70(15), 3687–3700, 1965.
- 27 Oberheide, J., Hagan, M. E. and Roble, R. G.: Tidal signatures and aliasing in temperature data from
- slowly precessing satellites, J. Geophys. Res. Sp. Phys., 108(A2), doi:10.1029/2002JA009585, 2003.
- 29 Opio, P., D'ujanga, F. M. and Ssenyonga, T.: Latitudinal Variation of the Ionosphere in the African
- 30 Sector using GPS TEC Data, Adv. Sp. Res., 55(6), 1640–1650, doi:10.1016/j.asr.2014.12.036, 2015.

I

- 1 Pavlov, A. V: Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review, Surv.
- 2 Geophys., 35(2), 259–334, 2014.
- Peters, D. H. W. and Entzian, G.: Long-term variability of 50years of standard phase-height
 measurement at K{ü}hlungsborn, Mecklenburg, Germany, Adv. Sp. Res., 55(7), 1764–1774, 2015.
- 5 Press, W. H. and Rybicki, G. B.: Fast algorithm for spectral analysis of unevenly sampled data,
 6 Astrophys. J., 338, 277–280, 1989.
- 7 Rakov, V. A. and Uman, M. A.: Lightning: Physics and Effects, Cambridge Univ. Press., New8 York., 2003.
- 9 Rodger, C. and McCormick, R. J.: REMOTE SENSING OF THE UPPER ATMOSPHERE BY VLF,
- 10 in Sprites, Elves and Intense Lightning Discharges SE 8, vol. 225, edited by M. Füllekrug, E.
- 11 Mareev, and M. Rycroft, pp. 167–190, Springer Netherlands., 2006.
- 12 Rodger, C. J., Clilverd, M. a., Kavanagh, A. J., Watt, C. E. J., Verronen, P. T. and Raita, T.:
- 13 Contrasting the responses of three different ground-based instruments to energetic electron
- 14 precipitation, Radio Sci., 47(2), n/a–n/a, doi:10.1029/2011RS004971, 2012.

Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J. J. and Esplin, R. W.: Overview of
the SABER experiment and preliminary calibration results, Proc. SPIE, 3756, 277–288,
doi:10.1117/12.366382, 1999.

- Russell, J. P., Lowe, R. P. and Ward, W. E.: Atomic oxygen annual and semi-annual variations in the
 mesopause region for mid and equatorial latitudes, J. Atmos. solar-terrestrial Phys., 66(6), 451–461,
 2004.
- Scargle, J. D.: Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis
 of unevenly spaced data, Astrophys. J., 263, 835–853, 1982.
- Schmitter, E. D.: Remote sensing planetary waves in the midlatitude mesosphere using low
 frequency transmitter signals, Ann. Geophys., 29(7), 1287–1293, doi:10.5194/angeo-29-1287-2011,
- 25 2011.
- Shepherd, M. G., Liu, G. and Shepherd, G. G.: Mesospheric semiannual oscillation in temperature
 and nightglow emission, J. Atmos. solar-terrestrial Phys., 68(3), 379–389, 2006.
- 28 Silber, I., Price, C., Rodger, C. J. and Haldoupis, C.: Links between mesopause temperatures and
- 29 ground-based VLF narrowband radio signals, J. Geophys. Res. Atmos., 118(10), 4244-4255,
- 30 doi:10.1002/jgrd.50379, 2013.

- 1 Smith, A. K.: Physics and chemistry of the mesopause region, J. Atmos. Solar-Terrestrial Phys.,
- 2 66(10), 839–857, doi:10.1016/j.jastp.2004.01.032, 2004.
- 3 Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 33(6), 1177–1230, 2012.
- 4 Solomon, S., Crutzen, P. J. and Roble, R. G.: Photochemical coupling between the thermosphere and
- the lower atmosphere: 1. Odd nitrogen from 50 to 120 km, J. Geophys. Res. Ocean., 87(C9), 7206–
 7220, 1982a.
- 7 Solomon, S., Reid, G. C., Roble, R. G. and Crutzen, P. J.: Photochemical coupling between the
 8 thermosphere and the lower atmosphere: 2. D region ion chemistry and the winter anomaly, J.
- 9 Geophys. Res. Ocean., 87(C9), 7221–7227, 1982b.
- 10 Takahashi, H., Clemesha, B. R. and Batista, P. P.: Predominant semi-annual oscillation of the upper

mesospheric airglow intensities and temperatures in the equatorial region, J. Atmos. Terr. Phys.,

12 57(4), 407–414, 1995.

- Taylor, M. J., Taori, A. K., Hatch, D. R., Liu, H. L. and Roble, R. G.: Characterization of the semiannual-oscillation in mesospheric temperatures at low-latitudes, Adv. Sp. Res., 35(11), 2037–2043,
 2005.
- 16 Thomson, N. R. and Clilverd, M. A.: Solar cycle changes in daytime VLF subionospheric 17 attenuation, 62, 601–608, 2000.
- Toledo-Redondo, S., Parrot, M. and Salinas, a.: Variation of the first cut-off frequency of the Earthionosphere waveguide observed by DEMETER, J. Geophys. Res., 117(A4), A04321,
 doi:10.1029/2011JA017400, 2012.
- Wait, J. R.: The Attenuation vs Frequency Characteristics of VLF Radio Waves, Proc. IRE, 45(6),
 1957.
- 23 Wait, J. R. and Spies, K. P.: Characteristics of the Earth-ionosphere waveguide for VLF radio waves,
- 24 US Dept. of Commerce, National Bureau of Standards., 1964.
- 25 Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, Oxford, UK., 2006.
- 26 Williams, E. R.: Global circuit response to seasonal variations in global surface air temperature,
- 27 Mon. Weather Rev., 122(8), 1917–1929, 1994.
- 28 Zhao, B., Wan, W., Liu, L., Mao, T., Ren, Z., Wang, M. and Christensen, A. B.: Features of annual
- and semiannual variations derived from the global ionospheric maps of total electron content, in

- 1 Annales Geophysicae, vol. 25, pp. 2513–2527., 2008.

4

Figure 1: MH-NSY (left panel) and DN-NWC (right panel) transmitter-receiver great circle paths,
together with their corresponding frequencies.

I

Figure 2: Midday (left panels) and midnight (right panels) one-hour-mean *30*-days running average
time series of MH-NSY (top panels) and DN-NWC (bottom panels) transmitter-receiver GCPs'
deviation from the mean amplitude (solid black curves). The dashed red curves show the
combination of the SAO, AO, and linear fit to the data series (see equation (1)) A Pearson's
correlation coefficients between the red and black curves is shown at the bottom right of each panel.

Figure 3: Lomb-Scargle periodogram of the midnight MH-NSY (top) and DN-NWC (bottom) GCPs'
one-hour-mean VLF amplitude anomalies in arbitrary power units. The dashed red line denotes the
95% confidence level.

5

1

I

Figure 4: OH^{*} 2.0 μm peak emission zonal-mean 60-days running-mean, averaged over the years
2002-2012.. The bars on the left denote the MH-NSY (orange) and DN-NWC (purple) GCP latitude

4 ranges (see Figure 1).

I