

Supplement of

Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

C. D. Cappa et al.

Correspondence to: C. D. Cappa (cdcappa@ucdavis.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

The Supplemental Material consists of five figures and one table.

Figure S1. Box model simulations of SOA formation using SOM parameters determined from fitting low-NO_x toluene + OH SOA data assuming $k_{wall} = 0$, 1 x 10⁻⁴ and 2.5 x 10⁻⁴ s⁻¹, but where the simulations are run with $k_{wall} = 0$ s⁻¹. Reaction conditions here are [toluene]_{t=0} = 100 µg m⁻³ and [OH] = 2 x 10⁶ molecules cm⁻³.

Figure S2. Example of 2-product fitting to SOA yield curves for dodecane + OH SOA formed under low-NO_x conditions. The 2-product model was fit to simulated vapor wall-loss-corrected yield curves (circles) that were generated using the SOM model. The original SOM fits were performed using variable k_{wall} values to account for vapor wall losses, but the subsequent simulated yield curves were generated with $k_{wall} = 0$. The lines are colored according to the wall-loss condition used when SOM was fit to the chamber observations, no wall loss (red), low wall loss (blue) and high wall loss (black). The best 2-product fits are shown as solid lines. Panel (a) shows the curves and fits on a linear scale and panel (b) shows the same on a log scale. Note that on a linear scale the deviations between the fit curves and the "data" at low [SOA] is not visibly evident.

Figure S3. Map of STN and IMPROVE sites in the (left) SoCAB and (right) eastern US. STN sites are shown as red circles and IMPROVE sites as blue triangles.

Figure S4. Scatter plots of simulated versus observed total OA (SOA + POA) concentrations for SoCAB for (left panels) IMPROVE and (right panels) STN sites. Simulation results are shown for SOM-no (orange), SOM-low (green) and SOM-high (pink). Results are reported from simulations run using the (top) average, (middle) low-NO_x / high-yield, and (bottom) high-NO_x / low-yield parameterizations.

Figure S5. Scatter plots of simulated versus observed total OA (SOA + POA) concentrations for SoCAB for (left panels) IMPROVE and (right panels) STN sites. Simulation results are shown for SOM-no (orange), SOM-low (green) and SOM-high (pink). Results are reported from simulations run using the (top) average, (middle) low-NO_x / high-yield, and (bottom) high-NO_x / low-yield parameterizations. Only every other data point (one-in-two) is shown for visual clarity.

VOC	SAPRC-11									
Precursor	Species	VOC								
Class	Name	Surrogate	NOx	M frag	ΔLVP	p 10	p 20	p 30	p 40	Ref. [^]
$k_{\text{wall}} = 1 \times 10^{-4} \text{ s}^{-1}$										
Long ALI Alkanes	AT 17 5*	dodecane	low	0.677	1.57	0.97	0.023	0.003	0.004	(Cappa et al., 2013;
	ALK5		high	0.186	1.45	0.961	0.001	0.002	0.036	Loza et al., 2014)
D	zene Benzene	benzene	low	0.01	2.31	0.324	0.001	0.607	0.068	(Ng et al., 2007b)
Benzene			high	0.73	1.47	0.018	0.001	0.981	0.001	
Toluene	ARO1	toluene	low	0.843	1.70	0.066	0.001	0.106	0.827	(Zhang et al., 2014)
			high	5	1.37	0.865	0.001	0.065	0.069	
m-xylene	ARO2	m-xylene	low	0.236	1.97	0.001	0.123	0.8	0.075	(Ng et al., 2007b)
			high	0.0389	1.46	0.001	0.001	0.905	0.093	
Iconrono Iconro	Iconrono	iconrono	low	0.01	2.20	0.097	0.13	0.748	0.025	(Chhabra et al.,
isopiene	Isopiene	isoprene	high	0.745	2.15	0.808	0.189	0.002	0.001	2011a)
Tornonog	TRP1/SES		low	0.156	1.89	0.316	0.554	0.087	0.043	(Chhabra et al.,
Terpenes	Q	α-pinene	high	0.0588	1.92	0.064	0.865	0.063	0.008	2011a)
$k_{\rm wall} = 2.5 \ {\rm x} \ 10^{-4} \ {\rm s}^{-1}$										
Long Alkanes	ALK5*	dodecane	low	2	1.83	0.999	0.001	0.001	0.001	(Cappa et al., 2013;
			high	0.266	1.47	0.965	0.001	0.002	0.032	Loza et al., 2014)
Danmana	Danmana	honzonc	low	0.0807	1.97	0.637	0.001	0.002	0.360	(Ng et al., 2007b)
Benzene Benzene	Benzene	benzene	high	0.824	1.53	0.008	0.001	0.991	0.001	
Toluene	ARO1	toluene	low	1.31	1.77	0.185	0.001	0.002	0.812	(Zhang et al., 2014)
			high	4.61	1.42	0.856	0.001	0.002	0.141	
m-xylene	ARO2	m-xylene	low	1.08	2.05	0.102	0.001	0.878	0.019	(Ng et al., 2007b)
			high	0.0671	1.46	0.001	0.001	0.942	0.056	
Isoprene	Isoprene	isoprene	low	0.0839	2.44	0.096	0.379	0.518	0.007	(Chhabra et al.,
			high	5	1.78	0.874	0.039	0.085	0.001	2011a)
Terpenes	TRP1/SES Q	α-pinene	low	0.305	1.97	0.419	0.426	0.140	0.014	(Chhabra et al.,
			high	0.16	1.91	0.500	0.422	0.070	0.008	2011a)

Table S1. List of best-fit SOM parameters determined by fitting SOM to experimental observations of SOA formation in the Caltech environmental chamber assuming that $k_{wall} = 1 \times 10^{-4} \text{ s}^{-1}$ or 2.5 x 10⁻⁴ s⁻¹.

[^]These are the primary references for the experimental data. The data for the specific experiments used are presented in the supplemental material of Zhang et al. (Zhang et al., 2014)

*For SOM, the ALK5 class is separated into long alkane species grouped according to carbon number. See (Jathar et al., 2015a) for details.