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1 Abstract 17 

The influence of losses of organic vapors to chamber walls during secondary organic aerosol 18 

(SOA) formation experiments has recently been established. Here, the influence of such losses on 19 

simulated ambient SOA concentrations and properties is assessed in the UCD/CIT regional air 20 

quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory 21 

chamber data both with and without accounting for vapor wall losses following the approach of 22 

Zhang et al. (2014). Two vapor wall loss scenarios are considered when fitting of SOM to chamber 23 

data to determine best-fit SOM parameters, one with “low” and one with “high” vapor wall-loss 24 

rates to approximately account for the current range of uncertainty in this process. Simulations 25 

were run using these different parameterizations (scenarios) for both the southern California/South 26 

Coast Air Basin (SoCAB) and the eastern United States (US). Accounting for vapor wall losses 27 

leads to substantial increases in the simulated SOA concentrations from VOCs in both domains, 28 

by factors of ~2-5 for the low and ~5-10 for the high scenario. The magnitude of the increase scales 29 

approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, 30 

the predicted SOA fraction of total OA increases from ~0.2 (no) to ~0.5 (low) and to ~0.7 (high), 31 
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with the high vapor wall loss simulations providing best general agreement with observations. In 32 

the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses 33 

are accounted for. The total OA/∆CO ratio captures the influence of dilution on SOA 34 

concentrations. The simulated OA/∆CO in SoCAB (specifically, at Riverside, CA) is found to 35 

increase substantially during the day only for the high vapor wall loss scenario, which is consistent 36 

with observations and indicative of photochemical production of SOA. Simulated O:C atomic 37 

ratios for both SOA and for total OA increase when vapor wall losses are accounted for, while 38 

simulated H:C atomic ratios decrease. The agreement between simulations and observations of 39 

both the absolute values and the diurnal profile of the O:C and H:C atomic ratios for total OA was 40 

greatly improved when vapor wall-losses were accounted for. These results overall demonstrate 41 

that vapor wall losses in chambers have the potential to exert a large influence on simulated 42 

ambient SOA concentrations, and further suggest that accounting for such effects in models can 43 

explain a number of different observations and model/measurement discrepancies. 44 

  45 
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2 Introduction 46 

Particulate organic matter, or organic aerosol (OA), is derived from primary emissions or from 47 

secondary chemical production in the atmosphere from the oxidation of volatile organic 48 

compounds (VOCs). OA makes up a substantial fraction of atmospheric submicron particulate 49 

matter (Zhang et al., 2007), influencing the atmospheric fate and impact of PM on regional and 50 

global scales. Gas-phase oxidation of VOCs leads to the formation of oxygenated product species 51 

that can condense onto existing particles or nucleate with other species to form new particles (e.g. 52 

Ziemann and Atkinson, 2012). Much of the understanding regarding the formation of secondary 53 

organic aerosol (SOA) via condensation has been derived from experiments conducted in 54 

laboratory chambers. In a typical experiment, a precursor VOC is added to the chamber and 55 

exposed to an oxidant (e.g OH, O3 or NO3). As both the precursor VOC and the oxidation products 56 

react with the oxidant, SOA is formed. The amount of SOA formed per amount of precursor 57 

reacted (i.e. the SOA mass yield) can then be quantified (e.g. Odum et al., 1996). Such SOA yield 58 

measurements form the basis of most parameterizations of SOA formation in regional air quality 59 

and global chemical-transport and climate models (Tsigaridis et al., 2014). However, too often 60 

simulated SOA concentrations underestimate observed values, especially in polluted regions, and 61 

sometimes dramatically so (Heald et al., 2005; Volkamer et al., 2006; Ensberg et al., 2013). There 62 

have been various efforts to account for model/measurement disparities including, most notably: 63 

(i) the addition of new SOA precursors in the form of so-called semi-volatile and intermediate 64 

volatility organic compounds, S/IVOCs, including treating primary organic aerosol as semi-65 

volatile (Robinson et al., 2007); (ii) the addition of ad hoc “ageing” schemes on top of existing 66 

parameterizations of SOA from VOCs (Lane et al., 2008b; Tsimpidi et al., 2010; Dzepina et al., 67 

2011); (iii) updating of aromatic SOA yields (Dzepina et al., 2009); and (iv) production of SOA in the aqueous phase in aerosol-water, clouds 68 

and fogs (Ervens et al., 2011). More recently, concerns over the influence of vapor wall losses on the 69 

experimental chamber data used to develop the parameterizations have arisen (Matsunaga and 70 

Ziemann, 2010; Zhang et al., 2014). The influence of erroneously low SOA yields due to vapor 71 

wall losses on simulated SOA concentrations in three-dimensional regional models and properties 72 

is the focus of the current work. 73 

Recent observations have demonstrated that organic vapors can be lost to Teflon chamber 74 

walls, and that the extent of loss is related to the compound vapor pressures with lower vapor 75 

pressure compounds partitioning more strongly to the walls than higher vapor pressure compounds 76 
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(Matsunaga and Ziemann, 2010; Kokkola et al., 2014; Krechmer et al., 2015; Yeh and Ziemann, 77 

2015; Zhang et al., 2015). These results suggest that vapor wall losses during SOA formation 78 

experiments could potentially bias observed SOA concentrations. Indeed, Zhang et al. (2014) 79 

observed that SOA yields from toluene + OH photooxidation depend explicitly on the seed particle 80 

surface area, all other conditions being equal. They interpreted these observations using a dynamic 81 

model of particle growth coupled with a parameterizable gas-phase chemical mechanism, the 82 

statistical oxidation model (SOM) (Cappa and Wilson, 2012). They determined that substantial 83 

vapor wall losses were most likely the cause of this dependence, with biases of up to a factor of 84 

~4 for these experiments. Further, they estimated for this system that the vapor wall loss rate 85 

coefficient (kwall) was ~2 x 10-4 s-1 for their 25 m3 chamber. This value of kwall is in reasonable 86 

agreement both with theoretical expectations—so long as the vapor-wall accommodation 87 

coefficient (αwall) is >10-5—and with results of Ziemann and colleagues (Matsunaga and Ziemann, 88 

2010; Yeh and Ziemann, 2015) who estimated kwall ~ 6 x 10-4 s-1 for their 8 m3 chamber. Kokkola 89 

et al. (2014) have also suggested vapor wall losses can impact SOA yields, although they 90 

determined a much larger kwall of ~10-2 s-1 for their 4 m3 chamber. Recent direct measurements of 91 

kwall for a range of oxidized VOCs (OVOCs), produced from reactions of VOCs in traditional 92 

chambers, suggest that kwall can vary by an order of magnitude (~ 2 x 10-6 – 3 x 10-5 s-1) and that 93 

kwall is dependent on the OVOC vapor pressure (Zhang et al., 2015); such low kwall values implies 94 

that the αwall is < 10-5 and controls the rate of vapor loss to the walls.  95 

Although the exact value of kwall is likely chamber-specific (which likely contributes to some 96 

of the above-mentioned variability in kwall) and thus the exact influence of vapor wall losses on 97 

chamber SOA measurements remains somewhat uncertain, the preponderance of evidence 98 

suggests that such effects are important. Existing SOA parameterizations have typically not been 99 

determined with explicit accounting for vapor wall losses. Consequently, they likely underestimate 100 

actual SOA formation in the atmosphere where walls are much less important (although dry 101 

deposition of vapors may still be a factor (Hodzic et al., 2014)). Two recent efforts have attempted 102 

to estimate the influence of vapor wall losses on SOA concentrations in the atmosphere (Baker et 103 

al., 2015; Hayes et al., 2015). One of the studies (Baker et al., 2015) builds on the existing two-104 

product parameterization of SOA formation in the Community Multiscale Air Quality (CMAQ) 105 

model and simply scales the yields of the semi-volatile products up by factors of 4. In the two-106 

product model, a given VOC reacts to form two semi-volatile products that partition to the 107 
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condensed phase. The semi-volatile products are formed with mass yields, yi, and partitioning 108 

coefficients, Ki, that have been determined by fitting the model to data from chamber experiments 109 

in which vapor wall losses were not accounted for. The other study (Hayes et al., 2015) used a 110 

similar yield-scaling approach, but within the volatility basis set (VBS) four-product framework 111 

to represent SOA formation, and they scaled the mass yields for only the semi-volatile product 112 

species from aromatics. Not surprisingly, these simple ad hoc scaling methods demonstrated that 113 

increasing the yields of the semi-volatile products from their originally parameterized values 114 

increases the simulated SOA concentration, but quantitative interpretation of the results is difficult. 115 

This is an especially important consideration given that different SOA systems may exhibit 116 

different sensitivities to vapor wall losses, owing to differences in the product species volatility 117 

distribution and the extent to which multi-generational ageing influences the SOA formation. More 118 

robust assessment of the influence of vapor wall losses on simulated SOA concentrations in 119 

regional air quality models is thus needed. 120 

In this study, the SOM SOA model (Cappa and Wilson, 2012) is utilized to examine the 121 

influence of vapor wall losses on simulated SOA concentrations and O:C atomic ratios in a 3D 122 

regional air quality model, specifically the UCD/CIT (Kleeman and Cass, 2001). What 123 

distinguishes the present approach is that the potential influence of vapor wall losses is inherently 124 

accounted for during the development of the SOM SOA parameterization (Zhang et al., 2014). 125 

This can be contrasted with a simple scaling of an existing parameterization. The current approach 126 

allows for more detailed characterization of different precursor species, reaction conditions (e.g. 127 

NOx sensitivities) and the complex interplay of various timescales (reaction, gas/wall partitioning 128 

and gas/particle partitioning). This also allows for examination of the extent to which different 129 

assumptions regarding the value of kwall (i.e. the first-order rate constant for vapor loss to chamber 130 

walls) during development of the SOA parameterization impact simulations of ambient SOA 131 

concentrations. Further, the SOM framework simulates O:C atomic ratios in addition to OA mass 132 

concentrations, and thus allows for more detailed assessment of the simulated OA and comparison 133 

with observations. Our results demonstrate that accounting for vapor wall losses can have a 134 

substantial impact on simulated SOA concentrations and suggest that there may be regionally-135 

specific differences. 136 

 137 
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3 Methods 138 

3.1 Air quality model 139 

Regional air quality simulations were performed using the UCD/CIT chemical transport model 140 

(Kleeman and Cass, 2001)  for two geographical domains: (i) the Southern California Air Basin 141 

(SoCAB) and (ii) the eastern US. Details regarding the general model configuration and emissions 142 

inventory used have been previously discussed (Jathar et al., 2015a), and the reader is referred to 143 

that work for further information. Details specific to the current work are provided in the following 144 

sections. Model simulations were run for SoCAB from July 20 to August 2, 2005 and for the 145 

eastern US from August 20 to September 2, 2006. Model spatial resolution was higher in SoCAB 146 

(8 km x 8 km) than in the eastern US (36 km x 36 km) to account for the different domain sizes. 147 

3.2 Statistical Oxidation Model for SOA 148 

SOA formation from six VOC classes was simulated using the statistical oxidation model  149 

(Cappa and Wilson, 2012; Cappa et al., 2013), which was recently implemented in the UCD/CIT 150 

model (Jathar et al., 2015a). The VOC classes considered are: long alkanes, benzene, high-yield 151 

aromatics (i.e. toluene), low-yield aromatics (i.e. m-xylene), isoprene and terpenes (including both 152 

mono- and sesquiterpenes). SOM is a parameterizable model that simulates the multi-generational 153 

oxidation of the product species formed from reaction of the SOA precursor VOCs. In SOM, a 154 

“species” is defined as a molecule with a specific number of carbon and oxygen atoms (NC and 155 

NO, respectively), and where the VOC-specific properties of these SOM species are determined 156 

through fitting to laboratory observations. Reactions of a SOM species lead to either 157 

functionalization (i.e. addition of oxygen atoms while conserving the number of carbon atoms) or 158 

fragmentation (i.e. the production of two species which individually have fewer carbon atoms but 159 

where the total carbon is conserved, and where each new species adds one additional oxygen 160 

atom). The particular tunable parameters in SOM are: the probability of adding one, two, three or 161 

four oxygen atoms per reaction, referred to as pXO; the decrease in vapor pressure per added 162 

oxygen, referred to as ∆LVP; and the probability of fragmentation, which is related to the O:C 163 

atomic ratio of a given species as 𝑃𝑃frag = (O: C)𝑚𝑚frag and where mfrag is the tunable parameter. 164 

SOA formation from the semi-volatile SOM species assumes that partitioning is described 165 

according to absorptive gas-particle partitioning theory (Pankow, 1994), and the gas-particle mass 166 
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transfer has been simulated using dynamic partitioning (Kleeman and Cass, 2001; Zhang et al., 167 

2014; Jathar et al., 2015a). The parameters used in the current work have been determined by 168 

fitting to time-dependent data from SOA formation experiments conducted in the Caltech chamber 169 

both with and without accounting for vapor wall losses during the fitting process (discussed further 170 

below); references for the specific experiments considered are provided in Table S1. The specific 171 

influence of considering multi-generational ageing on simulated SOA concentrations and 172 

properties is discussed in a companion paper (Jathar et al., 2015b). The use of the SOM to represent 173 

SOA formation leads to an increase of about a factor of 2.5 or less in computer processing time 174 

required compared to use of the 2-product model.  175 

3.3 Accounting for Vapor Wall Loss 176 

3.3.1 SOM 177 

Vapor wall losses have been accounted for using SOM, as detailed in Zhang et al. (2014). 178 

Vapor wall loss is treated as a reversible, absorptive process with vapor uptake specified using a 179 

first-order rate coefficient (kwall) and the desorption rate related to the effective saturation 180 

concentration, C*, of the organic species and the effective absorbing mass of the walls (Matsunaga 181 

and Ziemann, 2010). Unique SOM fits (i.e. values of mfrag, ∆LVP and pXO) have been determined 182 

for different assumed values of kwall. Best-fit values are provided in Table S1. It should be noted 183 

that the influence of vapor wall losses is inherent in the fit parameters, and in the absence of walls 184 

(i.e. in the atmosphere) the predicted SOA formed will be larger when the fits account for vapor 185 

wall losses. A base case set of parameters with no vapor wall losses assumed during fitting (termed 186 

SOM-no) was determined using kwall = 0. In Zhang et al. (2014), an optimal value of kwall = 2 x 10-187 
4 s-1 was determined for the California Institute of Technology chamber based on simultaneous 188 

fitting of the SOM to a set of toluene photooxidation experiments conducted at different seed 189 

particle concentrations. Unlike in Zhang et al. (2014), the values of kwall used here were not 190 

determined during model fitting. This is because the absolute value of kwall is not well constrained 191 

by a single experiment, and the simulations require vapor wall loss corrected parameters for VOCs 192 

besides toluene. Therefore, two specific bounding cases that account for vapor wall loss are instead 193 

considered based on the results from Zhang et al. (2014). Specifically, values of kwall = 1 x 10-4 s-1 194 
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and 2.5 x 10-4 s-1 are considered, corresponding to a low vapor wall loss case (SOM-low) and high 195 

vapor wall loss case (SOM-high), respectively.  196 

An important aspect of vapor wall loss is that the impact it has on SOA concentrations is 197 

dependent upon the timescale associated with vapor-particle equilibration (τv-p) (McVay et al., 198 

2014; Zhang et al., 2014). The τv-p is related to the accommodation coefficient associated with 199 

vapor condensation on particles, αparticle. Above a vapor-particle accommodation coefficient of 200 

αparticle ~ 0.1 variations in the exact value of αparticle does not influence the effects of vapor wall 201 

losses. This is not to say that vapor wall losses have no influence on the amount of SOA formed 202 

when αparticle ≥ 0.1, only that the net impact does not depend on αparticle. Below this value, vapor-203 

particle equilibration is slowed and the effects of loss of vapors to the walls are accentuated. Thus, 204 

a conservative estimate that minimizes the influence of vapor wall losses on SOA formation is 205 

obtained using αparticle ≥ 0.1. Here, data fitting and parameter determination was performed 206 

assuming that αparticle = 1, and is thus a conservative estimate.  207 

SOM was fit to time-dependent SOA formation experiments conducted in the California 208 

Institute of Technology chamber, following the methodologies described in Cappa et al. (2013) 209 

and Zhang et al. (2014). Observed suspended particle concentrations have been corrected only for 210 

physical deposition on chamber walls, which is appropriate since vapor wall losses are accounted 211 

for separately by SOM. Best-fit values for the SOM parameters for the base case (SOM-no) are 212 

given in Jathar et al. (2015a) and values for SOM-low and SOM-high determined here are given 213 

in Table S1, along with the sources of the experimental data. Parameters have been separately 214 

determined for experiments conducted under low-NOx and high-NOx conditions since the SOA 215 

yields differ. Example results that illustrate the influence of vapor wall losses on simulated SOA 216 

yields are presented in Figure S1 for box model simulations that have been conducted using the 217 

best-fit parameters determined for toluene SOA (low-NOx conditions), but where the simulations 218 

are run assuming there are no walls (i.e. by setting kwall = 0).   219 

3.3.2 Two-product model 220 

Ideally, SOA levels from the SOM-based simulations can be compared with similar results 221 

based on the commonly used two-product model. To do so involves determining new parameters 222 

for the two-product model in which vapor wall losses are explicitly accounted for. Therefore, vapor 223 



9 

 

wall-loss corrected SOA yield curves (i.e. [SOA] versus [∆HC], where ∆HC is the concentration 224 

of reacted hydrocarbon) were generated with SOM using the parameters determined by fitting 225 

SOM to the original chamber data when kwall > 0, but now where kwall is set to zero. The 2-product 226 

model could then be fit to these “corrected” yield curves to determine vapor wall-loss corrected 227 

yields and partitioning coefficients. These new fits would inherently account for the influence of 228 

vapor wall loss since the two-product model is being fit to the corrected “wall-less” data and thus 229 

differ from ad hoc scaling of yields. However, it was determined that the two-product fits were 230 

not sufficiently robust across the entire suite of compounds and vapor wall loss conditions 231 

considered to be implemented in the atmospheric model. An example for SOA from dodecane + 232 

OH under low-NOx reaction conditions is shown in Figure S2. We have determined that this lack 233 

of robustness is a result of the limited dynamic range of the 2-product model. This can be 234 

contrasted with the SOM, which includes many more species that span a wider, more continuous 235 

volatility range, making it more flexible when fitting the laboratory data. More specifically, the 236 

SOA concentrations from the chamber observations, both uncorrected and corrected, ranged from 237 

~1-500 µg m-3, often with few data points at concentrations less than ~10 µg m-3. Thus, when fits 238 

were performed, inconsistent behavior between the different vapor wall loss conditions was 239 

obtained over the atmospherically relevant concentration range (~0.1-20 µg m-3). Attempts were 240 

made to fit the two-product model over a restricted concentration range or to fit using log([SOA]) 241 

instead of [SOA]. However, neither effort led to sufficiently robust results (although both did lead 242 

to improvements). This null result suggests that simple scaling of two-product yields (Baker et al., 243 

2015) to account for the effects of vapor wall losses may not be appropriate. This may similarly 244 

apply to scaling of VBS parameters (Hayes et al., 2015), although the greater flexibility of the 245 

VBS (commonly implemented with four products, instead of two) can potentially allow for unique 246 

“wall-less” fits to be determined (Hodzic et al., 2015). The extent to which such alternative 247 

methods can robustly account for vapor wall losses that are computationally less intensive than 248 

SOM will be explored in future work. 249 

3.4 Primary Organic Aerosol and IVOCs 250 

Primary organic aerosol (POA) derived from anthropogenic (e.g. vehicular activities, food 251 

cooking) or pyrogenic (e.g. wood combustion) sources are simulated assuming that the POA is 252 

non-volatile. This is the standard assumption in the CMAQ model framework (Simon and Bhave, 253 
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2011), and thus is adopted here. It is known that some POA is semi-volatile, not non-volatile as 254 

assumed here. Had POA been treated within a semi-volatile framework (Robinson et al., 2007), 255 

such that some fraction of the POA can evaporate (i.e. SVOCs) and react within the gas-phase and 256 

be converted to SOA (sometimes improperly referred to as “oxidized POA”), then the amount of 257 

POA would likely decrease (due to evaporation) and the amount of simulated SOA would increase 258 

(due to condensation of oxidized SVOC vapors); the total OA concentration (POA + SOA) may 259 

or may not increase as a result, depending on the details of the parameterization and the 260 

atmospheric conditions. Additionally, nearly all modeling efforts in which POA is treated as semi-261 

volatile have also included contributions from gas-phase IVOCs as an added class of SOA 262 

precursors; these two issues are rarely implemented independently in models, although their 263 

contributions can be separately tracked. Whereas simply treating POA as semi-volatile may or 264 

may not lead to an increase in the total OA concentration, the introduction of new SOA precursor 265 

mass in the form of IVOCs will inevitably lead to production of more SOA in the model. The 266 

relative importance of IVOCs will depend on the amount of added IVOC mass and the propensity 267 

of these IVOC vapors to form SOA in the model (i.e. their effective SOA yield). In the current 268 

study, we do not explicitly consider the potential for IVOCs to contribute to the ambient SOA 269 

burden, focusing instead on how vapor wall losses influence SOA formation from VOCs. We will 270 

aim to consider contributions from IVOCs and how they are influenced by vapor wall losses in 271 

future studies. Regardless, the implications of our particular treatment (non-volatile POA 272 

excluding IVOCs) are discussed below. 273 

3.5 Model Simulations and Outputs 274 

Six individual model simulations have been carried out to determine the spatial distribution of 275 

SOA concentrations. Each simulation used one of the SOM parameterizations, i.e. SOM-no, SOM-276 

low or SOM-high with either the low- and high-NOx parameters. Each precursor VOC is allowed 277 

to react with either OH, O3 or NO3 as characterized by an oxidant-specific rate coefficient, 278 

although the products and product distributions of the first-generation products are assumed to be 279 

oxidant independent. This simplification is identical to that employed in CMAQv4.7 (Carlton et 280 

al., 2010). Reactions of subsequent oxidized SOM products then occur only via reaction with OH 281 

radicals according to the SOM parameterization associated with that precursor VOC (as 282 

determined by fitting the photooxidation experiments). Besides the absolute SOA concentration, 283 
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SOM also allows for explicit calculation of the average (and precursor-specific) O:C and H:C 284 

atomic ratios and of the SOA volatility distribution, which characterizes the distribution of 285 

particulate and gas-phase mass concentrations with respect to C*. To estimate the O:C of the total 286 

OA (POA + SOA), it is assumed that the non-volatile POA has a constant O:C = 0.2 and H:C = 287 

2.0 (Ng et al., 2011). Since the simulated (O:C)total is just a combination of (O:C)SOA and (O:C)POA, 288 

assuming a different value for (O:C)POA would change the absolute value of (O:C)total but not any 289 

dependence on simulation conditions. This is similarly true for (H:C)total. 290 

As noted above, unique sets of SOM parameters were fit to experiments conducted under either 291 

low- or high-NOx conditions assuming a particular value for kwall. Since each simulation used a 292 

single set of SOM fit parameters (e.g. SOM-no fit to low-NOx experiments) the SOA NOx 293 

parameterization used in a given simulation is independent of the actual simulated ambient NOx 294 

concentrations or NO/HO2 ratio. Consequently, comparison between the simulations conducted 295 

using the low- and high-NOx parameterizations gives an indication of the range expected from 296 

variability in NOx levels, and the average between the two simulations provides a representation 297 

that is intermediate between these two extremes. Unless otherwise specified, reported values are 298 

for the average of the simulations run using the low- and high-NOx parameterizations. This 299 

approach towards understanding the influence of NOx is different than some previous approaches 300 

that attempted to account for the SOA NOx dependence in a more continuously variable manner. 301 

For example, some simulations using the two-product approach have used the instantaneous 302 

NO/HO2 ratios predicted by the model to allow distinguishing between low- and high-NOx 303 

products and SOA yields for aromatic VOCs (Carlton et al., 2010). Similarly, instantaneous 304 

VOC/NOx ratios have been used with VBS-type models for aromatic VOCs to allow for 305 

interpolation between the two regimes (Lane et al., 2008a). Typically, these efforts have not 306 

considered the NOx-dependence of monoterpene and sesquiterpene yields even though it is 307 

experimentally established that the NOx condition (and more specifically, the NO/HO2 ratio) 308 

influences SOA yields for both aromatic and biogenic compounds (e.g. Ng et al., 2007a; Ng et al., 309 

2007b). For most VOCs, the functional dependence of the SOA yield on the VOC/NOx ratio or the 310 

NO/HO2 ratio is not well established, making it difficult to understand how well the interpolation 311 

methods work. (SOA formation from isoprene is a notable exception (e.g. Xu et al., 2014).) 312 

Further, modeled NO/HO2 ratios may be off by orders of magnitude, most likely due to poor 313 

representation of HO2 concentrations (Carlton et al., 2010), making it difficult to understand how 314 
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well the conditions of the laboratory translate to the model environment. By considering the low- 315 

and high-NOx parameterizations separately, i.e. the approach used in the current study, bounds on 316 

the overall influence of NOx on the simulated SOA can be established. However, this approach 317 

will not capture how the simulated SOA may vary due to spatial and temporal variations in the 318 

model NOx and oxidant fields. Future efforts will aim to account for the NOx-dependence of SOA 319 

formation in a more continuously varying manner, and to account for recent updates to the detailed 320 

isoprene oxidation mechanism (Pye et al., 2013).  321 

4 Results and Discussion 322 

4.1 General influence of vapor wall loss on simulated SOA 323 

The spatial distribution of the SOM-no model SOA concentrations is shown for SoCAB and 324 

the eastern US using the average from the simulations carried out using the low- and high-NOx 325 

parameterizations (Figure 1a-b). (Again, the low- and high-NOx designations here refer only to the 326 

experimental conditions under which the SOM parameters were determined, not the actual NOx 327 

conditions in the UCD/CIT model.) For SoCAB, predicted SOA concentrations are largest in and 328 

around downtown Los Angeles and in the forested regions of the Los Padres National Forest and 329 

the Santa Monica Mountains National Recreation Area in the NW quadrant. The spatial 330 

distribution of SOA is similar to that obtained using the conventional two-product SOA 331 

parameterization (Jathar et al., 2015a, b). For the eastern US, predicted SOA concentrations are 332 

largest in the southeast, in particular around Atlanta, Georgia. Overall, the simulated SOA 333 

concentrations with the SOM-no model are larger in the eastern US than in SoCAB, reflecting the 334 

relatively strong influence of biogenic emissions in this region. 335 

The influence of vapor wall losses on the simulated ambient SOA concentrations is illustrated 336 

in Figure 1c-f as the ratio between the SOA from the SOM-low and SOM-high simulations to the 337 

SOM-no (no wall losses) simulation. This ratio will be referred to generally as the wall loss impact 338 

(Rwall,low or Rwall,high). Values of Rwall larger than one indicate that accounting for vapor wall losses 339 

as part of the SOM parameterization leads to an increase in the predicted SOA concentrations. In 340 

the SoCAB, the Rwall,low varies from 1.5-4.5, while the Rwall,high varies from 3 to more than 10. The 341 

largest ratios (indicating the largest impact of accounting for vapor wall losses) tend to occur in 342 

more remote locations as this is where concentrations are lower (Figure 2). However, the impact 343 
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is still large in downtown Los Angeles and the greater LA region (average Rwall,low ~2.5 and Rwall,high 344 

~5). In the eastern US, the simulated Rwall vary over a similar range as in SoCAB, with Rwall,low 345 

varying from 1.5-5 and Rwall,high from 3 to 10. There is again a general, although not exact, inverse 346 

relationship between Rwall and the absolute SOA concentrations; the greater scatter in the eastern 347 

US compared to SoCAB at low SOA concentrations likely reflects the larger spatial range 348 

considered. The smallest simulated Rwall values occur across the southeast and up the eastern 349 

seaboard (Rwall,low ~2.5 and Rwall,high ~5) while the largest values occur over the Great Lakes and 350 

Michigan, Nebraska, and the Gulf of Mexico and Atlantic Ocean; there is a steep increase going 351 

from land to sea. If Rwall values are calculated using the simulated SOA concentrations from either 352 

the low-NOx or high-NOx parameterizations individually, as opposed to the average values used 353 

above, very similar results are obtained (Figure S3). 354 

Regional air quality models have historically overestimated the urban-to-regional gradient in 355 

total OA concentrations. Robinson et al. (2007) showed that the simulated urban-to-regional 356 

gradient could be reduced and made more consistent with observations by treating POA as semi-357 

volatile and adding SVOCs and IVOCs as SOA-forming species. The current results suggest a 358 

complementary explanation, namely that the urban-to-regional gradient can be reduced when 359 

vapor wall losses are accounted for since Rwall generally increases with decreasing SOA 360 

concentration and since POA is identical between the different model parameterizations. 361 

Consequently, larger Rwall are found outside of the major source regions, which decreases the 362 

urban-to-regional contrast. Indeed, the ratio between the predicted average SOA in downtown LA 363 

(urban) to that over the Pacific Ocean near the coast of LA (regional) and decreases from 2.3 364 

(SOM-no) to 1.5 (SOM-low) to 1.3 (SOM-high), for example. Additionally, it has been suggested 365 

that the typical underprediction of SOA by air quality and chemical transport models relative to 366 

observations might increase with photochemical age (Volkamer et al., 2006). The current results 367 

suggest the possibility that the SOA concentrations in more remote (lower concentration) regions 368 

may be underestimated in models to a greater extent in a relative sense than in high-source (higher 369 

concentration) regions due to a lack of accounting for vapor wall losses, although the absolute 370 

differences in SOA concentrations may be larger in regions where absolute concentrations are 371 

larger.  372 
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4.2 OA composition and concentrations 373 

The simulated fraction of total OA that is SOA (fSOA) is substantially smaller in SoCAB than 374 

in the eastern US, especially the southeast US (Figure 3). The predicted fSOA values vary spatially 375 

within a given region, with the SOM-no simulations in the general range of ~0.1-0.3 for SoCAB 376 

and ~0.4-0.9 for the eastern US. This difference between regions results from the substantial POA 377 

emissions in SoCAB and the large emissions of biogenic VOCs across the southeast US. 378 

Consequently, accounting for vapor wall losses has a larger impact on the absolute total OA (SOA 379 

+ POA) concentrations in the eastern US than it does in SoCAB, although the impact in both 380 

regions is substantial. For SoCAB, the predicted 24-h average fSOA range increases to ~0.2-0.5 for 381 

SOM-low and to ~0.4-0.8 for SOM-high simulations. These model results can be compared with 382 

measurements from the 2005 SOAR field study in Riverside, CA, which overlaps with the 383 

simulation period. The observed fSOA during SOAR ranged from ~0.6 in early morning to ~0.9 in 384 

midday, with a campaign-average of ~0.78 (Docherty et al., 2011). Measurements at Pasadena, 385 

CA during a later time period, June 2010 during the CalNex study, give similar results with the 386 

campaign-average fSOA = 0.6 (Hayes et al., 2013). (Note that here we are equating SOA with the 387 

“oxygenated organic aerosol,” or OOA factors that are obtained from positive matrix factorization 388 

of the measured OA time series, and equating POA with the sum of hydrocarbon-like OA (HOA), 389 

cooking-derived OA (COA), and “local” OA (LOA).) The SOM-high simulations in SoCAB are 390 

most consistent with these observations.  391 

For the eastern US, the predicted fSOA range increases from 0.4-0.9 for SOM-no to ~0.7-0.9 for 392 

SOM-low and to ~0.8-1 for SOM-high. These predicted values can be compared with 393 

measurements made at a few locations in the southeastern US (specifically, sites in Alabama and 394 

Georgia), which show that the fSOA in this region exhibits a strong seasonal dependence and some 395 

spatial variation (Xu et al., 2015b). The measurements in spring and summer indicate that the total 396 

OA is dominated by SOA, with fSOA measurements ranging from 0.7 to 1 and with the smaller 397 

values observed at the more urban sites. The predicted fSOA from the SOM-low and SOM-high 398 

simulations are most consistent with this range, with the fSOA from the SOM-no simulations being 399 

on the low side, especially in comparison with the more rural sites. 400 

The simulated total OA concentrations are compared to ambient OA measurements made at 401 

the STN (Speciated Trends Network) and IMPROVE (Interagency Monitoring of Protected Visual 402 



15 

 

Environments) (The Visibility Information Exchange Web System (VIEWS 2.0), 2015) air quality 403 

monitoring sites in SoCAB and the eastern US; the regional differences in fSOA should be kept in 404 

mind for this model/measurement comparison. A map of sites is shown in Figure S4. STN sites 405 

tend to be more urban and have higher OA concentrations compared to IMPROVE sites, which 406 

tend to be more remote. OA concentrations are estimated as the measured organic carbon (OC) 407 

concentrations times 2.1  for IMPROVE sites and as 1.6 × ([OC] - 0.5 µg m-3) for STN sites (Turpin 408 

and Lim, 2001). The -0.5 µg m-3 offset for the STN sites arises because the IMPROVE data are 409 

both artifact and blank corrected while the STN data are only artifact corrected (Subramanian et 410 

al., 2004).  The difference in scaling factors (2.1 versus 1.6) approximately accounts for differences 411 

in the OA/OC conversion between more urban and more rural networks (Turpin and Lim, 2001). 412 

Given the generally regional character of OA in much of the eastern US, it may be that the 413 

difference in OM/OC between the STN and IMPROVE sites may be smaller than assumed here 414 

(most likely with the 1.6 being too low, leading potentially to an underestimate in the OA at the 415 

STN sites). We note that IMPROVE data may also be biased low by ~25% in the SE US summer 416 

due to evaporation after sampling (Kim et al., 2015).  417 

Table 1 lists statistical metrics of fractional bias, normalized mean square error (NMSE) and 418 

the concordance correlation coefficients that capture model performance for OA for all simulations 419 

for both domains across the STN and IMPROVE monitoring networks. Fractional bias is 420 

calculated as: 421 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑏𝑏𝐹𝐹𝐹𝐹𝑏𝑏 =  2�𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠−𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠�
𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠+𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠

       (1) 422 

and the NMSE as 423 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  ��𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠−𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠�
2

𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠×𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠
�         (2) 424 

where the subscripts sim and obs refer to the simulated and observed OA concentrations, 425 

respectively. The concordance correlation coefficients (ρc) are calculated as: 426 

𝜌𝜌𝑐𝑐 = 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑜𝑜𝑜𝑜𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 +𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠

2 +�𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠�����������−𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠������������2
         (3) 427 

where 𝐶𝐶𝑂𝑂𝑂𝑂,𝑠𝑠𝑠𝑠𝑚𝑚��������� and 𝐶𝐶𝑂𝑂𝑂𝑂,𝑜𝑜𝑜𝑜𝑠𝑠��������� indicate the mean, 𝑏𝑏𝑠𝑠𝑠𝑠𝑚𝑚2  and 𝑏𝑏𝑜𝑜𝑜𝑜𝑠𝑠2  are the variance and 𝑏𝑏𝑠𝑠𝑠𝑠𝑚𝑚,𝑜𝑜𝑜𝑜𝑠𝑠 is the 428 

covariance of the simulated and observed OA concentrations. Scatter plots are shown in Figure S5 429 
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and Figure S6; many more sites are considered in the eastern US than in the SoCAB given the 430 

larger geographical domain and distribution of sites. In both regions, the SOM-no simulations 431 

underpredict the STN and IMPROVE observations, especially in the SoCAB. The negative bias 432 

of the SOM-no simulations is generally improved as vapor wall losses are accounted for. For both 433 

the STN and IMPROVE sites in the SoCAB the SOM-high simulations give best agreement. For 434 

the eastern US STN sites, an average of the SOM-low and SOM-high simulations provides the 435 

best agreement. For the eastern US IMPROVE sites, the SOM-low simulations provide the best 436 

agreement, although with some overprediction. (If the eastern US STN and IMPROVE 437 

measurements do underestimate the actual OA concentrations, the degree to which accounting for 438 

vapor wall losses improves the model-measurement comparison will increase.) The simulated 439 

anthropogenic/biogenic SOA split is found to be approximately the same at sites within both 440 

networks (e.g. Figure 4). This occurs even though the IMPROVE sites tend to be more remote 441 

than the STN sites in the eastern US, and reflects the regional character of SOA in that region. 442 

Ultimately, the comparisons suggest that accounting for vapor wall losses can improve model-443 

measurement agreement, although there are differences in terms of whether the SOM-high 444 

simulations or SOM-low simulations produce the best agreement. That the OA concentrations for 445 

the SOM-high simulations remains slightly lower than the observations for STN sites in SoCAB 446 

could potentially result from the non-volatile treatment of POA, the exclusion of IVOCs in the 447 

current model or uncertainty in the POA emission inventory. 448 

The simulations can also be compared with observations of the OA-to-∆CO concentration ratio 449 

(OA/∆CO) during SOAR (Docherty et al., 2008; Docherty et al., 2011), and where ∆CO indicates 450 

the background corrected CO concentration. Because CO is relatively long lived, normalization of 451 

the calculated and observed OA to the concurrent background-corrected CO helps to minimize the 452 

impacts of uncertainties in boundary layer dynamics and accounts for variability in emissions and 453 

transport to some extent (De Gouw and Jimenez, 2009). The background-corrected CO 454 

concentration is calculated as ∆[CO] = [CO] – [CO]bgd. The estimated [CO]bgd for the observations 455 

is 105 ppb (with a plausible range from 85-125 ppb) (Hayes et al., 2013). In contrast,  the [CO]bgd 456 

for the model is estimated to be 130 ppb based on the simulated [CO] over the open ocean west of 457 

Los Angeles. The observed diurnal profile of OA/∆CO during SOAR exhibits a distinct peak 458 

around mid-day, corresponding to the peak in photochemical activity. This indicates a substantial 459 

influence of SOA production on the total OA concentration (Figure 5) (Docherty et al., 2008). The 460 
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simulated OA/∆CO diurnal profiles around Riverside for the SOM-high simulations are most 461 

consistent with the observations, exhibiting a distinct peak around mid-day that is similar to the 462 

observations (Figure 5). Unlike the observations, the diurnal OA/∆CO profile for the SOM-no 463 

simulation exhibits almost no increase during mid-day and the SOM-low simulation exhibits only 464 

a slightly larger daytime increase. The slope of a one-sided linear fit to a graph of the observed 465 

[OA] versus [CO] during daytime (10 am to 8 pm) is 69 ± 2 µg m-3 ppm-1 (Figure 5) when 466 

constrained to go through the assumed [CO]bgd. This can be compared with the simulation results, 467 

which have constrained slopes of 23.0 ± 0.4, 34.0 ± 0.8 and 55 ± 2 µg m-3 ppm-1 for SOM-no, 468 

SOM-low and SOM-high, respectively (Figure 5g-i). Clearly the SOM-high simulations are in best 469 

overall agreement with the SOAR observations. However, the maximum in the simulated OA/∆CO 470 

peaks at a smaller value than was observed. The simulated peak also occurs slightly earlier than 471 

the maximum in the observations, which could be due to discrepancies in the transport to the 472 

Riverside site or to too fast SOA formation in the model. Nonetheless, these results clearly indicate 473 

that accounting for vapor wall losses has the potential to reconcile simulated SOA diurnal behavior 474 

with observations. Alternatively or complementarily, daytime increases in the OA/∆CO ratio from 475 

SOA production can be achieved with the introduction of additional SOA precursor material such 476 

as S/IVOCs (Zhao et al., 2014; Hayes et al., 2015), which are not considered here. The addition of 477 

S/IVOCs would increase the daytime OA/∆CO for all of the simulations. The magnitude of the 478 

increase would depend on the amount of added S/IVOCs and the properties assigned to the 479 

S/IVOCs regarding their SOA formation timescale and yield. Consideration of SOA from 480 

S/IVOCs in the SoCAB using the SOM framework will be the subject of future work.  481 

4.3 SOA Composition 482 

4.3.1 Source/VOC Precursor Dependence 483 

Accounting for vapor wall losses leads to regionally-specific changes in the simulated 484 

contributions from the different VOC classes (e.g. TRP1, ARO1) to the SOA burden, as illustrated 485 

in Figure 4 for two sites in SoCAB (central Los Angeles and Riverside) and two in the eastern US 486 

(Atlanta and the Smoky Mountains). Focusing first on contributions from the biogenic VOCs, at 487 

all locations accounting for vapor wall losses leads to an increase in the fractional contribution of 488 

isoprene SOA, typically at the expense of terpene and sesquiterpene SOA. This is true for both the 489 
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low- and high-NOx simulations. Recent observations suggest that isoprene SOA produced via the 490 

low-NO IEPOX (isoprene epoxydiol) pathway can be uniquely identified from analysis of aerosol 491 

mass spectrometer measurements when the relative contribution is sufficiently large (> ~5%) (e.g. 492 

Budisulistiorini et al., 2013; Hu et al., 2015). This observed IEPOX SOA accounts for around 30% 493 

(May) and 40% (August) of total SOA or around 20% (May) and 30% (August) of total OA in 494 

Atlanta in the summer (Xu et al., 2015a), albeit not during the same time period as simulated here. 495 

IEPOX SOA was also found to account for 17% of total OA at a rural site in Alabama in 2013 (Hu 496 

et al., 2015). The SOM-low and SOM-high simulation results for Atlanta are most consistent with 497 

the observations, with a predicted isoprene SOA fraction of 27% and 35%, respectively, compared 498 

to only 17% for the SOM-no simulations and where the reported values are for the simulations that 499 

use the low-NOx parameterizations since this is the pathway that leads to IEPOX SOA. The related 500 

isoprene OA fractions are 10%, 21% and 31% for the SOM-no, -low and -high simulations, 501 

respectively. (These isoprene SOA fractions change only marginally for SOM-low and SOM-high 502 

simulations when the high-NOx parameterizations are used, to 25% and 37%, respectively. The 503 

SOM-no simulations exhibit somewhat greater sensitivity to the NOx parameterization, with the 504 

high-NOx parameterization giving an SOA fraction of 7%.)  505 

In SoCAB, the predicted average isoprene SOA fraction in central LA is relatively large for 506 

the SOM-low (36%) and SOM-high (47%) simulations, compared to the SOM-no simulations 507 

(12%). There is a large difference in SoCAB between the simulations that use the low-NOx and 508 

high-NOx parameterizations, with the isoprene SOA fractions being much larger with the high-509 

NOx parameterizations (e.g. 58% for high-NOx versus 36% for low-NOx for the SOM-high 510 

simulations). Measurements at Pasadena during the 2010 CalNex study did not distinctly identify 511 

IEPOX SOA, which is interpreted as the IEPOX SOA contribution being lower than ~5% of the 512 

OA (Hu et al., 2015). It is possible that additional isoprene SOA had been formed under higher 513 

NOx conditions (compared to the southeast US) such that it is chemically different from IEPOX-514 

SOA and was not identified as a uniquely isoprene-derived SOA component, instead contributing 515 

generically to the overall oxygenated OA pool. The concentration of isoprene SOA from specific 516 

high-NOx pathways may, however, be limited at higher temperatures, such as found in 517 

summertime Pasadena, due to thermal decomposition of intermediate gas-phase species (Worton 518 

et al., 2013), although it is not clear to what extent this influenced the CalNex observations or 519 

would have affected the model results had it been explicitly considered. Additionally, it should be 520 
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kept in mind that the ambient NOx concentrations in SoCAB have decreased substantially from 521 

2005-2013 (Russell et al., 2012). Thus, although the CalNex measurements do not provide direct 522 

support for such a large isoprene SOA fraction, they also do not rule it out. 523 

While the predicted isoprene SOA fraction increased, the predicted terpene and sesquiterpene 524 

SOA fractions decreased in the simulations that accounted for vapor wall losses. Additionally, the 525 

terpene SOA/sesquiterpene SOA ratio increased at all locations for the SOM-low and SOM-high 526 

simulations, in large part because the sesquiterpene yield is already large and thus accounting for 527 

vapor wall losses has a limited influence on the simulated sesquiterpene SOA concentrations. 528 

There are some changes in the anthropogenic fraction of SOA when vapor wall losses are 529 

accounted for. The anthropogenic fraction of SOA is defined here as the sum of the SOA from 530 

long alkanes and aromatics, which are emitted from combustion of fossil fuels, divided by the sum 531 

of the total SOA, which additionally includes SOA from isoprene, monoterpenes and 532 

sesquiterpenes emitted by trees, plants and other natural sources. The 14C isotopic signature of 533 

fossil-derived VOCs is different from that of biogenically derived VOCs, and thus their respective 534 

contributions to SOA can be partially constrained via experimental analysis of the 14C content of 535 

OA (Zotter et al., 2014). We assume the anthropogenic fraction is equivalent to the fossil fraction 536 

of SOA (termed FSOA,fossil). At the two eastern US sites (Atlanta and Smokey Mountains) the 537 

average FSOA,fossil increases slightly from 14% (SOM-no) to 22% (SOM-low) and 25% (SOM-538 

high). At the two SoCAB sites (downtown LA and Riverside) the predicted average FSOA,fossil 539 

decreases slightly, from 35% (SOM-no) to 29% (SOM-low) and 30% (SOM-high), respectively. 540 

In SoCAB the FSOA,fossil values differ between the low- and high-NOx parameterizations, with 541 

FSOA,fossil typically larger for the low-NOx parameterizations (e.g. 35% for low-NOx and 25% for 542 

high-NOx). In the eastern US, the predicted FSOA,fossil exhibit a stronger response to vapor wall 543 

losses for the high-NOx parameterization than the low-NOx parameterization, although the 544 

absolute values are reasonably similar. Of the anthropogenic SOA (aromatics + alkanes), the high-545 

NOx parameterizations indicate an increasing alkane SOA fraction as vapor wall losses are 546 

accounted for in both regions. In contrast, the low-NOx parameterizations indicate minor 547 

contributions from alkane SOA for all of the simulations. In general, chamber SOA yields from 548 

aromatic compounds are larger for low-NOx conditions (Ng et al., 2007a), which could help to 549 

explain these differences.  550 
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The SoCAB FSOA,fossil values can be compared with estimates of the fossil fraction of “oxidized 551 

organic carbon” (FOOC,fossil) from measurements made during CalNex in Pasadena (Zotter et al., 552 

2014). It should be noted that while FSOA,fossil includes contributions from both oxygen and carbon 553 

mass the FOOC,fossil includes only the carbon mass. The fossil fraction of secondary organic carbon 554 

(SOC) can be calculated from the simulated SOA concentrations by accounting for the differences 555 

in the O:C atomic ratios of the different SOA types to facilitate more direct comparison between 556 

the simulations and observations. Specifically, the SOC mass concentration (CSOC) is related to the 557 

SOA mass concentration (CSOA) for a given SOA type through the relationship: 558 

𝐶𝐶𝑆𝑆𝑂𝑂𝐶𝐶 = 𝐶𝐶𝑆𝑆𝑂𝑂𝑂𝑂 ∙
𝑁𝑁𝐶𝐶∙𝑀𝑀𝑊𝑊𝐶𝐶
𝑀𝑀𝑊𝑊𝑆𝑆𝑂𝑂𝑂𝑂

= 𝑁𝑁𝐶𝐶∙𝑀𝑀𝑊𝑊𝐶𝐶
𝑁𝑁𝐶𝐶∙𝑀𝑀𝑊𝑊𝐶𝐶+𝑁𝑁𝑂𝑂∙𝑀𝑀𝑊𝑊𝑂𝑂+𝑁𝑁𝐻𝐻∙𝑀𝑀𝑊𝑊𝐻𝐻

= 𝐶𝐶𝑆𝑆𝑂𝑂𝑂𝑂
4
3

(𝑂𝑂:𝐶𝐶)+ 1
12

(𝐻𝐻:𝐶𝐶)+1
   (4) 559 

where MWC, MWO, MWH are the molecular weights of carbon, oxygen and hydrogen atoms, 560 

respectively. The O:C and H:C values of the different SOA types are not constant in the SOM due 561 

to the continuous evolution of the product distribution. However, for a given SOA type the 562 

simulated O:C and H:C values vary over a relatively narrow range (Cappa et al., 2013) and thus 563 

an average value can be used. The resulting FSOC,fossil values are compared with the FSOA,fossil values 564 

in Table S2 and are found to be very similar. The FOOC,fossil values were determined from 14C 565 

analysis of particles collected on filters to allow determination of the fossil fraction of the total 566 

carbonaceous material coupled with positive matrix factorization to allow separation of the 567 

contributions from the various fossil and non-fossil POA and SOA sources. The uncertainty in the 568 

fossil fraction of total OC was reported as 9%; the uncertainty in the FOOC,fossil will be larger. Zotter 569 

et al. (2014) determined the nighttime FOOC,fossil was smaller than the peak daytime value and that 570 

the 24-h average best-estimate FOOC,fossil = 44%. This is somewhat larger than the average predicted 571 

FSOC,fossil (e.g. 31% for SOM-high). The difference between the observed FOOC,fossil and predicted 572 

FSOC,fossil could indicate a role for SOA formed from fossil-derived S/IVOC species in the 573 

atmosphere but which are not considered here.  574 

4.3.2 The Oxygen-to-Carbon Ratio 575 

The O:C atomic ratios of the SOA have been calculated from the simulated distributions of 576 

compounds in NC and NO space; the O:C atomic ratio is an inherent property of the SOM model 577 

and (O:C)SOA values from box model simulations using SOM exhibit generally good agreement 578 

with observations (Cappa and Wilson, 2012; Cappa et al., 2013). Few air quality models attempt 579 
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to simulate O:C ratios for SOA (e.g. Murphy et al., 2011), although a dramatic expansion in 580 

observations of O:C ratios for ambient OA has recently occurred (Ng et al., 2011; Canagaratna et 581 

al., 2015; Chen et al., 2015). Comparison between intensive properties such as O:C, in addition to 582 

absolute OA concentrations, can provide further constraints on the transformation processes and 583 

OA sources in a given region. The simulated (O:C)SOA in the SOM-no simulations are generally 584 

larger in SoCAB than in the eastern US (Figure 6). The simulated (O:C)SOA from isoprene and 585 

aromatics individually are larger than those from mono- or sesquiterpenes due, in large part, to the 586 

smaller carbon backbone and the need to add more oxygens to produce sufficiently low volatility 587 

species that partition substantially to the particle phase (Chhabra et al., 2011; Cappa and Wilson, 588 

2012; Tkacik et al., 2012). Thus, the larger (O:C)SOA in SoCAB results from larger relative 589 

contributions from isoprene and aromatic compounds to the total SOA burden in this region. The 590 

(O:C)SOA is also generally larger in regions where SOA concentrations are smaller. This may 591 

reflect some relationship between SOA source and concentration, but it also reflects the role that 592 

continued multi-generational oxidation has on the SOA composition, since lower concentrations 593 

can reflect greater dilution and overall more aged SOA. 594 

The (O:C)SOA for the SOM-low and SOM-high simulations are substantially larger than that 595 

from the SOM-no simulations in both SoCAB and the eastern US (Figure 6). This reflects two 596 

phenomena: (i) the increased relative contribution of isoprene to the total simulated SOA burden 597 

in the SOM-low and SOM-high simulations and (ii) differences in the SOM chemical pathways 598 

(i.e. the SOM parameters) that lead to the production of condensed-phase material between the 599 

parameterizations that do/do not include vapor wall losses. The influence of the latter has been 600 

confirmed through box model simulations, although the exact behavior is both precursor specific 601 

and somewhat dependent on the reaction conditions (e.g. [OH] and the initial precursor 602 

concentration). Overall, the former effect likely dominates since the difference in simulated 603 

(O:C)SOA between isoprene and monoterpenes is substantial (Jathar et al., 2015a). 604 

The simulated O:C for the total OA also differs substantially between simulations (Figure 7), 605 

especially in regions where the simulated increase in fSOA is largest (Figure 2). The simulated 606 

(O:C)total in both the SoCAB and eastern US increases substantially when vapor wall losses are 607 

accounted for. For example, the simulated (O:C)total values at Riverside were 0.22, 0.3 and 0.42 608 

and at Atlanta were 0.45, 0.65 and 0.85 for SOM-no, SOM-low and SOM-high simulations, 609 

respectively. The increase in (O:C)total is mostly driven by an associated increase in fSOA. The 610 



22 

 

(O:C)total value is a weighted average of the (O:C)SOA and (O:C)POA, with (O:C)total = (nO,SOA + 611 

nO,POA)/(nC,SOA + nC,POA) where nO and nC indicate the number of oxygen and carbon atoms, 612 

respectively, that comprise all SOA types and POA. For conceptual purposes, this exact expression 613 

for (O:C)total can be approximated as (O:C)total ~ fSOA(O:C)SOA + (1-fSOA)(O:C)POA, where (O:C)SOA 614 

represents the average over the different SOA types. Thus, changes in fSOA lead to changes in 615 

(O:C)total, with some additional smaller changes due to variation in the weighted average (O:C)SOA 616 

between the various simulations (since each SOA type has a particular O:C range). The predicted 617 

eastern US (O:C)total are generally larger than in SoCAB due to the larger fSOA in the eastern US 618 

and since (O:C)SOA is typically larger than (O:C)POA. For example, the average (O:C)total in Atlanta 619 

for the SOM-no simulations was 0.4 whereas it was 0.22 in Riverside.  620 

The simulated results at Riverside can be compared with bulk, campaign average (O:C)total 621 

values measured during the SOAR campaign using an Aerodyne high resolution time-of-flight 622 

aerosol mass spectrometer (HR-AMS), which determines (O:C)total with an absolute uncertainty of 623 

±30% but with very high precision (Docherty et al., 2008; Dzepina et al., 2009). Values reported 624 

here have been corrected according to Canagaratna et al. (2015). The campaign-average observed 625 

(O:C)total was ~ 0.45. The SOM-high (O:C)total is in very good agreement with the observations, 626 

whereas (O:C)total is too small for both SOM-no and SOM-low. This good correspondence is, of 627 

course, sensitive to the assumed (O:C)POA, here 0.2 based on (Ng et al., 2011). If a smaller (O:C)POA 628 

had been assumed, then either a greater amount of SOA would be required or the simulated 629 

(O:C)SOA would need to be larger to match the SOAR measurements. Docherty et al. (2011) 630 

determined there were three POA types during SOAR, with a weighted-average corrected O:C = 631 

0.095, suggesting that the assumed 0.2 is too large. In contrast, Hayes et al. (2013) determined a 632 

weighted-average corrected O:C = 0.25 for the three POA types identified at Pasadena during 633 

CalNex. It has been suggested that at least some of the difference in the (O:C)POA between SOAR 634 

and CalNex results from greater heterogeneous ageing of the Pasadena POA. Regardless of the 635 

exact (O:C)POA, a strong improvement in the model-measurement agreement when vapor wall 636 

losses are accounted for is evident. Of additional consideration is the diurnal dependence of the 637 

(O:C)total. The observed (O:C)total exhibited a distinct diurnal dependence, with low values at night, 638 

a minimum at ~7 am and maximum values around midday (Figure 8). The simulated (O:C)total 639 

diurnal profile for the SOM-high simulations agrees reasonably well with the SOAR observations 640 

in terms of both the magnitude of the day-night difference and the absolute (O:C)total (Figure 8). In 641 
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contrast, both the SOM-no and SOM-low exhibit only minor variations with time-of-day due to 642 

the controlling influence of (O:C)POA.  643 

The simulated (O:C)total values in the eastern US can also be compared with recent 644 

observations, with the caveat that in this case the measurements were not made over the same time-645 

period as the simulations were run. Nonetheless, measurements made in summer and winter of 646 

2012 and 2013 at various locations in Alabama and Georgia indicate the O:C values for total OA 647 

were relatively constant, around 0.6-0.7, although it should be noted that these values were 648 

estimated from measurements made using an Aerodyne aerosol chemical speciation monitor, 649 

which increases the uncertainty (Xu et al., 2015b). Measurements made around the southeast US 650 

using an HR-AMS onboard the NASA DC8 as part of the SEAC4RS field study indicate the 651 

average (O:C)total = 0.8 when the plane was flying below 1 km (SEAC4RS). As noted above, the 652 

simulated (O:C)total around Atlanta was 0.45 for SOM-no, increasing to ~0.65 for SOM-low and 653 

~0.85 for SOM-high. As with the SoCAB comparison, the general level of agreement between the 654 

observed and simulated (O:C)tot was improved when vapor wall losses were accounted for. 655 

The above simulations included SOA only from VOCs, neglecting contributions from 656 

S/IVOCs including oxidation of semi-volatile POA vapors. S/IVOCs and semi-volatile POA 657 

vapors are likely ≥C14 carbon species (Jathar et al., 2014; Zhao et al., 2014). As such, little added oxygen 658 

is required to produce low-volatility species that will form SOA. Since these species also have 659 

relatively large number of carbon atoms, the O:C of the SOA formed from them will be relatively 660 

small, most likely with (O:C)S/IVOC < 0.2 in the absence of strong heterogeneous oxidation (Cappa 661 

and Wilson, 2012; Tkacik et al., 2012); note that this range is lower than what was assumed for 662 

the non-volatile POA here. Consequently, had S/IVOCs been included in the simulations the 663 

(O:C)total would have likely decreased. The magnitude of the decrease would depend on the exact 664 

extent to which the S/IVOCs contributed to the overall SOA burden, the extent to which the 665 

simulated POA decreased (due to the semi-volatile treatment), and on the simulated (O:C)S/IVOC.  666 

In the limit that SOA from S/IVOCs dominates the SOA budget, very little variation in the 667 

(O:C)total ratio with time of day would have likely been predicted because (O:C)POA ~ (O:C)S/IVOC. 668 

Additionally, the simulated daytime (O:C)total values would have likely been close to 0.2. A lack 669 

of diurnal variability and a small (O:C)total would both be inconsistent with the SOAR observations. 670 

Consequently, this implies that accounting for vapor wall losses has a stronger potential to allow 671 

for simultaneous reconciliation of the diurnal behavior of both the simulated OA/∆CO and 672 



24 

 

(O:C)total with observations than does consideration of oxidation of S/IVOCs alone. This is not to 673 

say that S/IVOC contributions to the SOA and total OA burden are not important, only that it 674 

seems unlikely that they could dominate the SOA budget. Ultimately, it seems likely that 675 

consideration of both vapor wall losses (as done here) and of SOA from S/IVOCs will be necessary 676 

to fully close the model/measurement gap. 677 

 678 

5 Conclusions 679 

The influence of chamber vapor wall losses on simulated SOA concentrations and properties 680 

has been assessed. The statistical oxidation model was used to parameterize SOA formation from 681 

laboratory chamber experiments both with and without accounting for vapor wall losses using data 682 

from experiments conducted under both high-NOx and low-NOx conditions. “Low” and a “high” 683 

vapor wall loss cases were considered in addition to the “no” vapor wall loss case. The best-fit 684 

SOM parameters under these different conditions were used as input to SOA simulations in the 685 

3D UCD/CIT regional air quality model, in which SOM has been recently implemented (Jathar et 686 

al., 2015a). Simulations were run for southern California and for the eastern US. Explicit 687 

accounting for vapor wall losses led to increases in simulated SOA concentrations, by a factor of 688 

~2-5 for the “low” simulations and ~5-10 for the “high” simulations. The magnitude of the increase 689 

was inversely related to the simulated absolute SOA concentration. This suggests that the extent 690 

to which SOA concentrations are underpredicted may be greater in more remote regions.   691 

This increase in simulated SOA when vapor wall losses are accounted for leads to a substantial 692 

increase in the simulated SOA fraction of total OA. This is especially seen in SoCAB where fSOA 693 

is very small for the base model but >50% for the simulations that account for vapor wall losses. 694 

The simulated fSOA in SoCAB is found to agree reasonably well with observations when vapor wall 695 

losses are accounted for. Comparison of the OA/∆CO from the SoCAB simulations with 696 

observations form the SOAR campaign (Docherty et al., 2008) indicate that accounting for vapor 697 

wall losses leads to substantially improved agreement in terms of the diurnal behavior, in particular 698 

the magnitude of the daytime increase in OA/∆CO. Accounting for vapor wall losses also leads to 699 

location-specific changes in the major contributing VOC precursors to the SOA burden. In general, 700 

accounting for vapor wall losses leads to an increase in the predicted relative contribution of 701 

isoprene SOA and a decrease in the relative contribution of monoterpene and sesquiterpene SOA. 702 
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The relative contribution of total anthropogenic VOCs to SOA is reasonably insensitive to vapor 703 

wall losses, especially in SoCAB, although the apportionment between aromatic VOCs and 704 

alkanes does vary with vapor wall losses. The simulated anthropogenic SOA fraction is, however, 705 

somewhat smaller than suggested by 14C observations during CalNex (Zotter et al., 2014). In 706 

general, the simulated O:C atomic ratio of the SOA increased for the low and high vapor wall loss 707 

simulations, compared to the base case. The simulated O:C of the total OA (SOA + POA) in both 708 

SoCAB and the eastern US are in better agreement with observations when vapor wall losses are 709 

accounted for.  710 

Overall, the generally improved model performance when vapor wall losses are accounted 711 

for—in terms of both absolute and relative concentrations and in terms of SOA properties—712 

suggests that accounting for this chamber effect in atmospheric simulations of SOA is important, 713 

although certainly requiring further examination. Our results qualitatively agree with other recent 714 

efforts to assess the influence of vapor wall losses on ambient SOA concentrations (Baker et al., 715 

2015; Hayes et al., 2015), but as our accounting for vapor wall loss is inherent in the SOA 716 

parameterization the simulations here serve to provide a more robust assessment. The results 717 

presented here additionally suggest that there may be no need to invoke ad hoc “ageing” schemes 718 

for aromatics (Tsimpidi et al., 2010) to achieve increases in simulated SOA concentrations in urban 719 

environments. Further, these results suggest that that the contribution of S/IVOCs to urban SOA 720 

might be somewhat limited, albeit still important, although this issue certainly requires further 721 

investigation. 722 
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Table 1. Model performance metrics determined for the three simulation groupings (SOM-no, SOM-low and SOM-high) for the low-991 
NOx, high-NOx and average parameterizations for STN and IMPROVE sites in SoCAB and the eastern US. Fractional bias is calculated 992 
as 2(COA,sim-COA,obs)/(COA,sim+COA,obs) and NMSE as abs[(COA,sim-COA,obs)2/(COA,sim×COA,obs)], and the reported values are the averages 993 
over all data points as percentages.  Note that a negative fractional bias indicates observed [SOA] > simulated [SOA], i.e. that the 994 
simulations are underpredicting. ρc are the concordance correlation coefficients from Eqn. 3.  995 

 996 

Simulation NOx 
parameterization 

Southern California Eastern US 

STNa IMPROVEb STNa IMPROVEb,c 
Frac. 
Bias NMSE ρc 

Frac. 
Bias NMSE ρc 

Frac. 
Bias NMSE ρc 

Frac. 
Bias NMSE ρc 

 low -70 88 0.03 -75 114 0.36 -81 206 0.04 -55 105 0.31 
SOM-no high -61 69 0.02 -60 85 0.41 -58 166 0.12 -24 84 0.48 
  average -65 78 0.02 -67 97 0.39 -68 180 0.08 -38 89 0.43 

 low -52 64 -
0.21 -45 65 0.36 -26 154 0.08 15 85 0.15 

SOM-low high -39 49 -
0.29 -27 47 0.27 -4 171 0.07 38 128 0.10 

  average -45 55 -
0.25 -36 54 0.32 -14 160 0.08 28 105 0.12 

 low -25 51 -
0.03 -8 46 0.44 26 236 0.15 69 189 0.40 

SOM-high high -10 38 -
0.08 16 43 0.46 45 298 0.15 86 295 0.25 

  average -17 43 -
0.05 5 42 0.46 36 265 0.16 79 241 0.31 

a Observed [OA] for STN sites estimated as 1.6([OC] – 0.5 µg m-3) 
b Observed [OA] for IMPROVE sites estimated as 2.1[OC].  
c Observed [OA] may be biased low by ~25% in the SE US summer due to evaporation after sampling (Kim et al., 2015). 
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 999 

 1000 
Figure 1. 14-day averaged SOA concentrations, in µg m-3, for (a) SoCAB and (d) the eastern US 1001 
for the SOM-no simulations. The averaging time periods are from July 20th to August 2nd, 2005 1002 
for SoCAB and from August 20th to September 2nd, 2006 for the eastern US. Panels (b,e) show the 1003 
ratio between the SOA concentrations for the SOM-low and the SOM-no simulations and Panels 1004 
(c,f) show the ratio between the SOM-high and SOM-no simulations. Results shown in all panels 1005 
are the average of the low- and high-NOx simulations. Note that the color scale for the absolute 1006 
SOA concentration is continuous whereas the color scale in the ratio plots is discrete. 1007 

 1008 

  1009 
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 1010 

 1011 
Figure 2. Variation of the ratio between simulated SOA concentrations from SOM-low (red) and 1012 
SOM-high (blue) simulations to SOM-no simulations for (a) SoCAB and (b) the eastern US as a 1013 
function of the absolute SOA concentration from the SOM-no simulations. Results shown are the 1014 
average of the low- and high-NOx simulations. Individual data points are shown along with box 1015 
and whisker plots. 1016 
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 1019 

 1020 
Figure 3. 14-day averaged fSOA, the ratio between SOA and total OA concentrations, for (top 1021 
panels, a, b, c) SoCAB and (bottom panels, d, e, f) the eastern US for the (a, d) SOM-no, (b, e) 1022 
SOM-low and (c, f) SOM-high simulations. 1023 
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 1027 

 1028 
Figure 4. Bar charts showing the fractional contribution from the various VOC precursor classes 1029 
to the total simulated SOA for two locations in SoCAB (central Los Angeles and Riverside) and 1030 
two in the eastern US (Atlanta and the Smoky Mountains). Results are shown for (top) average, 1031 
(middle) high-NOx, low-yield and (bottom) low-NOx, high-yield simulations. Each panel shows 1032 
results from the 14-day average (left-to-right) SOM-no, SOM-low and SOM-high simulations. The 1033 
average SOA concentration (in µg m-3) is for each location and simulation is given in parentheses 1034 
above each panel. 1035 



38 

 

 1036 

Figure 5. Simulated and observed diurnal profiles for the OA/∆CO ratio (top panels) at Riverside, 1037 
CA during the SOAR-2005 campaign for (a) SOM-no, (b) SOM-low and (c) SOM-high 1038 
simulations. For the observations, the mean (solid orange line) and the 1σ variability range (grey 1039 
band) are shown for [CO]bgd = 0.105 ppm, and only mean values are shown for [CO]bgd = 0.085 1040 
ppm (short dashed orange line) and [CO]bgd = 0.125 ppm (long dashed orange line). For the 1041 
simulations, box and whisker plots are shown with the median (red –), mean (blue squares), lower 1042 
and upper quartile (boxes), and 9th and 91st percentile (whiskers). The bottom panels (d-f) show 1043 
scatter plots of [OA] versus [CO] for both the ambient measurements (open orange circles) and 1044 
for the model results (blue circles) for daytime hours (10 am – 8 pm). The lines are linear fits 1045 
where the x-axis intercept has been constrained to go through the assumed [CO]bgd (dashed = 1046 
observed; solid = model). The derived slopes are 69 ± 2 (observed), 23.0 ± 0.4 (SOM-no), 34.0 ± 1047 
0.8 (SOM-low) and 55 ± 2 (SOM-high) µg m-3 ppm-1 and where the uncertainties are fit errors. 1048 
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 1050 
Figure 6. 14-day averaged O:C atomic ratios for SOA for (a) SoCAB and (d) the eastern US for 1051 
the SOM-no simulations. The difference in O:C between the SOM-low or SOM-high and SOM-1052 
no simulations, termed ∆(O:C), is shown in panels (b-c) for SoCAB and (e-f) for the eastern US.  1053 
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 1055 

 1056 
Figure 7. 14-day averaged O:C atomic ratios for total OA (POA + SOA) for (a) SoCAB and (d) 1057 
the eastern US for the SOM-no simulations. The normalized difference in O:C, ∆(O:C), between 1058 
the SOM-low or SOM-high and SOM-no simulations, where ∆(O:C) is defined as 1059 
((O:C)SOM-low/high-(O:C)SOM-no)/(O:C)SOM-no), is shown in panels (b-c) for SoCAB and (e-f) for the 1060 
eastern US. In all cases, the O:C for POA was assumed to be 0.2. 1061 
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 1063 

 1064 

Figure 8. Simulated and observed diurnal profiles for the total OA O:C (panels a, b, c) and H:C 1065 

(panels d, e, f) atomic ratios at Riverside, CA during the SOAR-2005 campaign for (a, d) SOM-1066 

no, (b, e) SOM-low and (c, f) SOM-high simulations. For the observations, the mean (orange line) 1067 

and the 1σ variability range (dark grey band) are shown along with bands indicating the 1068 

measurement uncertainty (light grey band), taken as ± 28% for O:C and 13% for H:C (Canagaratna 1069 

et al., 2015). Observed values have been corrected according to Canagaratna et al. (2015). For the 1070 

simulations, box and whisker plots are shown with the median (red –), lower and upper quartile 1071 

(boxes), and 9th and 91st percentile (whiskers). For reference, the assumed O:C for POA was 0.2 1072 

and for H:C was 2.0.  1073 
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