1 The original reviewer comments are given in black text. Responses to these comments are given

- 2 throughout this document in blue text. Sections added or significantly altered in the manuscript
- 3 are given in "<u>underlined blue text in quotations</u>".
- 4

Interactive comment on "Ammonia in the summertime Arctic marine boundary layer: sources, sinks and implications" by G. R. Wentworth et al.

8 M.T. Johnson (Referee)

- 9 martin.johnson@uea.ac.uk
- 10 Received and published: 21 November 2015
- 11

Wentworth et al present a neat study of the ocean-atmosphere and aersol-gas phase partitioning of ammonium/ammonia in the high Arctic, considering the interactions with melt-ponds and seabird and fire emissions. As they point out, observations of the multiphase ammonia system at high latitudes are few and far between so this dataset represents a considerable addition to our knowledge and understanding of the system. The modelling element, which demonstrates the potential significance of point sources of amomnia, in particular seabird colonies adds a useful extra dimension to the study.

19

The data and arguments are clearly presented and for the most part very easy to follow and the findings are insightful and scientifically reasonable.

22

Apart from some adding some more details to the methods and and other minor
 comments/corrections listed below I recommend publication of this manuscript as-is.

25

26 As a point of interest the authors may wish to explore briefly the hypothesis presented in 27 Johnson and Bell, 2008 (http://www.publish.csiro.au/?paper=EN08030), which suggests that 28 away from strong local sources of ammonia, the gas phase concentration is likely to be 29 controlled by the partial pressure of ammonia over the aerosol (akin to the compensation point 30 concept applied by Wentworth et al to the ocean / melt pond surface). As level of neutralisation 31 goes up, the partial pressure (compensation point) increases. This therefore suggests that the 32 reason that NH3 is higher in the summer not simply because of the seabird emissions but 33 additionally due to the lack of aerosol aciditiy to take it up, therefore 'pushing' it into the ocean. 34 The reverse situation was postulated in Johnson and Bell 2008 - whereby acidic sulfate 35 emissions in the remote marine boundary layer would reduce the compensation point over the 36 aerosol and lead to a consequent emission from the ocean, but the principle is basically the 37 same.

38

39 We agree with this assessment and thank the referee for pointing out the Johnson and Bell

40 (2008) study. We have clarified in the text that low sulphate loading allows seabird NH₃ 41 emissions to remain in the gas-phase (i.e. "pushing" it into the ocean):

1	
2 3 4	"Lastly, Johnson and Bell (2008) show that a sufficiently neutralized sulphate aerosol will tend to 'push' gas-phase NH ₃ into the ocean in the aerosol-gas-ocean system, also consistent with Fig. 3." (inserted into Page 29989, line 15)
5	
6	Specific comments/corrections:
7 8 9	p29977 - expand on T dependence - not just solubility but also acid-base partitioning is strongly T dependent, making it a 'double whammy' effect
10	
11	The following sentence has been expanded to clarify the impact on NH_3 -to- NH_4^+ partitioning:
12	
13 14 15 16	"Colder SST reduces the emission potential due to increased solubility of NH_3 (because of both reduced $NH_{3(aq)}$ volatility and increased partitioning of $NH_{3(aq)}$ to $NH_4^+_{(aq)}$); hence, at higher latitudes the open ocean is more likely to act as a net sink (Johnson et al., 2008)." (inserted into Page 29977, line 10)
17	
18 19	p22978 - re lifetime and transport - the authors should also consider the lifetime and potential for transport of aerosol NH4 - could this have more of an influence?
20	
21 22 23 24 25	The impact of NH_4^+ transport from southern latitudes has little impact on NH_x in the summertime Arctic boundary layer. This is due, in part, to a polar dome that makes long-range transport to the Arctic surface layer inefficient during the summer (Stohl, 2006). In addition, most of the NH_x is gas-phase NH_3 providing further evidence that the role of NH_4^+ transport is minor with respect to the summertime Arctic NH_x budget near the surface.
26	
27 28	Methods (p22980 - 29981) - some clarification needed for the uninitiated to this method:
29 30	-why use H2O2 in the acceptor stream? Why not use a typical acid for ammonia trapping - oxalic acid, HCl or similar?
31	
32 33 34 35 36 37	The instrument's sampling interface is designed to collect both acidic and alkaline gases. H_2O_2 is used to increase the collection efficiency of SO ₂ (by oxidizing it to SO ₄ ²⁻). Previous studies that characterize the AIM-IC system have found that an acidic denuder solution is not required to achieve high collection efficiency of NH ₃ (Hsu and Clair, 2015; Markovic et al., 2012). Furthermore, acidifying the denuder solution would reduce the solubility of acidic gases (e.g. HNO ₃ , HONO, organic acids). This has been clarified in the text:
38	
39 40	" <u>dissolved in a 2 mM H₂O₂ solution (to enhance the solubility of SO₂)</u> " (inserted in Page 29980, line 4).

- 2 -samples collected by hygroscopic growth surely these are less than 2.5uM not larger
- 3 than 2.5 uM? The >2.5 uM fraction of aerosol has been impacted 'out' of the sampler?
- 5 Yes, we have corrected the text to read:
- 6

1

"The remaining PM_{2.5} particles have sufficient inertia to pass through the denuder into a
supersaturation chamber where they are collected as an aqueous solution via hygroscopic
growth." (Page 29980, line 5)

10

-is there a 22m line for each of the denuder and supersaturation chamber? What is it's
diameter/what is it made of? Is this part of the system continuous flow i.e. are the 10ml samples
collected in the lab manually and fed into the ICs? What is the flow rate? How is the volume of
sample collected in the supersaturation chamber related to concentration in the atmosphere?

15

16 Yes – there are separate 22 m lines for each of the denuder and supersaturation chamber. 17 Dissolved (aqueous) samples are continuously pulled through the lines (diameter of 0.8 mm) 18 into four 5 mL syringes (one each for cation gas, cation particle, anion gas, and anion particle 19 analysis). These syringes are controlled automatically by a stepper motor and pull at a rate of 5 20 mL hr⁻¹ each (so the flow rate through each sample line is 10 mL hr⁻¹, since each line feeds only 21 two syringes). After one hour of sampling the syringes are automatically injected onto both a 22 cation IC and anion IC for quantification of dissolved ions. The mole loading on each syringe is related back to an atmospheric concentration by use of a calibration curve (converting IC 23 24 peak area to moles) and average air flow during sample time (to give units of mole m^{-3}).

25

-Seawater/melt pond NHx - a bit more detail on the method would be useful – what working
reagent mix was used, what was the working reagent to sample volume ratio? How long were
samples incubated for after innoculation with working reagent?

29

The working reagent was composed of 500 mL borate buffer (20 g sodium tetraborate decahydrate dissolved in 500 mL of deionized water), 2.5 mL of sodium sulfite solution (1 g of sodium sulfite dissolved in 125 mL of deionized water) and 25 mL of a phthaldialdehyde solution (1 g of phthaldialdehyde dissolved in 25 mL 95%-ethanol). For analysis 1.2 mL of working reagent was combined with 5 mL of sample and incubated for 3.5 hours.

35

How were matrix effects and background fluorescence accounted for in the calibration/analysis?

- 39 Matrix effects and background fluorescence were accounted for using standard additions and
- 40 blanks (seawater in borate buffer only), respectively. The procedures and equations are outlined
- 41 in Holmes et al. (1999). The authors found that matrix effects were less than 5% of the

1 2 3	fluorescence signal in seawater at high dissolved organic concentrations. Furthermore, the matrix effect and the background are corrected for.
4 5 6 7	It is stated that melt pond samples were analysed within 10hrs but seawater ones within 1 hr - why difference? Was this 10 hrs til innoculation or 10 hours incubation after innoculation with working reagent?
8 9 10 11	There was sometimes a delay for analysis of melt pond samples due to a lack of personnel as well as incubation tubes. The same operator was responsible for performing multiple analyses on melt pond water. The 10 hrs was the time until inoculation – the incubation period was the same as for seawater (3.5 hours).
12	.
13	Potentially all such methodological details could be put into the supplementary material.
14	
15 16 17 18	We prefer not to include all these details in the manuscript as they are readily available in previous publications for both the AIM-IC (Hsu and Clair, 2015; Markovic et al., 2012) and seawater NH_x method (Holmes et al., 1999). Since the focus of the manuscript is not method development there would be little added value to including all these details in the text.
19	
20 21	p29988 - discussion of Fig 3 and the fluxes is a little brief and rather unfocussed. Maybe better in the discussion, expanded on a little?
22	
23	The discussion has been expanded to include the following:
24	
25 26 27	"Net fluxes were exclusively downwards (net deposition into the ocean and melt ponds) due to the relative abundances of $NH_{3(g)}$ and $NH_4^{\pm}_{(aq)}$ in these surface pools as well as cold surface temperatures as suggested by Johnson et al., (2008)." (inserted into Page 29988, line 3)
28	
29 30	p29989 - sentence beginning 'On the other hand' is a bit hard to follow – suggest replace 'nanoequivalents' with 'concentration' and move '(NHx napprox NH3) to after 'SO42-'.
31	
32	Agreed – we switched around the wording as suggested.
33	
34 35 36 37 38	Also on this page - the discussion of neutralisation could do to be tightened up a bit - NH4:SO4 = 1 isn't 'neutralised' - given a simple system of simply H2SO4 and NH4, neutral pH should be acheived at NH4:SO4 = 2:1, not 1:1. However, I would argue that ph 7 always counts as neutralised, whatever the NH4:SO4 ratio is? There are obviously other sources of acidity which can affect pH as well as NH4/SO4 neutralisation.

- 1 Throughout the manuscript we define the NH_4^+ :SO₄²⁻ ratio with units of equivalents (so the 2 ratio is NH_4^+ moles to $2*SO_4^{2-}$ moles, such that it already accounts for the double charge of 3 sulphate). In other words, a ratio of 1 equates a fully neutralized sulphate aerosol. An aerosol 4 with NH_4^+ :SO₄²⁻ ratio (in equivalents) approaching 1 can still have an acidic pH. We have 5 updated the manuscript to clarify how we chose to define the ratio:
- 6
- 7 "During the first third of the cruise (before 18 July), gas-phase NH_3 was also low and 8 neutralization (i.e. the ratio NH_4^+ : SO_4^{2-} in units of equivalents) was ambiguous due to numerous 9 values near or below detection limit." (Page 29988, line 26).
- 10
- 11 The concept of a particle being acidic (pH \ll 7) despite a NH₄⁺:SO₄²⁻ equivalents ratio 12 approaching 1 is also clarified:
- 13
- 14 "For example, a deliquesced ammonium sulphate particle containing 20 neq m⁻³ of SO_4^{2-} and 15 19.98 neq m⁻³ NH₄⁺ at 85% RH will have a pH of ~3.1 under equilibrium conditions despite
- having an NH_4^+ :SO4²⁻ equivalents ratio of 0.999." (inserted Page 29989, line 6)
- 17
- 18 Figure 1 what does purple colour mean? (I guess it means no data) please clarify in legend
- 19
- 20 Correct it means periods without AIM-IC data due to: 1) instrument troubleshooting, 2)
- 21 invalid measurements from ship activity (validity criteria outlined on page 29981, line 11) or
- 3) NH₃ measurements below the detection limit (only 2 instances). This has been clarified in
 the figure legend.
- 24
- 25 References
- 26
- Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A and Peterson, B. J.: A simple and precise
 method for measuring ammonium in marine and freshwater ecosystems, Can. J. Fish. Aquat.
- 28 method for measuring ammonium in marine and fresh
 29 Sci., 56(10), 1801–1808, doi:10.1139/f99-128, 1999.
- 30 Hsu, Y.-M. and Clair, T. A.: Measurement of fine particulate matter water-soluble inorganic
- 31 species and precursor gases in the Alberta Oil Sands Region using an improved
- 32 semicontinuous monitor, J. Air Waste Manage., 65(4), 423-435, 2015.
- 33 Markovic, M. Z., VandenBoer, T. C. and Murphy, J. G.: Characterization and optimization of
- 34 an online system for the simultaneous measurement of atmospheric water-soluble constituents
- in the gas and particle phases, J. Environ. Monit., 14(7), 1872, doi:10.1039/c2em00004k, 2012.
- 36
- Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys.
 Res.-Atmos., 111, D11306, 2006.

- The original reviewer comments are given in black text. Responses to these comments are given 1
- 2 throughout this document in blue text. Sections added or significantly altered in the manuscript
- 3 are given in "underlined blue text in quotations".
- 4

Interactive comment on "Ammonia in the summertime 5 Arctic marine boundary layer: sources, sinks and 6 implications" by G. R. Wentworth et al. 7

8 Anonymous Referee #2

- 9 Received and published: 6 January 2016
- 10

This is a comprehensive paper with interesting results. Although a bit long/wordy in places, the 11 12 text is clear and easy to follow. I recommend publication if the comments below are addressed.

13

14 General Comments: I see no reason to present these gas and aerosol composition data using mass units. Converting mass to moles would make for a more intuitive dataset and enable 15 16 comparison with recent publications such as Johnson et al (2008).

17

The main rationale behind using ng m^{-3} versus nmol m^{-3} is two-fold: 1) the flux calculations (in 18 ng m^{-2} s⁻¹) are more intuitive with ng m^{-3} , and 2) several publications of sea-air NH₃ exchange 19 (Asman et al., 1999; Greenaert et al., 1998) also use mass units. Furthermore, terrestrial NH₃ 20 flux studies use units of ng m⁻² s⁻¹ (e.g. Zhang et al., 2010) so we chose to report our fluxes in 21 these units for consistency with the broader NH₃ flux community. The conversion from mass 22 23 to moles is simple (divide by 17.03) such that a reader could easily convert be the two.

24

25 Inlet location: There are two issues that need to be addressed. Firstly, how far forward is the 26 inlet? The text is a little vague: "mounted to the hull near the bow of the ship". This is 27 particularly important when it comes to choosing the wind sector to exclude/include data. If the 28 inlet is very close to the bow +/-90 degrees is probably ok. If it is further back, I'd recommend 29 a more stringent wind sector.

30

31 The inlet was about 4 m back from the bow of the ship – for reference, the length of the CCGS Amundsen is 98 m. This has been clarified in the text:

- 32
- 33

34 "These components were contained within an aluminum inlet box that was mounted to the hull near the bow of the ship (about 4 m back of the bow)." (inserted on page 29980, line 8) 35

36

Secondly, if the inlet height was only 1 m above the deck then adverse wind/wave conditions 37

38 could have caused substantial contamination of the signals. Sea spray generated by the ship 39 plunging into the waves tends to come right up over the bow in these conditions. I assume the

- 1 conditions in summer were benign but this should be stated more explicitly. In future I
- 2 recommend mounting the inlet higher up, above the wave spray zone!
- 3

4 We agree the potential for contamination by ship-generated sea spray could be an issue in 5 certain circumstances (e.g. significant waves, while breaking ice). There were several factors 6 that would mitigate this effect during the cruise: 1) relatively benign conditions (as the referee 7 pointed out), and 2) a PM_{2.5} impactor atop the inlet which removes coarse mode sea salt 8 particles generated by ship/wave action. In addition, NH_x is such a minor constituent of seawater that ship-generated sea salt would not affect the NH₃ or NH₄⁺ dataset. Also, Fig. 4 9 reveals $SO_4^{2-} \approx NH_4^+$ on an equivalent basis suggesting there is negligible sea salt SO_4^{2-} . 10 11 otherwise SO_4^{2-} would be greater than NH_4^+ .

- 12
- 13 We have briefly clarified the issue of the ship-generated sea spray in the manuscript:
- 14
- 15 "Influence from ship-generated sea spray was likely minimal due to the benign nature of the
- 16 summertime Arctic Ocean, in addition to the $PM_{2.5}$ impactor designed to remove coarse
- 17 <u>particles.</u>" (inserted on page 29980, line 9)
- 18

We placed the inlet box near deck level for logistical and safety reasons. The set-up and troubleshooting of the components inside the inlet box is time-consuming and finicky so is much easier at deck level. Also, visual checks of the inlet box had to be performed every several hours which would have been impossible (due to safety) during icebreaking, inclement weather, or choppy seas had the inlet box been elevated out of arms reach. Also, the impactor was swapped regularly (every few days) to prevent build-up of sea salt on its surface, although visible accumulation was never observed.

- 26
- 27 Specific Comments:
- 28
- 29 Page 29976, Line 18: What does 'area-wide nature' mean?
- 30

- 34
- 35 "...however, large uncertainties exist for these values due to the area-wide nature (emissions
 36 spread over a large spatial extent) and poor characterization of many sources." (inserted on page
 37 29976, line 18)
- 38

³¹ It means the emissions are spread over a large area and hence more difficult to calculate or 32 estimate, relative to point sources (e.g. tailpipes, smokestacks). This has been clarified in the 33 text:

Page 29981, Line 19: As far from the side of the ship or as far from the side of the melt pond?Please specify.

- 1 From the side of the melt pond. Personnel were lowered onto the sea ice for melt pond sampling.
- 2 This has been clarified in the text:
- 3
- 4 "The water was sampled as far from the side of the melt pond as possible" (inserted on Page 29981, line 19)
- 6

Section 3.2: Sulphate neutralisation. I would like to see some scatter plots (or a correlation analysis) of gas phase NH3 vs particulate NH4 and gas phase NH3 vs the degree of aerosol neutralisation (NH4:SO4 ratio). Assuming the analysis in Figure 5 is correct, the cruise data should follow a similar trend – i.e. higher NH4 concentrations/greater aerosol neutralisation when gas phase NH3 concentrations increased.

12

Since there is typically a much higher loading of NH₃ than both NH₄⁺ and SO₄²⁻, the NH₄⁺
concentrations should not correlate with NH₃ concentrations. This is because the sulphate is already saturated with NH₄⁺ so any additional increase in NH₃ will not result in a noticeable increase in NH₄⁺.

17

18 A similar trend occurs with neutralization ratio. As the ratio of $NH_4^+:SO_4^{2-}$ equivalents 19 approaches 1 it is not very sensitive to NH_3 concentrations. This is shown in the plot below of 20 $NH_4^+:SO_4^{2-}$ versus NH_3 (NOTE: this figure is a molar ratio, so the ratio approaches 2 for a fully 21 neutralized aerosol). Errors bars represent a very conservative estimate of uncertainty (± (30% 22 + detection limit)).

23

For the points of low NH₃ mixing ratios (<100 pptv) there is insufficient NH₃ to neutralize the SO₄²⁻ (molar ratio less than 2). However, above this approximate threshold the ratio is insensitive to NH₃ since the sulphate is already neutralized. We chose not to include this figure in the manuscript for two reasons: 1) NH₄⁺ and SO₄²⁻ approach detection limits so uncertainties

regarding their ratio is large resulting in unrealistic molar ratios above two, and 2) it is redundant with the analysis of Fig. 4 (since $NH_4^+ \approx SO_4^{2-}$ the SO_4^{2-} is roughly neutralized).

Also, has there ever been a comparison between AIMS-IC and High Vol filter samplers? In other words, could High Vol. particulate NH4 measurements be confounded if gas phase NH3 concentrations were high? This is worthy of discussion given the inclusion of High Vol. data in Figure 5.

16

Hsu and Clair (2015) compared PM_{2.5} composition data (NH₄⁺, SO₄²⁻, NO₃⁻) of a co-located
AIM-IC and Partisol PM_{2.5} Sampler (similar to a Hi-Vol sampler). The authors found the HiVol underestimated NH₄⁺ relative to the AIM-IC due to volatilization of NH₄NO₃ deposited on
the filter of the Partisol sampler. However, this effect is likely negligible at Alert due to low
summertime temperatures (~0 °C) and small mass loadings of NH₄NO₃.

- 22
- 23 The Hi-Vol samplers at Alert do not have a denuder upstream of the filter used to capture PM_{2.5}.
- 24 It is possible that acidic $PM_{2.5}$ collected on the filter may become more neutralized over time if
- 25 there was high NH₃ levels in the air flowing over the filters. As the reviewer suggested this may

- 1 increase the NH_4^+ : SO_4^{2-} on the filter such that it overestimates the average NH_4^+ : SO_4^{2-} ratio in
- 2 ambient PM_{2.5}. However, this would require high levels of NH₃ which is consistent with our
- 3 interpretation of the Hi-Vol data: that is suggests significant regional source(s) of NH₃.
- 4
- 5 These issues of under and overestimation of NH_3 by Hi-Vol samplers has been added to the 6 text:
- 7
- 8 "In warm environments volatilization of NH₄NO₃ off of filters can cause an underestimation of
 9 NH₄⁺, but this is not expected to be an issue at Alert due to cold weather and low loadings of
- 10 <u>NH4NO3.</u>" (inserted Page 29989, line 11)
- 11
- 12 "However, there is no denuder upstream of the Hi-Vol filters to remove NH_3 so the observed 13 $NH_4^+:SO_4^{2-}$ ratio (Fig. 5) may be higher than for ambient $PM_{2.5}$. This effect is difficult to
- 14 characterize, but if it is important then it is still evidence for the abundance of NH_3 in the 15 summertime Arctic boundary layer" (inserted Page 29989, line 15)
- 16

Page 29990, Line 15: The Bouwman flux estimate uses a seawater NHx climatology and, crucially, assumes that the atmospheric NH3 concentration is zero. This leads to an overestimate of the oceanic NH3 emissions. Using a different flux estimate would make the discrepancy in NH3 mixing ratio between the model and the data even greater than stated. It would be worth including reference to the recent paper by Paulot et al (GBC, 2015), which demonstrates this overestimate using different NH3 emission schemes within the GEOS-Chem model.

24

- We agree with this assessment and have included an additional sentence further explaining therecent Paulot et al. (2015) work:
- 27
- 28 "Paulot et al. (2015) recently showed the oceanic emissions from this original inventory are
 29 roughly a factor of 3 too high since the initial inventory assumes atmospheric NH₃ is equal to
 30 zero." (inserted Page 29990, line 16)
- 31

Section 3.4: Implications for N-deposition. This is an interesting discussion, but it feels incomplete as no attempt is made to include the particulate NH4 deposition. The particulate NH4 contribution is likely to be from the same source (i.e. volatile gas phase NH3 is emitted from seabird colonies. Some neutralises whatever SO4 aerosol is present, and the rest remains in the gas phase).

- 38 The deposition plots in Fig. 8 represent total (wet and dry) NH_x deposition and do include NH_4^+
- 39 deposition. The majority of NH_x deposition results from wet/dry deposition of NH_3 ; NH_4^+
- 40 deposition is minor in comparison. We agree that the majority of NH_4^+ likely stems from the
- 41 same source as gas-phase NH_3 (as the referee points out). We have clarified the minor
- 42 contribution of NH_4^+ in the text:

1	
2 3	"The majority of NH_x deposition is caused by NH_3 as opposed to NH_4^+ ." (inserted page 29994, line 26)
4	
5	Page 29995, Line 25: Typo - remove the word 'a' from between 'slightly' and 'higher'
6	
7	Thank you – we have removed the typo.
8	
9	
10	References
11 12 13	Asman, W. A. H., Harrison, R. M. and Ottley, C. J.: Estimation of the net air-sea flux of ammonia over the southern bight of the North Sea, Atmos. Environ., 28(22), 3647–3654, doi:10.1016/1352-2310(94)00192-N, 1994.
14	Geernaert, L. L. S., Geernaert, G. L., Granby, K. and Asman, W. A. H.: Fluxes of soluble

- 15 gases in the marine atmosphere surface layer, Tellus, 50B, 111–127, 1998.
- 16 Hsu, Y.-M. and Clair, T. A.: Measurement of fine particulate matter water-soluble inorganic
- 17 species and precursor gases in the Alberta Oil Sands Region using an improved
- 18 semicontinuous monitor, J. Air Waste Manage., 65(4), 423-435, 2015.
- 19 Zhang, L., Wright, L. P. and Asman, W. A. H.: Bi-directional air-surface exchange of
- 20 atmospheric ammonia: A review of measurements and a development of a big-leaf model for
- 21 applications in regional-scale air-quality models, J. Geophys. Res., 115, D20310, 2010.
- 22
- 23

Ammonia in the summertime Arctic marine boundary layer:

2 Sources, Sinks and Implications

- 3
- 4 G. R. Wentworth¹, J. G. Murphy¹, B. Croft², R. V. Martin², J. R. Pierce^{3,2}, J.-S.
- 5 Côté⁴, I. Courchesne⁴, J.-É. Tremblay⁴, J. Gagnon⁴, J. L. Thomas⁵, S. Sharma⁶, D.
- 6 Toom-Sauntry⁶, A. Chivulescu⁶, M. Levasseur⁴, and J. P. D. Abbatt¹
- 7 [1]{Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto,
 8 Canada}
- 9 [2]{Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg
- 10 Road, B3H 4R2, Halifax, Canada}
- 11 [3] {Department of Atmospheric Science, Colorado State University, 3915 W. Laporte Ave.,
- 12 80523, Fort Collins, USA}
- [4]{Department of Biology, Université Laval, 1045 avenue de la Médicine, G1V 0A6, Québec
 City, Canada}
- 15 [5]{Sorbonne Universités, UPMC Univ. Paris 06; Université Versailles St-Quentin;
 16 CNRS/INSU, LATMOS-IPSL, Paris, France}
- 17 [6]{Science and Technology Branch, Environment Canada, 4905 Dufferin Street, M3H 5T4,
- 18 Toronto, Canada}
- 19 Correspondence to: J. G. Murphy (jmurphy@chem.utoronto.ca)
- 20

21 Abstract

22 Continuous hourly measurements of gas-phase ammonia $(NH_{3(g)})$ were taken from 13 July to 7 23 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic 24 Archipelago. Concentrations ranged from 30-650 ng m⁻³ (40-870 pptv) with the highest values 25 recorded in Lancaster Sound (74°13' N, 84°00' W). Simultaneous measurements of total 26 ammonium ([NH_x]), pH and temperature in the ocean and in melt ponds were used to compute 27 the compensation point (χ), which is the ambient NH_{3(g)} concentration at which surface-air

- 28 fluxes change direction. Ambient $NH_{3(g)}$ was usually several orders of magnitude larger than
- 29 both χ_{ocean} and χ_{MP} (<0.4-10 ng m³) indicating these surface pools are net sinks of NH₃. Flux

calculations estimate average net downward fluxes of 1.4 and 1.1 ng m⁻² s⁻¹ for the open ocean 1 2 and melt ponds, respectively. Sufficient $NH_{3(g)}$ was present to neutralize non-sea salt sulphate 3 (nss-SO₄²⁻) in the boundary layer during most of the study. This finding was corroborated with a historical dataset of PM2.5 composition from Alert, NU (82°30' N, 62°20' W) wherein the 4 median ratio of $NH_4^+/nss-SO_4^{2-}$ equivalents was greater than 0.75 in June, July and August. The 5 GEOS-Chem chemical transport model was employed to examine the impact of NH_{3(g)} 6 emissions from seabird guano on boundary-layer composition and nss-SO₄²⁻ neutralization. A 7 8 GEOS-Chem simulation without seabird emissions underestimated boundary layer NH_{3(g)} by 9 several orders of magnitude and yielded highly acidic aerosol. A simulation that included 10 seabird NH₃ emissions was in better agreement with observations for both NH_{3(g)} concentrations and $nss-SO_4^{2-}$ neutralization. This is strong evidence that seabird colonies are 11 significant sources of NH₃ in the summertime Arctic, and are ubiquitous enough to impact 12 13 atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest 14 Territories were likely an important source of NH₃, but their influence was probably limited to 15 the Central Canadian Arctic. Implications of seabird-derived N-deposition to terrestrial and aquatic ecosystems are also discussed. 16

17

18 **1** Introduction

19 Ammonia (NH_{3(g)}) is the dominant alkaline gas in the atmosphere and is an important 20 component of the global nitrogen cycle. Its transport and deposition can have harmful effects for N-sensitive ecosystems such as eutrophication, loss of biodiversity and soil acidification 21 (Krupa, 2003). The presence of NH_{3(g)} can impact climate by increasing rates of new particle 22 23 formation via stabilization of sulphuric acid clusters (Kirkby et al., 2011). Gas-phase NH₃ is 24 also able to partition to acidic fine particulate matter (PM_{2.5}) to form particulate-phase ammonium (NH4⁺(p)), which alters various aerosol properties, such as scattering efficiency 25 (Martin et al., 2004), hygroscopicity (Petters and Kreidenweis, 2007), ice nucleating ability 26 27 (Abbatt et al., 2006) and heterogeneous chemistry occurring on surfaces (Fickert et al., 1999).

As a result, the accurate quantification of the magnitude and location of $NH_{3(g)}$ sources is important for chemical transport models (CTMs). The major anthropogenic source is agriculture (fertilization and animal husbandry) with biomass burning, transport and industry being minor contributors (Reis et al., 2009). Natural sources include soils, vegetation, oceans and animal excreta (Sutton et al., 2013). Estimates for the annual global emissions of $NH_{3(g)}$

range from 35-54 Tg N yr⁻¹; however, large uncertainties exist for these values due to the area-1 2 wide nature (emissions spread over a large spatial extent) and poor characterization of many 3 sources. In remote marine environments, the ocean is thought to be the dominant source of 4 NH_{3(g)} to the marine boundary layer and delivers an estimated 6-8 Tg N yr⁻¹ to the atmosphere 5 globally (Sutton et al., 2013). The dominant sources of oceanic NH_x ($\equiv NH_3 + NH_4^+$) include 6 remineralisation of organic matter by bacteria and phytoplankton excretion (Carpenter et al., 7 2012). However, NH_x is an extremely labile nutrient for microbes such that assimilation by 8 phytoplankton and bacteria prevents significant accumulation in surface waters. Nonetheless, 9 there exists a pool of dissolved ammonia $(NH_{3(sw)})$ available for exchange with the atmosphere.

10 In order to compute sea-air NH₃ fluxes, simultaneous measurements of both atmospheric NH_{3(g)} 11 and oceanic NH_x are required. These measurements are extremely challenging due to low 12 ambient concentrations and complications arising from making ship-based measurements (e.g. proximity to human activity can cause artefacts). As a result, to our knowledge only six previous 13 14 studies have simultaneously quantified both $[NH_{3(g)}]$ and oceanic $[NH_x]$, leading to extremely 15 large uncertainties for both the direction and magnitude of global sea-air NH₃ fluxes (Asman et al., 1994; Geernaert et al., 1998; Gibb et al., 1999; Johnson et al., 2008; Quinn et al., 1988, 16 17 1990). Johnson et al. (2008) provided the most recent dataset and summarized the previous 18 studies to show that the open ocean can be both a net source and a net sink of $NH_{3(g)}$, with sea 19 surface temperature (SST) being a key determinant for the direction of flux. Colder SST reduces 20 the emission potential due to increased solubility of NH_3 (because of both reduced $NH_{3(aq)}$) 21 volatility and increased partitioning of $NH_{3(aq)}$ to $NH_{4^{\pm}(aq)}$; hence, at higher latitudes the open ocean is more likely to act as a net sink (Johnson et al., 2008). Of the six previous studies, only 22 23 Johnson et al. (2008) quantified NH₃ fluxes above the Arctic Circle (66°33' N) during a summer 24 time study in the Norwegian Sea. Therefore additional measurements of sea-air NH₃ fluxes in 25 the High Arctic are invaluable for improving constraints on oceanic NH₃ emissions.

During the summertime, freshwater melt ponds are a ubiquitous feature on top of melting Arctic sea ice and can comprise up to 80% of the sea ice surface (Lüthje et al., 2006). These melt ponds form from melting sea ice and are anywhere from a few cm to over 1 m deep. They are chemically distinct from the bulk ocean owing to their low salinity and physical separation from the ocean mixed layer by sea ice or stratification. To our knowledge, no studies to date have attempted to quantify melt pond-air $NH_{3(g)}$ fluxes despite the abundant presence of melt ponds in the summertime Arctic.

Quantifying sea-air and melt pond-air NH₃ exchange in the Arctic will help elucidate the role 1 2 these processes play as either sources or sinks in the Arctic nitrogen cycle. Many terrestrial Arctic ecosystems are N-limited and highly sensitive to perturbations in N-input (Shaver and 3 4 Chapin III, 1980), thus Arctic soils and vegetation are unlikely to represent important sources 5 of atmospheric ammonia. Major sources at lower latitudes include agriculture, vegetation, transport and industry (Reis et al., 2009; Sutton et al., 2013) but these are expected to contribute 6 7 minimally north of the Arctic Circle. Since the lifetime of NH_{3(g)} is typically less than 24 h, 8 long-range transport from lower latitudes is likely not important (Lefer et al., 1999). Substantial 9 NH₃ emissions have been measured from both seabird guano (Blackall et al., 2007) and seal 10 excreta (Theobald et al., 2006) so large colonies may be relevant point sources throughout the 11 Arctic region. Biomass burning can also inject significant quantities of NH₃ into the free troposphere and/or boundary layer (Bouwman et al., 1997). Although vegetation in the high 12 13 Arctic is sparse, there can be large wildfires in boreal regions, and emissions may be transported 14 poleward. The potential for the ocean and melt ponds to act as sources to the atmosphere will 15 depend on the relative importance of sources and sinks within the atmosphere and the aqueous 16 systems.

17 NH_3 emission to the atmosphere can affect the extent of non-sea salt sulphate (nss- SO_4^{2-}) neutralization, which has implications for N-transport (Lefer et al., 1999). Therefore, it is 18 important to also consider the relative abundances of atmospheric NH_x and $nss-SO_4^{2-}$. The 19 20 dominant source of the latter in the summertime Arctic is oxidation of dimethylsulphide (DMS) 21 emitted from the Arctic Ocean (Leaitch et al., 2013; Sharma et al., 1999, 2012). Measurements 22 of PM_{2.5} composition in the summertime Arctic marine boundary layer are rare (e.g. Chang et 23 al., 2011; Leck et al., 2001). Previous chemical transport model (CTM) studies with GEOS-Chem predict highly acidic aerosol (i.e. $nss-SO_4^{2-} >> NH_x$) with negligible amounts of $NH_{3(g)}$ 24 25 throughout the summertime Arctic boundary layer (Breider et al., 2014).

The region for this study is the eastern Canadian Arctic Archipelago where ship-based atmospheric ($NH_{3(g)}$, $NH_{4^+(p)}$, $SO_{4^{2^-}(p)}$) and oceanic ([NH_x], pH, SST) measurements were taken over a 4-week period in July and August, 2014. To our knowledge, this study presents the first measurements of $NH_{3(g)}$ in the Canadian Arctic. Motivated by a lack of atmospheric and oceanic measurements in the region, as well as substantial uncertainties in sea-air and melt pond-air NH_3 fluxes, the specific goals of this study were to:

- Simultaneously quantify NH_{3(g)} and oceanic/melt pond [NH_x] to infer surface-air NH₃
 fluxes
- 3 2) Assess the relative abundances of $NH_{3(g)}$, $NH_{4^+(p)}$ and $SO_{4^{2^-}(p)}$ to determine the extent of 4 $SO_{4^{2^-}(p)}$ neutralization
- 5 3) Elucidate the major sources and sinks of atmospheric NH₃ throughout the summertime
 6 Arctic marine boundary layer
- 4) Evaluate whether atmospheric NH_x deposition could be an important N-input to aquatic
 and terrestrial Arctic ecosystems
- 9 2 Materials and Methods

10 2.1 2014 CCGS Amundsen Cruise

11 Measurements were taken aboard the Canadian Coast Guard Ship Amundsen between 13 July 12 and 7 August 2014 as part of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE). The CCGS Amundsen departed 13 14 from Québec City, Québec on 8 July 2014 and sailed throughout the Eastern Canadian Archipelago heading as far north as 81.47 °N eventually reaching Kugluktuk, Nunavut on 13 15 16 August 2014. A detailed map of the ship's route for this leg is shown in Fig. 1 along with the 17 ship's position at the start of selected days. All times are given in co-ordinated universal time 18 (UTC).

19 **2.2 Atmospheric Measurements**

Ambient levels of water-soluble ions in $PM_{2.5}$ (NH_4^+ , SO_4^{2-} , and NO_3^-) and their precursor gases 20 (NH₃, SO₂, and HNO₃) were measured using the Ambient Ion Monitor-Ion Chromatograph 21 22 (AIM-IC) system (Model 9000D, URG Corp., Chapel Hill, NC). The AIM-IC is a continuous 23 on-line system which provides simultaneous gas-phase and particle-phase measurements with 24 hourly time resolution. The system has been adapted to locate the gas and particle separation 25 and collection hardware as close as possible to the inlet sampling point (Markovic et al., 2012). 26 Ambient air is pulled through a $PM_{2.5}$ impactor to remove coarse (>2.5 µm in diameter) particles at a flow of 3 L min⁻¹. Air then enters a parallel plate wet denuder where water-soluble gases 27 are dissolved in a 2 mM H₂O₂ solution (to enhance the solubility of SO₂) which is continuously 28 flowing across the denuder membranes. The remaining PM_{2.5} particles with diameter larger 29 30 than 2.5 µm have sufficient inertia to pass through the denuder into a supersaturation chamber

where they are collected as an aqueous solution via hygroscopic growth. These components 1 2 were contained within an aluminum inlet box that was mounted to the hull near the bow of the ship (about 4 m back of the bow). The height of the inlet was 1 m above the deck. Influence 3 4 from ship-generated sea spray was likely minimal due to the benign nature of the summertime 5 Arctic Ocean, in addition to the PM_{2.5} impactor designed to remove such particles. The aqueous solutions collected in the inlet box were pulled down a 22 m sample line through a conduit 6 7 leading to the IC systems which were housed in a laboratory below deck. Half of each ~10 mL 8 aqueous aliquot (representing 1 hour of sampling) was then separately injected onto both a 9 cation IC and anion IC for quantification of water-soluble ions.

The IC systems (ICS-2000, Dionex Inc., Sunnyvale, CA) were operated using CS17/AS11-HC analytical columns, CG17/AG11-HC guard columns and TCC-ULP1/TAC-ULP1 concentrator columns for improved detection limits. Reagent-free gradient elution schemes and suppressed conductivity were also employed. Aqueous standards of known concentration were prepared via serial dilution of commercially available mixed standards (Dionex Corp., Sunnyvale, CA) containing 6 cations (P/N 040187) and 7 anions (P/N 056933). Manual injection of these standards yielded reasonable ($\mathbb{R}^2 > 0.99$) six-point calibration curves.

17 During the campaign, three zero air overflow experiments were performed to quantify the 18 background signal of each analyte measured during AIM-IC ambient sampling. For each experiment the inlet was overflowed with high purity zero air (AI 0.0 UZ-T, PraxAir, Toronto, 19 ON) at 4.5 L min⁻¹ for 18 hours. The average peak area during the final 8 hours of each 20 experiment was used as a background and subtracted from each ambient measurement. 21 22 Detection limits were calculated by taking 3 times the standard deviation of each analyte peak 23 area during the final 8 hours of each zero air overflow. This value was then converted to either 24 a mixing ratio or mass loading assuming standard temperature and pressure (STP). Detection limits for species of interest during the cruise were 29 ng m⁻³ (NH₃), 17 pptv (SO₂), 8 pptv 25 (HNO₃), 12 ng m⁻³ (NH₄⁺), 36 ng m⁻³ (SO₄²⁻), and 64 ng m⁻³ (NO₃⁻). For the convenience of 26 flux calculations, NH₃ values are reported in ng m⁻³ (at STP 100 ng m⁻³ NH₃ \approx 130 pptv). 27

Standard meteorological parameters were measured using a Vaisala HMP45C212 sensor for temperature, an RM Young model 61205V transducer for pressure, and an RM Young Model 05103 wind monitor for wind speed and direction located at the bow ship of the ship at a height of 8.2 - 9.4 m above the deck. Data were averaged to 1-hour to match the time resolution of the AIM-IC. In order to remove any influence from activities aboard the ship, gas-phase 1 measurements are only reported if the following conditions were met: 1) average hourly ship 2 speed > 4 knots (~7.4 km h⁻¹), 2) average hourly apparent wind direction \pm 90° of the bow, and 3 3) standard deviation of apparent wind direction < 36°. Similar cut-offs for speed and wind 4 direction have been used in previous studies of NH₃ in the marine boundary layer (e.g. Johnson 5 et al., 2008; Norman and Leck, 2005).

6 **2.3 Surface Measurements**

7 A total of 37 surface ocean and 9 melt pond samples were collected throughout the study. Melt 8 pond samples were collected directly into a cooler jug using an electrical pump fixed on a 9 telescopic arm. The water was sampled as far from the side of the melt pond as possible, 10 between 1-2 m depending on the size of the melt pond. Temperature was measured in situ with a VWR high precision thermometer and total aqueous $[NH_x]$ was determined within 10 h of 11 12 sampling using a fluorometric technique that has been optimized for low concentrations and 13 complex matrices (Holmes et al., 1999). The method detection limit was 20 nM. Surface ocean 14 samples were obtained with a Rosette sampler equipped with GO-FLOW bottles and a CTD (Seabird Electronics SBE911+) recording temperature. Total aqueous [NH_x] was determined 15 as above within 1 hour of sampling. Surface water temperature along the ship's track was 16 17 continuously measured by a thermosalinograph (Seabird Electronics SBE 45) connected to the 18 seawater inlet. For the purposes of flux calculations, the ocean pH and salinity were assumed to be 8.1 and 35 g kg⁻¹, respectively, which are representative for the region of interest 19 20 (Takahashi et al., 2014). These assumptions have been made previously and were not found to 21 be a major source of uncertainty when calculating sea-air NH₃ fluxes (Johnson et al., 2008). 22 The melt pond pHs were measured using a pH-meter within four hours of sampling. A three point calibration of the pH probe (Orion[™] Model 91-72, Thermo Scientific) was performed 23 24 using commercially available pH 4.01, 7.00 and 10.00 buffers. Salinity of the melt ponds were 25 determined with a WTW Cond 330i handheld conductivity meter.

26 2.4 Flux Calculations

The direction of sea-air NH_3 fluxes can be assessed by comparing ambient measurements of NH_{3(g)} to the atmospheric mixing ratio predicted from Henry's Law equilibrium calculations using seawater $[NH_x]$ and surface temperature measurements (e.g. Asman et al., 1994; Johnson et al., 2008; Quinn et al., 1988, 1996). This equilibrium NH_3 concentration signifies the ambient value at which the net flux changes direction, and is known as the compensation point (denoted 1 χ). In other words, one expects a net downwards flux if ambient NH_{3(g)} exceeds χ and a net 2 upward flux if it is below χ . The magnitude of these fluxes are commonly computed using the 3 "two-phase" model first developed by Liss and Slater (1974), which describes the sea-air 4 transfer of gases as being controlled by molecular diffusion on either side of the interface. The 5 transfer of NH₃ across this interface is predominantly dictated by the air-side transfer velocity, 6 given the relatively high water solubility of NH₃ (Liss, 1983). Hence, the equation to calculate 7 sea-air NH₃ fluxes is:

8
$$F_{NH3} = k_g \cdot (\chi - NH_{3(g)}) \cdot 17.03$$
 (1)

9 where F_{NH3} is the sea-air flux of NH₃ (ng m⁻² s⁻¹), k_g is the air-side transfer velocity (m s⁻¹), 10 NH_{3(g)} is the measured ammonia concentration (nmol m⁻³), χ is the compensation point (nmol 11 m⁻³), and the molecular weight of 17.03 g mol⁻¹ is to convert nmol to ng. Numerous 12 parameterizations exist for k_g with varying degrees of complexity (Johnson, 2010). Here we 13 adopt the approach established by Duce et al. (1991):

14
$$k_g = \frac{u}{770 + 45 \cdot MW^{1/3}}$$
 (2)

15 where u is the wind speed (m s⁻¹) and MW is the molecular weight of the gas of interest (17.03 16 for NH₃). Although simple, this parameterization has been used previously to estimate sea-air 17 NH₃ fluxes (e.g. Johnson et al., 2008) and has been shown to be in good agreement (within 20 18 %) with a more complex scheme, particularly at lower wind speeds (Johnson, 2010). The 19 following equation is used to calculate χ :

$$20 \qquad \chi = K_H \cdot [NH_{3(sw)}] \tag{3}$$

where K_H is the Henry's law constant (dimensionless) and $[NH_{3(sw)}]$ is the concentration of dissolved ammonia in the surface pool (nmol m⁻³). The temperature-dependent equation for K_H is (McKee, 2001):

24
$$K_H = \frac{1}{17.93 \cdot \frac{T}{273.15} \cdot e^{(4092/T) - 9.70}}$$
 (4)

where T is the surface temperature (in K). The following equation is used to relate the $NH_{3(sw)}$ to the concentration of total dissolved NH_x ([$NH_{x(sw)}$]), which is the value actually measured by the procedure outlined in section 2.3:

1
$$[NH_{3(sw)}] = \frac{[NH_{x(sw)}] \cdot K_a}{10^{-pH} + K_a}$$
 (5)

where K_a is the acid dissociation constant of NH_4^+ . The pK_a ($\equiv -logK_a$) is calculated according to Bell et al. (2008), which provides an empirical correction for salinity (S, dimensionless) at a given temperature (T, in °C):

5
$$pK_a = 10.0423 + 0.003071 \cdot S - 0.031556 T$$
 (6)

6 Equations (2) and (4) closely follow that of Johnson et al. (2008) but are sufficiently similar to 7 analogous approaches for calculating K_H and k_g used in other sea-air NH₃ exchange studies 8 (e.g. Asman et al., 1994; Gibb et al., 1999; Quinn et al., 1992). Johnson (2004) reported that 9 fluxes calculated with these various schemes usually agree within 2 %. Melt pond-air exchange 10 was also examined using Eqs. (1) to (6).

11 2.5 GEOS-Chem

12 The GEOS-Chem chemical transport model (www.geos-chem.org) is used to aid in the 13 interpretation of the atmospheric measurements. We use GEOS-Chem version 9-02 at 2°x2.5° resolution globally, and with 47 vertical layers between the surface and 0.01 hPa. The 14 15 assimilated meteorology is taken from the NASA Global Modelling and Assimilation Office 16 (GMAO) Goddard Earth Observing System version 5.11.0 (GEOS-FP) assimilated 17 meteorology product. Boundary layer mixing uses the non-local scheme implemented by Lin 18 and McElroy (2010). Our simulations use 2014 meteorology and allow a 2-month spin-up prior 19 to the simulation.

20 The GEOS-Chem model includes a detailed oxidant-aerosol tropospheric chemistry mechanism 21 as originally described by Bey et al. (2001). Simulated aerosol species include sulphate-nitrate-22 ammonium (Park et al., 2004; Park et al., 2006), carbonaceous aerosols (Park et al., 2003; Liao 23 et al., 2007), dust (Fairlie et al., 2007; Fairlie et al., 2010) and sea salt (Alexander et al., 2005). 24 The sulphate-nitrate-ammonium chemistry uses the ISORROPIA II thermodynamic model 25 (Fountoukis and Nenes, 2007), which partitions ammonia and nitric acid between the gas and aerosol phases. For our simulations, the natural NH₃ emissions are from Bouwman et al. (1997) 26 27 and biomass burning emissions are from the Quick Fire Emissions Dataset (QFED2) (Darmenov and da Silva, 2013), which provides daily open fire emissions at $0.1^{\circ} \times 0.1^{\circ}$ 28 29 resolution. Anthropogenic NH₃ emissions are from Bouwman et al. (1997). The model includes 1 natural and anthropogenic sources of SO_2 (van Donkelaar et al., 2008; Fischer et al., 2011) and 2 DMS emissions based on the Nightingale (2000) formulation and oceanic DMS concentrations 3 from Lana et al. (2011). Oxidation of SO_2 occurs in clouds by reaction with H_2O_2 and O_3 and 4 in the gas phase with OH (Alexander et al., 2009) and DMS oxidation occurs by reaction with 5 OH and NO₃.

6 GEOS-Chem simulates both wet and dry removal of aerosols and gases. Dry deposition follows 7 a standard resistance in series scheme (Wesley, 1989) with an aerosol dry deposition velocity 8 of 0.03 cm s⁻¹ over snow and ice (Fischer et al., 2011). Wet removal in GEOS-Chem takes place 9 in large-scale clouds and convective updrafts (Liu et al., 2001). In-cloud scavenging of 10 hydrophilic species takes place at temperatures warmer than 258K, and hydrophobic black 11 carbon and dust are also removed at temperatures colder than 258K (Wang et al., 2011).

12 2.6 FLEXPART-WRF

FLEXPART-WRF (Brioude et al., 2013, website: flexpart.eu/wiki/FpLimitedareaWrf) is a 13 Lagrangian particle dispersion model based on FLEXPART (Stohl et al., 2005) that is driven 14 by meteorology from the Weather Research and Forecasting (WRF) Model (Skamarock et al., 15 16 2005). Here we use FLEXPART-WRF run in backward mode to study the emissions source 17 regions and transport pathways influencing ship-based ammonia measurements. A WRF simulation for the summer 2014 NETCARE campaign was performed using WRF 3.5.1 with 18 19 initial and boundary conditions provided by the operational analysis $(0.25^{\circ} \times 0.25^{\circ} \text{ resolution})$ from European Centre for Medium-Range Weather Forecasts (ECMWF). Parameterizations 20 21 and options for the WRF simulations are given in Table 1. The WRF model was run from 1 22 July 2014 to 13 August 2014 and nudged to ECMWF winds, temperature, and humidity every 23 6 hours above the atmospheric boundary layer. The WRF run was evaluated using 24 meteorological measurements made onboard the Amundsen and from Polar-6 aircraft flights 25 during this period. FLEXPART-WRF was run in backward mode to produce retroplume output 26 that is proportional to the residence time of the particles in a given volume of air. Runs were 27 performed using the location of the ship, with one model run performed every 15 minutes while 28 the ship was in the model domain (13 July-13 August 2014). For each run, 100,000 particles were released at the ship location (100 m extent horizontally and vertically) and the 29 30 FLEXPART-WRF was run backwards for 7 days prior to release. The output provides retroplume information (the residence time of air prior to sampling) which is used to calculate 31

the potential emission sensitivites (PES) integrated over the seven days prior to sampling by
 instruments aboard the Amundsen.

3 **3 Results and Discussion**

4 3.1 Surface-Atmosphere NH₃ Fluxes

5 Figure 1 shows the ambient $NH_{3(g)}$ concentrations measured by the AIM-IC throughout the cruise. Measured values of $NH_{3(g)}$ range between 30-650 ng m⁻³ with the highest values 6 occurring in Lancaster Sound as the ship was steaming eastward into Baffin Bay. Only two 7 measurements of NH₃ were below the detection limit (29 ng m^{-3}) throughout the entire cruise. 8 NH₃ consistently exceeded 100 ng m⁻³ during later parts of the cruise along the eastern shores 9 of Ellesmere Island and western shores of Greenland. Lower values (<100 ng m⁻³) were 10 11 observed at the beginning of the campaign along the eastern shores of Baffin Island. Measurements of $NH_{3(g)}$ in the marine boundary layer at northern latitudes (>50°N) are sparse; 12 however the concentrations measured in this study are within the few previously reported 13 ranges for the regions above 50 °N. Johnson et al. (2008) reported NH_{3(g)} between 20-300 ng 14 15 m⁻³ in the Norwegian Sea during spring and summer, but a lower range (20-90 ng m⁻³) in the northern North Sea in winter. In the southern North Sea, Asman et al. (1994) measured higher 16 17 values (30-1500 ng m⁻³) in a study lasting from February to October.

18 The relevant measurements needed to calculate χ for both the open ocean and melt ponds are 19 listed in Tables S1 and S2, respectively. Only four unique co-ordinates are listed for the nine 20 melt pond samples because multiple melt ponds were sampled at each location. Roughly half 21 of the surface ocean samples had [NH_x] below the detection limit (20 nM) and in general values 22 were significantly lower than in the melt ponds. Open ocean samples ranged from <20 to 380 23 nM whereas seven of the nine melt pond samples were between 640 to 1260 nM (with the other two below detection limit). These concentrations and their spatial variability are typical for the 24 25 region during summer (Martin et al. 2010).

Parameters listed in Tables S1 and S2 were input into Eqs. (3) to (6) to calculate χ for both the surface ocean and melt pond samples. For samples with [NH_x] below the detection limit, a value of 10 nM (half of the detection limit) was assumed. A comparison of the calculated compensation points for the ocean (χ_{ocean}) and melt ponds (χ_{MP}) are shown in Fig. 2. Also shown is the range for the nearest valid measurement (see section 2.2) of ambient NH_{3(g)}. The NH_{3(g)} concentration taken during the hour of surface sampling could not be used since the ship

remained stationary for up to 12 hours while melt pond or ocean work was being conducted. 1 2 Hence, the $NH_{3(g)}$ measurement from several hours prior (as the ship approached the surface sampling site) had to be used. This approach should not significantly impact the analysis given 3 4 that the ambient levels of NH_{3(g)} were observed to be fairly uniform from one hour to the next 5 (i.e. no rapid spikes of NH_{3(g)} were measured). Shown in lighter yellow are the ranges of NH_{3(g)} observed over the entire study (~30-650 ng m⁻³). Figure 2 clearly shows that the ambient 6 7 concentrations of NH_{3(g)} exceed both χ_{ocean} and χ_{MP} by several orders of magnitude throughout 8 the entire region. This conclusively demonstrates that during the summertime, the ocean and 9 melt ponds are net sinks of atmospheric NH_{3(g)}. This finding is consistent with Johnson et al. 10 (2008) who found a tendency for downward net fluxes at higher latitudes, primarily as a result 11 of colder sea surface temperatures. Assuming an upper limit for the ocean pH of 8.2 would 12 increase χ_{ocean} by less than 20 %.

13 Figure 3 shows the magnitude of the sea-air and melt pond-air flux of NH₃. Average net downward fluxes of 1.4 ng m⁻² s⁻¹ and 1.1 ng m⁻² s⁻¹ were calculated for the open ocean and 14 melt ponds, respectively using Eqs. (1) and (2). Net fluxes were exclusively downwards (net 15 deposition into the ocean and melt ponds) due to the relative abundances of $NH_{3(g)}$ and $NH_{4^{\pm}(aq)}$ 16 17 in these surface pools as well as cold surface temperatures as suggested by Johnson et al., 18 (2008). It is unlikely that this represents a significant input of NH_4^+ into the open ocean except 19 in cases of extremely low [NH_x]. A simple calculation assuming a mixed layer depth of 25 m results in an increase of only ~0.3 nM d⁻¹ to the ocean (assuming complete mixing and no loss 20 21 pathways). However, for the much shallower melt ponds (assumed depth of 0.25 m) the same calculation yields an input of ~22 nM d⁻¹. Furthermore, this does not account for atmospheric 22 23 inputs from either wet deposition or dry deposition of particulate NH₄⁺, and these melt ponds are cut-off from the upwelling currents in the ocean which deliver reactive N to the surface. 24 25 Rates of nitrification, mineralization and N₂-fixation in the open ocean and melt ponds would 26 help put this atmospheric input into perspective and give insight as to whether or not it is an 27 important process in the nitrogen cycle in these environments.

28 **3.2 Sulphate Neutralization**

The extent of neutralization of $PM_{2.5}$ influences aerosol properties as discussed previously. Figure 4 depicts the relative abundances (in neq m⁻³) of gas-phase ammonia and particulatephase ammonium and sulphate. It is important to note that the value for sulphate is total $PM_{2.5}$ sulphate as opposed to non-sea salt sulphate (nss-SO₄²⁻), which is commonly reported for marine boundary layer studies. High and variable backgrounds of Na⁺ from the AIM-IC prevented the calculation of nss-SO₄²⁻, hence this dataset provides an upper limit for nss-SO₄²⁻ Given the low wind speeds (< 5 m s⁻¹) that dominated the campaign, it is likely the nss-SO₄²⁻ \approx SO₄²⁻ since the contribution from sea salt to PM_{2.5} was likely small. It should also be noted that measurements of SO₂, HNO₃ and NO₃⁻ were almost always below their respective detection limits.

Particle loadings of NH_4^+ and SO_4^{2-} were extremely low (typically < 5 neg m⁻³) throughout the 7 8 duration of the cruise. During the first third of the cruise (before 18 July), gas-phase NH₃ was also low and neutralization (i.e. the ratio of NH_4^+ : SO_4^{2-} in units of equivalents) was ambiguous 9 10 due to numerous values near or below detection limit. On the other hand, after 25 July the nanoequivalents of NH_{3(g)} were substantially higher $(NH_* \approx NH_3)$ than either NH₄⁺ or SO₄²⁻ (i.e. 11 $NH_x \approx NH_3$), which implies a nearly neutralized sulphate aerosol. It is important to note that a 12 nearly neutralized aerosol does not equate to an aerosol with a pH of 7 since aerosol pH is 13 highly sensitive to liquid water content as well as the precise NH₄⁺:SO₄²⁻ ratio. An aerosol with 14 NH_4^+ : SO_4^{2-} approaching 1 (with units of equivalents) can still have an acidic pH. For example, 15 a deliquesced ammonium sulphate particle containing 20 neg m⁻³ of SO_4^{2-} and 19.98 neg m⁻³ 16 $NH_{4^{+}}$ at 85% RH will have a pH of ~3.1 under equilibrium conditions despite having an 17 NH₄⁺:SO₄²⁻ equivalents ratio of 0.999. 18

Figure 5 shows the distribution of the NH_4^+ :nss- SO_4^{2-} ratio (on a per equivalent basis) measured 19 at Alert, Nunavut (82.50 °N, 62.33 °W) as a function of month from 1996-2011. Weekly-20 21 averaged PM_{2.5} speciation measurements at Alert are made by Environment Canada and are available on-line (Environment Canada, 2014). The contribution from NO₃⁻ is minor and has 22 not been included in this analysis. In warm environments volatilization of NH₄NO₃ off of filters 23 can cause an underestimation of NH4⁺, but this is not expected to be an issue at Alert due to 24 cold weather and low loadings of NH₄NO₃. During July and August the nss-SO₄²⁻ is, on average, 25 26 completely neutralized by the NH4⁺ in PM_{2.5} as shown by a median neutralization ratio approaching 1 during these months. This implies there is sufficient $NH_{3(g)}$ throughout the region 27 to neutralize nss-SO42- produced from DMS oxidation which is consistent with the 28 measurements shown in Fig. 4. However, there is no denuder upstream of the Hi-Vol filters to 29 remove NH₃ so the observed NH₄⁺:SO₄²⁻ ratio (Fig. 5) may be higher than for ambient PM_{2.5}. 30 This effect is difficult to characterize, but if it is important then it is still evidence for the 31 32 abundance of NH₃ in the summertime Arctic boundary layer. Lastly, Johnson and Bell (2008) 1 show that a sufficiently neutralized sulphate aerosol will tend to 'push' gas-phase NH₃ into the

2 <u>ocean in the aerosol-gas-ocean system, also consistent with Fig. 3.</u>

The AIM-IC and Alert measurements are both inconsistent with a previous study that used GEOS-Chem to predict a highly acidic aerosol and insignificant gas-phase ammonia (NH_x \approx NH₄⁺) throughout the summertime Arctic marine boundary layer (Breider et al., 2014). This inconsistency implies a missing process in a widely used CTM that we investigate further below.

8 3.3 Evidence for the Importance of Seabird Guano

9 Observations collected on board the Amundsen and at Alert strongly suggest a significant 10 source of NH₃ in the Baffin Bay region. Decomposition of uric acid in seabird guano (excreta) 11 has been recognized as a significant source of NH₃ where large colonies exist (Blackall et al., 12 2007; Wilson et al., 2004). However, studies measuring NH₃ from seabird colonies are limited 13 due to the remoteness of most colonies and technical challenges in quantifying NH₃ in isolated 14 locations (Blackall et al., 2007). The few studies that have been done have focused on colonies located in the United Kingdom (Blackall et al., 2004; Wilson et al., 2004), Antarctica (e.g. 15 Legrand et al., 1998; Zhu et al., 2011) and remote tropical islands (Riddick et al., 2014; Schmidt 16 17 et al., 2010). Recently, Riddick et al. (2012) developed a global inventory to estimate the 18 magnitude and spatial distribution of NH_{3(g)} from seabird guano. The authors employed a bioenergetics model, first developed by Wilson et al. (2004), to calculate the NH_{3(g)} emissions 19 (in g bird⁻¹ yr⁻¹) for 323 different seabird species. After compiling a list detailing the populations 20 21 and locations of 33,225 colonies, they were able to estimate global annual emissions between 22 97-442 Gg NH₃ per year. Although this is less than 2% of total global NH_{3(g)} emissions, it can 23 be the dominant source in remote regions where seabird populations are large and other sources 24 are negligible.

In order to assess the impact of seabird guano on NH₃ across the Baffin Bay region, seabird colony NH₃ emissions were implemented in the GEOS-Chem model, and the impact on monthly mean surface layer NH₃ was examined. The NH₃ emissions inventory used in the standard GEOS-Chem v9-02 (and in many other CTMs) is from Bouwman et al. (1997) and does not include seabird emissions. <u>Paulot et al. (2015) recently showed the oceanic emissions</u> from this original inventory are roughly a factor of 3 too high since the initial inventory assumes atmospheric NH₃ is equal to zero. The Riddick et al. (2012, <u>2012b</u>) seabird colony NH₃

emissions inventory (scenario 3) was added to the original inventory in GEOS-Chem following 1 2 Paulot et al. (2015). Scenario 3 was chosen since this represented the midpoint between the 3 minimum and maximum emissions of scenario 1 and 2, respectively. Close inspection of this 4 seabird inventory revealed that some large seabird colonies in our study region were not 5 accounted for. To investigate this, the spatial co-ordinates of northern colonies (>50 °N) in the 6 Riddick et al. (2012) inventory were cross-referenced against colonies in the on-line 7 Circumpolar Seabird Data Portal (Seabird Information Network, 2015). Annual emissions for 8 large colonies in the seabird data portal were calculated in the same manner as in Riddick et al. 9 (2012). In total, there were 42 colonies present in the seabird data portal but absent in the 10 Riddick inventory in the region north of 50 °N. These additional emissions were added to the 11 inventory we implemented in GEOS-Chem. These colonies totaled 7.5 Gg NH₃ year⁻¹ 12 (approximately one quarter of the existing emissions north of 50 °N) and were primarily in 13 Siberia and western Alaska. The Riddick et al. (2012) bioenergetics model only counts 14 emissions that occur during breeding season and while the seabirds are at the colony. Hence, the annual emission estimates (Gg NH₃ year⁻¹) per colony were temporally allocated evenly 15 16 between the 15 May to 15 September. This period is when the majority of seabirds in the Baffin 17 Bay region are nesting (e.g. Gaston et al., 2005; Mallory and Forbes, 2007; McLaren, 1982). 18 One limitation to this approach is that it does not account for additional temporal variations in 19 NH₃ emissions. For instance, moisture increases the rate of uric acid degradation, and fluxes of 20 NH₃ from guano have been observed to increase 10-fold for up to a day after rain events (Riddick et al., 2014). 21

22 Figure 6 shows the July mean output for surface layer NH₃ mixing ratio both without (Fig. 6a) 23 and with (Fig. 6b) seabird emissions, along with the NH_{3(g)} measured by the AIM-IC denoted 24 by circles in Fig. 6a. Comparing the top two panels reveals that seabird emissions make a 25 substantial impact on modelled NH₃ levels in the boundary layer. Much better model-26 measurement agreement is achieved with the inclusion of the seabird colonies. Without the 27 seabird emissions, NH₃ mixing ratios are underpredicted by several orders of magnitude. Surface NH₃ is still underpredicted in Fig. 6b (with guano NH₃ emissions) which could be the 28 29 result of modelled emissions being independent of rainfall, which can substantially increase 30 NH₃ emissions. Episodic rainfall was persistent throughout the latter half of the campaign. Other contributing factors may include: challenges in representing boundary layer mixing, 31 32 uncertainties in deposition rates, comparing monthly averages (GEOS-Chem) to ambient hourly 33 measurements, missing/underestimated bird colonies, and/or excreta from other fauna (e.g.

seals, caribou, musk-ox) absent in the updated inventory. The bottom two panels (Figs. 6c and 1 2 6d) show the influence of seabirds on the ammonium to non-sea salt sulphate ratio. Without seabirds (Fig. 6c) the ratio is less than 0.3 throughout most of the study region, which is 3 inconsistent with the abundance of NH_3 relative to SO_4^{2-} measured by the AIM-IC. Adding the 4 5 seabird emissions (Fig. 6d) increases the ratio to above 0.7 in most grid cells along the ship 6 track. Although the high ratio (July average is \sim 1) observed at Alert (denoted by the star in Figs. 7 6c and 6d) is underestimated in the GEOS-Chem simulation, the bias is reduced by nearly a 8 factor of 2 (from 0.32 to 0.57) when seabird emissions are included.

9 Wildfires are also a source of NH₃ to the free troposphere and/or boundary layer. Particularly 10 strong wildfire events were persistent in the Northwest Territories (NWT) during the study 11 period. Blue circles in Fig. 7 show the location and average fire radiative power (representative 12 of fire strength) of wildfires across the Arctic from July 20-26. It was constructed using data 13 from NASA's Fire Information Resource Management System (FIRMS) database (NASA, 14 2015). We used FLEXPART-WRF retro plumes to assess the importance of wildfire NH₃ 15 emissions, as well as to further corroborate the influence of seabird guano.

16 The significant impact of seabird colonies on [NH_{3(g)}] is supported by the analysis of 17 FLEXPART-WRF retro plumes shown in Fig. 7. Periods of low [NH_{3(g)}] (bottom panel in Fig. 18 7) correspond to air masses that spent at least the last 48 hours over the ocean and/or aloft above 19 the MBL (~500 m) where NH₃ sources are negligible. This is clearly shown in Fig. 7a where 20 the air mass sampled on 14 July 00:00 (UTC) spent the previous 96 hours in the MBL over Baffin Bay, consistent with low [NH_{3(g)}]. In contrast, on 26 July 00:00 (Fig. 7b) air had recently 21 22 passed over seabird colonies (purple circles) surrounding Lancaster Sound as well as wildfires 23 in the Northwest Territories (NWT) on mainland Canada (blue circles), coincident with the 24 large increase in [NH_{3(g)}]. A similar NH_{3(g)} peak occurs on 3 August that can also be examined 25 by using a retro plume analysis. Low NH_{3(g)} values observed on the morning of 2 August agree with Fig. 7c showing the air originating from the MBL over Baffin Bay. At 3 August 00:00 26 27 (Fig. 7d) the air had spent the last 12 hours in the boundary layer of Western Greenland where 28 large seabird colonies exist. However, by 4 August 00:00 (Fig. 7e) the retro plume shifted such 29 that air is now originating from primarily above the boundary layer (altitude plots not shown) leading to a decrease in NH_{3(g)}. In addition from August 2-4 the ship was north of 79° N and in 30 31 the Eastern Canadian Arctic, hence it is unlikely that this increase in NH₃ can be attributed to 32 wildfires given how far removed this region is from wildfires in the NWT. While Fig. 7 only highlights five examples from the study period, retro plumes throughout the entire campaign also support the hypothesis that $NH_{3(g)}$ in the MBL originates primarily from seabird colonies (for the Eastern Canadian Arctic) with contributions from wildfires in some regions (central Canadian Arctic). All $NH_{3(g)}$ spikes in the time series can be attributed to air that had recently passed over seabird colonies and/or wildfires, whereas low values coincide with air masses from either the open ocean or free troposphere not influenced by wildfires.

7 To further investigate the potential influence of wildfires on NH₃ in the Arctic MBL, GEOS-8 Chem simulations were performed using a wildfire emissions inventory for 2014 (QFED2). 9 Simulations with/without wildfires and with/without seabirds revealed that in Lancaster Sound (along 74° N) roughly 40% and 55% of the boundary layer NH₃ can be attributed to seabirds 10 and wildfires, respectively. In other words, air sampled in Lancaster Sound (20 July to 27 July) 11 12 was likely influenced by wildfires in NWT in addition to seabird guano. On the other hand, 13 north of Lancaster Sound, contributions from seabirds and wildfires to surface layer NH3 were 14 approximately 95% and 5%, respectively. Wildfires in the NWT are an important but episodic 15 source of summertime NH₃ in the Canadian Arctic. This is due to periodic transport events associated with this source that is located remote to our study region. Whereas, seabird colonies 16 17 are a local, and persistent source of NH₃ from May to September. Given the observation of consistently neutralized sulfate at Alert each summer, and the large interannual variability and 18 19 episodic wildfire influence, emissions from migratory seabirds are likely to be a significant 20 contributor to NH₃ abundance in the Arctic marine boundary layer.

21 **3.4** Implications for N-deposition to Ecosystems

22 Previous studies have highlighted the important role that seabird-derived N can play in the 23 nitrogen cycle of ecosystems adjacent to bird colonies due to large deposition rates of NH₃ and 24 NH₄⁺ (e.g. Anderson and Polis, 1999; Lindeboom, 1984). However, little attention has been paid to the effects of seabird-derived N on deposition at the regional scale. In this section, we 25 26 consider the importance of seabird-derived nitrogen as an input of reactive N to Arctic 27 ecosystems. These ecosystems tend to be N-limited during the summer and hence have a large 28 sensitivity to N input (Shaver and Chapin III, 1980). In terrestrial ecosystems, soil N availability 29 is a key factor in determining both plant community structure (McKane et al., 2002) and 30 greenhouse gas emissions from soil (Stewart et al., 2012).

1 Nitrogen (N₂) fixation via microbes is thought to be the primary N input to remote Arctic 2 terrestrial ecosystems (e.g. Cleveland et al., 1999; Hobara et al., 2006; Stewart et al., 2014). 3 Numerous field studies have been conducted to estimate N₂-fixation rates via the acetylene 4 reduction technique (Hardy et al., 1968). The N₂-fixation rates for most terrestrial Arctic sites 5 fall within the range of 10 to 120 mg N m⁻² yr⁻¹ (Hobara et al., 2006). However, highly variable 6 rates (due to spatial heterogeneity of microbial populations) and assumptions in the acetylene 7 reduction technique yield high degrees of uncertainty for N₂-fixation rates (Stewart et al., 2014).

8 Total atmospheric N-deposition (wet and dry) in the Arctic is thought to be smaller than 9 fixation, with typical ranges from 8 to 56 mg N m⁻² yr⁻¹ (Van Cleve and Alexander, 1981). Only 10 a few N₂-fixation studies also quantify wet deposition, with dry deposition being ignored 11 altogether (e.g. Hobara et al., 2006). Nonetheless, in certain Arctic regions atmospheric 12 deposition may exceed N₂-fixation in soils (DeLuca et al., 2008). These processes are coupled 13 since large inputs of NH₄⁺ have been shown to inhibit N₂-fixation in certain microbial species 14 and lichens (Chapin and Bledsoe, 1992).

15 Figure 8 shows results from the GEOS-Chem simulation of total $NH_x (\equiv NH_3 + NH_4^+)$ deposition 16 (both wet and dry) for the months May to September (inclusive) both without (Fig. 8a) and with 17 (Fig. 8b) seabird NH_3 emissions. The difference in total NH_x deposition for birds and no birds 18 is shown in Fig. 8c (absolute difference) and Fig. 8d (percent different). Areas near large colonies are heavily influenced by seabird guano with NH_x deposition from seabirds exceeding 19 10 mg N m⁻² yr⁻¹, particularly in western Greenland and near the mouth of Lancaster Sound. 20 The majority of NH_x deposition is caused by NH₃ as opposed to NH₄⁺. Most regions in Fig. 8b 21 are on the lower end of the annual N-deposition rate of 8 to 56 mg N m⁻² yr⁻¹ suggested by Van 22 23 Cleve and Alexander (1981). However, there are two important distinctions: the latter is an 24 estimate of total N-deposition and annual input. Estimates in Fig. 8 might be more useful for comparing N-deposition to N₂-fixation since it captures deposition only during the growing 25 season, and NH_x is likely the dominant form of atmospheric reactive N in the summertime 26 Arctic boundary layer. Furthermore, Fig. 8b provides information on regions where N-27 deposition rates could be comparable to input from terrestrial N₂-fixation (>10 mg N m⁻² yr⁻¹) 28 29 which can help inform subsequent studies exploring N-cycling in the region. According to Hobara et al. (2006), Arctic terrestrial N₂-fixation only occurs from May-September (inclusive) 30 31 and peaks in July, similar to migration patterns of Arctic seabirds.

Estimates of N₂-fixation rates in the Arctic Ocean mixed layer are even sparser than estimates for terrestrial ecosystems. To our knowledge, only Blais et al. (2012) have measured oceanic N₂-fixation in the summertime Arctic Ocean mixed layer. The authors found that open ocean N₂-fixation rates averaged 0.12 nM d⁻¹ in the upper 50 m of the water column throughout the Beaufort Sea to Baffin Bay. For the period of May to September (inclusive) this represents an input of approximately 13 mg N m⁻² which is comparable to inputs we calculate from guanoderived NH₃ in regions close to seabird colonies as shown in Fig. 8b.

8 4 Conclusions

9 Simultaneous measurements of atmospheric and oceanic composition in the eastern Canadian 10 Arctic revealed that the summertime Arctic Ocean and melt ponds were net sinks of $NH_{3(g)}$. Concentrations of NH_{3(g)} ranging from 30-650 ng m⁻³ were observed and represent the first 11 reported measurements of $NH_{3(g)}$ in the Canadian Arctic. An average downward flux of 1.4 ng 12 m⁻² s⁻¹ into the Arctic Ocean was calculated, consistent with previous studies showing that 13 14 higher latitude waters are a net NH_3 sink (Johnson et al., 2008). Melt ponds had a smaller net downward flux (1.1 ng m⁻² s⁻¹) as well as a slightly-a higher γ as compared to the open ocean 15 (median 2 ng m⁻³ versus 0.8 ng m⁻³). To our knowledge, this is the first study to estimate melt 16 17 pond-air NH₃ exchange despite the ubiquitous presence of melt ponds throughout the 18 summertime Arctic.

On a nanoequivalent basis, $NH_{3(g)}$ values were significantly greater (up to an order of magnitude more) than both NH_4^+ and SO_4^{2-} . This finding was consistent with a 15-year historical dataset of weekly $PM_{2.5}$ composition from Alert, NU which showed that nss- SO_4^{2-} is, on average, completely neutralized by NH_4^+ during July and August. These measurements imply strong regional source(s) of $NH_{3(g)}$ in the eastern Canadian Arctic Archipelago that are sufficient to neutralize nss- SO_4^{2-} produced from DMS oxidation. Our surface-air flux estimates show that the Arctic Ocean and melt ponds are not responsible for $NH_{3(g)}$ in the marine boundary layer.

It is also noteworthy that even though these melt ponds have significantly higher $[NH_x]$ than the open ocean (average of 670 nM versus 55 nM), χ_{MP} is only marginally higher. More acidic pHs and slightly lower temperatures mitigate the effect of higher $[NH_x]$ on χ . Chemical transport models (CTMs) that explicitly account for bi-directional NH₃ exchange typically require χ as a predefined model input (e.g. Bash et al., 2013; Wichink Kruit et al., 2012). Therefore, from a modelling standpoint, similar values of χ_{ocean} and χ_{MP} are convenient since they can be parameterized in a similar fashion which would remove the need for CTMs to resolve the spatial extent and temporal evolution of melt ponds to properly model surface atmosphere NH₃ exchange in the summertime Arctic.

3 To investigate the impact of NH₃ emissions from seabird guano, we examined GEOS-Chem 4 simulations both with and without seabird colony NH₃ emissions. The seabird NH₃ emission 5 inventory developed by Riddick et al. (2012) was updated for this study to include northern 6 colonies (>50 °N) that had been overlooked in the original inventory. Without the seabirds, 7 GEOS-Chem underestimated NH_{3(g)} by several orders of magnitude and predicted highly acidic 8 aerosol at the surface in July, which is in direct contrast to our measurements. The inclusion of 9 seabird emissions provided much better agreement with $NH_{3(g)}$ observations and yielded more 10 neutralized aerosol throughout most of the Baffin Bay region. The importance of seabird NH₃ 11 emissions is also supported by analysis of FLEXPART-WRF retro plumes throughout the study 12 period. Air masses enriched in NH_{3(g)} had recently passed through regions with seabird colonies 13 whereas periods of low NH_{3(g)} involved air masses originating from the open ocean or above 14 the boundary layer. Together, these models provide strong evidence that seabird colonies are 15 the dominant and persistent local source of NH_{3(g)} in the summertime Arctic. FLEXPART-WRF and GEOS-Chem were also used to assess the influence of wildfires on NH₃. Wildfires 16 17 are an important but episodic source of NH₃ source to the Arctic due to ongoing changes in 18 transport patterns and fire intensity. Further work should be done to examine the inter-annual 19 influence of NH₃ emissions from wildfires in the NWT on other regions in the Arctic.

Deposition estimates of NH_x from GEOS-Chem during the seabird nesting season (May to September) exceed 10 mg N m⁻² season⁻¹ in grid cells close to large seabird colonies, which is on the lower end of microbial N₂-fixation in Arctic tundra (Hobara et al., 2006). Hence, in some regions seabird-derived NH_x could be a significant N-input to terrestrial Arctic ecosystems which are typically very N-sensitive. Estimates of NH_3 fluxes into the open ocean are unlikely to be an important input of reactive-N except for waters close to large seabird colonies; however, these fluxes may be important for the N-cycle in the much shallower melt ponds.

There is strong evidence that seabird colonies are likely the dominant and persistent source of NH_{3(g)} to the summertime Arctic boundary layer. Emissions appear to be significant enough to at least partially neutralize nss-SO₄²⁻ throughout most of the study region, in contrast to previous model simulations that did not consider seabird colony emissions. Further research is required to better constrain the location, population, and NH₃ emissions of Arctic seabird colonies. It is also important to quantify meteorological effects (e.g. rainfall, wind speed) on seabird emissions. The NH₃ emissions inventory in CTMs should be updated to include seabird emissions with correct representation of the breeding season so that emissions only occur when seabirds are nesting. Summertime measurements of atmospheric NH_x elsewhere in the Arctic are needed to assess whether the impacts of seabirds observed in this study (substantial NH_{3(g)}, nss-SO₄²⁻ neutralization, and N-deposition) are relevant to the entire Arctic.

6 Acknowledgements

7 The authors are grateful for the hard work and dedication of the CCGS Amundsen crew. The 8 authors also thank E. Mungall, A. Lee, V. Irish, H. Stark and J. J. B. Wentzell for help during 9 mobilization, demobilization and calibration of the AIM-IC, as well as T. Papakyriakou and T. 10 Burgers for providing meteorological data. The GEOS5-FP data used in this study/project have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard 11 12 Space Flight Center. The hi-volume sampler used for the Alert measurements was maintained and calibrated by D. Veber, as well as numerous other technicians and operators over the years. 13 14 Acknowledgement is also extended to the crew at CFS Alert for maintaining the base year 15 round. The fieldwork and model analysis was supported by NSERC's Climate Change and 16 Atmospheric Research program, ArcticNet and NSERC. The QFED2 code and emissions data 17 was provided by K. Travis and P. Kim. The NASA FIRMS data set was provided by LANCE 18 FIRMS operated by NASA/GSFC/ESDIS with funding provided by NASA/HQ. G. R. W. 19 acknowledges funding from the NSERC program Integrating Atmospheric Chemistry from 20 Earth to Space (IACPES). Lastly, the authors wish to thank B. Christensen for providing 21 logistical support throughout the project.

1 References

- 2 Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U. and Möhler, O.: Solid
- Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation, Science,
- 4 313, 1770–1773, 2006.
- 5 Anderson, W. B. and Polis, G. A.: Nutrient fuxes from water to land : seabirds affect plant
- 6 nutrient status on Gulf of California islands, Oecologia, 118, 324–332,
- 7 doi:10.1007/s004420050733, 1999.
- 8 Asman, W. A. H., Harrison, R. M. and Ottley, C. J.: Estimation of the net air-sea flux of
- 9 ammonia over the southern bight of the North Sea, Atmos. Environ., 28(22), 3647-3654, doi:10.1016/1252.2210(04)00102 N 1004
- 10 doi:10.1016/1352-2310(94)00192-N, 1994.
- 11 Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T. and Pleim, J. E.: Evaluation of a
- 12 regional air-quality model with bidirectional NH₃ exchange coupled to an agroecosystem
- 13 model, Biogeosciences, 10(3), 1635–1645, doi:10.5194/bg-10-1635-2013, 2013.
- Bell, T. G., Johnson, M. T., Jickells, T. D. and Liss, P. S.: Ammonia/ammonium dissociation
 coefficient in seawater: A significant numerical correction, Environ. Chem., 5(3), 183–186,
 doi:10.1071/EN07022.2008
- 16 doi:10.1071/EN07032, 2008.
- 17 Blackall, T. D., Theobald, M. R., Milford, C., Hargreaves, K. J., Nemitz, E., Wilson, L. J.,
- 18 Bull, J., Bacon, P. J., Hamer, K. C., Wanless, S. and Sutton, M. A.: Application of tracer ratio
- 19 and inverse dispersion methods with boat-based plume measurements to estimate ammonia
- 20 emissions from seabird colonies, Water, Air, Soil Pollut. Focus, 4(6), 279–285,
- 21 doi:10.1007/s11267-004-3038-9, 2004.
- 22 Blackall, T. D., Wilson, L. J., Theobald, M. R., Milford, C., Nemitz, E., Bull, J., Bacon, P. J.,
- Hamer, K. C., Wanless, S. and Sutton, M. A.: Ammonia emissions from seabird colonies,
 Geophys. Res. Lett., 34(10), 1–5, doi:10.1029/2006GL028928, 2007.
- 24 Geophys. Res. Lett., 54(10), 1-3, 401.10.1029/2000GL028928, 2007.
- 25 Blais, M., Tremblay, J.-É., Jungblut, A. D., Gagnon, J., Martin, M. and Lovejoy, C.: Nitrogen
- 26 flixation and identification of potential diazotrophs in the Canadian Arctic, Global
- 27 Biogeochem. Cycles, 26, GB3022, 2012.
- 28 Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W.,
- Olivier, J. G. J. and Tg, N.: A global high-resolution emission inventory for ammonia, Global
 Biogeochem. Cycles, 11(4), 561–587, 1997.
- 31 Breider, T. J., Mickley, L. J., Jacob, D. J., Wang, Q., Fisher, J. A., Chang, R. Y.-W. and
- 32 Alexander, B.: Annual distributions and sources of Arctic aerosol components, aerosol optical
- depth, and aerosol absorption, J. Geophys. Res. Atmos., 119, 4107–4124,
- 34 doi:10.1002/2013JD020996, 2014.
- 35 Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Agevine, W., Evan,
- 36 S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The
- 37 Lagrangian particle dispersion model FLEXPART-WRF version 3.1., Geosci. Model Dev., 6,
- 38 1889-1904, doi:10.5194/gmd-6-1889-2013, 2013.

- 1 Carpenter, L. J., Archer, S. D. and Beale, R.: Ocean-atmosphere trace gas exchange, Chem.
- 2 Soc. Rev., 41, 6473–6506, doi:10.1039/c2cs35121h, 2012.

3 Chang, R. Y.-W., Leck, C., Graus, M., Müller, M., Paatero, J., Burkhart, J. F., Stohl, A., Orr,

- 4 L. H., Hayden, K., Li, S. M., Hansel, A., Tjernström, M., Leaitch, W. R. and Abbatt, J. P. D.:
- 5 Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem.
- 6 Phys., 11(20), 10619–10636, doi:10.5194/acp-11-10619-2011, 2011.
- 7 Chapin, D. M. and Bledsoe, C.: Nitrogen fixation in arctic plant communities, in Arctic
- 8 Ecosystems in a Changing Climate: An Ecophysiological Perspective, edited by R. S. Chapin
- 9 III, R. L. Jeffries, J. F. Reynolds, G. R. Shaver, and J. Svoboda, pp. 301–319, Academic
- 10 Press, San Diego., 1992.
- 11 Chou, M.-D. and Suarez, M. J..: An efficient thermal infrared radiation parameterization for
- use in general circulation models, National Aeronautics and Space Administration, NASA
 Tech. Memo, 84 pp., 1994.
- 14 Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Hedin, L. O., Perakis, S.,
- 15 Latty, E. F., Fischer, C. Von, Elseroad, A. and Wasson, M. F.: Global patterns of terrestrial
- 16 biological nitrogen (N₂) fixation in natural ecosystems, Global Biogeochem. Cycles, 13(2),
- 17 623–645, doi:10.1029/1999GB900014, 1999.
- 18 Darmenov, A. and da Silva, A.: The Quick Fire Emissions Dataset (QFED) Documentation
- 19 of versions 2.1, 2.2 and 2.4, NASA Technical Report Series on Global Modeling and Data
- 20 Assimilation, NASA TM-2013-104606, 32, 183 pp., Draft Document (12939 kB), 2013.
- DeLuca, T. H., Zackrisson, O., Gundale, M. J. and Nilsson, M.-C.: Ecosystem feedbacks and
 nitrogen fixation in boreal forests., Science, 320, 1181, doi:10.1126/science.1154836, 2008.
- 23 Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J.
- 24 M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L.,
- Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J.,
- 26 Tsunogai, S., Wollast, R. and Zhou, M.: The atmospheric input of trace species to the world
- 27 ocean, Global Biogeochem. Cycles, 5(3), 193–259, doi:10.1029/91GB01778, 1991.
- 28 Environment Canada: Canadian Aerosol Baseline Measurement (CABM) Data, [online]
- 29 Available from: http://www.ec.gc.ca/donneesnatchem-
- 30 natchemdata/default.asp?lang=En&n=22F5B2D4-1 (Accessed 7 May 2015), 2014.
- Fickert, S., Adams, J. W. and Crowley, J. N.: Activation of Br₂ and BrCl via uptake of HOBr onto aqueous salt solutions, J. Geophys. Res., 104, 23719–23727, 1999.
- 33 Gaston, A. J., Gilchrist, H. G. and Hipfner, J. M.: Climate change, ice conditions and
- 34 reproduction in an Arctic nesting marine bird: Brunnich's guillemot (Uria lomvia L.), J.
- 35 Anim. Ecol., 74(5), 832–841, doi:10.1111/j.1365-2656.2005.00982.x, 2005.
- 36 Geernaert, L. L. S., Geernaert, G. L., Granby, K. and Asman, W. A. H.: Fluxes of soluble
- 37 gases in the marine atmosphere surface layer, Tellus, 50B, 111–127, 1998.

- 1 Gibb, S. W., Mantoura, R. F. C. and Liss, P. S.: Ocean-atmosphere exchange and atmospheric
- 2 speciation of ammonia and methylamines in the region of the NW Arabian Sea, Global
- 3 Biogeochem. Cycles, 13(1), 161–178, doi:10.1029/98GB00743, 1999.
- 4 Hardy, R. W. F., Holsten, R. D., Jackson, E. K. and Burns, R. C.: The Acetylene-Ethylene
- 5 Assay for N_2 Fixation: Laboratory and Field Evaluation, Plant Physiol., 43, 1185–1207, 1968.
- 6 Hobara, S., McCalley, C., Koba, K., Giblin, A. E., Weiss, M. S., Gettel, G. M. and Shaver, G.
- 7 R.: Nitrogen Fixation in Surface Soils and Vegetation in an Arctic Tundra Watershed: A Key
- 8 Source of Atmospheric Nitrogen, Arctic, Antarct. Alp. Res., 38(3), 363–372, 2006.
- 9 Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A and Peterson, B. J.: A simple and
- 10 precise method for measuring ammonium in marine and freshwater ecosystems, Can. J. Fish.
- 11 Aquat. Sci., 56(10), 1801–1808, doi:10.1139/f99-128, 1999.
- 12 Hong, S.-Y., Dudhia, J. and Chen, S.-H.: A revised approach to ice microphysical processes
- 13 for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103-120,
- 14 2004.
- 15 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and Collins, W.
- 16 D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
- 17 transfer models, J. Geophys. Res., 113, D13103, 2008.
- 18 Janjic, Z. I.: The Step-Mountain Eta Coordinate Model: Further developments of the
- convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122, 927-945, 1994.
- Janjic, Z. I.: The surface layer in the NCEP eta Model, in: Eleventh conference on numerical
 weather prediction, Norfolk, VA, 19-23 August 1996, 354-355, 1996.
- 23 Janjic, Z. I.: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the
- 24 NCEP Meso model, National Centers for Environmental Prediction, Office Note No. 437, 61
- 25 pp., 2002.
- 26 Johnson, M. T.: The air-sea flux of ammonia, Ph.D. thesis, University of East Anglia., 2004.
- Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water
 transfer velocities for any gas, Ocean Sci., 6(4), 913–932, doi:10.5194/os-6-913-2010, 2010.

Johnson, M. T. and Bell, T. G.: Coupling between dimethylsulphide emissions and the ocean atmosphere exchange of ammonia, Environ. Chem., 5, 259-267, doi:10.107/EN08030, 2008.

- 31 Johnson, M. T., Liss, P. S., Bell, T. G., Lesworth, T. J., Baker, A. R., Hind, A. J., Jickells, T.
- 32 D., Biswas, K. F., Woodward, E. M. S. and Gibb, S. W.: Field observations of the ocean-
- 33 atmosphere exchange of ammonia: Fundamental importance of temperature as revealed by a
- 34 comparison of high and low latitudes, Global Biogeochem. Cycles, 22(1), 1–15,
- 35 doi:10.1029/2007GB003039, 2008.

- 1 Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43,
- 2 170-181, 2004.
- 3 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné,
- 4 S., Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S.,
- 5 Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,
- 6 Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud,
- 7 W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E.
- 8 R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela,
- 9 A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y.,
- 10 Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
- 11 Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U.
- 12 and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
- 13 aerosol nucleation., Nature, 476, 429–433, doi:10.1038/nature10343, 2011.
- 14 Krupa, S. V.: Effects of atmospheric ammonia (NH₃) on terrestrial vegetation: A review,
- 15 Environ. Pollut., 124(2), 179–221, doi:10.1016/S0269-7491(02)00434-7, 2003.
- 16 Leaitch, W. R., Sharma, S., Huang, L., Toom-Sauntry, D., Chivulescu, A., Macdonald, A. M.,
- 17 von Salzen, K., Pierce, J. R., Bertram, A. K., Schroder, J. C., Shantz, N. C., Chang, R. Y.-W.
- 18 and Norman, A.-L.: Dimethyl sulfide control of the clean summertime Arctic aerosol and
- 19 cloud., Elem. Sci. Anth., 1, doi:10.12952/journal.elementa.000017, 2013.
- 20 Leck, C., Nilsson, E. D., Bigg, E. K. and Bäcklin, L.: Atmospheric program on the Arctic
- 21 Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach,
- 22 and instruments, J. Geophys. Res., 106(D23), 32051–32067, doi:10.1029/2000JD900461,
- 23 2001.
- Lefer, B. L., Talbot, R. W. and Munger, J. W.: Nitric acid and ammonia at a rural northeastern U.S. site, J. Geophys. Res., 104(D1), 1645, doi:10.1029/1998JD100016, 1999.
- 26 Legrand, M., Ducroz, F., Wagenbach, D., Mulvaney, R. and Hall, J.: Ammonium in coastal
- Antarctic aerosol and snow: Role of polar ocean and penguin emissions, J. Geophys. Res.,
 103, 11043–11056, 1998.
- 29 Lin, J.-T. and McElroy, M.: Impacts of boundary layer mixing on pollutant vertical profiles in
- 30 the lower troposphere: Implications to satellite remote sensing, Atmos. Environ. 44(14), 31 1726 1739 doi:10.1016/i.atmoscapy.2010.02.09.2010
- 31 1726-1739, doi:10.1016/j.atmosenv.2010.02.09, 2010.
- Lindeboom, H. J.: The Nitrogen Pathway in a Penguin Rookery, Ecology, 65(1), 269–277,
 1984.
- 34 Liss, P. S.: Gas transfer: Experiments and geochemical implications, in Air-Sea Exchange of
- 35 Gases and Particles, edited by P. S. Liss and W. G. N. Slinn, pp. 241–298, Springer
- 36 Netherlands., 1983.
- Liss, P. S. and Slater, P. G.: Flux of Gases across the Air-Sea Interface, Nature, 247, 181–184,
 doi:10.1038/247181a0, 1974.

- 1 Lüthje, M., Feltham, D. L., Taylor, P. D. and Worster, M. G.: Modeling the summertime
- 2 evolution of sea-ice melt ponds, J. Geophys. Res. Ocean., 111, C02001,
- 3 doi:10.1029/2004JC002818, 2006.
- 4 Mallory, M. L. and Forbes, M. R.: Does sea ice constrain the breeding schedules of high
- 5 Arctic Northern Fulmars?, Condor, 109(4), 894–906, 2007.
- 6 Markovic, M. Z., VandenBoer, T. C. and Murphy, J. G.: Characterization and optimization of
- 7 an online system for the simultaneous measurement of atmospheric water-soluble constituents
- 8 in the gas and particle phases, J. Environ. Monit., 14(7), 1872, doi:10.1039/c2em00004k,
- 9 2012.
- 10 Martin, J., Tremblay, J.-É., Gagnon, J., Tremblay, G., Lapoussiere, A., Jose, C., Poulin, M.,
- 11 Gosselin, M., Gratton, Y. and Michel, C.: Prevalence, structure and properties of subsurface
- 12 chlorophyll maxima in Canadian Arctic waters, Mar. Ecol.-Prog. Ser., 412, 69-84, 2010.
- 13 Martin, S. T., Hung, H.-M., Park, R. J., Jacob, D. J., Spurr, R. J. D., Chance, K. V. and Chin,
- 14 M.: Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global
- 15 aerosol direct radiative forcing, Atmos. Chem. Phys., 4, 183–214, 2004.
- 16 McKane, R. B., Johnson, L. C., Shaver, G. R., Nadelhoffer, K. J., Rastetter, E. B., Fry, B.,
- 17 Giblin, A. E., Kielland, K., Kwiatkowski, B. L., Laundre, J. A. and Murray, G.: Resource-
- 18 based niches provide a basis for plant species diversity and dominance in arctic tundra.,
- 19 Nature, 415, 68–71, doi:10.1038/415068a, 2002.
- 20 McKee, C. M.: Biogeochemical Cycles of Ammonia and Dimehtylsulphide in the Marine 21 Environment, Ph.D. thesis, University of East Anglia., 2001.
- McLaren, P. L.: Spring migration and habitat use by seabirds in eastern Lancaster Sound and
 western Baffin Bay, Arctic, 35(1), 88–111, 1982.
- Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163-187, 1954. (in Russian)
- NASA: Fire Information Resource Management System (FIRMS), [online] Available from:
 https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms (Accessed 30 June
- 28 2015), 2015.
- 29 Norman, M. and Leck, C.: Distribution of marine boundary layer ammonia over the Atlantic
- 30 and Indian Oceans during the Aerosols99 cruise, J. Geophys. Res., 110, D16302,
- 31 doi:10.1029/2005JD005866, 2005.
- 32 Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene, W. C., Lima, I. D.,
- 33 Doney, S. C. and Stock, C. A.: Global oceanic emission of ammonia: Constraints from
- 34 seawater and atmospheric observations, Global Biogeochem. Cycles, 29,
- 35 doi:10.1002/2015GB005106, 2015.
- 36 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic
- 37 growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961-1971, 2007.

- 1 Quinn, P. K., Charlson, R. J. and Bates, T. S.: Simultaneous observations of ammonia in the
- 2 atmosphere and ocean, Nature, 335, 336–338, doi:10.1038/335336a0, 1988.
- 3 Quinn, P. K., Bates, T. S., Johnson, J. E., Covert, D. S. and Charlson, R. J.: Interactions
- between the sulfur and reduced nitrogen cycles over the central Pacific Ocean, J. Geophys.
 Res., 95, 16405–16416, 1990.
- 6 Quinn, P. K., Asher, W. E. and Charlson, R. J.: Equilibria of the Marine Muitiphase 7 Ammonia System, J. Atmos. Chem., 14, 11–30, 1992.
- 8 Quinn, P. K., Barrett, K. J., Dentener, F. J., Lipschultz, F. and Six, K. D.: Estimation of the
- 9 air/sea exchange of ammonia for the North Atlantic Basin, Biogeochemistry, 35(1), 275–304,
- 10 doi:10.1007/BF02179831, 1996.
- 11 Reis, S., Pinder, R. W., Zhang, M., Lijie, G. and Sutton, M. A.: Reactive nitrogen in
- 12 atmospheric emission inventories, Atmos. Chem. Phys., 9, 7657–7677, doi:10.5194/acp-9-13 7657-2009, 2009.
- 14 Riddick, S. N., Dragosits, U., Blackall, T. D., Daunt, F., Wanless, S. and Sutton, M. A.: The
- 15 global distribution of ammonia emissions from seabird colonies, Atmos. Environ., 55, 319–
- 16 327, doi:10.1016/j.atmosenv.2012.02.052, 2012.
- 17 Riddick, S. N., Dragosits, U., Blackall, T. D., Daunt, F., Wanless, S. and Sutton, M. A.:
- 18 Global ammonia emissions from seabirds. NERC Environmental Information Data Centre.
 19 doi:10.5285/c9e802b3-43c8-4b36-a3a3-8861d9da8ea9, 2012b.
- 20 Riddick, S. N., Blackall, T. D., Dragosits, U., Daunt, F., Braban, C. F., Tang, Y. S.,
- 21 MacFarlane, W., Taylor, S., Wanless, S. and Sutton, M. A.: Measurement of ammonia
- 22 emissions from tropical seabird colonies, Atmos. Environ., 89, 35–42,
- 23 doi:10.1016/j.atmosenv.2014.02.012, 2014.
- 24 Schmidt, S., Mackintosh, K., Gillett, R., Pudmenzky, A., Allen, D. E., Rennenberg, H. and
- 25 Mueller, J. F.: Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical
- coral cay with high seabird density., J. Environ. Monit., 12(2), 460–465,
- 27 doi:10.1039/b910922f, 2010.
- Seabird Information Network: Circumpolar Seabird Data Portal, [online] Available from:
 http://axiom.seabirds.net/circumpolar_portal.php (Accessed 13 March 2015), 2015.
- 30 Sharma, S., Barrie, L. A., Plummer, D., Mcconnell, J. C., Brickell, P. C., Levasseur, M.,
- 31 Gosselin, M. and Bates, T. S.: Flux estimation of oceanic dimethyl slufide around North
- 32 America, J. Geophys. Res., 104, 21327–21342, 1999.
- 33 Sharma, S., Chan, E., Ishizawa, M., Toom-Sauntry, D., Gong, S. L., Li, S.-M., Tarasick, D.
- 34 W., Leaitch, W. R., Norman, A.-L., Quinn, P. K., Bates, T. S., Levasseur, M., Barrie, L. A.
- 35 and Maenhaut, W.: Influence of transport and ocean ice extent on biogenic aerosol sulfur in
- 36 the Arctic atmosphere, J. Geophys. Res.-Atmos., 117, D12209, doi:10.1029/2011JD017074,
- 37 2012.

- 1 Shaver, G. R. and Chapin III, F. S.: Response to fertilization by various plant growth forms in
- 2 an Alaskan tundra: nutrient accumulation and growth, Ecology, 61(3), 662–675,
- 3 doi:10.2307/1937432, 1980.
- 4 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and
- Powers, J. G.: A description of the advanced research WRF version 2, National Center for
 Atmospheric Research, Technical Note, 88 pp., 2005.
- 7 Stewart, K. J., Brummell, M. E., Coxson, D. S. and Siciliano, S. D.: How is nitrogen fixation
- 8 in the high arctic linked to greenhouse gas emissions?, Plant Soil, 362, 215–229,
- 9 doi:10.1007/s11104-012-1282-8, 2012.
- 10 Stewart, K. J., Grogan, P., Coxson, D. S. and Siciliano, S. D.: Topography as a key factor
- driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems, Soil Biol. Biochem.,
 70(3), 96–112, doi:10.1016/j.soilbio.2013.12.005, 2014.
- 13 Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian
- 14 particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474,
- 15 doi:10.5194/acp-5-2461-2005, 2005.
- 16 Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., Tang, Y.
- 17 S., Braban, C. F., Vieno, M., Dore, A. J., Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D.,
- 18 Blackall, T. D., Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne, E.,
- 19 Coheur, P. F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C., Skjøth, C. A., Geels,
- 20 C., Hertel, O., Wichink Kruit, R. J., Pinder, R. W., Bash, J. O., Walker, J. T., Simpson, D.,
- 21 Horváth, L., Misselbrook, T. H., Bleeker, A., Dentener, F. and de Vries, W.: Towards a
- 22 climate-dependent paradigm of ammonia emission and deposition., Phil. Trans. R. Soc. B,
- 23 368, doi:10.1098/rstb.2013.0166, 2013.
- 24 Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G. and Ho, C.: Climatological
- distributions of pH, pCO₂, total CO₂, alkalinity, and CaCO₃ saturation in the global surface
- 26 ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125,
- 27 doi:10.1016/j.marchem.2014.06.004, 2014.
- 28 Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno,
- 29 G., Wegiel, J. and Cuenca, R. H.: Implementation and verification of the unified NOAH land
- 30 surface model, 20th Conference on Weather Analysis and Forecasting/16th Conference on
- 31 Numerical Weather Prediction, Seattle, WA, American Meteorolgical Society, 2004.
- Theobald, M. R., Crittenden, P. D., Hunt, A. P., Tang, Y. S., Dragosits, U. and Sutton, M. A.:
 Ammonia emissions from a Cape fur seal colony, Cape Cross, Namibia, Geophys. Res. Lett.,
 Lo2812, doi:10.1020/2005CL024284.2006
- 34 33, L03812, doi:10.1029/2005GL024384, 2006.
- 35 Van Cleve, K. and Alexander, V.: Nitrogen cycling in tundra and boreal ecosystems, in
- 36 Terrestrial Nitrogen Cycles, edited by F. E. Clark and T. Rosswall, pp. 375–404, Swedish
- 37 National Research Council, Stockholm., 1981.
- 38 Wichink Kruit, R. J., Schaap, M., Sauter, F. J., Van Zanten, M. C. and Van Pul, W. A. J.:
- 39 Modeling the distribution of ammonia across Europe including bi-directional surface-

- 1 atmosphere exchange, Biogeosciences, 9(12), 5261–5277, doi:10.5194/bg-9-5261-2012,
- 2 2012.
- 3 Wilson, L. J., Bacon, P. J., Bull, J., Dragosits, U., Blackall, T. D., Dunn, T. E., Hamer, K. C.,
- 4 Sutton, M. A. and Wanless, S.: Modelling the spatial distribution of ammonia emissions from
- 5 seabirds in the UK, Environ. Pollut., 131(2), 173–185, doi:10.1016/j.envpol.2004.02.008,
- 6 2004.
- 7 Zhu, R., Sun, J., Liu, Y., Gong, Z. and Sun, L.: Potential ammonia emissions from penguin
- 8 guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing-
- 9 thawing cycles and selected environmental variables, Antarct. Sci., 23, 78–92,
- 10 doi:10.1017/S0954102010000623, 2011.
- 11

1	Table 1.	Parameter	izations ar	nd optio	ns used	for the	NETCAF	RE WRF	simulatio	ons
1		I arameter	izations ai	na opuo	no uscu	ior the			Simulation	5113

Atmospheric process	WRF option				
Planetary Boundary Layer	Mellor–Yamada–Janjic Scheme (MYJ) (Janjic, 1994)				
Surface layer	Monin-Obukhov Janjic Eta similarity scheme (Monin and Obukhov, 1954; Janjic, 1994, 1996, 2002)				
Land surface	Unified Noah Land Surface Model (Tewari et al., 2004)*				
Microphysics	WRF Single-Moment 5-class scheme (Hong, Dudhia, and Chen, 2004)				
SW radiation	Goddard Shortwave Scheme (Chou and Suarez, 1994)				
LW radiation	RRTMG (Iacono et al., 2008)				
Cumulus parameterization	Kain–Fritsch Scheme (Kain, 2004)				

2 *with corrected calculation of skin temperature over sea ice when snow melting is occurring,

3 see http://www2.mmm.ucar.edu/wrf/users/wrfv3.7/updates-3.7.1.html.

Figure 1. CCGS Amundsen ship track (purple)-coloured by gas-phase NH₃ concentrations
(when valid measurements were available) measured by the AIM-IC. Invalid measurements
(e.g. instrument troubleshooting, influenced by ship) are purple along the ship track. Units of
ng m⁻³ were chosen as a convenience for flux calculations. At STP, 100 ng m⁻³ ≈ 130 pptv.
Relevant landmarks are also labelled. Dates and arrows indicate the position of the ship at 0:00
UTC on that day.

Figure 2. Box-and-whisker plot showing the observed ranges of χ (on a log scale) for both the ocean surface (dark blue) and melt ponds (light blue). The range of NH_{3(g)} measured by the AIM-IC near the time of surface sampling is shown in darker yellow whereas NH_{3(g)} over the entire campaign is shown in lighter yellow. The box represents 25th to 75th percentile while the line within the box denotes the median. Whiskers extend to the 10th and 90th percentile.

2 Figure 3. Box-and-whisker plot of the estimated fluxes into the open ocean and melt ponds. The

3 percentiles are represented in the same fashion as Fig. 2.

Figure 4. Time series of neq m⁻³ for $NH_{3(g)}$ (black dots), NH_{4^+} in $PM_{2.5}$ (orange trace), and $SO_{4^{2^-}}$ in $PM_{2.5}$ (red trace). Interruptions in the data are a result of zero air experiments, calibrations, values below detection limit, instrument downtime, and (for gas-phase species) periods when the wind direction/speed were not conducive for ambient sampling (as explained in detail in section 2.2).

Figure 5. Box-and-whisker plot of neutralization (defined as $NH_4^+/2*nss-SO_4^{2-}$) for fifteen years (1996-2011) of weekly $PM_{2.5}$ speciation measurements taken at Alert, Nunavut. The

4 percentiles are represented in the same fashion as Fig. 2.

Figure 6. GEOS-Chem simulation of NH₃ mixing ratio (ppb) of the July monthly mean surface layer for (a) no seabird emissions and (b) with seabird emissions. Circles in (a) represent the ship track coloured by NH₃ measurements. Panels (c) and (d) show GEOS-Chem simulations for the ammonium to non-sea salt sulphate ratio during the same period for (c) no seabird emissions and (d) with seabird emissions. The star indicates the average ratio observed at Alert during July.

1

2 Figure 7. PES plots of FLEXPART-WRF seven day retroplumes from the ship's location on 3 (a) 14 July 00:00, (b) 26 July 00:00, (c) 2 August 00:00, (d) 3 August 00:00 and (e) 4 August 4 00:00. The ship track is shown in black and the ship location at the release time is indicated in 5 red. Colors show the airmass residence time prior to arrival at the ship (PES) in seconds. The 6 plume centroid locations at 1 and 2 days (the approximate lifetime of NH₃) before release are 7 shown (numbers 1 and 2). Purple circles represent the location of bird colonies with the size of each circle indicating the magnitude of estimated NH₃ emissions (in Mg NH₃ yr⁻¹). Blue circles 8 show the location of wildfires from the NASA FIRMS measurements of fire radiative power 9 from July 20-26 (in MW). The bottom panel is a time series of $NH_{3(g)}$ and particle-phase NH_4^+ 10 and SO₄²⁻ measured by the AIM-IC with arrows indicating times of retroplume initiation in the 11 12 upper panels. The NASA FIRMS dataset was provided by LANCE FIRMS operated by 13 NASA/GSFC/ESDIS with funding from NASA/HQ.

Figure 8. GEOS-Chem simulation of for total NH_x deposition (in mg N m⁻² season⁻¹) for the months May to September (inclusive). Panel (a) does not include seabird emissions, whereas the panel (b) does. The difference in total NH_x deposition between the two emissions scenarios (with birds minus without birds) is shown in panels (c) and (d) as an absolute amount and percentage increase, respectively.

1 Supplemental

Date and Time (UTC)	Lat (°N)	Lon (°W)	[NH _x] (nM)	SST (°C)
2014-07-15 9:12	69.3672	64.8667	< 20	2.68
2014-07-17 21:42	74.1566	80.4861	< 20	6.18
2014-07-19 13:15	74.1084	83.4386	< 20	3.58
2014-07-19 19:21	74.0991	83.4067	< 20	3.38
2014-07-20 17:08	74.2391	91.5339	< 20	-0.54
2014-07-20 19:18	74.2339	91.4947	< 20	-0.59
2014-07-22 9:32	74.3199	94.9029	< 20	-0.15
2014-07-27 15:37	73.2906	63.6075	22	2.99
2014-07-28 17:43	73.2611	57.8854	20	5.73
2014-07-29 22:26	75.4001	61.6649	< 20	5.06
2014-07-30 18:44	76.3347	71.2126	58	3.06
2014-07-30 21:42	76.3212	71.1668	49	3.18
2014-07-25 17:00	74.4525	89.2145	380	0.82
2014-07-25 19:00	74.4114	87.6705	104	3.21
2014-07-25 21:30	74.4583	85.6265	< 20	3.16
2014-07-25 23:00	74.449	84.4133	136	4.4
2014-07-16 10:30	71.5087	70.2804	< 20	5.34
2014-07-31 15:30	76.3056	73.2270	< 20	4.5
2014-08-01 1:30	76.2675	74.5992	< 20	4.32
2014-08-01 10:30	76.3137	75.7749	< 20	4.69
2014-08-01 21:40	76.3708	77.4110	< 20	2.67
2014-08-02 17:40	78.461	73.8764	294	1.84
2014-08-02 18:20	78.5946	73.5861	310	1.11
2014-08-02 19:30	78.8293	73.0194	< 20	0.84
2014-08-02 20:20	78.9863	72.5310	44	0.87
2014-08-02 20:40	79.0496	72.3455	42	0.96
2014-08-02 21:30	79.2011	71.7628	275	0.94
2014-08-02 21:40	79.2245	71.6052	176	0.96
2014-08-02 22:30	79.3809	71.1979	< 20	2.22
2014-08-02 22:40	79.401	71.0861	58	2.13
2014-08-03 16:50	81.3601	63.9560	54	-0.59
2014-08-04 6:30	80.7955	67.3011	< 20	-0.1
2014-08-04 18:10	79.9931	69.7773	< 20	0.46
2014-08-05 8:30	79.3461	71.8578	< 20	2.68
2014-08-06 1:50	79.0015	73.2046	< 20	1.99
2014-08-06 15:50	77.3259	75.7041	20	3.63
2014-08-07 12:40	74.7331	78.3273	< 20	4.5
2014-08-07 12:50	74.7019	78.3784	26	4.65

2 Table S1. Surface ocean parameters relevant for determining surface-air NH₃ exchange

Date and Time (UTC)	Lat (°N)	Lon (°W)	$[NH_x](nM)$	Temp (°C)	pН	Salinity
2014-07-18 18:00	73.5191	80.9863	706	1.86	7.2	5.2
2014-07-18 18:00	73.5191	80.9863	896	1.82	7.1	4.1
2014-07-21 2:00	74.2795	91.6322	779	0.42	6.7	1.3
2014-07-21 2:00	74.2795	91.6322	1042	0.31	6.7	0.4
2014-07-21 2:00	74.2795	91.6322	739	0.23	6.7	0.2
2014-07-21 18:00	74.2387	92.2041	1262	0.21	6.9	1.1
2014-07-21 18:00	74.2387	92.2041	642	0.21	6.9	0.9
2014-07-23 17:30	74.6033	94.9108	< 20	0.80	7.0	8.1
2014-07-23 17:30	74.6033	94.9108	< 20	0.23	7.0	8.5

1 Table S2. Melt pond parameters relevant for determining surface-air NH₃ exchange