Nighttime measurements of HO_x during the RONOCO project and analysis of the sources of HO_2

H.M. Walker et al.

We would like to thank the reviewers for their constructive comments which have helped to improve the manuscript. We have modified the manuscript in a number of areas, as suggested by the reviewers, and provide detailed responses to the comments below. The reviewers' comments are given in italics. Changes to the manuscript are given in red.

Review #1

1.1

The authors should clarify throughout the manuscript that their measurements of HO_2 include a small interference from RO_2 radicals and should be labeled as HO_2^* rather than HO_2 to avoid confusion, including Figures 4, 7, 8, and 15. This would also be consistent with the presentation of their data (as HO_2^*) in Stone et al. (2014b).

We acknowledge that the measurements should be labelled HO_2^* . The manuscript has been changed accordingly. HO_2^* is defined on page 3009, and HO_2 measurements are referred to as HO_2^* thereafter. Tables 4 and 5, and Figures 4, 7, 8, and 15 and their captions have been updated.

1.2 Pages 3008-3009

Although the RO_2 interference with HO_2 measurements has been quantified in the ground based instruments as described in Whalley et al. (2013), it appears that this has yet to be done for the aircraft instrument with only the interference due to ethene quantified and the rest calculated using the MCM. What was the distribution and calculated detection efficiencies of the different peroxy radicals calculated for the campaign conditions that led to the conclusion that only 15% of RO_2 radicals were detected by their instrument?

Whalley et al. (2013) describe in detail interference tests for three FAGE cells of varying design, one of which is comparable to that used in the aircraft measurements described in this work. In addition, interference tests have been conducted specifically for the aircraft FAGE instrument for ethene-derived peroxy radicals and are given by Stone et al. (2014). The

results of Whalley et al. indicate that the chemistry responsible for the observed interferences is well described by the MCM. MCM-based models are able to reproduce the observed interferences once the interference has been characterised for a single peroxy radical, since the level of interference is dependent on the efficiency of mixing of NO into the sampled air and the residence time of the sampled air in the FAGE cell. Both of these parameters are constrained in the model from experiment. Accordingly, the interferences presented in this work, as described by Stone et al. (2014), are determined relative to that for the ethene-derived peroxy radical using known chemistry.

The interference from the ethene-derived peroxy radical was determined experimentally, and was found to be (39.7 ± 4.8) % for a 1:1 mixture of HO₂ and RO₂. Stone et al. used a box model constrained to the temperature, pressure, and [NO] in the aircraft FAGE detection cell, with a detailed MCM-based chemistry scheme, to calculate the potential RO₂-based interference in the RONOCO HO₂ measurements. The model run time was varied until the model-predicted interference from ethene-derived RO₂ radicals was equal to the experimentally determined interference, thereby tuning the model to the conversion efficiency of HO₂ to OH. The model was initialised with equal concentrations of HO₂ and RO₂ so that an interference factor, *f* (i.e. the fractional increase in 'HO₂' signal upon addition of RO₂ to the system), could be calculated for every RO₂ species in the model. The greatest interference was calculated to come from isoprene-derived RO₂ (e.g. 57 % from HC(O)C(O)O₂), followed by RO₂ species derived from aromatic compounds and C₂ to C₅ alkenes.

The interference factors were applied to model-predicted RO₂ speciation and concentrations for the RONOCO flights. Model-predicted RO₂ species were dominated by CH₃O₂ (33 %; f = 1.1 %) and HO₂ (24 %; f = 0.0 %), with smaller contributions from RO₂ derived from *iso*-butene (12 %; f = 0.5 %), *cis*-2-butene and *trans*-2-butene (10 %; f = 0.05 %), and isoprene (2 %; f = 7.6 %). RO₂ species with high interference factors are a minor component of the total RO₂.

A plot of modelled HO₂ (no interference) vs modelled HO₂* (HO₂ + f^*RO_2) was best described by HO₂* = $[1.15 \times HO_2] + 2 \times 10^5$ cm⁻³. The potential interference in the FAGE measurements of HO₂ during RONOCO was calculated using this equation.

The following sentences have been added to the manuscript to clarify the discussion:

P3008 L18:

"Whalley et al. (2013) show that the chemistry responsible for the observed interferences is well known, and that a model using the Master Chemical Mechanism (MCM, version 3.2: Jenkin al., 1997; Saunders et al., 2003; Bloss et et al., 2005, via http://mcm.leeds.ac.uk/MCM) can reproduce the interferences once tuned to the conversion efficiency of HO₂ to OH in the FAGE detection cell. Accordingly, Stone et al. (2014b) have applied the results of the ethene-derived RO₂ interference testing in a modelling study to assess the effect of the interference on the HO₂ measurements made during the RONOCO and SeptEx campaigns."

P3008 L25:

"The model run time was varied until the model-predicted interference from ethene-derived RO_2 radicals was equal to the experimentally determined interference, thereby tuning the model to the conversion efficiency of HO_2 to OH."

P3009 L8:

"The interference factors were applied to model-predicted RO₂ speciation and concentrations for the RONOCO flights. Model-predicted RO₂ species were dominated by CH₃O₂ (33 %; f =1.1 %) and HO₂ (24 %; f = 0.0 %), with smaller contributions from RO₂ derived from *iso*butene (12 %; f = 0.5 %), *cis*-2-butene and *trans*-2-butene (10 %; f = 0.05 %), and isoprene (2 %; f = 7.6 %). RO₂ species with high interference factors were a minor component of the total RO₂."

1.3 Page 3011

The authors state that the LOD reported in Table 4 are for an averaging time of 1 min, while on pages 3007-3008 a 5 min time average is state for these LOD. Stone et al. (2014b) lists these LODs for 4-5 min averages.

We thank the reviewers for highlighting this inconsistency. The averaging time is 5 minutes. The averaging time has been included in the table caption to make it clearer, and the main text has been changed as follows:

P3011 L27:

"Table 4 summarises the OH and HO_2^* measurements during RONOCO and SeptEx and gives the instrument's average 1σ limit of detection for a 5 minute averaging period."

1.4 Page 3014

The authors present the OH and HO₂ measurements as a function of altitude, but calculate what appear to be average rates in Figures 11-14. This should be clarified in the text. Did the authors observed an altitude dependence of these rates? A figure that illustrates the measured concentrations of ozone, NO₃ and alkenes as a function of altitude would be useful.

Average rates of production are presented in Figures 11 to 14. This has been made clearer in the text:

P3017, L12: "The rates of reaction and rates of instantaneous production of HO₂ presented hereafter are average values for individual flights, seasons, or times of day."

The figure captions for Table 6 and Figures 11-14 have been amended to read "average rates of reaction" or "average rates of instantaneous production of HO₂" as appropriate.

No significant altitude dependence of the rates of reaction of O_3 and NO_3 with the alkenes measured, or of the rate of production of HO_2 , was observed.

A figure illustrating the altitude profiles of NO₃, O₃ and two selected alkenes (*trans*-2-butene and propene, which are dominant in reactions of oxidants with the alkenes measured during RONOCO, and in production of HO₂) is shown below (Figure 1) and will be included in the manuscript as Figure 3 (numbering of subsequent figures and references to them have been updated).

The new figure is introduced:

P3006 L19:

"Table 3 also highlights the unusual chemical conditions encountered during flight B537 on 20th July 2010, discussed further in Sect. 4.1. Nighttime altitude profiles of NO₃, O₃, *trans*-2-butene, and propene (the latter two being illustrative of the alkenes measured) are given in Fig. 3."

Figure 1. Nighttime altitude profiles of a) NO_3 ; b) O_3 ; c) Trans-2-butene; d) Propene, showing 60 second data (grey points) and mean values in 500 m altitude bins (solid black lines).

Review #2

2.1 P2999 L21

The oxidising capacity of the atmosphere is described as its "ability" to remove trace gases. While capacity is a physical and quantifiable characteristic of a system, ability is not. Please reword.

The authors acknowledge that "ability" is not suitable. The sentence contributes nothing further to the preceding sentence, so it has been removed.

2.2 P3008 L23-26

Why were equal concentrations of HO_2 and RO_2 used to constrain the model? The sentence "the model was run until the model interference ... matched the interference measured in the interference experiments" is clumsy. Please re-word and state how the model was tuned to get it to match.

Equal concentrations of HO_2 and RO_2 were used to initialise the model calculations used to determine RO_2 interferences. The experimental determination of RO_2 interference used equal concentrations of HO_2 and RO_2 , and compared the 'HO_2' signal to experiments in which no RO_2 radicals were present. The fractional increase in the observed signal on addition of RO_2 to the system thus represents the fractional RO_2 interference. The model calculations were performed to replicate the experimental method, with the model tuned to the observed increase in 'HO₂' signal on inclusion of the RO_2 species by varying the reaction time (representing the extent of mixing of NO and residence time in the detection cell) until the modelled interference matched the experimental observations.

The sentence has been reworded as follows:

P3008 L25 to P3009 L1:

"The model run time was varied until the model-predicted interference from ethene-derived RO_2 radicals was equal to the experimentally-determined interference, thereby tuning the model to the conversion efficiency of HO_2 to OH."

Please see Sect 2.1.2 for further discussion of this section of the manuscript.

2.3 P3008 L28

"interference measurements described above". There is no description of the so-called interference experiments, only a citation to Whalley.

The sentence has been changed (see Sect. 1.6 of this document), and "interference measurements described above" has been removed. The aircraft instrument experiments, which have not been published elsewhere, are mentioned briefly after the reference to Whalley et al.

2.4 P3009 L14

After describing the corrections for HO_2 and deriving alkene dependent correction factors for the HO_2 measurements the authors then state that the correction (on average 14 %) was not made. If they trust the correction, they should apply it to the data. Correction of the observations of HO_2^* to determine HO_2 relies on the model calculated RO_2 speciation and RO_2 concentrations, and would thus make HO_2 a combination of observations and model products. In order to avoid this we report the HO_2^* as observed, as is the case for other groups (e.g. Lu et al., 2012; Griffith et al., 2013), and apply the interference to the modelled HO_2 (as described in Stone et al., 2014), maintaining independence of the observed data from the modelled data.

The manuscript has been changed as follows:

P3009 L14:

"The HO₂ measurements made during RONOCO and SeptEx were not adjusted since speciated RO₂ measurements were not available. The measurements are hereafter referred to as HO_2^* ."

2.5 P3011 L10

Wall losses of NO_3 and N_2O_5 were determined prior to and after each flight. What was the variability in this parameter and how large the correction factor? The total uncertainty in the NO_3 measurement is given as 11 %. This seems too low, especially considering that the NO_3 -transmission of the aircraft inlet is unknown.

As described in detail by Kennedy et al. (2011) potential changes to the transmission efficiency caused by ageing or build-up of particulates on the PFA surface were investigated by determining the pseudo first order loss rate of NO₃ onto the instrument's internal surface, $k_{\text{NO3 loss}}$, prior to and following each flight. For each flight the measured rate coefficient was found to equal that measured in the laboratory (0.27 s⁻¹ ± 0.02 s⁻¹), within error, indicating negligible change to the PFA surface.

High flow rates through channels 1 and 2 ensure short residence times (380 ms in channel 1 and 170 ms in channel 2). The calculated transmission efficiencies of NO₃ into channels 1 and 2 are $T_1 = 90 \% \pm 1.5 \%$ and $T_2 = 96 \% \pm 0.7 \%$, respectively.

The transmission efficiency of N₂O₅ into channel 1, T_0 , depends upon direct loss of N₂O₅ to the walls of the inlet and wall losses of NO₃ produced by thermal dissociation. The loss rate of N₂O₅ to the walls of the inlet was found to be considerably slower than that for NO₃ ($k_{N2O5 loss} = 0.042 \text{ s}^{-1} \pm 0.004 \text{ s}^{-1}$). The short residence time in the inlet (<0.02 s) ensures that direct losses of N₂O₅ are within the error of ambient N₂O₅ measurements and can be

neglected. Accordingly T_0 is determined by loss of NO₃ following thermal dissociation. For a residence time of 250 ms between the preheater and the detection cell T_0 is calculated to be equal to 93 % ± 6 %.

The manuscript has been changed as follows:

"In addition, wall losses of NO_3 and N_2O_5 were determined before and after each flight to account for changes in the surface properties of the inlet and detection cell walls, which were found to be negligible."

2.6 P3015 L17

Is the value of 0.6 (equation 5) valid for all VOCs ? The authors should consider giving some examples of F_RO for a few different alkenes.

The calculation follows the method employed in the MCM, a near-explicit state-of-the-art organic chemistry mechanism, in which each peroxy radical is assumed to react with all other peroxy radicals at a single, collective rate. The branching ratios to RO, RC(O)CH₃, and RCH₂OH, and ROH, are determined by the structure of the peroxy radical. The value of 0.6 for primary and secondary RO₂ (excluding CH₃O₂, see below) is based on the mean of the values of the self-reactions of C₂H₅O₂, *i*-C₃H₇O₂, *neo*-C₅H₁₁O₂, *c*-C₅H₁₁O₂, CH₂=CHCH₂O₂, HOCH₂CH₂O₂, CH₃OCH₂O₂, CH₃C(O)CH₂O₂, and CH₂ClCH₂O₂, which range between 0.5 and 0.75, and is the best estimate using currently-available data. Nitrooxyalkyl peroxy radicals are assumed to react in the same manner as the RO₂ species listed above. CH₃O₂ is treated separately in the MCM, with a branching ratio of 0.330 to the non-terminating (RO) channel. Note that Equation 5 refers to the reactions of nitrooxyalkyl peroxy radicals produced from NO₃ + alkene reactions, and therefore does not include CH₃O₂, which is produced in the reactions of O₃ with alkenes.

Some examples of $F_{\rm RO}$ have been given in the manuscript as follows:

P3015 L18:

"where RO₂ represents all peroxy radicals. Average values of F_{RO} for the NO₃ + alkene reactions range between 0.50 for *trans*-2-pentene- and 1-pentene-derived RO₂ species and 0.61 for ethene-derived RO₂ species."

P3016 L19:

"... $F_{\rm RO}$ is the fraction of RO₂ radicals that react to produce RO radicals, and $F_{\rm HO2}$ is the fraction of RO radicals that react to produce HO₂ radicals, which is equal to 1 for all the alkenes studied. Average values of $F_{\rm RO}$ for the O₃ + alkene reactions range between 0.54 for 1-pentene-derived RO₂ species and 0.64 for 1-butene- and *trans*-2-pentene-derived RO₂ species."

2.7 P3017 L24

"the seasonal difference in NO_3 concentrations may have been the result of lower temperatures." As the temperatures, the equilibrium constants and NO_2 levels are known this statement can be confirmed and quantified.

We have calculated $K_{eq}[NO_2] = [N_2O_5]/[NO_3]$ for summer and winter:

 $K_{eq}[NO_2]_{summer} = 4.8$

 $K_{eq}[NO_2]_{winter} = 29.6$

 $[N_2O_5]/[NO_3]_{summer} = 3.4$

 $[N_2O_5]/[NO_3]_{winter} = 18.1$

Though $K_{eq}[NO_2]$ is not equal to $[N_2O_5]/[NO_3]$ in either season, both $K_{eq}[NO_2]$ and $[N_2O_5]/[NO_3]$ increase between summer and winter, supporting the hypothesis that the decreased concentrations of NO₃ during winter are attributable to the change in the N₂O₅-NO₃ equilibrium.

The manuscript has been changed to reflect this:

P3017 L24 to P3018 L1:

"This seasonal difference in NO₃ concentrations is attributable to the lower mean nighttime temperature in winter (277.7K) compared to summer (286.7 K) which disfavours NO₃ in the thermal equilibrium N₂O₅ \rightleftharpoons NO₃ + NO₂. $K_{eq}[NO_2]$, which determines $[N_2O_5]/[NO_3]$, is calculated to be 4.8 in summer and 29.6 in winter."

2.8 P3021

The authors calculate the rate of HO_2 production assuming that the losses of NO_3 are completely accounted for by the alkenes measured. Based on this assumption, the authors should also be able to calculate the steady-state mixing ratios of NO_3 as the production term (via O_3 and NO_2) is known. They will find that the NO_3 concentrations calculated this way are too high as the true overall loss rate is actually not known. Indeed on page 3023 the authors show that the model used also over-predicts NO₃. The authors then state that the discrepancy between modelled and measured NO₃ helps to explain the model overprediction of the role of NO₃ in HO₂ generation. I'm not sure if this is correct. If the model does not account for the losses of NO₃ with hydrocarbons that were not measured it will generate more N_2O_5 (as the model NO3 lifetime increases) and thus underestimate the rate of oxidation of VOCs by NO₃ and thus also UNDERpredict the rate of RO₂ production.

We acknowledge that calculating steady-state mixing ratios of NO₃ using NO₃ + alkenes as the sole loss mechanism would indeed lead to overprediction of NO₃ concentrations compared to the measured values. However, we aim to highlight the relative importance of NO₃ and O₃ in the production of HO₂ during summer and winter, and to compare the calculations to the results of the modelling study by Stone et al. (2014), rather than focussing on the absolute rates of production of HO₂. Both the modelling study and the current work use observed values of [O₃] to calculate rates of reaction between O₃ and alkenes and subsequent rates of production of HO₂, so the contribution of O₃ + alkenes to production of HO₂ is equivalent in Stone et al. and in the current work. Since the model overpredicts the observed NO₃ concentrations by 80 % on average, and is constrained to observed values of [O₃], the model is expected to predict an enhanced role for NO₃ relative to that of O₃ in production of HO₂, compared to calculations based entirely on the observations.

The manuscript has been changed to highlight the relative importance of NO_3 and O_3 in production of HO_2 :

P3024, L6 to L12:

"These results are in general agreement with the results of the analysis presented in Sect. 6.1, though the model predicts a more important role for NO₃ (80 % of RO_x radical production, which is 7.2 times the contribution from O_3 + alkenes) than is predicted by the analysis based on the observations (69 % of HO₂ radical production during summer, which is 2.1 times the contribution from O_3 + alkenes). The model predicts a relatively small role for O_3 in both summer and winter. The model is constrained to measured values of O_3 , but overpredicts NO₃...."

2.9 P3023 L15

Data from flight B537 were excluded owing to atypical observations of HO_2 , NO_3 , O_3 and "other chemical species". What does atypical mean? Sometimes "atypical" events can be a better test of our understanding of chemical processes than analysis of only the data that we a priori expect to find.

In this instance atypical refers to the high concentrations of HO₂, NO₃, O₃, CO, aerosol surface area, and aerosol organic fraction compared to the values measured in other flights, as described in Sect. 4.1 (P3013, L5 to L10). We agree that this flight offers a good opportunity to investigate the atmospheric chemistry sampled, which is why we have used it as a small case study in the current work, highlighting the observed correlation between HO₂* and NO₃ and including the analysis of the production of HO₂ during this individual flight. Model results constrained to measurements of long-lived species made during flight B537 were found to be outliers from the rest of the data, and were excluded to enable analysis of the data without the influence of this flight. A modelling study dedicated to interpreting the chemistry observed during B537 would be valuable.

2.10 P3026 L29

"and others" is not a useful reference.

The reference has been changed to include other publications, and "and others" has been removed:

"Alkene ozonolysis also plays a significant role in nocturnal oxidation in agreement with Salisbury et al. (2001), Geyer et al. (2003), Ren et al. (2003a), Emmerson et al. (2005), Ren et al. (2006), and Volkamer et al. (2010)."

<u>References</u>

Griffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., Carroll, M. A., Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kammrath, A., Keutsch, F. N., Lefer, B. L., Mielke, L. H., O'Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., and Zhou, X. L.: OH and HO₂ radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison, Atmos. Chem. Phys, 13, 5403-5423, 2013.

Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a missing OH source on a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541-1569, 2012.

1	Nighttime measurements of HO _x during the RONOCO
2	project and analysis of the sources of HO ₂
3	
4	H.M. Walker ¹ , D. Stone ¹ , T. Ingham ^{1,2} , S. Vaughan ¹ , B. Bandy ³ , M. Cain ^{4,5} , R.L.
5	Jones ⁴ , O.J. Kennedy ⁴ , M. McLeod ⁴ , B. Ouyang ⁴ , J. Pyle ^{4,5} , S. Bauguitte ^{6,7} , G.
6 7	Lewis ^{10,11} , R.T. Lidster ¹⁰ , S. Puniabi ^{10,11} , W.T. Morgan ^{12,13} , D.E. Heard ^{1,2}
8	,,,,,,,,,,,,,
9	[1] {School of Chemistry, University of Leeds, Leeds, UK}
10	[2] {National Centre for Atmospheric Science, University of Leeds, Leeds, UK}
11	[3] {School of Environmental Sciences, University of East Anglia, Norwich, UK}
12	[4] {Department of Chemistry, University of Cambridge, Cambridge, UK}
13	[5] {National Centre for Atmospheric Science, University of Cambridge, Cambridge, UK}
14 15	[6] {Facility for Airborne Atmospheric Measurements (FAAM), Cranfield University, Cranfield, UK}
16	[7] {National Centre for Atmospheric Science, FAAM, Cranfield University, Cranfield, UK}
17 18	[8] {Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK}
19	[9] {National Centre for Atmospheric Science, University of East Anglia, Norwich, UK}
20 21	[10] {Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK}
22	[11] {National Centre for Atmospheric Science, University of York, York, UK}
23 24	[12] {School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK}
25	[13] {National Centre for Atmospheric Science, University of Manchester, Manchester, UK}
26	

Correspondence to: D. E. Heard (d.e.heard@leeds.ac.uk)

28

29 Abstract

30 Measurements of the radical species OH and HO₂ were made using the Fluorescence Assay by Gas Expansion (FAGE) technique during a series of nighttime and daytime flights over 31 32 the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1σ limit of detection during any of the nighttime flights or during the winter daytime flights, 33 placing upper limits on [OH] of 1.8×10^6 molecule cm⁻³ and 6.4×10^5 molecule cm⁻³ for the 34 summer and winter flights, respectively. HO₂ reached a maximum concentration of 3.2×10^8 35 molecule cm⁻³ (13.6 pptv) during a nighttime flight on 20th July 2010, when the highest 36 concentrations of NO₃ and O₃ were also recorded. Analysis of the rates of reaction of OH, O₃, 37 and the NO₃ radical with measured alkenes indicates that the summer nighttime troposphere 38 39 can be as important for the processing of VOCs as the winter daytime troposphere. Analysis 40 of the instantaneous rate of production of HO₂ from the reactions of O₃ and NO₃ with alkenes 41 has shown that, on average, reactions of NO₃ dominated nighttime production of HO₂ during 42 summer, and reactions of O₃ dominated nighttime HO₂ production during winter.

43

44 **1** Introduction

45 Trace gases emitted into the atmosphere, including pollutants and greenhouse gases, are 46 removed primarily by oxidation. The hydroxyl radical, OH, is the most important oxidising 47 species in the daytime troposphere, reacting with numerous species including volatile organic 48 compounds (VOCs), CO, SO₂, and long-lived anthropogenic halogenated compounds. The oxidising capacity of the atmosphere, that is its ability to remove trace gases, is determined 49 by the concentration of OH. During the day, primary production of OH (i.e. initialisation of 50 the radical chain) occurs predominantly via photolysis of ozone at $\lambda \leq 340$ nm followed by 51 reaction of the resulting electronically excited oxygen atom, $O(^{1}D)$, with water vapour. The 52 53 OH-initiated oxidation of VOCs leads to the production of the hydroperoxy radical, HO₂, and together the two radicals form the HO_x family. A key reaction in the conversion of OH to 54 55 HO₂ is the reaction with CO:

56
$$OH + CO \rightarrow H + CO_2$$
 (R1)

57 $H + O_2 + M \rightarrow HO_2 + M$

Comment [HW1]: See reviewers' comments Sect 2.1

(R2)

⁵⁸ Reaction of OH with VOCs results in the production of organic peroxy radicals, RO₂:

59	$OH + RH \rightarrow H_2O + R$	(R3)
	2	

60	$R + O_2 + M \rightarrow RO_2 + M$	(R4)
----	------------------------------------	------

61 Reactions of HO₂ and RO₂ with NO propagate the HO_x radical chain, regenerating OH:

$$62 \quad \mathrm{RO}_2 + \mathrm{NO} \to \mathrm{RO} + \mathrm{NO}_2 \tag{R5}$$

 $63 \qquad \text{RO} + \text{O}_2 \rightarrow \text{R'O} + \text{HO}_2 \tag{R6}$

$$64 \qquad HO_2 + NO \rightarrow OH + NO_2 \tag{R7}$$

The production of OH through photolysis of ozone (and other species at longer wavelengths) is limited to daylight hours, and oxidation of trace gases at night proceeds through alternative mechanisms. Two mechanisms are known to initiate HO_x radical chemistry and oxidation chemistry at night: ozonolysis of alkenes, and reactions of the nitrate radical, NO_3 , with alkenes.

70 Reactions of ozone with alkenes occur via addition of ozone to the double bond to form a 71 five-membered ring called a primary ozonide. The primary ozonide decomposes to form one of two possible pairs of products, each pair consisting of a carbonyl compound and a 72 73 vibrationally- and rotationally-excited carbonyl oxide termed a Criegee intermediate (CI). 74 The simplest gas-phase CI, CH₂OO, and the alkyl-substituted CH₃CHOO, have been 75 observed directly by photoionisation mass spectrometry (Taatjes et al., 2008; Beames et al., 76 2012; Taatjes et al., 2012; Welz et al., 2012; Beames et al., 2013; Taatjes et al., 2013; Stone 77 et al., 2014a), by infrared absorption spectroscopy (Su et al., 2013), and by microwave 78 spectroscopy (Nakajima and Endo, 2013, 2014). Excited CIs may be stabilised by collision 79 with surrounding molecules (Donahue et al., 2011; Drozd and Donahue, 2011), or may 80 undergo isomerisation or decomposition to yield products including OH, H, and subsequently HO₂ (Paulson and Orlando, 1996; Kroll et al., 2001a; Kroll et al., 2001b; Kroll et al., 2002; 81 82 Johnson and Marston, 2008). Stabilised CIs (SCIs) are known to react with a variety of compounds, including H₂O, NO₂, SO₂, and a variety of organic compounds (e.g. Mauldin III 83 84 et al., 2012; Taatjes et al., 2012; Ouyang et al., 2013; Taatjes et al., 2013; Stone et al., 2014a; 85 Taatjes et al., 2014). There is experimental evidence for the formation of OH from thermal decomposition of SCIs, on a much longer timescale than the decomposition or isomerisation 86 of excited CIs (Kroll et al., 2001a; Kroll et al., 2001b). The OH produced through these 87 88 ozonolysis mechanisms will proceed to oxidise other VOC species. Criegee intermediates formed in the ozonolysis of alkenes are known to be an important source of HO_x during the 89

day and at night (Paulson and Orlando, 1996; Donahue et al., 1998; Kanaya et al., 1999;

Salisbury et al., 2001; Geyer et al., 2003; Ren et al., 2003a; Heard et al., 2004; Harrison et al.,

92 2006; Ren et al., 2006; Sommariva et al., 2007). The gas-phase ozonolysis of unsaturated

93 VOCs, and in particular the role and subsequent chemistry of the Criegee intermediate, have

been reviewed in detail by Johnson and Marston (2008), Donahue et al. (2011), Vereecken

95 and Francisco (2012), and Taatjes et al. (2014).

96 Another key nighttime oxidant, NO₃, is formed primarily by reaction of NO₂ with ozone.

NO₃ reacts with a range of species in the troposphere, and its reaction with alkenes is known
to be an important nighttime oxidation mechanism (Salisbury et al., 2001; Gever et al., 2003;

99 Sommariva et al., 2007; Emmerson and Carslaw, 2009; Brown et al., 2011). The reaction

100 between NO₃ and an alkene proceeds primarily via addition to a double bond, to form a

101 nitrooxyalkyl radical, R–ONO₂. At atmospheric pressure, the main fate of the nitrooxyalkyl

102 radical is reaction with O_2 (Berndt and Böge, 1994) to produce a nitrooxyalkyl peroxy

radical, O_2 -R-ONO₂. The nitrooxyalkyl peroxy radical can react with NO₂, HO₂, RO₂, NO

104 and NO₃, of which the latter two reactions lead to formation of the nitrooxyalkoxy radical,

105 $O-R-ONO_2$. The nitrooxyalkoxy radical can undergo isomerisation, decomposition, or 106 reaction with O_2 . Reaction with O_2 , analogous to the reaction of organic alkoxy radicals,

107 yields HO₂:

$$108 \quad O-R-ONO_2 + O_2 \rightarrow O-R'-ONO_2 + HO_2 \tag{R8}$$

Thus, nighttime oxidation of hydrocarbons by NO₃ leads to production of HO₂. Reaction of
HO₂ with NO (Reaction (R7)), O₃ and NO₃ can generate OH:

111 $HO_2 + O_3 \rightarrow OH + 2O_2$	
--	--

 $112 \quad HO_2 + NO_3 \rightarrow OH + NO_2 + O_2 \tag{R10}$

113 Atkinson and Arey (2003) published a detailed review of tropospheric degradation of VOCs,

including reaction with O₃ and NO₃. A comprehensive review of nighttime radical chemistryis given by Brown and Stutz (2012).

The oxidising capacity of the nocturnal troposphere is thought to be controlled by the reactions described above, with a limited role for OH and HO₂ due to the absence of their photolytic sources. Oxidation of VOCs at night can have significant effects on daytime air quality and tropospheric ozone production (Brown et al., 2004; Brown et al., 2006; Wong and Stutz, 2010; Brown et al., 2011). Several field measurement campaigns have involved nighttime measurements of OH, HO₂, RO₂, and NO₃ (see Table 1), and have highlighted the

(R9)

122 importance of the vertical profile of nighttime radical concentrations and chemistry (Geyer

and Stutz, 2004a, b; Stutz et al., 2004; Volkamer et al., 2010), but prior to the current work

there had been no aircraft-based studies of nighttime chemistry involving measurements of both NO₃ and HO₂, to enable vertical profiling of the lower atmosphere and full evaluation of the nocturnal radical budget. Table 1 gives details of some previous measurements and modelling of nighttime HO_x concentrations in polluted or semi-polluted environments.

123

128 Highlights from these studies are discussed here, with particular attention paid to those 129 involving measurements of HO_x , NO_3 , and O_3 , and in which the contributions made by O_3 130 and NO_3 to nighttime radical chemistry have been considered.

131 Geyer et al. (2003) report radical measurements and modelling from the 1998 Berliner Ozone 132 Experiment (BERLIOZ). Measurements of NO₃, RO₂, HO₂ and OH were made by matrix 133 isolation electron spin resonance (MIESR), chemical amplification (CA), and laser-induced 134 fluorescence (LIF) spectroscopy at a site approximately 50 km from Berlin. HO₂ was detected at night with concentrations frequently as high as 5×10^7 molecule cm⁻³ 135 (approximately 2 pptv), and an average concentration of 1×10^8 molecule cm⁻³ over one hour 136 137 (02:00 to 03:00) of nocturnal measurements during an intensive period of the study (Holland et al., 2003). OH was usually below the limit of detection of the LIF instrument 138 $(3.5 \times 10^5 \text{ molecule cm}^{-3})$. Modelling revealed that nitrate radical reactions with terpenes 139 140 were responsible for producing 53 % of HO2 and 36 % of OH radicals in the night, with 141 ozonolysis accounting for production of the remaining 47 % of HO₂ and 64 % of OH 142 radicals. A positive linear correlation between RO2 and NO3 was observed and was 143 reproduced by the model.

Reactions of O₃ with alkenes were found to be responsible for the majority of formation of OH during the winter PUMA (Pollution of the Urban Midlands Atmosphere) campaign (a low photolysis urban environment) (Heard et al., 2004; Emmerson et al., 2005; Harrison et al., 2006). Measurements of OH, HO₂ and RO₂ were unavailable at night, but modelpredicted values of these radicals were used to calculate that 90 % of nighttime initiation via HO₂ was from O₃ reactions. Without measurements of NO₃ during the campaign, there was no estimate of its contribution to radical initiation.

151 Modelling results from the MCMA-2003 (Mexico City) field campaign (Volkamer et al.,

152 2010) indicate that nighttime radical production at roof-top level (approximately 16 m above

the ground) was dominated by ozonolysis of alkenes, and that reactions of NO₃ with alkenes

154 played only a minor role. The measurement site was located in a polluted urban environment,

with high levels of NO, NO₂ and O₃. NO₃ was observed at a maximum concentration of 50 pptv during the night at a mean height above the ground of 70 m. Roof-top level concentrations of NO₃ were estimated using a linear scaling factor calculated from the observed O₃ vertical gradient, and were found to be, on average, 3 times lower than the concentrations measured at 70 m. This predicted vertical gradient accounts for the relative unimportance of NO₃ reactions in radical initiation at roof-top level. Propagation of RO₂ radicals to HO₂ and OH, by reaction with NO₃, was found to be negligible.

162 The 2006 Texas Air Quality Study (TexAQS) involved a series of nighttime flights onboard 163 the NOAA P-3 aircraft over Houston, Texas, and along the Gulf Coast (Brown et al., 2011).

164 Loss rates and budgets of NO₃ and highly reactive VOCs were calculated, but there were no

165 measurements of OH, HO₂ and RO₂ during the flights. Budgets for NO₃ show that it was lost

166 primarily through reactions with unsaturated VOCs, but the contribution to NO₃ loss through

167 reaction with peroxy radicals was uncertain because of the lack of direct measurements of

168 RO₂ during the flights. NO₃ dominated VOC oxidation, being 3 to 5 times more important

169 than O₃.

170 In summary, NO₃ and O₃ have both been found to dominate radical initiation in the nighttime 171 troposphere, and in some situations the two mechanisms were found to be equally important. 172 The relative importance of O₃- and NO₃-initiated oxidation depends on the availability of 173 NO_3 , which is determined by the amount of NO_x present in the atmosphere and the ratio of NO to NO₂, and the concentration and species distribution of VOCs (Bey et al., 2001; Geyer 174 175 et al., 2003). A modelling study by Bey et al. (2001) suggests that nocturnal radical initiation 176 is driven by alkene ozonolysis in urban environments or in environments with low NO_x 177 concentrations, while both O₃ and NO₃ contribute to radical initiation in rural environments 178 with moderate NO_x levels. It is expected that NO₃ dominates nocturnal radical initiation in air 179 masses containing sufficient NO₂ and O₃ for NO₃ production while being deprived of NO 180 (e.g. air masses downwind of urban areas). Geyer and Stutz (2004b) have found that the 181 effects of suppressed mixing in the nocturnal boundary layer can also control whether NO₃ or

182 O₃ dominates nighttime radical chemistry.

In this paper we report airborne measurements of OH and HO₂ made during the RONOCO (ROle of Nighttime chemistry in controlling the Oxidising Capacity of the atmosphere) and SeptEx (September Experiment) projects in 2010 and 2011. The rates of reaction between O₃, NO₃, and OH with the alkenes measured during the flights are investigated. Analysis of radical production from the nighttime reactions of O₃ and NO₃ with alkenes is also given. 188 Comparisons are made between the daytime and nighttime chemistry studied, and between

189 the summer and winter measurement periods. Details and results of a box modelling study,

- and comparison to the observations, are given by Stone et al. (2014b).
- 191

192 2 Details of the RONOCO and SeptEx fieldwork

193 RONOCO is a NERC-funded consortium project aimed at improving our understanding of 194 the mechanisms and impact of nocturnal oxidation chemistry over the UK. The RONOCO 195 fieldwork consisted of two measurement campaigns, in July 2010 and January 2011. An 196 additional fieldwork period, SeptEx, was conducted in September 2010. The RONOCO and 197 SeptEx flights were conducted onboard the BAe-146 research aircraft operated by the Facility 198 for Airborne Atmospheric Measurements (FAAM). Both field measurement campaigns were 199 based at East Midlands Airport (52.8° N, 1.3° W) in the UK. During RONOCO the majority 200 of the flying took place at night, with occasional flights beginning or ending in daylight hours 201 to study chemical behaviour at dusk and dawn. Flights during SeptEx were mainly during the 202 day, providing a useful comparison to the nocturnal chemistry.

Flights were conducted between altitudes of 50 m and 6400 m, above the UK and the North Sea. Figure 1 shows the flight tracks during the summer, SeptEx, and winter measurements coloured by altitude. Measurements of OH and HO₂ were made using the University of Leeds aircraft-based Fluorescence Assay by Gas Expansion (FAGE) instrument. A suite of supporting measurements, including CO, O₃, NO, H₂O, VOCs, NO₃, and HCHO, were made during the flights and have been used in the current work. Table 2 summarises the techniques used to measure these species.

210 Air mass histories for each flight have been calculated using the UK Met Office Numerical 211 Atmospheric-dispersion Modelling Environment (NAME). NAME is a three-dimensional 212 Lagrangian particle dispersion model (Jones et al., 2007) which is run here using the UK 213 Meteorological Office's Unified Model meteorological fields. Model 'particles', restricted to 214 a 300 m deep layer from the surface, were released along the flight path and were tracked 215 backwards through the modelled atmosphere. Model particle densities were integrated over 216 24 h periods, beginning at 24, 48, 72, and 96 hours before each flight. The resulting 217 'footprint' maps show the regions where the measured air has been in contact with the 218 surface over the 4 days preceding a flight. An example is shown in Fig. 2, which shows 219 model particle densities integrated over the 24 hour period beginning 48 hours prior to flight 220 B535. The majority of the summer flights were characterised by air masses originating from

221 the west and south west of the UK, having Atlantic or continental European influences. The

222 SeptEx flights were predominantly influenced by air masses from the north-east, east, and

south-east of the UK, with northern European influences. The winter flights were mainly

characterised by air masses arriving from the west of the UK, bringing Atlantic influences.

225 Table 3 gives mean and maximum mixing ratios of CO, O₃, NO, and NO₂ measured during 226 RONOCO and SeptEx. The mean mixing ratios of NO measured during the summer 227 RONOCO flights are much lower than ground-based nighttime measurements (e.g. 1.0 ppbv during TORCH (Emmerson and Carslaw, 2009), 0-20 ppbv during PMTACS-NY, (Ren et 228 229 al., 2006)), but are comparable with previous airborne nighttime measurements (e.g. 230 < 30 pptv during TexAQS (Brown et al., 2011)). Mean values of NO up to 14 pptv were 231 reported by Salisbury et al. (2001) for semi-polluted air masses sampled at Mace Head. These 232 comparisons indicate that the RONOCO and SeptEx flights enabled sampling of air masses 233 generally removed from the influence of NO in fresh surface emissions. Table 3 also 234 highlights the unusual chemical conditions encountered during flight B537 on 20th July 2010,

discussed further in Sect. 4.1. <u>Nighttime altitude profiles of NO₃, O₃, trans-2-butene, and</u>
propene (the latter two being illustrative of the alkenes measured) are given in Fig. 3.

Comment [HW2]: See Reviewers' Comments Sect 1.4

237

238 3 Experimental

239 3.1 The Leeds FAGE aircraft instrument

The University of Leeds Aircraft FAGE instrument has been described in detail by Commane et al. (2010). A brief description is given here. The instrument, which was designed specifically for use onboard the FAAM BAe-146 research aircraft (Floquet, 2006), is housed in two double-width 19 inch aircraft racks, with the inlet, detection cells, and pump set being separate to the two racks. Ambient air is sampled through a 0.7 mm diameter 'pinhole' into a cylindrical inlet (length = 50 cm, diameter = 5 cm) which extends through a window blank on the starboard side of the aircraft.

Downstream of the inlet are two low pressure fluorescence cells positioned in series, the first
for detection of OH and the second for detection of HO₂. During the RONOCO and SeptEx
flights the pressure inside the cells ranged from 1.9 Torr at ground level to 1.2 Torr at 6 km.

250 Laser light at $\lambda \sim 308$ nm is generated by a diode-pumped Nd:YAG-pumped tunable

Ti:Sapphire laser (Photonics Industries DS-532-10 and TU-UV-308nm) and delivered to the fluorescence cells via optical fibres, on an axis perpendicular to the gas flow. A small fraction of the Ti:Sapphire second harmonic ($\lambda = 462$ nm) is directed to the probe of a wavemeter to

enable measurement of the laser wavelength to within 0.001 nm. A UV photodiode is

255 positioned opposite the laser input arm on each fluorescence cell to measure laser power.

256 The sampled air forms a supersonic gas expansion beam in which the rate of collision 257 between OH radicals and ambient air molecules is reduced. The OH fluorescence lifetime is 258 therefore extended to several hundred nanoseconds, significantly longer than the laser pulse, 259 so that the measured signal can be temporally discriminated from laser scattered light. OH is excited from its ground state, $X^2 \prod_i (v'' = 0)$, to its first electronically excited state, 260 $A^{2}\Sigma^{+}(v'=0)$, at $\lambda \sim 308$ nm. The resulting on-resonance fluorescence is detected by a UV-261 262 sensitive channel photomultiplier tube on an axis perpendicular to both the gas flow and the 263 laser light. HO_2 is detected by titration with an excess of NO (Reaction (R7)), the resulting 264 OH being detected as described.

265 The FAGE instrument was calibrated prior to and following each field measurement period, 266 using a well-established method (Edwards et al., 2003; Faloona et al., 2004; Commane et al., 267 2010). Light at $\lambda = 184.9$ nm from a mercury pen-ray lamp photolyses water vapour in a flow 268 of synthetic air inside an aluminium flow tube, generating OH and HO₂ at known concentrations. The aircraft FAGE instrument's limit of detection (LOD) for OH and HO₂ is 269 270 determined by the instrument's sensitivity and the standard deviation of the background signal. During the RONOCO and SeptEx fieldwork the 1_o LOD for a 5 minute averaging 271 period ranged between 0.64 and 1.8×10^6 molecule cm⁻³ for OH and between 5.9 and 272 6.9×10^5 molecule cm⁻³ for HO₂. 273

274 3.2 RO₂-based interference in FAGE measurements of HO₂

It has recently been shown that reaction of alkene-derived β -hydroxyalkyl peroxy radicals, RO₂, with NO inside the HO₂ detection cell, can lead to interference in FAGE HO₂ measurements (Fuchs et al., 2011; Whalley et al., 2013). The magnitude of the interference depends on the parent alkene, the residence time and mean temperature inside the cell, and the amount of NO injected. The interference therefore depends on the chemical environment and differs between FAGE instruments. In view of this, the University of Leeds ground-based and aircraft FAGE instruments have been tested for RO_2 interference. A thorough description of the ground-based experimental method and results, and the results of a modelling study, are given by Whalley et al. (2013). The strongest interference in the aircraft instrument measurements was observed for ethene-derived RO_2 , amounting to an increase of 39.7 ± 4.8 % in the observed HO₂ signal, with a cell pressure of 1.8 Torr, an estimated detection cell temperature of 255 K (obtained from rotational excitation spectra performed previously), and

287 $[NO]_{cell} = 10^{14} \text{ molecule cm}^{-3}.$

Comment [HW3]: See Reviewers Whalley et al. (2013) show that the chemistry responsible for the observed interferences is 288 Comments Sect. 1.2 289 well known, and that a model using the Master Chemical Mechanism (MCM, version 3.2: Jenkin et al., 1997; Saunders et al., 2003; Bloss et al., 290 2005, via 291 http://mcm.leeds.ac.uk/MCM) can reproduce the interferences once tuned to the conversion 292 efficiency of HO₂ to OH in the FAGE detection cell. Accordingly, Stone et al. (2014b) have 293 applied the results of the ethene-derived RO₂ interference testing in a modelling study to 294 assess the effect of the interference on the HO2 measurements made during the RONOCO 295 and SeptEx campaigns. A box model using a detailed MCMaster Chemical Mechanism 296 scheme was used to calculate a total potential interference in the RONOCO HO2 297 measurements. The model was constrained to the conditions in the detection cell (1.8 Torr, 255 K, [NO] ~ 10^{14} molecule cm⁻³). Equal concentrations of HO₂ and $\sum RO_2$ (sum of all 298 299 peroxy radicals in the MCM generated from the parent hydrocarbon) were used to initialise 300 the model. The model run time was varied until the model was-predicted interference from **Comment [HW4]:** See Reviewers' Comments Sect 1.2, Sect. 2.2, and Sect 2.3 301 ethene-derived RO₂ radicals was equal to the experimentally determined interference, thereby 302 tuning the model to the conversion efficiency of HO₂ to OH. - run until the modelled 303 interference (i.e. concentration of OH produced) from ethene derived RO2-radicals matched interference measured in the interference experiments described above (~ 40 %). An 304 interference factor, f, was calculated for each RO₂ in the MCM as follows: 305 -

306
$$f = \frac{[OH]_{HO_2 + RO_2} - [OH]_{HO_2}}{[OH]_{HO_2}}$$

307 where $[OH]_{HO_2+RO_2}$ and $[OH]_{HO_2}$ are the modelled concentrations of OH produced from the 308 reactions of RO₂ and HO₂, and the concentration from HO₂ alone, respectively. The greatest 309 interference was calculated to come from isoprene-derived peroxy radicals, followed by 310 aromatic compounds and C₂ to C₅ alkenes. The smallest modelled interference is from the C₁ 311 to C₃ alkanes. The interference factors were applied to model-predicted RO₂ speciation and

Comment [HW5]: See Reviewers'

Comments Sect 1.2

(1)

312	concentrations for the RONOCO flights. Model-predicted RO2 species were dominated by
313	<u>CH₃O₂ (33 %; $f = 1.1$ %) and HO₂ (24 %; $f = 0.0$ %), with smaller contributions from RO₂</u>
314	derived from <i>iso</i> -butene (12 %; $f = 0.5$ %), <i>cis</i> -2-butene and <i>trans</i> -2-butene (10 %; $f = 0.05$
315	<u>%)</u> , and isoprene (2 %; $f = 7.6$ %). RO ₂ species with high interference factors were a minor
316	component of the total RO2. A modelled value of HO2 including the total potential
317	interference, [HO ₂]*, was calculated using:
318	$[\mathrm{HO}_{2}^{*}] = [\mathrm{HO}_{2}]_{\mathrm{mod}} + f[\mathrm{RO}_{2}]_{\mathrm{mod}} $ (2)
319	Direct comparison between modelled values of $[HO_2^*]^*$ and the FAGE-measured values of

Direct comparison between modelled values of $[HO_2^*]$ and the FAGE-measured values of [HO₂] was therefore made possible. The model-predicted interference during the RONOCO campaign <u>is_can_be</u> described by $[HO_2]^* = 1.15[HO_2] + 2 \times 10^5$ molecule cm⁻³. The average model-predicted interference in the HO₂ measurements is 14 %. The HO₂ measurements made during RONOCO and SeptEx were not adjusted <u>since speciated RO₂ measurements</u> were not available. The measurements are hereafter referred to as HO₂*.

325 The magnitude of the RO₂ interference can be reduced by reducing the concentration of NO 326 in the detection cell. This also reduces the instrument sensitivity to HO₂. Since conversion of 327 RO₂ to OH requires at least two NO molecules, while conversion of HO₂ requires only one 328 molecule, the ratio of HO₂ signal to RO₂ signal can be made favourable by reducing [NO] (Whalley et al., 2013). This effect has been investigated for the ground-based instrument, and 329 330 will be investigated for the aircraft instrument prior to future HO_x measurement campaigns. 331 An overview of the laboratory and computational studies of the interference in different 332 FAGE instruments is given in a recent review by Stone et al. (2012).

333 3.3 BBCEAS measurements of NO₃ and N₂O₅

NO₃ and N_2O_5 were measured by the University of Cambridge broadband cavity enhanced absorption spectroscopy (BBCEAS) instrument. The instrument was designed and built specifically for the RONOCO project and is described in detail in Kennedy et al. (2011). A brief description is given here.

The instrument consists of three 94 cm long high finesse optical cavities formed by pairs of highly reflecting mirrors. The cavities are irradiated by incoherent broadband continuous wave light sources. Two of the cavities, for the detection of N_2O_5 and NO_3 , are irradiated by red light emitting diodes (LEDs) centred at 660 nm. The third cavity, for the detection of NO_2 , is irradiated by a blue LED centred at 460 nm. The light from the LEDs is collimated **Comment [HW6]:** Changed equation: "*" inside square brackets and not superscript

Comment [HW7]: See Reviewers' Comments Sect 2.4 Comment [HW8]: See Reviewers' Comments Sect. 1.1 343 using optical fibres and a focussing lens at the input of each cavity. A spectrometer,

consisting of a spectrograph and charge couple device (CCD), is positioned at the end of each

345 cavity to measure the wavelength-dependent intensity of transmitted light.

344

346 Ambient air is sampled through a rear-facing inlet on the aircraft fuselage, positioned 347 approximately 4 m from the aircraft nose and 10 cm from the aircraft body. The air from the 348 inlet is divided into two flows. The flow directed to the N2O5 cavity is heated to 120 °C to ensure near complete (> 99.6 %) thermal dissociation of N_2O_5 to NO_2 and NO_3 . The cavity 349 350 itself is heated to 80 °C and is used to measure the sum of the concentrations of ambient NO3 351 plus NO₃ from thermal decomposition of N₂O₅. The second flow is unheated and is directed 352 first through the NO₃ cavity and then through the NO₂ cavity. Background spectra are 353 recorded at half hour intervals during flights by halting the flow of ambient air and purging 354 the cavities with nitrogen.

355 NO₃ is detected by its strong $B^2E' - X^2A'_2$ electronic transition centred at 662 nm. The concentration of NO₃ is determined by separating the finely structured NO₃ absorption 356 357 features from the broad features caused by Rayleigh and Mie scattering using a fitting 358 technique analogous to that employed in differential optical absorption spectroscopy 359 (DOAS). A strong water vapour absorption feature that spectrally overlaps with NO₃ 360 absorption around 662 nm is simulated for the pressure and temperature measured in the 361 cavity and is removed from the measured absorption spectrum. The concentration of N_2O_5 is 362 determined by subtracting the concentration of ambient NO₃ measured in the unheated cavity 363 from the sum of the concentrations of ambient and dissociated NO₃ measured in the heated 364 cavity.

365 Contributions to uncertainties in ambient measurements of NO₃ and N₂O₅, including wall 366 losses of NO3 and N2O5, temperature- and pressure-dependent absorption cross sections of 367 NO_3 and H_2O , and the length of the cavity occupied by the sample, have been thoroughly 368 investigated in laboratory experiments or addressed in the data analysis routine. In addition, 369 wall losses of NO₃ and N₂O₅ were determined before and after each flight to account for changes in the surface properties of the inlet and detection cell walls, which were found to be 370 371 negligible. The total uncertainty in the measured concentration of ambient NO₃ was 11 %. The uncertainty in the measured concentration of ambient N2O5 is determined for each 372 373 individual ambient measurement, being dependent on the NO_3/N_2O_5 ratio, and was on the

Comment [HW9]: See Reviewers' Comments Sect 2.5 374 order of 15 %. During RONOCO flights the 1 σ limits of detection for NO₃ and the sum of 375 NO₃ + N₂O₅ were 1.1 pptv and 2.4 pptv, respectively, for a 1 second integration time.

- 376
- 377

4 Overview of OH and HO₂^{*} measurements

FAGE measurements were made on 16 flights during RONOCO and 9 flights during SeptEx. There was insufficient laser power during flights B534 to B536 in the summer campaign to measure both OH and HO₂* by dividing the laser light between the two cells. OH was therefore not measured during these flights. Low laser power throughout the summer fieldwork caused relatively high fluctuations in laser power and therefore higher background variability. This resulted in higher limits of detection for OH (1.8×10^6 molecule cm⁻³) and HO₂* (6.9×10^5 molecule cm⁻³).

385 Table 4 summarises the OH and HO2* measurements during RONOCO and SeptEx and gives 386 the instrument's average 1σ limit of detection for <u>a 5one</u> minute <u>averaging period of data</u>. OH was not detected above the limit of detection during the summer or winter RONOCO flights, 387 resulting in upper limits of 1.8×10^6 molecule cm⁻³ and 6.4×10^5 molecule cm⁻³ for mean 388 summer and winter concentrations, respectively. These upper limit values are similar to 389 390 previously reported nighttime OH measurements (Geyer et al., 2003; Holland et al., 2003; Ren et al., 2003b; Emmerson and Carslaw, 2009). The mean daytime OH concentration 391 during SeptEx was 1.8×10^6 molecule cm⁻³, which was above the limit of detection. The 392 393 mean HO₂* mixing ratio was highest during SeptEx (2.9 pptv), and was higher during 394 summer (1.6 pptv) than during winter (0.7 pptv). The OH and HO₂* datasets for RONOCO 395 and SeptEx are shown as altitude profiles in Fig. 43 and Fig. 54, respectively.

Table 5 gives the mean and maximum HO_2^* mixing ratios at different times of day during summer, SeptEx and winter. Dawn, day, dusk and night are defined by the solar zenith angle as follows: dawn and dusk are between 90 and 102° and are distinguished by the time of day; day is between 0° and 90°; night is between 102° and 180°.

400 The mean dusk HO_{2}^{*} mixing ratio in summer was higher than the mean nighttime mixing 401 ratio, suggesting that photochemical production was still active at dusk in summer. The 402 reverse was true for the winter data, with the highest mean HO_{2}^{*} mixing ratio being at night. 403 This suggests that when photochemical production was suppressed in the winter daytime due 404 to low photolysis rates, production via reactions of NO_{3} and O_{3} with alkenes was an 405 important route to radical initiation. The RONOCO HO_{2}^{*} measurements are similar to **Comment [HW10]:** See Reviewers' Comments Sect 1.3 406 nighttime, ground-based, urban measurements. For example, during the TORCH campaign, 407 [HO₂] peaked at 1×10^8 molecule cm⁻³ at night (Emmerson et al., 2007), and during the 408 PMTACS-NY 2001 field campaign, nighttime HO₂ concentrations of 8×10^6 molecule cm⁻³ 409 were measured (Ren et al., 2003b).

410 **4.1** Case study flight B537: high nighttime HO₂^{*} concentrations

411 The highest HO_2^* concentration $(3.2 \times 10^7 \text{ molecule cm}^{-3}; 13.7 \text{ pptv})$ was measured during 412 nighttime flight B537 on 20th July 2010. Take-off from East Midlands Airport was at 22:00 413 local time (21:00 UTC, sunset at 20:18 UTC). The flight track, coloured by altitude, is shown 414 in Fig. <u>65</u>. The flight involved a profile descent from 3350 m to 460 m down the Norfolk 415 coast and a missed approach at Southend Airport (51.6° N, 0.70° E). Plumes from European 416 continental outflow (see Fig. <u>76</u>) were intersected by a series of runs at altitudes between 460 417 m and the upper boundary of the polluted layer.

418 Flight B537 is an unusual flight within the RONOCO dataset, with high concentrations of CO, O₃, NO₃, and high temperatures compared to the values measured during other nighttime 419 flights (see Table 3). The ambient aerosol surface area was significantly higher during B537 420 (nearly 800 μ m² cm⁻³) than during other flights (between 100 and 400 μ m² cm⁻³), and the 421 organic aerosol concentration was significantly enhanced (Morgan et al., 2014). Footprint 422 423 maps for flight B537, indicating regions where the sampled air was in contact with the surface prior to the flight, are shown in Fig. 67. The air sampled during the flight originated 424 primarily over northern France, Belgium and Germany. 425

A region of high surface pressure was positioned over the UK on the 20th July, with a mean 426 air pressure of 1012.6 hPa over the 24 hours prior to the flight. The mean air temperature 24 427 428 hours prior to the flight (22:00 19/07/2010 to 22:00 20/07/2010), measured at a number of Met Office weather stations in Greater London, was 22.6 °C, and reached a maximum value 429 of 28.6 °C. Wind speeds prior to the flight were low, with an average value of 4.7 knots 430 (2.4 m s^{-1}) . No rainfall was recorded at any of the Greater London weather stations during the 431 24 hours prior to the flight. 12.4 hours of sunshine were recorded on the 20th July at 432 Heathrow Airport (51.5 °N, 0.45 °W). High temperatures, combined with low wind speed, 433 434 exposure to solar radiation, and little precipitation promote the formation of ozone as a result 435 of photochemical processing of VOCs emitted at the surface (e.g. Lee et al., 2006), and offer 436 an explanation for the high ozone mixing ratios measured during flight B537. Peak surface daytime ozone concentrations measured in Teddington, London, on 20th July were on the 437

438 order of 2.0×10^{12} molecule cm⁻³ (~78 ppbv) (data available at www.airquality.co.uk). 439 Similar levels were recorded at a number of locations within Greater London.

440 Figure 8 Figure 7 shows a time series of altitude, HO2*, O3, and NO3 mixing ratios during the 441 flight, demonstrating very similar behaviour between the two radical species. During the 442 missed approach at Southend Airport the mixing ratios of HO_2^* and NO_3 increased with 443 decreasing altitude, to reach values of 4.5 pptv and 35 pptv, respectively, at 50 m above the 444 ground. The maximum HO2^{*} and NO3 mixing ratios were measured over the North Sea east of Ipswich (52.16 ° N, 2.34 ° E) at an altitude of 509 m, in the outflow of the London plume. 445 Figure 9Figure 8 shows scatter plots of HO₂* against NO₃ and O₃ during flight B537 and 446 447 during the other nighttime flights during RONOCO. Strong positive correlation is evident between HO₂^{*} and NO₃ during B537 (r = 0.97), while during the remaining night flights 448 449 there is still a significant, though weaker, correlation (r = 0.58). Moderate negative 450 correlation is evident between HO₂^{*} and O₃ during B537 (r = -0.46), with weak positive correlation existing for the other nighttime flights (r = 0.19). The data suggest that NO₃ was 451 452 an important initiator of HO_x radicals during flight B537, and that O₃ played a limited role 453 overall during the nighttime flights. Further investigation of the roles of NO₃ and O₃ in alkene 454 oxidation and radical initiation at night is described in Sect. 5.

455

456 **5** Oxidation of alkenes and production of HO₂: method of analysis

Following the work of Salisbury et al. (2001), the total rates of reaction, Φ , of O₃ and NO₃ with the alkenes measured during RONOCO and SeptEx have been calculated:

459
$$\Phi_{O_3} = \sum_{i}^{\text{alkene}} k_{O_3 + \text{alk}_i} [O_3] [\text{alkene}_i]$$
(3)

460
$$\Phi_{\text{NO}_3} = \sum_{i}^{\text{alkelie}} k_{\text{NO}_3 + \text{alk}_i} [\text{NO}_3] [\text{alkene}_i]$$
(4)

The reactions of O_3 and NO_3 with alkenes yield OH, HO₂, and RO₂ radicals. Consideration of the reaction mechanisms of NO₃ and O₃ enables calculation of the rate of instantaneous production of HO₂ (P_{HO_2}) from the reactions of NO₃ and O₃ with the alkenes measured during RONOCO, using the chemistry scheme, rate constants and branching ratios in the MCM (Jenkin et al., 1997; Saunders et al., 2003).

Figure 10Figure 9 shows a generalized reaction scheme for the reaction of NO₃ with an 466 alkene. The reaction between NO3 and an alkene proceeds via addition of NO3 to the double 467 468 bond to form a nitrooxyalkyl radical, followed by rapid reaction with oxygen to yield a 469 nitrooxyalkyl peroxy radical, RO_2 (shown as a single step in Fig. <u>109</u>). The RO_2 radical can 470 react with a number of species, of which NO, NO₃ and RO₂ lead to production of an alkoxy 471 radical (RO). Radical termination occurs via reaction of RO2 with HO2 to yield a peroxide 472 (ROOH) or with RO₂ to yield carbonyl (RC(O)CH₃) and alcohol (RCH₂OH) products. 473 Reaction of RO with oxygen proceeds via abstraction of a hydrogen atom to yield HO_2 or an 474 aldehyde (RCHO). This generalised scheme can be applied to the reactions of NO_3 with all 475 the alkenes measured. The rate of instantaneous production of HO₂ is found by first 476 calculating the fraction of RO_2 that reacts to produce $RO(F_{RO})$, and the fraction of RO that 477 reacts to produce HO₂ (F_{HO_2}):

478
$$F_{\rm RO} = \frac{k_3[\rm NO] + k_4[\rm NO_3] + 0.6k_5[\rm RO_2]}{k_2[\rm HO_2] + k_3[\rm NO] + k_4[\rm NO_3] + k_5[\rm RO_2]}$$
(5)

479
$$F_{\text{HO}_2} = \frac{k_6 [\text{O}_2]}{k_7 + k_6 [\text{O}_2]}$$
 (6)

480 where RO₂ represents all peroxy radicals. Average values of F_{RO} for the NO₃ + alkene 481 reactions range between 0.50 for *trans*-2-pentene- and 1-pentene-derived RO₂ species and 482 0.61 for ethene-derived RO₂ species. F_{HO_2} varies between 0 and 1 for the alkenes studied. 483 Overall, the rate of production of HO₂ (P_{HO_2}) from reactions of NO₃ with alkenes is then 484 given by:

485
$$P_{\text{HO}_2} = k_i [\text{NO}_3] [\text{alkene}_i] \times F_{\text{RO}} \times F_{\text{HO}_2}$$
(7)

The reaction scheme for the reaction of O_3 with alkenes is more complicated because the 486 487 number and type of radicals produced in the O_3 + alkene reaction depends on the structure of 488 the alkene. The simplest case is the reaction of ozone with ethene. Ozone adds to the double bond to form a five-membered ring called a primary ozonide. Decomposition of the ozonide 489 yields an excited Criegee intermediate (CH₂OO^{*}) and a carbonyl compound (in this case 490 491 formaldehyde, HCHO). The energy-rich Criegee intermediate can be stabilised by collision 492 with a third body or undergo decomposition to yield products including OH, CO, and HO₂. 493 The primary ozonide produced in the O_3 + propene reaction (see Fig. 110) can decompose via 494 two channels, yielding carbonyls and Criegee intermediates with different structures and

Comment [HW11]: See Reviewers' Comments Sect 2.6 different products, including RO₂. Reaction of RO₂ with NO, NO₃ and RO₂ (all peroxy
radicals) yields RO, which in turn yields HO₂.

497 The rates of production of HO₂ from reactions of O₃ with alkenes (P_{HO_2}) have been 498 calculated as follows:

499
$$P_{\text{HO}_{2},\text{Direct}} = k_{i} \left[O_{3} \right] \left[\text{alkene}_{i} \right] \times \alpha_{\text{HO}_{2}}$$
(8)

500
$$P_{\mathrm{HO}_{2},\mathrm{RO}_{2}} = k_{i} \left[\mathrm{O}_{3} \right] \left[\mathrm{alkene}_{i} \right] \times \alpha_{\mathrm{RO}_{2}} \times F_{\mathrm{RO}} \times F_{\mathrm{HO}_{2}}$$
(9)

501
$$P_{\rm HO_2} = P_{\rm HO_2, Direct} + P_{\rm HO_2, RO_2}$$
 (10)

where $P_{\rm HO_2,Direct}$ is the rate of direct HO₂ production from Criegee intermediate 502 503 decomposition, α_{HO_2} is the branching ratio to HO₂-producing channels from the Criegee 504 intermediate, $P_{\rm HO_2,RO_2}$ is the rate of HO₂ production from RO₂ radicals produced in the O₃ + 505 alkene reaction, $\alpha_{\rm RO_2}$ is the branching ratio to RO2-producing channels from the Criegee 506 intermediate, $F_{\rm RO}$ is the fraction of RO₂ radicals that react to produce RO radicals, and $F_{\rm HO_2}$ 507 is the fraction of RO radicals that react to produce HO₂ radicals, which is equal to 1 for all the 508 alkenes studied. Average values of $F_{\rm RO}$ for the O_3 + alkene reactions range between 0.54 for 509 1-pentene-derived RO2 species and 0.64 for 1-butene- and trans-2-pentene-derived RO2 510 species.

Comment [HW12]: See Reviewers' Comments Sect. 2.6 Field Code Changed

511 The reactions of RO₂ with NO to form RONO₂ have been omitted from the calculations 512 because the branching ratio is small (0.001 to 0.02) for the radicals studied (Carter and 513 Atkinson, 1989; Lightfoot et al., 1992). The reaction of CH₃O₂ with NO₂ to form CH₃O₂NO₂ 514 has been omitted from the calculations, since the reverse reaction is much faster than the 515 forward direction ($k_f = 6.4 \times 10^{-12} \text{ s}^{-1}$; $k_{rev} = 1.08 \text{ s}^{-1}$ at a mean temperature of 286.5 K during 516 RONOCO).

The primary aims of the analysis presented here are threefold: 1. To calculate the total rate of initiation through reactions of NO₃ and O₃ with alkenes; 2. To determine the relative importance of NO₃ and O₃ in nighttime HO₂ production; 3. To investigate differences in radical production between different seasons and different times of day. The correlation between [HO₂*] and [NO₃], especially during flight B537, will be investigated.

522 P_{HO_2} has been calculated for each alkene measured for every 60-second data point where all 523 the requisite data were available and where HO_2^* was above the limit of detection of the 524FAGE instrument. Concentrations of RO2 were calculated by scaling the observed HO_2^* 525concentrations with the RO2/HO2* ratio calculated using a box model constrained to the526concentrations of long-lived species measured during the flights (Stone et al., 2014b), i.e.527 $RO_{2,obs} = HO2*_{obs} \times RO_{2,mod}/HO2*_{mod}$. The rates of reaction and rates of production of HO2528presented hereafter are average values for individual flights, seasons, or times of day.

529

530 6 Results

531 6.1 Nighttime oxidation of alkenes

532 Figure 12Figure 11 shows histograms of the rate of reaction between O_3 and NO_3 with 533 individual alkenes during summer and winter, for the nighttime data only. The reactivity of measured alkenes ($\Phi_{O3} + \Phi_{NO3}$) was greater during summer flights than during winter flights 534 535 by a factor of 2.2. The reactions of NO₃ are largely responsible for this seasonal difference, since the contribution from O_3 + alkene reactions varies little between summer 536 $(4.1 \times 10^4 \text{ molecule cm}^{-3} \text{ s}^{-1})$ and winter $(3.9 \times 10^4 \text{ molecule cm}^{-3} \text{ s}^{-1})$. The factor of 4.1 537 difference between the rate of NO₃ reactions in summer (9.8 \times 10⁴ molecule cm⁻³ s⁻¹) and 538 winter $(2.4 \times 10^4 \text{ molecule cm}^{-3} \text{ s}^{-1})$ can be attributed to the higher mean concentration of 539 NO₃ in summer $(5.8 \times 10^8 \text{ molecule cm}^{-3})$ compared to winter $(2.0 \times 10^8 \text{ molecule cm}^{-3})$. 540 This seasonal difference in NO₃ concentrations is attributable to may have been the result of 541 542 the lower mean nighttime temperature in winter (277.7 K) compared to summer (286.7 K) 543 which disfavours NO₃ in <u>the-its</u> thermal equilibrium with N₂O₅ \rightleftharpoons NO₃ + NO₂. <u>Kee[NO2]</u>, which determines $[N_2O_5]/[NO_3]$, is calculated to be 4.8 in summer and 29.6 in winter. At 544 545 night in summer, Φ_{NO3} was greater than Φ_{O3} by a factor of 2.4, but in winter Φ_{O3} was a factor of 1.6 greater than Φ_{NO3} . Figure 12 Figure 11 illustrates the importance of the butene isomers 546 547 (within the VOCs measured) in the reactions of O3 and NO3, and therefore radical initiation 548 and propagation. Reactions with iso-butene dominated NO₃ reactivity in summer (42 %) and winter (53 %), with trans-2-butene also contributing significantly (28 % in summer and 32 % 549 550 in winter). Reactions of O_3 were dominated by *trans*-2-butene (42 % in summer and 34 % in winter) and propene (26 % in summer and 38 % in winter). The importance of these alkenes 551 552 is attributed to their relatively high abundances compared to the other alkenes measured, during both summer and winter, combined with their fast rates of reaction with O₃ and NO₃. 553

For comparison with the reactions of O_3 and NO_3 , the total rate of reaction of measured alkenes with OH has been calculated using upper limits on OH concentrations of 1.8×10^6 Comment [HW13]: See Reviewers' Comments Sect 1.4

Comment [HW14]: See Reviewers' Comments Sect. 2.7

Comment [HW15]: See Reviewers' Comments Sect. 2.7

molecule cm^{-3} and 6.4×10^5 molecule cm^{-3} for the summer and winter flights, respectively, 556 based on the FAGE instrument's limit of detection. The high upper limits make the total rate 557 of reaction of OH with alkenes, $\Phi_{\rm OH}$, unrealistically high for both summer (1.6 \times 10⁵ 558 molecule cm⁻³ s⁻¹) and winter (7.8 × 10⁴ molecule cm⁻³ s⁻¹). However, the OH reactivity will 559 560 likely be considerably lower than the values calculated using the OH upper limits. A box model constrained to concentrations of long-lived species measured during the flights (Stone 561 et al., 2014b) predicts a mean OH concentration of 2.4 $\times 10^4$ molecule cm⁻³, significantly 562 lower than the upper limits given by the instrument's limit of detection. Using the mean 563 modelled value for OH gives $\Phi_{\rm OH} = 2.1 \times 10^3$ molecule cm⁻³ s⁻¹ for summer, and $\Phi_{\rm OH} =$ 564 2.9×10^3 molecule cm⁻³ s⁻¹ for winter, indicating a diminished role for OH in alkene 565 oxidation at night in agreement with previous studies (e.g. Gever et al., 2003; Emmerson et 566 567 al., 2005).

568 6.2 Daytime oxidation of alkenes

Figure 13Figure 12 shows histograms of rates of reaction of O₃ and OH with alkenes during 569 SeptEx, and O₃ and NO₃ with alkenes during winter RONOCO flights, for daytime data only. 570 OH was detected above the limit of detection $(1.2 \times 10^6 \text{ molecule cm}^{-3})$ during the SeptEx 571 572 flights, so the FAGE OH data were included in the calculations, using a reaction scheme analogous to the one shown in Fig. 109. NO3 was not detected during the day in SeptEx. NO3 573 is not expected to be present at measurable concentrations during daylight hours due to 574 photolysis, but a mean concentration of 8.3×10^7 molecule cm⁻³ (3.3 pptv) was measured 575 576 during the day in the winter RONOCO flights. These measurements of low mixing ratios of 577 NO₃ may be partly caused by interference from other daytime species as observed by Brown 578 et al. (2005), or by the variability of the instrument baseline, which can be on the order of 1-2 579 pptv during vertical profiles on the aircraft (Kennedy et al., 2011). This variability is small 580 compared to the range of NO₃ values typically observed during RONOCO flights (0-50 pptv during summer; 0–10 pptv during winter). During SeptEx, Φ_{OH} exceeded Φ_{O3} by a factor of 581 582 8. Ethene and propene were the two most abundant alkenes measured during SeptEx and contributed significantly to OH reactivity. O₃ reactivity with alkenes was dominated by 583 propene and *trans*-2-butene (6th most abundant alkene measured during SeptEx). NO₃ 584 reactivity with alkenes was dominated by *trans*-2-butene and isobutene (3rd most abundant 585 alkene measured during winter daytime flights). The total rate of reaction of O₃ and OH with 586 alkenes during daytime SeptEx flights $(3.7 \times 10^5 \text{ molecule cm}^{-3} \text{ s}^{-1})$ exceeded the total rate of 587

- reaction of O_3 and NO_3 during daytime winter RONOCO flights (6.6 × 10⁴ molecule cm⁻³
- s^{-1}) by a factor of 6, and was more than double the total rate of reaction of O₃ and NO₃ with
- alkenes during nighttime summer flights $(1.4 \times 10^5 \text{ molecule cm}^{-3} \text{ s}^{-1})$. In winter daytime flights, Φ_{O3} was greater than Φ_{NO3} by a factor of 2.4.
- 592 Figure 12Figure 11b and Fig. 132b reveal that reactions of O₃ dominated alkene reactivity 593 during both daytime and nighttime winter RONOCO flights. The concentrations of alkenes 594 were generally higher at night, with the total alkene concentration (sum of concentrations of 595 alkenes measured) being 2.1×10^9 molecule cm⁻³ in the day, and 3.4×10^9 molecule cm⁻³ at 596 night. The total measured alkene reactivity ($\Phi_{O3} + \Phi_{NO3}$) was marginally higher during the 597 day, by a factor of 1.04. This difference is attributable mainly to the change in Φ_{O3} .
- 598 Comparison of Fig. 124a and Fig. 132b reveals that the total measured alkene reactivity $(\Phi_{O3} + \Phi_{NO3})$ was higher during the summer nighttime flights $(1.4 \times 10^5 \text{ molecule cm}^{-3} \text{ s}^{-1})$ 599 than during the winter daytime flights (6.6 \times 10⁴ molecule cm⁻³ s⁻¹), indicating a low 600 oxidising environment during winter daytime. The additional contribution to measured alkene 601 602 reactivity from reactions with OH has been calculated using the OH upper limits as described in Sect. 6.1. Even with this additional, upper limit OH reactivity $(1.6 \times 10^5 \text{ molecule cm}^{-3} \text{ s}^{-1})$ 603 and 1.1×10^5 molecule cm⁻³ s⁻¹ for summer nighttime and winter daytime, respectively) the 604 total summer nighttime alkene reactivity remains higher than that during winter daytime, 605 606 confirming the importance of the summer nocturnal troposphere for the oxidation of the 607 measured alkenes.

608 6.3 Nighttime production of HO₂ from reactions of O₃ and NO₃ with alkenes

- 609 Table 6 gives total rates (ΣP_{HO2}) of instantaneous production of HO₂ from the reactions of O₃ 610 and NO3 with alkenes. NO3 was not detected during the dawn summer RONOCO flights and 611 there were no daytime RONOCO flights during summer. NO3 dominated HO2 production 612 during dusk and night (68 %), in agreement with Geyer et al. (2003) who found that NO₃ was 613 responsible for 53 % of HO₂ production at night in the BERLIOZ campaign. During winter, O₃ dominated HO₂ production at all times, with a nighttime contribution of 70 %. This is in 614 agreement with the results from the winter PMTACS-NY 2004 field campaign (Ren et al., 615 616 2006).
- 617 The total rate of instantaneous production of HO_2 at night was 3.3 times greater in summer 618 than in winter, with production from O_3 decreasing by a factor of 1.5, and production from 619 NO₃ decreasing by a factor of 7.8, between summer and winter. The mean temperature

620 difference between summer and winter of 9 K is thought to be responsible for the lower NO₃

621 concentrations in winter $(2.0 \times 10^8 \text{ molecule cm}^{-3}, 8.2 \text{ pptv}, \text{ compared to } 5.8 \times 10^8 \text{ molecule}$ 622 cm⁻³, 24.5 pptv in summer), owing to the increased thermal stability of N₂O₅, and for the 623 reduced rate of temperature-dependent reactions between NO₃ and alkenes, and subsequent 624 reactions. There was very little difference between summer and winter mean O₃ mixing 625 concentrations (9.6 × 10¹¹ molecule cm⁻³, 39.6 ppbv, and 9.4 × 10¹¹ molecule cm⁻³, 38.6

626 ppbv, respectively).

627 Production of HO₂ via reactions of NO₃ and O₃ with alkenes is now examined in more detail. 628 The rate of production from individual alkenes was calculated, and plotted in a histogram, as 629 shown in Fig. 143 for the summer and winter nighttime data. During both summer and winter, reactions of O₃ and NO₃ with *trans*-2-butene were important sources of HO₂, 630 contributing on average 62 % to O₃-initiated HO₂ production and 36 % to NO₃-initiated 631 632 production during the summer and winter flights. Reactions of NO₃ with isoprene were 633 important during summer, contributing 28 % to NO3-initiated production. The importance of 634 trans-2-butene, despite its relatively low abundance during summer and winter nighttime 635 RONOCO flights (1.8 pptv and 1.7 pptv, respectively, compared to ethene mixing ratios of 55.0 and 104.5 pptv), is attributed to its fast rates of reaction with both O₃ and NO₃ compared 636 637 to the other alkenes measured. The importance of the isoprene $+ NO_3$ reactions during the 638 summer RONOCO flights is similarly attributed to its fast rate of reaction with NO₃ 639 compared to the other alkenes measured. In addition there is no aldehyde-forming channel 640 from the isoprene-derived RO radical (k_7 in Fig. <u>109</u>), so that the yield of HO₂ from RO is 641 equal to 1. The reaction of isobutene with NO₃ can proceed via one of two channels to 642 produce two different RO₂ radicals but only one channel, with a branching ratio of 0.2, produces HO₂. Isobutene is therefore not a dominant contributor to HO₂ production, despite 643 644 being the single largest contributor to NO₃ reactivity during daytime and nighttime RONOCO flights (Fig. 121 and Fig. 132). Figure 14Figure 13 highlights the small change in total 645 646 production from O₃ between summer and winter, and the dramatic change in total production 647 from NO₃ between summer and winter.

648 Reactions of formaldehyde with NO₃ were included in the analysis where formaldehyde data

649 were available (mean HCHO = 955 pptv). The NO_3 + HCHO reaction contributed a further

 5.5×10^3 molecule cm⁻³ s⁻¹ (15 %) to HO₂ production from NO₃ reactions, so that production

from NO_3 contributed 79 % of the total production.

6.4 Production of HO₂ during flight B537 652

Flight B537, on 20th July 2010, has been identified as an interesting flight, with high 653 concentrations of HO₂* $(3.2 \times 10^8 \text{ molecule cm}^{-3}; 13.6 \text{ pptv})$, ozone (peaking at 654 1.8×10^{12} molecule cm⁻³, 89.9 ppbv) and NO₃ (peaking at 4.1×10^{9} molecule cm⁻³; 655 176.9 pptv), and a strong positive correlation between HO₂^{*} and NO₃ (r = 0.97, see Fig. 98). 656 NO, NO₂, and aerosol surface area were also elevated during the flight during flight B537 657 compared to their mean summer values. The highest concentration of ethene (1.43×10^{10}) 658 molecule cm⁻³; 0.61 ppbv) during the summer RONOCO flights was measured during B537. 659 ΣP_{HO2} from O₃ + alkene reactions (2.6 × 10⁴ molecule cm⁻³ s⁻¹) was higher in flight B537 660 than in all the other summer flights, contributing 42 % of HO₂ production, with NO₃ + alkene 661 reactions contributing 3.6×10^4 molecule cm⁻³ (58 %). The total rate of HO₂ production from 662 O_3 and NO_3 reactions during flight B537 was 6.2×10^4 molecule cm⁻³ s⁻¹. While this is 663 higher than the average value of ΣP_{HO2} for the summer flights (5.4 × 10⁴ molecule cm⁻³ s⁻¹) it 664 665 is not the highest rate of production during the summer flights. During B534 unusually high concentrations of isoprene, cis-2-butene, and 1,3-butadiene contributed to a total rate of HO₂ 666 production of 7.9×10^4 molecule cm⁻³, which is the highest calculated value. 667

668 Figure 15Figure 14 shows that the reactions of O₃ and NO₃ with *trans*-2-butene are once 669 again important, contributing 74 % of $\Sigma P_{\text{HO2,O3}}$, and 45 % of $\Sigma P_{\text{HO2,NO3}}$. The correlation between HO₂^{*} and NO₃ is attributed to production of HO₂ by reactions of NO₃ with alkenes, 670 671 especially *trans*-2-butene. Figure 165 shows HO₂^{*} versus the total instantaneous rate of 672 production from the reactions of O_3 and NO_3 with alkenes during flight B537, at each 60-673 second data point during the flight for which the requisite data were available. Note that the 674 rates plotted in Fig. 165 are higher than those shown in Fig. 154, where the rates of production of HO₂ from each alkene have been averaged across the whole flight. A strong 675 positive correlation exists between HO₂^{*} and both $\Sigma P_{\text{HO2,O3}}$ (r = 0.6) and $\Sigma P_{\text{HO2,NO3}}$ (r = 0.8), 676 677 indicating the importance of these reactions for production of HO₂ during this flight.

678

679 7 Comparison with model results

680 The observations of OH, HO2*, NO3 and N2O5 have been interpreted in the context of nighttime oxidation chemistry using a box model constrained to observations of VOCs, NOx, 681 682 O₃, CO and other long-lived species measured during the RONOCO flights (Stone et al., 2014b). The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) 683

684 (Emmerson and Evans, 2009; Stone et al., 2010; Stone et al., 2014b) was initiated with

concentrations of measured species, using a chemistry scheme based on the Master Chemical 686 Mechanism (MCM, version 3.2: Jenkin et al., 1997; Jenkin et al., 2003; Saunders et al., 2003;

687 Bloss et al., 2005, via http://mcm.leeds.ac.uk/MCM) and was allowed to run to diurnal steady

688 state. The model output includes concentrations of OH, HO₂, NO₃, RO₂, and other species. 689 Data from daytime flights, or during dawn or dusk periods, were not included in the model

690 analysis. Data from flight B537 were also excluded, owing to the atypical observations of HO2^{*}, NO3, O3 and other chemical species made during this flight. The modelling study and 691

692 results are described in more detail by Stone et al. (2014b).

685

The model predicts a mean OH concentration of 2.4×10^4 molecule cm⁻³ for the summer 693 flights, which is consistent with the measured OH concentrations for which the instrument's 694 695 limit of detection is an upper limit only. The base model underpredicts HO₂* by around 696 200 %, and overpredicts NO3 and N2O5 by 80 and 50 %, respectively. These discrepancies 697 were investigated by determining the processes controlling radical production and loss in the model, and using those results to improve model performance. Model production of HO_2 is 698 dominated by reactions of RO + O_2 (42 %), with a significant contribution from OH + CO 699 (31 %) despite low OH concentrations at night. RO_x (= $RO + RO_2 + OH + HO_2$) radical 700 701 initiation in the model is dominated by reactions of NO_3 with unsaturated VOCs (80 %), with 702 a much smaller contribution (18%) from alkene ozonolysis. Modelled HO₂ loss is dominated 703 by its reactions with NO₃ (45 %) and O₃ (27 %), both of which are radical propagating routes, 704 and which are the dominant routes to OH production in the model. In fact NO3 was found to 705 control both radical initiation and propagation in the model.

706 These results are in general agreement with the results of the analysis presented in Sect. 6.1,

707 though the model predicts a more important role for NO₃ (80 % of RO_x radical production,

708 which is 7.2 times the contribution from O_3 + alkenes) than is predicted by the analysis based

709 on the observations alone (69 % of HO₂ radical production during summer, which is 2.1

710 times the contribution from O_3 + alkenes). The model, and predicts a relatively small role for

O3-in in both summer and winter-radical initiation (18 % of RO* radical production compared 711

to a minimum value of 31 % calculated using the observations). The model is constrained to 712

713 measured values of O₃, but overpredicts NO₃. The mean measured NO₃ nighttime mixing

- 714 ratio was 24.5 pptv in the summer and 8.2 pptv in the winter. The mean modelled summer 715 and winter values are 37.4 pptv and 20.7 pptv, respectively. This discrepancy between
- 716 modelled and measured NO_3 helps to explain the model overprediction of the role of NO_3 in

Formatted: Not Superscript/ Subscript

Comment [HW16]: See Reviewers Comments Sect. 2.8

717 HO_x radical initiation during the RONOCO flights. Modelled NO₃ reactivity was dominated

718 by *iso*-butene (36 %) and *trans*-2-butene (27 %), and modelled O₃ reactivity was dominated

by *trans*-2-butene (51 %), in agreement with the nighttime alkene reactivities presented in

720 Sect. 6.1.

721 Improvement to the model predictions of NO₃, N₂O₅ and HO₂* was made by increasing the 722 concentration of unsaturated VOCs in the model. Increasing the total observed alkene concentration by 4 times resulted in a modelled to observed ratio of 1.0 for HO₂* and of \sim 1.2 723 724 for NO₃ and N₂O₅. Two-dimensional gas chromatography (GC \times GC) analysis of the whole 725 air samples taken during RONOCO has revealed a large number of VOCs extra to those 726 routinely measured (Lidster et al., 2014). Calibration standards for the majority of these 727 species are not yet available, and so quantification of their concentrations is not possible, but 728 their detection confirms that the model overprediction of NO₃ and underprediction of HO₂* 729 are attributable to reactions of NO₃ with unquantified unsaturated hydrocarbons.

730 The presence of unquantified unsaturated VOCs during the RONOCO campaign, suggested 731 by the model and confirmed by the two-dimensional GC analysis, has implications for the 732 conclusions drawn from the analysis based on the observations. The relative contributions of 733 NO₃ and O₃ to nighttime radical initiation will change with the composition of unsaturated VOCs in the sampled air, due to the different rates of reaction of NO₃ and O₃ with different 734 735 VOC species, and the rates of production of HO₂ following these reactions. The model results 736 indicate that reaction of NO₃ with the unquantified VOCs leads to increased production of 737 HO_2 . The role of NO_3 in nighttime radical production would therefore be enhanced by the inclusion of the unquantified VOCs in the observational analysis. 738

739

740 8 Conclusions and future work

741 Nighttime radical chemistry has been studied as part of the RONOCO and SeptEx campaigns onboard the BAe-146 research aircraft during summer 2010 and winter 2011. NO₃, N₂O₅, OH 742 and HO_2^* were measured simultaneously for the first time from an aircraft, with OH and 743 744 HO₂^{*} being measured by the University of Leeds aircraft FAGE instrument. OH was detected above the limit of detection during the daytime SeptEx flights only, with a mean 745 concentration of 1.8×10^6 molecule cm⁻³. Upper limits of 1.8×10^6 molecule cm⁻³ and 746 6.4×10^5 molecule cm⁻³ are placed on mean OH concentrations for the summer and winter 747 748 RONOCO (night, dawn, and dusk) measurement campaigns, respectively. HO2^{*} was detected Formatted: Not Superscript/ Subscript

Formatted: Not Superscript/ Subscript

Formatted: Not Superscript/ Subscript

above the limit of detection during the summer and winter RONOCO flights and during

750 SeptEx, with a maximum mixing ratio of 13.6 pptv measured during nighttime flight B537 on

- 751 20th July 2010. Mean nighttime $HO_{2^{*}}$ mixing ratios were significantly higher in summer than 752 in winter. Significant concentrations (up to 176.9 pptv) of NO₃ were measured during 753 nighttime flights, since the air masses sampled were sufficiently removed from the surface 754 that the loss of NO₃ by reaction with NO was minimised. The RONOCO flights were 755 therefore an excellent opportunity to study the role of NO₃ in nocturnal oxidation and radical 756 initiation.
- The rates of reaction of O_3 and NO_3 with the alkenes measured have been calculated. At night during summer, NO_3 dominated alkene reactivity. Several previous nighttime studies have also found NO_3 to be the dominant nocturnal oxidant (e.g. Geyer et al., 2003; Brown et al., 2011). During nighttime winter RONOCO flights the total rate of reaction of NO_3 with alkenes was much reduced, but the rate of reaction of O_3 with alkenes was similar to that in summer. During day and night in winter, O_3 + alkene reactions were faster than NO_3 + alkene reactions. Overall, during RONOCO, the combined rate of alkene oxidation by O_3 and NO_3
- 764 was highest at night during summer.
- 765 Calculation of rates of instantaneous production of HO₂ from reactions of O₃ and NO₃ with 766 alkenes, using measurements made during the flights, has revealed that nighttime production 767 was dominated by NO₃ in summer and by O₃ in winter. The rate of instantaneous production of HO₂ from reactions of NO₃ with alkenes decreased significantly from summer to winter 768 769 (87%), whereas production from O_3 + alkene reactions was similar in summer and winter, 770 decreasing by just 31 %. Strong positive correlation between HO₂^{*} and NO₃, especially 771 during flight B537, is attributed to the production of HO₂ from reactions of NO₃ with alkenes, 772 particularly trans-2-butene and other isomers of butene.
- 773 Significant concentrations of HO₂^{*} were detected at night, with the highest HO₂^{*} 774 concentration (13.6 pptv) being measured during a summer nighttime flight, indicating that HO_x radical chemistry remains active at night under the right conditions. The role of HO_x is 775 776 diminished in the low photolysis winter daytime atmosphere, with alkene ozonolysis being 777 primarily responsible for oxidation and radical initiation, in agreement with previous studies 778 (e.g. Heard et al., 2004; Emmerson et al., 2005). Both the analysis presented here and the 779 results of the box modelling study by Stone et al. (2014b) indicate that in air masses removed 780 from sources of NO, NO₃ plays an important role in the oxidation of alkenes and radical 781 initiation at night, in agreement with previous studies (e.g. Brown et al., 2011). Alkene

782 ozonolysis also plays a significant role in nocturnal oxidation in agreement with Salisbury et

783 al. (2001), Geyer et al. (2003), Ren et al. (2003a), Emmerson et al. (2005), Ren et al. (2006),

and Volkamer et al. (2010)-and others. The balance between the roles of NO₃ and O₃ was

785 controlled in part by $[NO_3]$, with colder winter temperatures forcing the NO_3 - N_2O_5

786 equilibrium towards N_2O_5 .

The total rate of reaction of O₃ and NO₃ with alkenes during nighttime summer flights $(1.4 \times 10^5 \text{ molecule cm}^{-3} \text{ s}^{-1})$ was higher than during daytime winter flights $(6.6 \times 10^4 \text{ molecule} \text{ cm}^{-3} \text{ s}^{-1})$ by a factor of 2.1. Whilst it should be remembered that measurements at different times of day and in different seasons reflect composition changes in air masses (such as the abundance of reactive alkenes) this result supports the hypothesis that oxidation of certain VOCs, in particular the reactive alkenes, in the nocturnal summer atmosphere can be as rapid as in the winter daytime atmosphere.

794 A box model of nighttime chemistry constrained to measurements of long lived species has 795 been used to investigate the nighttime chemistry sampled during RONOCO (Stone et al., 2014b). The base model underpredicts HO2^{*} and overpredicts NO3. These discrepancies were 796 797 minimised by increasing the concentration of alkenes in the model, thereby increasing 798 reaction of NO₃ with alkenes, and production of HO₂. The presence of unquantified 799 unsaturated VOCs has been confirmed by 2D-GC analysis, though the exact nature and 800 concentrations of the 'missing' species is unclear. The inclusion of these species in the 801 analysis presented in this paper would likely increase the role of NO₃ for oxidation of alkenes 802 and production of HO₂ at night.

803

804 Acknowledgements

This work was funded by the UK Natural Environment Research Council (NE/F004664/1). The authors would like to thank ground staff, engineers, scientists and pilots involved in RONOCO for making this project a success. Airborne data were obtained using the BAe 146-301 Atmospheric Research Aircraft (ARA) flown by Directflight Ltd. and managed by the Facility for Airborne Atmospheric Measurements (FAAM), which is a joint entity of the Natural Environment Research Council (NERC) and the Met Office.

811

Comment [HW17]: See Reviewers' Comments Sect. 2.10

1 References

- 2 Andrés-Hernández, M. D., Kartal, D., Crowley, J. N., Sinha, V., Regelin, E., Martínez-
- 3 Harder, M., Nenakhov, V., Williams, J., Harder, H., Bozem, H., Song, W., Thieser, J., Tang,

4 M. J., Hosaynali Beigi, Z., and Burrows, J. P.: Diel peroxy radicals in a semi-industrial

5 coastal area: nighttime formation of free radicals, Atmospheric Chemistry and Physics, 13,

- Atkinson, R., and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic
 compounds: a review, Atmospheric Environment, 37, 197-219, 2003.
- 9 Beames, J. M., Liu, F., Lu, L., and Lester, M. I.: Ultraviolet Spectrum and Photochemistry of
- the Simplest Criegee Intermediate CH₂OO, Journal of the American Chemical Society, 134,
 20045-20048, 2012.
- Beames, J. M., Liu, F., Lu, L., and Lester, M. I.: UV spectroscopic characterization of an
 alkyl substituted Criegee intermediate CH₃CHOO, Journal of Chemical Physics, 138, 244307,
- 14 doi:10.1063/1.4810865, 2013.
- Berndt, T., and Böge, O.: Kinetics of Oxirane Formation in the Reaction of Nitrate Radicals
 with Tetramethylethylene, Berichte der Bunsengesellschaft für physikalische Chemie, 98,
 869-871, 1994.
- Bey, I., Aumont, B., and Toupance, G.: A modeling study of the nighttime radical chemistry
 in the lower continental troposphere, Journal of Geophysical Research: Atmospheres, 106,
 9991-10001, 2001.
- Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M. E., Wirtz, K., Martin-Reviejo, M., and
 Pilling, M. J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against
- environmental chamber data, Atmospheric Chemistry and Physics, 5, 623-639, 2005.
- Brown, S. S., and Stutz, J.: Nighttime radical observations and chemistry, Chemical Society
 Reviews, 41, 6405-6447, 2012.
- 26 Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J.,
- 27 Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C., Goldan, P.
- 28 D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T. S., Meagher, J. F.,
- 29 Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal of NO_x in the summer marine
- 30 boundary layer, Geophysical Research Letters, 31, L07108-L07113, 2004.

^{6 5731-5749, 2013.}

- 31 Brown, S. S., Osthoff, H. D., Stark, H., Dubé, W. P., Ryerson, T. B., Warneke, C., de Gouw,
- 32 J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F. C., Ravishankara, A. R.: Aircraft
- 33 observations of daytime NO₃ and N₂O₅ and their implications for tropospheric chemistry,
- 34 Journal of Photochemistry and Photobiology A: Chemistry, 176, 270-278, 2005.
- 35 Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber,
- 36 R. J., Dubé, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.:
- 37 Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality,
- 38 Science, 311, 67-70, 2006.
- 39 Brown, S. S., Dubé, W. P., Peischl, J., Ryerson, T., Atlas, E., Warneke, C., de Gouw, J. A., te
- 40 Lintel Hekkert, S., Brock, C. A., Flocke, F., Trainer, M., Parrish, D. D., Feshenfeld, F. C., and
- 41 Ravishankara, A.: Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the
- 42 2006 Texas Air Quality Study, Journal of Geophysical Research: Atmospheres, 116, D24305-
- 43 D24320, 2011.
- Cantrell, C. A., Zimmer, A., and Tyndall, G. S.: Absorption cross sections for water vapor
 from 183 to 193 nm, Geophysical Research Letters, 24, 2195-2198, 1997.
- 46 Carter, W. P. L., and Atkinson, R.: Alkyl Nitrate Formation from the Atmospheric
 47 Photooxidation of Alkanes; a Revised Estimation Method, Journal of Atmospheric Chemistry,
 48 8, 165-173, 1989.
- 49 Commane, R.: Understanding Radical Chemistry Throughout the Troposphere using Laser-50 Induced Fluorescence Spectroscopy, PhD, Chemistry, University of Leeds, Leeds, 2009.
- 51 Commane, R., Floquet, C. F. A., Ingham, T., Stone, D., Evans, M. J., and Heard, D. E.:
- 52 Observations of OH and HO₂ radicals over West Africa, Atmospheric Chemistry and Physics,
 53 10, 8783-8801, 2010.
- 54 Creasey, D. J., Halford-Maw, P. A., Heard, D. E., Pilling, M. J., and Whitaker, B. J.:
- 55 Implementation and initial deployment of a field instrument for measurement of OH and HO₂
- 56 in the troposphere by laser-induced fluorescence, J. Chem. Soc.-Faraday Trans., 93, 2907-
- 57 2913, 1997.
- 58 Creasey, D. J., Heard, D. E., and Lee, J. D.: Eastern Atlantic Spring Experiment 1997
- 59 (EASE97) 1. Measurements of OH and HO_2 concentrations at Mace Head, Ireland, Journal of 60 Coordinate Research: Atmospheres, 107, 4001, 4106, 2002
- 60 Geophysical Research: Atmospheres, 107, 4091-4106, 2002.

- 61 Dari-Salisburgo, C., Di Carlo, P., Giammaria, F., Kajii, Y., and D'Altorio, A.: Laser induced
- 62 fluorescence instrument for NO₂ measurements: Observations at a central Italy background
- 63 site, Atmospheric Environment, 43, 970-977, 2009.
- 64 Di Carlo, P., Aruffo, E., Busilacchio, M., Giammaria, F., Dari-Salisburgo, C., Biancofiore, F.,
- 65 Visconti, G., Lee, J., Moller, S., Reeves, C. E., Baugitte, S., Forster, G., Jones, R. L., and
- 66 Ouyang, B.: Aircraft based four-channel thermal dissociation laser induced fluorescence
- 67 instrument for simultaneous measurements of NO₂, total peroxy nitrate, total alkyl nitrate, and
- 68 HNO₃, Atmospheric Measurement Techniques, 6, 971-980, 2013.
- 69 Donahue, N. M., Kroll, J. H., Anderson, J. G., and Demerjian, K. L.: Direct observation of
- 70 OH production from the ozonolysis of olefins, Geophysical Research Letters, 25, 59-62, 1998.
- 71 Donahue, N. M., Drozd, G. T., Epstein, S. A., Presto, A. A., and Kroll, J. H.: Adventures in
- ozoneland: down the rabbit-hole, Physical Chemistry Chemical Physics, 13, 10848-10857,2011.
- Drozd, G. T., and Donahue, N. M.: Pressure Dependence of Stabilized Criegee Intermediate
 Formation from a Sequence of Alkenes, Journal of Physical Chemistry A, 115, 4381-4387,
 2011.
- 77 Dusanter, S., Vimal, D., Stevens, P. S., Volkamer, R., and Molina, L. T.: Measurements of
- 78 OH and HO₂ concentrations during the MCMA-2006 field campaign Part 1: Deployment of
- 79 the Indiana University laser-induced fluorescence instrument, Atmospheric Chemistry and
- 80 Physics, 9, 1665-1685, 2009.
- 81 Edwards, G. D., Cantrell, C., Stephens, S., Hill, B., Goyea, O., Shetter, R., Mauldin, R. L.,
- 82 Kosciuch, E., Tanner, D., and Eisele, F.: Chemical Ionization Mass Spectrometer Instrument
- 83 for the Measurement of Tropospheric HO₂ and RO₂, Analytical Chemistry, 75, 5317-5327,
- 84 2003.
- Emmerson, K. M., and Carslaw, N.: Night-time radical chemistry during the TORCH
 campaign, Atmospheric Environment, 43, 3220-3226, 2009.
- 87 Emmerson, K. M., and Evans, M. J.: Comparison of tropospheric gas-phase chemistry
- schemes for use within global models, Atmospheric Chemistry and Physics, 9, 1831-1845,
 2009.

- 90 Emmerson, K. M., Carslaw, N., and Pilling, M. J.: Urban Atmospheric Chemistry During the
- 91 PUMA Campaign 2: Radical Budgets for OH, HO₂ and RO₂, Journal of Atmospheric
- 92 Chemistry, 52, 165-183, 2005.
- 93 Emmerson, K. M., Carslaw, N., Carslaw, D. C., Lee, J. D., McFiggans, G., Bloss, W. J.,
- 94 Gravestock, T., Heard, D. E., Hopkins, J., Ingham, T., Pilling, M. J., Smith, S. C., Jacob, M.,
- 95 and Monks, P. S.: Free radical modelling studies during the UK TORCH Campaign in
- 96 Summer 2003, Atmospheric Chemistry and Physics, 7, 167-181, 2007.
- 97 Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H.,
- 98 Martinez, M., di Carlo, P., Ren, X., and Brune, W. H.: A Laser-Induced Fluorescence
- 99 Instrument for Detecting Troposhperic OH and HO₂: Characteristics and Calibration, Journal
- 100 of Atmospheric Chemistry, 47, 139-167, 2004.
- 101 Fleming, Z. L., Monks, P. S., Rickard, A. R., Heard, D. E., Bloss, W. J., Seakins, P. W., Still,
- 102 T. J., Sommariva, R., Pilling, M. J., Morgan, R., Green, T. J., Brough, N., Mills, G. P.,
- 103 Penkett, S. A., Lewis, A. C., Lee, J. D., Saiz-Lopez, A., and Plane, J. M. C.: Peroxy radical
- 104 chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer
- 105 of 2002, Atmospheric Chemistry and Physics, 6, 2193-2214, 2006.
- Floquet, C. F. A.: Airborne Measurements of Hydroxyl Radicals by Fluorescence Assay by
 Gas Expansion, PhD, School of Chemistry, University of Leeds, Leeds, 155 pp., 2006.
- Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., and
 Wahner, A.: Detection of HO₂ by laser-induced fluorescence: Calibration and intereferences
- 110 from RO₂ radicals, Atmospheric Measurement Techniques, 4, 1255-1302, 2011.
- 111 Gerbig, C., Schmitgen, S., Kley, D., and Volz-Thomas, A.: An improved fast-response
- 112 vacuum-UV resonance fluorescence CO instrument, Journal of Geophysical Research:
- 113 Atmospheres, 104, 1699-1704, 1999.
- 114 German, K. R.: Direct measurement of the radiative lifetimes of the $A^2\Sigma^+$ (V'=0), Journal of
- 115 Chemical Physics, 62, 2584-2587, 1975.
- 116 Geyer, A., and Stutz, J.: The vertical structure of OH-HO₂-RO₂ chemistry in the nocturnal
- 117 boundary layer: A one-dimensional model study, Journal of Geophysical Research:
- 118 Atmospheres, 109, D16301-D16316, 2004a.

- 119 Geyer, A., and Stutz, J.: Vertical profiles of NO₃, N_2O_5 , O₃, and NO_x in the nocturnal
- boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,
- 121 Journal of Geophysical Research: Atmospheres, 109, D12307, doi:10.1029/2003JD004211,
- 122 2004b.
- 123 Geyer, A., Bächmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klüpfel, T., Pätz, H.-
- 124 W., Perner, D., Mihelcic, D., Schäfer, H.-J., Volz-Thomas, A., and Platt, U.: Nighttime
- 125 formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and
- 126 modeling studies, Journal of Geophysical Research: Atmospheres, 108, 8249-8263, 2003.
- 127 Harrison, R. M., Yin, J., Tilling, R. M., Cai, X., Seakins, P. W., Hopkins, J. R., Lansley, D.
- 128 L., Lewis, A. C., Hunter, M. C., Heard, D. E., Carpenter, L. J., Creasey, D. J., Lee, J. D.,
- 129 Pilling, M. J., Carslaw, N., Emmerson, K. M., Redington, A., Derwent, R. G., Ryall, D.,
- 130 Mills, G., and Penkett, S. A.: Measurement and modelling of air pollution and atmospheric
- 131 chemistry in the U.K. West Midlands conurbation: Overview of the PUMA Consortium
- 132 project, Science of the Total Environment, 360, 5-25, 2006.
- Heard, D. E.: Atmospheric field measurements of the hydroxyl radical using laser-induced
 fluorescence spectroscopy, Annual Review of Physical Chemistry, 57, 191–216, 2006.
- Heard, D. E., Carpenter, L. J., Creasey, D. J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Pilling,
 M. J., Seakins, P. W., Carslaw, N., and Emmerson, K. M.: High levels of the hydroxyl radical
 in the winter urban troposphere, Geophysical Research Letters, 31, L18112-L18117,
 10.1029/2004gl020544, 2004.
- 139 Hewitt, C. N., Lee, J. D., MacKenzie, A. R., Barkley, M. P., Carslaw, N., Carver, G. D.,
- 140 Chappell, N. A., Coe, H., Collier, C., Commane, R., Davies, F., Davison, B., Di Carlo, P., Di
- 141 Marco, C. F., Dorsey, J. R., Edwards, P. M., Evans, M. J., Fowler, D., Furneaux, K. L.,
- 142 Gallagher, M., Guenther, A., Heard, D. E., Helfter, C., Hopkins, J., Ingham, T., Irwin, M.,
- 143 Jones, C., Karunaharan, A., Langford, B., Lewis, A. C., Lim, S. F., MacDonald, S. M.,
- 144 Mahajan, A. S., Malpass, S., McFiggans, G., Mills, G., Misztal, P., Moller, S., Monks, P. S.,
- 145 Nemitz, E., Nicolas-Perea, V., Oetjen, H., Oram, D. E., Palmer, P. I., Phillips, G. J., Pike, R.,
- 146 Plane, J. M. C., Pugh, T., Pyle, J. A., Reeves, C. E., Robinson, N. H., Stewart, D., Stone, D.,
- 147 Whalley, L. K., and Yin, X.: Overview: oxidant and particle photochemical processes above a
- 148 south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location
- characteristics and tools, Atmospheric Chemistry and Physics, 10, 169-199, 2010.

- 150 Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H.-W.: Measurements of OH
- 151 and HO₂ radical concentrations and photolysis frequencies during BERLIOZ, Journal of
- 152 Geophysical Research: Atmospheres, 108, 8246-8261, 2003.
- 153 Hopkins, J. R., Lewis, A. C., and Read, K. A.: A two-column method for long-term 154 monitoring of non-methane hydrocarbons (NMHCs) and oxygenated volatile organic 155 compounds (o-VOCs), Journal of Environmental Monitoring, 5, 8-13, 2003.
- 156 Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile 157 organic compounds: A protocol for mechanism development, Atmospheric Environment, 31, 158 81-104, 1997.
- 159 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development
- 160 of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic
- 161 volatile organic compounds, Atmospheric Chemistry and Physics, 3, 181-193, 2003.
- 162 Johnson, D., and Marston, G.: The gas-phase ozonolysis of unsaturated volatile organic 163 compounds in the troposphere, Chemical Society Reviews, 37, 699-716, 2008.
- 164 Jones, A. R., Thomson, D. J., Hort, M., and Devenish, B.: The U.K. Met Office's next-
- 165 generation atmospheric dispersion model, NAME III, in: Air Pollution Modeling and its Application XVII (Proceedings of the 27th NATO/CCMS International Technical Meeting on
- 167 Air Pollution Modelling and its Application), edited by: Borrego, C., and Norman, A.-L.,
- 168 Springer, Dordrecht, Netherlands, 580-589, 2007.
- 169 Kanaya, Y., Sadanaga, Y., Matsumoto, J., Sharma, U. K., Hirokawa, J., Kajii, Y., and
- Akimoto, H.: Nighttime observation of the HO₂ radical by an LIF instrument at Oki Island, 170
- 171 Japan, and its possible origins, Geophysical Research Letters, 26, 2179-2182, 1999.
- 172 Kennedy, O. J., Ouyang, B., Langridge, J. M., Daniels, M. J. S., Baugitte, S., Freshwater, R.,
- 173 McLeod, M. W., Ironmonger, C., Sendall, J., Norris, O., Nightingale, R., Ball, S. M., and
- 174 Jones, R. L.: An aircraft based three channel broadband cavity enhanced absorption
- 175 spectrometer for simultaneous measurements of NO₃, N₂O₅ and NO₂, Atmospheric
- 176 Measurement Techniques, 4, 1759-1776, 2011.

- 177 Kroll, J. H., Clarke, J. S., Donahue, N. M., Anderson, J. G., and Demerjian, K. L.: Mechanism
- 178 of HO_x Formation in the Gas-Phase Ozone-Alkene reaction. 1. Direct, Pressure-Dependent
- 179 Measurements of Prompt OH Yields, J. Phys. Chem. A, 105, 1554-1560, 2001a.

- 180 Kroll, J. H., Sahay, S. R., Anderson, J. G., Demerjian, K. L., and Donahue, N. M.:
- 181 Mechanism of HO_x Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus
- 182 Thermal Dissociation of Carbonyl Oxides to Form OH, Journal of Physical Chemistry A,
- 183 105, 4446-4457 2001b.
- 184 Kroll, J. H., Donahue, N. M., Cee, V. J., Demerjian, K. L., and Anderson, J. G.: Gas-Phase
- Ozonolysis of Alkenes: Formation of OH from Anti Carbonyl Oxides, Journal of the
 American Chemical Society, 124, 8518-8519, 2002.
- 187 Lee, J. D., Lewis, A. C., Monks, P. S., Jacob, M., Hamilton, J. F., Hopkins, J. R., Watson, N.
- 188 M., Saxton, J. E., Ennis, C., Carpenter, L. J., Carslaw, N., Fleming, Z. L., Bandy, A., Oram,
- 189 D. E., Penkett, S. A., Slemr, J., Norton, E. G., Rickard, A. R., Whalley, L. K., Heard, D. E.,
- 190 Bloss, W. J., Gravestock, T., Smith, S. C., Stanton, J., Pilling, M. J., and Jenkin, M. E.: Ozone
- 191 photochemistry and elevated isoprene during the UK heatwave of August 2003, Atmospheric
- 192 Environment, 40, 7598–7613, 2006.
- 193 Lidster, R. T., Hamilton, J. F., Lee, J. D., Lewis, A. C., Hopkins, J. R., Punjabi, S., Rickard,
- A. R., and Young, J. C.: The impact of monoaromatic hydrocarbons on OH reactivity in the coastal UK boundary layer and free troposphere, Atmospheric Chemistry and Physics, 14,
- 196 6677-6693, 2014.
- Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E.,
 Moortgat, G. K., and Zabel, F.: Organic Peroxy Radicals: Kinetics, Spectroscopy and
 Tropospheric Chemistry, Atmospheric Environment, 26A, 1805-1961, 1992.
- Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H.,
 Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang,
 W., and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta China in
 summer 2006: measurement and model results, Atmospheric Chemistry and Physics, 10,
 11243-11260, 10.5194/acp-10-11243, 2010.
- 205 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R.,
- 206 Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A.,
- 207 Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO₂
- 208 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere,
- 209 Atmospheric Chemistry and Physics, 12, 1541-1569, 2012.

- 210 Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler,
- 211 R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A.,
- 212 Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near
- 213 Beijing: observed and modelled OH and HO₂ concentrations in summer 2006, Atmospheric
- 214 Chemistry and Physics, 13, 1057-1080, 2013.
- 215 Lu, K., Rohrer, F., Holland, F., Fuchs, H., Brauers, T., Oebel, A., Dlugi, R., Hu, M., Li, X.,
- 216 Lou, S., Shao, M., Zhu, T., Wahner, A., Zhang, Y., and Hofzumahaus, A.: Nighttime
- 217 observation and chemistry of HO_x in the Pearl River Delta and Beijing in summer 2006,
- 218 Atmospheric Chemistry and Physics, 14, 4979-4999, doi:10.5194/acp-14-4979-2014, 2014.
- 219 Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H.,
- 220 Klüpfel, T., Gurk, C., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Williams, J.,
- and Lelieveld, J.: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest:
- airborne measurements, Atmospheric Chemistry and Physics, 10, 3759-3773, 10.5194/acp-103759, 2010.
- 224 Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, A.,
- Stratmann, F., Kerminen, V.-M., and Kulmala, M.: A new atmospherically relevent oxidant of
 sulphur dioxide, Nature, 488, 193-196, 2012.
- 227 Morgan, W. T., Ouyang, B., Allan, B. J., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D.,
- 228 Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.:
- 229 Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements
- in North-Western Europe, Atmospheric Chemistry and Physics Discussions, 14, 19673-19718, 2014.
- Nakajima, M., and Endo, Y.: Determination of the molecular structure of the simplest Criegee
 intermediate CH₂OO, Journal of Chemical Physics, 139, 101103, doi:10.1063/1.4821165,
 2013.
- Nakajima, M., and Endo, Y.: Spectroscopic characterization of an alkyl substituted Criegee
 intermediate *syn*-CH₃CHOO through pure rotational transitions, Journal of Chemical Physics,
 140, 011101, doi:10.1063/1.4861494, 2014.
- Ouyang, B., McLeod, M. W., Jones, R. L., and Bloss, W. J.: NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, Physical Chemistry Chemical
- 240 Physics, 15, 17070-17075, 2013.

- 241 Paulson, S. E., and Orlando, J. J.: The reactions of ozone with alkenes: An important source
- of HO_x in the boundary layer, Geophysical Research Letters, 23, 3727-3730, 1996.
- 243 Ren, X., Harder, H., Martinez, M., Lesher, R., Oliger, A., Simpas, J. B., Brune, W. H.,
- 244 Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., and Gao, H.: OH and HO₂ chemistry in the
- 245 urban atmosphere of New York City, Atmospheric Environment, 37, 3639-3651, 2003a.
- 246 Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J.
- 247 B., and Brune, W. H.: HO_x concentrations and OH reactivity observations in New York City
- during PMTACS-NY2001, Atmospheric Environment, 37, 3627-3637, 2003b.
- 249 Ren, X., Brune, W. H., Mao, J., Mitchell, M. J., Lesher, R., Simpas, J. B., Metcalf, A. R.,
- 250 Schwab, J. J., Cai, C., Li, Y., Demerjian, K. L., Felton, H. D., Boynton, G., Adams, A., Perry,
- 251 J., He, Y., Zhou, X., and Hou, J.: Behavior of OH and HO₂ in the winter atmosphere in New
- 252 York City, Atmospheric Environment, 40, 252-263, 2006.
- 253 Salisbury, G., Rickard, A. R., Monks, P. S., Allan, B. J., Bauguitte, S. J. B., Penkett, S. A.,
- Carslaw, N., Lewis, A. C., Creasey, D. J., Heard, D. E., Jacobs, P. J., and Lee, J. D.:
 Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the
 marine boundary layer, Journal of Geophysical Research: Atmospheres, 106, 12669-12687,
 2001.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the
 development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric
 degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and
 Physics, 3, 161-180, 2003.
- Sheehy, P. M., Volkamer, R., Molina, L. T., and Molina, M. J.: Oxidative capacity of the
 Mexico City atmosphere Part 2: A RO_x radical cycling perspective, Atmospheric Chemistry
 and Physics, 10, 6993-7008, 2010.
- 265 Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R.,
- 266 Molina, L. T., Molina, M. J., Lamb, B., Velasco, E., Jobson, T., and Alexander, M.:
- 267 Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003,
- Atmospheric Chemistry and Physics, 6, 2753-2765, 2006.

- 269 Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T., and Heard, D. E.:
- 270 Concentrations of OH and HO₂ radicals during NAMBLEX: measurements and steady state
- analysis, Atmospheric Chemistry and Physics, 6, 1435-1453, 2006.
- 272 Sommariva, R., Pilling, M. J., Bloss, W. J., Heard, D. E., Lee, J. D., Fleming, Z. L., Monks,
- 273 P. S., Plane, J. M. C., Saiz-Lopez, A., Ball, S. M., Bitter, M., Jones, R. L., Brough, N.,
- 274 Penkett, S. A., Hopkins, J. R., Lewis, A. C., and Read, K. A.: Night-time radical chemistry
- during the NAMBLEX campaign, Atmospheric Chemistry and Physics, 7, 587-598, 2007.
- 276 Sommariva, R., Osthoff, H. D., Brown, S. S., Bates, T. S., Baynard, T., Coffman, D., de
- 277 Gouw, J. A., Goldan, P. D., Kuster, W. C., Lerner, B. M., Stark, H., Warneke, C., Williams,
- 278 E. J., Fehsenfeld, F. C., Ravishankara, A. R., and Trainer, M.: Radicals in the marine
- 279 boundary layer during NEAQS 2004: a model study of day-time and night-time sources and
- sinks, Atmospheric Chemistry and Physics, 9, 3075-3093, 2009.
- Stewart, D. J., Taylor, C. M., Reeves, C. E., and McQuaid, J.: Biogenic nitrogen oxide
 emissions from soils: impact on NO_x and ozone over west Afric during AMMA (African
 Monsoon Multidisciplinary Analysis): observational study, Atmospheric Chemistry and
 Physics, 8, 2285-2297, 2008.
- Still, T. J., Al-Haider, S., Seakins, P. W., Sommariva, R., Stanton, J. C., Mills, G., and
 Penkett, S. A.: Ambient formaldehyde measurements made at a remote marine boundary layer
 site during the NAMBLEX campaign a comparison of data from chromatographic and
 modified Hantzsch techniques., Atmospheric Chemistry and Physics, 6, 2711-2726, 2006.
- 289 Stone, D., Evans, M. J., Commane, R., Ingham, T., Floquet, C. F. A., McQuaid, J. B.,
- 290 Brookes, D. M., Monks, P. S., Purvis, R., Hamilton, J. F., Hopkins, J., Lee, J., Lewis, A. C.,
- 291 Stewart, D., Murphy, J. G., Mills, G., Oram, D., Reeves, C. E., and Heard, D. E.: HO_x
- 292 observations over West Africa during AMMA: impact of isoprene and NO_x, Atmospheric
- 293 Chemistry and Physics, 10, 9415-9429, 2010.
- Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO₂ radicals: field
 measurements and model comparisons, Chemical Society Reviews, 41, 6348-6404, 2012.
- 296 Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P.: Kinetics of CH₂OO
- 297 reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure, Physical
- 298 Chemistry Chemical Physics, 16, 1139-1149, 2014a.

- 299 Stone, D., Evans, M. J., Walker, H. M., Ingham, T., Vaughan, S., Ouyang, B., Kennedy, O. J.,
- 300 McLeod, M. W., Jones, R. L., Hopkins, J., Punjabi, S., Lidster, R., Hamilton, J. F., Lee, J. D.,
- 301 Lewis, A. C., Carpenter, L. J., Forster, G., Oram, D., Reeves, C. E., Baugitte, S., Morgan, W.,
- 302 Coe, H., Aruffo, E., Dari-Salisburgo, C., Giammaria, F., Di Carlo, P., and Heard, D. E.:
- 303 Radical chemistry at night: comparisons between observed and modelled HO_x, NO₃ and N₂O₅
- during the RONOCO project, Atmospheric Chemistry and Physics, 14, 1299-1321, 2014b.
- 305 Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., and Williams, E.: Vertical profiles
- 306 of NO₃, N₂O₅, O₃, and NO_x in the nocturnal boundary layer: 1. Observations during the Texas
- 307 Air Quality Study 2000, Journal of Geophysical Research: Atmospheres, 109, D12306-
- 308 D12320, 2004.
- Su, Y.-T., Huang, Y.-H., Witek, H. A., and Lee, Y.-P.: Infrared Absorption Spectrum of the
 Simplest Criegee Intermediate CH₂OO, Science, 340, 174-176, 2013.
- 311 Taatjes, C. A., Meloni, G., Selby, T. M., Trevitt, A. J., Osborn, D. L., Percival, C. J., and
- 312 Shallcross, D. E.: Direct Observation of the Gas-Phase Criegee Intermediate (CH₂OO),
- Journal of the American Chemical Society, 130, 11883-11885, 2008.
- 314 Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L., Lee, E. P. F., Dyke, J. M.,
- 315 Mok, D. W. K., Shallcross, D. E., and Percival, C. J.: Direct measurement of Criegee
- 316 intermediate (CH₂OO) reactions with acetone, acetaldehyde, and hexafluoroacetone, Physical
- 317 Chemistry Chemical Physics, 14, 10391-10400, 2012.
- 318 Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M., Shallcross, D. E.,
- 319 Rotavera, B., Lee, E. P. F., Dyke, J. M., Mok, D. W. K., Osborn, D. L., and Percival, C. J.:
- 320 Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate
- 321 CH₃CHOO, Science, 340, 177-180, 2013.
- 322 Taatjes, C. A., Shallcross, D. E., and Percival, C. J.: Research frontiers in the chemistry of
- 323 Criegee intermediates and tropospheric ozonolysis, Physical Chemistry Chemical Physics, 16,
- 324 1689-2180, 2014.
- 325 Vereecken, L., and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms
- in the troposphere, Chemical Society Reviews, 41, 6217-6708, 2012.

- 327 Volkamer, R., Sheehy, P., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico
- 328 City atmosphere Part 1: A radical source perspective, Atmospheric Chemistry and Physics,
- 329 10, 6969-6991, 2010.
- 330 Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and
- 331 Taatjes, C. A.: Direct Kinetic Measurements of Criegee Intermediate (CH₂OO) Formed by
- 332 Reaction of CH₂I with O₂, Science, 335, 204-207, 2012.
- 333 Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A., Oetjen, H., Read, K.
- 334 A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane, J. M. C., Saltzman, E. S., Wiedensohler,
- 335 A., and Heard, D. E.: The chemistry of OH and HO₂ radicals in the boundary layer over the
- tropical Atlantic Ocean, Atmospheric Chemistry and Physics, 10, 1555-1576, 2010.
- 337 Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting
- 338 the sensitivity of Laser Induced Fluorescence instruments used for HO_2 detection to an
- 339 interference from RO_2 radicals and introducing a novel approach that enables HO_2 and certain
- RO₂ types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440,
 2013.
- 342 Winiberg, F. A. F., Smith, S. C., Bejan, I., Brumby, C. A., Ingham, T., Malkin, T. L., Orr, S.
- 343 C., Heard, D. E., and Seakins, P. W.: Pressure dependent calibration of the OH and HO_x
- 344 channels of a FAGE HO_x instrument using the Highly Instrumented Reactor for Atmospheric
- 345 Chemistry (HIRAC), Atmospheric Measurement Techniques Discussions, 7, 7963-8011,
- 346 2014.
- 347 Wong, K. W., and Stutz, J.: Influence of nocturnal vertical stability on daytime chemistry: A
- one-dimensional model study, Atmospheric Environment, 44, 3753-3760, 2010.

Table 1. Examples of modelling studies and observations of HO_x radicals and VOC oxidation at night. PERCA = Peroxy Radical Chemical
Amplification; LIF = Laser Induced Fluorescence; DOAS = Differential Optical Absorption Spectroscopy; MCM = Master Chemical Mechanism;
MIESR = Matrix Isolation Electron Spin Resonance; RACM = Regional Atmospheric Chemistry Mechanism; CRDS = Cavity Ring Down
Spectroscopy; CIMS = Chemical Ionisation Mass Spectrometry; GC = Gas Chromatography; PTRMS = Proton Transfer Reaction Mass Spectrometry;
FTIR = Fourier Transform Infrared Spectroscopy; DUALER (DUAl channel peroxy radical chemical amplifier); OA-CRD = Off Axis Cavity Ring
Down Spectroscopy; CRM-PTR-MS = Comparative Reactivity Method Proton Transfer Mass Spectrometry.

Location, Campaign, Date	Methods	Results	Reference
Mace Head, Ireland, EASE97, 1997	Measurements: $[HO_2+RO_2]$ measured by PERCA; HO _x measured by LIF; NO ₃ measured by DOAS). Modelling: Campaign-tailored box model constrained to measurements, based on MCM.	2 nights of HO _x measurements: HO ₂ = 1–2 and 0.5–0.7 pptv; OH not detected above limit of detection (~ 2.5×10^5 cm ⁻³). NO ₃ dominated radical production in westerly (clean) air masses; O ₃ dominated in NE, SE, and SW air masses and dominated radical production overall during the campaign.	Salisbury et al. (2001); Creasey et al. (2002)
Pabstthum, Germany, BERLIOZ 1998,	Measurements: HO _x measured by LIF; NO ₃ measured by DOAS and MIESR. Modelling: Zero-dimensional model using lumped VOC reactivity, constrained to measured species.	Nighttime $OH = 1.85 \times 10^5 \text{ cm}^{-3}$, compared to modelled value of $4.1 \times 10^5 \text{ cm}^{-3}$. Nighttime $HO_2 = 3 \times 10^7 \text{ cm}^{-3}$, model results in agreement. NO ₃ chemistry responsible for 53 % of HO ₂ and 36 % of OH during the night. O ₃ + alkene responsible for 47 % of HO ₂ and 64 % of OH during the night.	Geyer et al. (2003); Holland et al. (2003)
Birmingham, PUMA, 1999 and 2000	Measurements: HO _x measured by LIF. Modelling: Photochemical box model constrained to measurements, based on MCM.	Daytime OH initiation dominated by O_3 + alkenes, HONO photolysis, and $O(^1D)$ + H_2O during summer. O_3 + alkenes dominated in winter. O_3 + alkenes main radical source at night.	Emmerson et al. (2005); Harrison et al. (2006)
New York, PMTACS- NY, 2001	Measurements: HO_x measured by LIF.	Nighttime OH ~ 7×10^5 cm ⁻³ and nighttime HO ₂ ~ 8×10^6 cm ⁻³ . Increase in HO _x after midnight attributed to increase in O ₃ due to transport. O ₃ + alkenes main source of nighttime HO _x .	Ren et al. (2003a); Ren et al. (2003b)

Mace Head, NAMBLEX, 2002	Measurements: HO _x measured by LIF; NO ₃ measured by DOAS. Modelling: Zero- dimensional box models constrained to measured species, based on MCM.	Nighttime $HO_2 = 2-3 \times 10^7$ cm ⁻³ ; OH below detection limit $(6 \times 10^4 \text{ cm}^{-3})$. Model overestimated HO_2 . On average, O_3 + alkene reactions contributed 59 % and NO_3 + alkene reactions contributed 41 % to RO_2 production at night, but NO_3 and RO_2 concentrations were always higher in semi-polluted air masses than in clean marine air masses and NO_3 reactions dominated in these conditions.	Fleming et al. (2006); Smith et al. (2006); Sommariva et al. (2007)
Writtle, London, TORCH, 2003	Measurements: HO _x measured by LIF, RO ₂ measured by PERCA, during a heatwave/pollution episode. Modelling: zero- dimensional box model constrained to measured species.	OH and HO ₂ observed above the limit of detection on several nights. OH peaked at 8.5×10^5 cm ⁻³ ; HO ₂ peaked at 1×10^8 cm ⁻³ . Model overpredicted nighttime OH and HO ₂ on average by 24 % and 7 %; underpredicted [HO ₂ + Σ RO ₂] by 22 %.	Lee et al. (2006); Emmerson et al. (2007); Emmerson and Carslaw (2009)
Mexico City, MCMA 2003	Measurements: HO_x measured by LIF, NO_3 measured by DOAS. Modelling: Zero- dimensional model based on MCM v3.1, constrained to measured species.	Polluted city location characterized by high levels of NO, NO ₂ and O ₃ . Maximum nighttime OH ~ 1×10^6 cm ⁻³ ; maximum nighttime HO ₂ ~ 6 pptv. Nighttime production of radicals dominated by O ₃ + alkene reactions (76–92 %); NO ₃ + alkene plays a minor role. Daytime radical production ~ 25 times higher than night.	Shirley et al. (2006); Sheehy et al. (2010); Volkamer et al. (2010)
New York City, PMTACS-NY winter 2004	Measurements: HO_x measured by LIF. Modelling: Zero-dimensional model based on RACM and constrained by measurements.	Mean maximum $OH = 0.05$ pptv; mean maximum $HO_2 = 0.7$ pptv. Model under-prediction of HO_2 was pronounced when NO was high. O_3 + alkene reactions were dominant nighttime source.	Ren et al. (2006)
Gulf of Maine, Northeast United States, NEAQS, 2004	Measurements: NO_3 and N_2O_5 measured by CRDS. Modelling: Zero-dimensional model based on MCM v3.1, constrained to measured species. No measurements of OH, HO ₂ , or RO ₂ .	Ship-based measurements onboard <i>RV</i> Ronald H. Brown in the Gulf of Maine, influenced by unpolluted marine air masses and polluted air masses from USA and Canada. Maximum modelled nighttime $HO_2 = 7.0 \times 10^8$ cm ⁻³ . Base model overestimated NO ₃ and NO ₂ observations by 30–50 %. In anthropogenic air masses reaction with VOCs and RO ₂ each accounted for 40 % of modelled NO ₃ loss.	Sommariva et al. (2009)
Houston, Texas, TexAQS, 2006	Measurements: NO_3 and N_2O_5 measured by CRDS, VOCs measured by CIMS, GC, and PTRMS. No direct measurements of OH, HO ₂ ,	Loss rates and budgets of NO ₃ and highly reactive VOCs calculated. NO ₃ primarily lost through reaction with VOCs. VOC oxidation dominated by NO ₃ , which was $3-5$ times more important than O ₃ .	Brown et al. (2011)

or RO₂.

Pearl River Delta, China, PRIDE-PRD, 2006	Measurements: HO _x measured by LIF; OH reactivity measured by laser-flash photolysis and LIF; VOCs measured by FTIR and GC. Modelling: Box model based on RACM and the Mainz Isoprene Mechanism, and constrained by measurements.	Rural site 60 km downwind of large urban region (Guangzhou), with low local wind speeds favouring accumulation of air pollutants. Maximum nighttime OH (hourly average) = 5×10^6 cm ⁻³ ; maximum nighttime HO ₂ (hourly average) = 1×10^9 cm ⁻³ . Unknown recycling mechanism required for the model to reproduce measured nighttime values. OH reactivity peaked at night. Missing nighttime reactivity attributed to unmeasured secondary organic compounds.	Lou et al. (2010); Lu et al. (2012); Lu et al. (2013)
Beijing, CAREBEIJIN G2006, 2006	Measurements: HO_x measured by LIF; OH lifetime measured by laser flash photolysis and LIF; VOCs measured by GC. Modelling: Box model based on RACM and the Mainz Isoprene Mechanism, and constrained by measurements.	Suburban rural site south of Beijing, under the influence of slowly moving, aged polluted air from the south. OH reactivity peaked at night. Model generally underestimated observed nighttime OH concentrations.	Lu et al. (2013); Lu et al. (2014)
Cape Verde, RHaMBLe, 2007	Measurements: HO_x measured by LIF. Modelling: Box model based on MCM with added halogen chemistry scheme, constrained to measurements of long-lived species.	Clean tropical Atlantic measurement site with occasional continental influence. OH was not measured at night. HO ₂ was detected on two nights, up to 2.5×10^7 cm ⁻³ . Model underprediction of HO ₂ was significantly reduced by constraining the model to 100 pptv of peroxy acetyl nitrate (PAN) at night.	Whalley et al. (2010)
Huelva, Spain, DOMINO, 2008	Measurements: [HO ₂ +RO ₂] measured by DUALER; HO _x measured by LIF; NO ₃ and N ₂ O ₅ measured by OA-CRD; OH reactivity measured by CRM-PTR-MS. No measurements of anthropogenic VOCs.	Coastal forested site with strong urban-industrial and weak biogenic influences. Maxima in $[HO_2+RO_2]$ and $[HO_2]$ were observed around noon and midnight. Enhanced nighttime $[HO_2+RO_2]$ (up to 80 pptv) was observed in air masses from the urban-industrial region. Maximum nighttime $HO_2 = 8$ pptv. Measured NO ₃ was generally below LOD; calculated NO ₃ up to 20 pptv. Calculated production of RO ₂ from NO ₃ +alkenes accounts for 47–54 % of observed $[HO_2+RO_2]$. Ozonolysis of unmeasured alkenes could account for remaining $[HO_2+RO_2]$.	Andrés- Hernández et al. (2009)

7 Table 2. Details of supporting measurements.

Species	Instrument, Technique	Time resolution; Limit of detection (LOD)	References
СО	Aero Laser AL5002 Fast Carbon Monoxide Monitor. Excitation and fast response fluorescence at $\lambda = 150$ nm.	1 s; 3.5 ppbv	Gerbig et al. (1999)
O ₃	Thermo Scientific TEi49C Ozone analyser. Absorption spectroscopy at $\lambda = 254$ nm.	1 s; 0.6 ppbv	Hewitt et al. (2010)
NO, NO ₂ , NO _x (NO + NO ₂)	Air Quality Design dual channel fast-response NO_x instrument. Chemiluminescence from $NO + O_3$ reaction. Conversion of NO_2 to NO by photolysis.	10 s; 3 pptv for NO, 15 pptv for NO ₂	Stewart et al. (2008)
NO2, ΣANs, ΣPNs	TD-LIF (thermal dissociation laser induced fluorescence). Detection of NO ₂ by laser- induced fluorescence. Thermal decomposition of Σ ANs (total alkyl nitrate) and Σ PNs (total peroxy nitrate) to NO ₂ .	1 s; 9.8 pptv for NO ₂ , 28.1 pptv for ΣANs, 18.4 pptv for ΣPNs	Dari-Salisburgo et al. (2009); Di Carlo et al. (2013)
Alkenes	Whole air samples (WAS) analysed by laboratory-based gas chromatography with flame ionization detection (GC-FID).	Typically 30 s; variable limits of detection	Hopkins et al. (2003)
NO3, N2O5	BBCEAS (broadband cavity- enhanced absorption spectroscopy) of NO ₃ at $\lambda = 642-$ 672 nm. N ₂ O ₅ measured following thermal dissociation to NO ₃ + NO ₂ .	1 s; 1.1 pptv for NO ₃ , 2.4 pptv for NO ₃ + N ₂ O ₅	Kennedy et al. (2011)
НСНО	Hantzsch technique: Liquid- phase reaction of formaldehyde followed by excitation, and fluorescence of resulting adduct at $\lambda = 510$ nm.	60 s; 81 pptv	Still et al. (2006)

8 Table 3. Mean mixing ratios of selected gas phase species, and air temperature, measured during

9 RONOCO and SeptEx. The flight and season during which the maximum values were measured

10 are given in parentheses. NO₂ data are from the TD-LIF instrument. Zero values indicate

Species Summer RONOCO SeptEx Winter RONOCO Maximum CO / ppbv 117.1 256.0 (B537, summer) 102.3 139.3 O_3 / ppbv 40.4 89.8 (B537, summer) 39.6 38.6 0 176.9 (B537, summer) NO₃ / pptv 21.1 6.2 NO / ppbv 0.05 0 0 18.9 (B539, summer) NO₂ / ppbv 1.7 2.3 18.6 (B568, winter) 1.6 Temperature / K 286.5 286.2 276.4 297.5 (B537, summer)

11 measurements below the limit of detection.

12 Table 4. Combined daytime and nighttime mean concentrations of OH and mean mixing ratios of

13 HO₂^{*} with the FAGE instrument's average 1σ limits of detection for a 5 minute averaging period

Comment [HW18]: See Reviewers' Comments Sect 1.3

14 during the RONOCO and SeptEx fieldwork.

_	OH / molecule cm ⁻³		HO ₂ * / pptv	
	Mean concentration	Limit of detection	Mean mixing ratio	Limit of detection
Summer		1.8×10^{6}	1.6	0.03
SeptEx	1.8×10^6	1.2×10^6	2.9	0.02
Winter		6.4×10^5	0.7	0.02

Table 5. Mean and, in parentheses, maximum HO_2^* mixing ratios measured during RONOCO and SeptEx.

	Mean (maximum) HO ₂ [*] mixing ratio / pptv		
	Summer	SeptEx	Winter
Dawn	0.74 (1.19)		0.54 (1.81)
Day		3.78 (11.79)	0.49 (1.68)
Dusk	2.73 (9.97)		0.32 (0.97)
Night	1.86 (13.58)		0.98 (2.02)

Table 6. Average Rrates of instantaneous production of HO₂ from reactions of O₃ and NO₃ with alkenes.

Comment [HW19]: See Reviewers' Comments Sect 1.4

18	alken

Measurements	HO ₂ production rate (ΣP_{HO2}) / 10 ⁴ molecule cm ⁻³ s ⁻¹			
	Dawn	Day	Dusk	Night
Summer				
NO ₃	0		2.8	3.8
O ₃	0.5		2.2	1.7
Total	0.5		5.0	5.5
Winter				
NO ₃	0.4	0.4	0.4	0.5
O ₃	1.4	1.5	1.2	1.2
Total	1.8	1.9	1.6	1.7

9 Figure 1. Flight paths for: (a) Summer RONOCO, (b) SeptEx, and (c) winter RONOCO
9 measurement campaigns, coloured by altitude.

s m^{-3}) in a 300 m deep layer from the surface, integrated over a 24 hour period beginning 48 15

60 second data (grey points) and mean values in 500 m altitude bins (solid black lines).

14

15

Comment [HW20]: See Reviewers' Comments Sect 1.4

5

- 9 Figure <u>43</u>. Altitude profile of OH measured during SeptEx showing 60 second data (grey
- \P points) and mean values in 500 m altitude bins (solid black lines). Error bars are $1\sigma_{---}$

Formatted: Font: Not Italic

5 Figure <u>6</u>5. Flight track of flight B537 on 20th July 2010, coloured by altitude.

Figure <u>76</u>. Footprint maps for flight B537 on 20th July 2010, showing model particle densities
(g s m⁻³) in a 300 m deep layer from the surface, integrated over 24 hour periods beginning
(a) 24 hours, (b) 48 hours, (c) 72 hours, and (d) 96 hours prior to the flight.

- 15 shading representing the uncertainty in the measurements), O_3 (bottom panel, red) and NO_3
- 17 (bottom panel, green) during nighttime flight B537 on 20^{th} July 2010.

9

Comment [HW25]: Figure updated with HO₂*. See Reviewers' Comments Sect. 1.1

10Figure 98. HO_2^* versus (a) NO_3 and (b) O_3 during flight B537 (blue, filled circles) and during13all other nighttime flights (black, open circles). The solid lines are lines of best fit to the data.

Figure <u>109</u>. Generalised reaction scheme for production of RO₂ and HO₂ following reaction
of NO₃ with an alkene.

13

9

Comment [HW26]: See Reviewers' Comments Sect. 1.1

5 9

q

Figure <u>1110</u>. Reaction scheme for O_3 + propene, showing production of HO_2 and the methyl peroxy radical, CH_3O_2 .

Comment [HW27]: See Reviewers' Comments Sect 1.4

the

10

55

measurements.

- 14 Figure <u>1514</u>. Average <u>R</u>rates of instantaneous production of HO₂ (P_{HO2})-from reactions of O₃
- and NO₃ with alkenes during flight B537. Error bars represent the combined uncertainty in
- 15 the measurements.
- 9

Comment [HW30]: See Reviewers' Comments Sect 1.4

