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Reviewer’s comments on: "Carbon monoxide climatology derived from the trajectory mapping 
of global MOZAIC-IAGOS data" by M. Osman, et al. 

General Comments 

This manuscript by Osman et al. reports a novel use of MOZAIC/IAGOS (or ’M/I’) 
measurements to construct a global, 3D, time-varying climatology for CO. The method relies on 
the HYSPLIT trajectory model and NCAR/NCEP reanalysis wind fields to ’project’ measured 
CO concentrations to regions and altitudes lacking actual measurements. 

The resulting climatology is evaluated first by comparing CO climatology maps generated with 
forward and backward trajectories separately. The method is then validated by comparing M/I 
CO statistics at a number of airports with trajectory-mapped climatologies calculated after 
withholding M/I measurements at each of those airports. 

Finally, the CO climatology is compared with MOPITT satellite results, where MOPITT Level 3 
CO values have been re-gridded to a 5-by-5 degree grid, matching the resolution of the 
trajectory-mapped climatology. 

While the general method described in the manuscript is novel, the significance of the new 
climatology product is very unclear. The manuscript includes very little in the way of an error 
analysis that would permit an understanding of the limitations of the climatology. This analysis 
should be presented separately from the validation of the method. At a minimum, such an 
analysis should include (1) a clear description of the underlying assumptions of the method, and 
the impact of these assumptions on the accuracy of the climatology, and (2) a statistical analysis 
of the ’robustness’ of the climatology (based on the variability of the CO values that are 
averaged together in each ’bin’). An important assumption that is only vaguely mentioned in the 
manuscript is that measurements of CO near source regions (e.g., urban regions surrounding 
airports) are directly useful for estimating CO concentrations large distances both upwind and 
downwind of the airport. This ’airport effect’ would seem to result in a significant positive bias 
in the trajectory-mapped CO values. A statistical analysis of the variability of the trajectory-
mapped CO values is necessary to distinguish regions where the CO climatology is ’statistically 
robust’ from those regions where the uncertainty is very large. 

 



 

Following the reviewer's suggestion, sample plots of number of samples per grid cell and the 
standard error of the mean associated with the trajectory-mapping have been added. These are 
available for each month/year/decade and level in the climatology. We have added text 
discussing these results as well. We thank the reviewer for drawing our attention to this 
oversight.  

The manuscript does not include a true validation section, which would involve comparing the 
trajectory-mapped CO climatology with an existing product with known error characteristics. 
The presented methods for evaluating the climatology are mostly qualitative. 

These methods have some value but are rather indirect and inconclusive. For example, since all 
airports are located near major urban centers, the biasing effects of urban sources of CO may 
well be similar at different airports. So, the trajectory-mapped climatology may generally 
represent CO profiles near urban regions better than in rural areas far from sources. If so, the 
experiments in which trajectory-mapped climatologies are calculated after withholding 
observations at one airport are still not indicative of the accuracy of the climatology away from 
urban regions. A more conclusive validation would be based on independent in-situ data from 
aircraft deployed during some field campaign, where the issue of local sources was known to be 
unimportant. 

The effects of urban sources of CO are indeed observed in the boundary layer. This is an 
important point that should have been better emphasized and we thank the reviewer for drawing 
it to our attention. However, the urban effect decreases above the boundary layer since the 
aircraft travels up to 200-400 km before reaching its cruise altitude, which considerably reduces 
the effect of urban sources of CO. The following figure shows the comparison between NOAA 
in-situ data (Novelli et al., 1992; Lang et al., 1992; and Conway et al., 1994; Emmons et 
al.,2004; Emmons et al., 2009; Deeter et al., 2010) and the trajectory-mapped CO climatology. 
Individual NOAA CO measurements were compared with the monthly mean trajectory-mapped 
CO climatology, or if the monthly mean was unavailable, the seasonal mean climatology for that 
particular location. The total number of NOAA aircraft field campaign CO profiles from for the 
period 2001-2012 is 1940.  

The text has been revised to discuss these points. 

Added references: 

Conway, T . J., P. P. Tans, L . S. Waterman K, . W. Thoning D, . R. Kitzis, K. A. Masarie, and 
N. Zhang, Evidence for interannual variability of the carbon cycle from the NOAA/CMDL  
global air sampling network,  J. Geophys. Res.,99, 22,831-22,855, 1994. 



Lang, P.M., L. P. Steele, L. S. Waterman, R. C. Martin, K. A. Masarie, and E. J. Dlugokencky 
NO AA/CMDL atmospheric  methane data for the period1 983-1990 from shipboard flask 
sampling NOAA Tech. Memo., ERL CMDL-4, 88 pp., 1992. 

Novelli, P .C., L. P. Steele, and P. P. Tans, Mixing ratios of carbon monoxide in the troposphere. 
,J. Geophys. Res.,9 7, 20,731-20,750, 1992. 

 

Comparison between NOAA flask profiles and the monthly trajectory-mapped CO climatology 
for the period from 2001-2012. MOZAIC CO measurements are biased high in the boundary 
layer as CO values near airports are typically above background.  

The comparisons of the trajectory-mapped climatology with MOPITT Level 3 products re-
gridded at 5-degree resolution have only qualitative value due to several effects. First, the 
trajectory-mapped CO values are based on in-situ measurements near urban regions (esp. in the 
lower troposphere), whereas MOPITT Level 3 products at 5-degree resolution represent a mix of 
urban and mostly rural atmospheric conditions. This effect would very likely result in a positive 
bias in the trajectory-mapped climatology. Second, because of the significant variability of 
MOPITT retrieval performance with respect to various geophysical parameters (surface type, CO 



loading, thermal contrast), the validity of MOPITT averaging kernels averaged over large 
regions is unclear. All previous published MOPITT validation papers have exploited MOPITT 
Level 2 data averaged over much smaller regions. 

Major Revisions 

1. Most readers will find this paper unreasonably long and it should therefore be shortened. I 
believe the paper should be split into a ’methodology and validation’ paper (based on Sections 1-
4) and a separate ’analysis’ paper (based on Sections 5 and 6). Given that some parts of the 
methodology need to be lengthened (see below), reducing the paper’s length is even more 
important. 

Following the reviewer’s comments, the O3-CO subsection (6.2) has been removed from the 
paper in order to reduce its size. Other reductions have been made as well. 

2. The paper should include a section specifically addressing errors in the trajectory mapped CO 
climatology product. In addition to other sources of potential error (e.g., chemistry and trajectory 
errors), this quantitative error analysis should estimate the magnitude of systematic errors due to 
the fact that the M/I CO measurements in the lower-troposphere (e.g., 800 hPa to 1000 hPa) are 
likely biased towards CO concentrations observed over urban regions near airports. The error 
analysis should also provide information on the statistical robustness of the climatology product 
in relation to the variability of the trajectory-mapped CO values which are averaged together in 
each climatology bin. This statistical analysis should then be used to assess the expected 
geographical variability of the uncertainties of the trajectory-mapped CO climatology. 

As suggested by the reviewer, we added plots and discussion of the standard errors of the mean 
and number of sample per grid point associated with the trajectory mapping. These maps are 
available on the FTP site for each month/year/decade and level in the climatology. We have 
added some discussion of these to the text. We have also added discussion of the “airport effect”.  

Standard errors associated with the trajectory mapping: 

Figure X2 shows the standard errors associated with trajectory mapping and the number of 
samples per grid cell for monthly, seasonal and annual averages  at 4.5 km. Similar figures for 
other levels are included with the climatology on the FTP site.  The largest number of samples 
per grid cell and the lowest standard errors are found over North America and Europe as there 
are more frequent MOZAIC-IAGOS aircraft flights in this region.  The standard error is 
computed using all data points found inside a grid cell. This is probably biased somewhat low 
since some grid cells may contain more than one value from a particular trajectory. This bias is 
likely not more than a factor of 2, based on typical trajectory lengths.  



 

Fig. X2. The standard error of the mean (left panels) and number of samples (right panels) for  
monthly (July 2012), annual (2005), seasonal (DJF 2001-2012) means at 4.5 km altitude above 
sea level. The month and year shown are chosen as typical; other months and years show similar 
patterns. The data are binned on a 5o×5o latitude and longitude grid. 



3. The purpose of the comparisons with MOPITT Level 3 products is unclear. Is the intent to use 
MOPITT products to validate the MOZAIC-based CO climatology, or is it the other way 
around? Statements on pages 18, 19, and 20 suggest that the trajectory mapped CO climatology 
reveals biases in the MOPITT V6 product, despite the fact that this product has already been 
thoroughly validated against in-situ data obtained from NOAA aircraft and the HIPPO field 
campaign. True validation involves comparisons of a new product with an established product 
with known error characteristics. 

In this case, it seems that the error characteristics of the MOPITT product are better understood 
and better quantified than the errors associated with the trajectory-mapped climatology. Thus, it 
seems more reasonable to conclude that the MOPITT V6 product reveals biases in the trajectory-
mapped CO climatology (than the other way around). 

The main purpose of the comparison of the trajectory mapped CO climatology with MOPITT is 
simply to show that trajectory mapping produces global maps that look reasonable, and that the 
mapping product agrees fairly well with MOPITT even far from airports. The difference at 
higher altitudes is surprising, however, and we felt that it was important to note this in the paper.  
Since it is not our intent to validate MOPITT, we merely show, by showing that we get similar 
differences with unmapped MOZAIC data (using Frankfurt as an example), that the differences 
are not due somehow to the mapping procedure. This, of course, we considered unlikely 
beforehand, as trajectory errors are found to be typically random; we have observed no biases in 
our work to date. Such biases would have to stem from the NCEP meteorological reanalyses 
used as input, which have themselves been extensively validated.   

4. The comparisons with MOPITT total column values (Section 4.2) appear to be based on 
incorrect assumptions regarding the MOPITT layering scheme, and should be repeated and 
reanalyzed. Specifically, the assumed layer boundaries (at the midpoints between the MOPITT 
retrieval levels) do not agree with the layering scheme discussed in Deeter et al., (2013) and in 
the MOPITT V5 User’s Guide. 

Indeed. Corrected, and description corrected in the text.  

Minor Revisions and Technical Corrections 

p. 2, l. 16 - ’comparison’ should be ’comparing’ 

Done. 

p. 2, l. 22 - Are the results really conclusive that MOPITT is biased, or are the authors really just 
stating that there is some bias between MOPITT and the trajectory-mapped climatology? 

No, it is not our intent to validate MOPITT. We have rephrased the text to make our conclusions 
less definitive. We do see a puzzling difference at higher altitudes, but that could of course be 
some unknown problem with the aircraft measurements at lower pressures.  



p. 2, Abstract - Should be some brief statement about the limitations of the climatology, e.g. 
primarily for Northern Hemisphere. 

We have noted this, and also the urban effect in the boundary layer. In areas where there are few 
profiles or even none, most of the information comes through relatively long range transport with 
associated larger uncertainties. 

p. 5, l. 9 - The meaning of the sentence "Background CO levels are found ..." is unclear. 

We replaced the sentence in p. 5 l. 9-10 by:  

Long range atmospheric transport redistributes CO widely due to its relatively long lifetime.  
Typical tropospheric background CO levels range between 50 and 120 ppbv (WHO, 2000).   

We've added the reference: 

WHO, Air quality guidelines for Europe, 2nd ed. Copenhagen, World Health Organization 
Regional Office for Europe, 2000 (WHO Regional Publications, European Series No. 91), 2000 

p. 5, l. 13 - There is insufficient evidence for this claim. 

Replaced by: “CO values as high as 1800 ppbv have been reported over Beijing (Zbinden, et al., 
2013). 

p. 6, l. 25 - What are these ’obvious advantages’? 

The trajectory approach takes into account known atmospheric motions from the NCEP 
meteorological wind fields. The advantage over linear or quadratic interpolation is that it uses 
additional information about the atmosphere, and therefore can be expected to give a better 
estimate of the redistribution of CO. Using linear or quadratic interpolation is the default best 
estimate in the absence of such knowledge. Text revised. 

p. 6, l. 28 - This statement is premature, since no data have yet been presented in the manuscript. 

The trajectory-mapped MOZAIC-IAGOS CO climatology is publicly available at ftp://es-
ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/.  We removed the text that discusses about O3-
CO correlations in p. 7 to shorten the manuscript.  

p. 7, l. 13 - typo in ’transformation’ 

Corrected. 

p. 7, l. 20 - There is no clear reason for dividing the MOPITT-related material into Sections 2.4 
and 4; they should be combined in a single section. 

We agree and have moved the first part of Section 4 as suggested. 



p. 8, l. 21 - what fraction of the airports (or MOZAIC profiles) are located in the Southern 
Hemisphere? 

Nearly 9 % of the airports are located in the SH and 6% of MOZAIC-IAGOS profiles are from 
the SH. 

p. 9, l. 1 - This is incorrect; MOPITT retrievals do not rely on thermal contrast between the 
surface and atmosphere (but do rely on a temperature gradient within the atmosphere). 

Corrected as p.9 l.1-2: "thermal contrast between the Earth’s surface and atmosphere" replaced 
by "a temperature gradient within the atmosphere" 

p. 9, l. 6 - Which MOPITT product is exploited in this paper, the TIR-only, NIR-only, or 
TIR/NIR? 

Added p. 9, l. 1- added:  TIR/NIR 

p. 9, l. 19-26 - MOPITT validation results vary widely from one version to another; only V6 
validation results should be listed here since results for other versions are irrelevant. 

We agree and have removed the irrelevant sections as suggested by the reviewer. We thank the 
referee for identifying this. 

p. 10, l. 4 - Why were the M/I cruise data not used? 

The cruise data are less useful for our purposes since they are all near the tropopause. However, 
we have used them for validation (see Fig. 6, now Fig. 7). 

p. 11, l. 3 - A thorough discussion of the potential effects of source regions on the trajectory-
mapped climatology is needed here; It is not conclusive that qualitative comparisons of maps 
based separately on backward or forward trajectories prove that source regions have an 
insignificant effect. 

The issue with sources is that while forward trajectories should redistribute the CO correctly, 
backward trajectories will (erroneously) map the CO to places upwind of where it was generated. 
We have expanded the text on this point. 

p. 12, l. 19 - Add reference to Worden et al (Atmos. Meas. Tech., 6(7), 1633–1646, 
doi:10.5194/amt-6-1633-2013) regarding the variables which affect MOPITT averaging kernels. 

Added: 

Worden, H. M., Edwards, D. P., Deeter, M. N., Fu, D., Kulawik, S. S., Worden, J. R., and 
Arellano, A.: Averaging kernel prediction from atmospheric and surface state parameters based 
on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone, 
Atmos. Meas. Tech., 6, 1633-1646, doi:10.5194/amt-6-1633-2013, 2013. 



p. 13, l. 22 - Here the manuscript lacks important details. Exactly how were the CO 
concentrations at the ’missing’ MOPITT levels (above the maximum MOZAIC aircraft altitude) 
determined? How many levels in the vertical grid are actually affected by this? 

Note that the described strategy of using MOPITT a priori profiles is inconsistent with methods 
used in MOPITT validation papers and might lead to unphysical discontinuities in the CO 
profile. Does the chosen method of filling in these high levels affect the results? 

If the top of the monthly mean trajectory-mapped MOZAIC-IAGOS CO vertical profile (that is 
interpolated to MOPITT pressure levels)  is below 100 hPa, we use the corresponding MOPITT 
monthly a priori profile for the missing CO data above the highest trajectory-mapped altitude. 
However, most of the trajectory-mapped CO profiles reach up to altitude 200-100 hPa, which is 
about 14 km above sea level. Thus for extending the trajectory-mapped MOZAIC-IAGOS CO 
profiles to the highest MOPITT level, we have utilized the MOPITT a priori profile mostly for 
100 hPa and sometimes for 200 hPa. The same procedure has been used in previous work. de 
Laate et al. (2012) have shown robust results by using MOPITT a priori profiles for the missing 
MOZAIC-IAGOS in situ measurements above the maximum MOZAIC-IAGOS aircraft altitude. 
The authors found the errors as a result of using the MOPITT a priori profile for the missing 
MOZAIC-IAGOS in situ measurements above the maximum MOZAIC-IAGOS aircraft altitude 
to be about 5 % or less. Since the maximum altitude of the top of the trajectory-mapped data 
(i.e., ~14 km) is greater than the maximum altitude reached by the MOZAIC-IAGOS aircraft 
(i.e., ~12 km), the error in our comparison can be expected to be smaller yet.  

 

p. 14, l. 17 - Why exclude airports in the Southern Hemisphere from the validation study? 

Unfortunately, there are limited MOZAIC-IAGOS data in the SH. Consequently, if an airport in 
the SH excluded from the trajectory-mapped calculation for the validation, most of the 
information comes via relatively long trajectories, which are associated with larger uncertainties, 
and the comparison becomes uncertain as well.  

p. 15, l. 25 - All of the listed airports are located in the Northern Hemisphere. Should include 
several from the Southern Hemisphere, where the climatology might be more challenged. 

Please see above. 

p. 16, l. 15 - For readers’ convenience, online M/I CO maps should be reproduced in the 
manuscript (with permission) to compare against Fig. 6. 

The following figure is reproduced and added in the manuscript (now shown in Fig. 7). 



 

p. 17, l. 22 - Both the shapes and magnitudes (or areas) of the averaging kernels are significant. 

Done. In p. 17, l. 22 - shapes  replaced by shapes and magnitudes (or areas) 

p. 17, l. 7 - It is unclear if the analysis of Fig. 2 is included just as an example, or if it supposedly 
illustrates overall bias in MOPITT. Any conclusions about MOPITT retrieval bias should 
compare findings to MOPITT validation papers; possible reasons for any discrepancies in 
validation results (relative to published results) should be discussed. 

Figure 2 (now Figure 3) is included as an illustration and it reveals the discrepancy between 
trajectory-mapped and MOPITT CO. Possible reasons are noted.  

p. 18, l. 10 - Which MOPITT product was used: TIR-only, NIR-only or TIR/NIR? 

TIR/NIR 



p. 18, l. 10 - Emphasize that standard MOPITT L3 retrievals have been regridded to 5-degree 
resolution for this analysis. 

Added in p18, l 11  : The standard MOPITT V6L3 retrievals have been regridded to 5-degree 
resolution for this analysis. 

p. 18, l. 27 - Are the authors suggesting that the trajectory-mapped CO climatology can be used 
to validate MOPITT, or are the MOPITT data being used to validate the MOZAIC CO 
climatology? This sentence observes that there is a difference between the two products ("reveals 
significant biases between MOPITT and the trajectory-mapped ..."), while the first sentence in 
the next paragraph ("MOPITT seems to underestimate ...") suggests that the trajectory-mapped 
CO climatology can be used to determine biases in MOPITT products. 

No, it is not our intent to validate MOPITT. We have rephrased the text to make our conclusions 
less definitive. We do see a puzzling difference at higher altitudes, but that could of course be 
some unknown problem with the aircraft measurements at lower pressures.  

p. 19, l. 5 - This is incorrect; all previous MOPITT validation work was performed with 
MOPITT Level 2 products, not Level 3 products. This may be related to the significant 
discrepancies in the validation results reported in this manuscript compared to previously 
Corrected. We thank the referee for identifying the error. 

p. 19, l.9 - It is not true that all published MOPITT validation results have been based on NOAA 
flask sampling. 

Corrected. 

p. 19, l. 10-19 - Comparisons of MOPITT L3 data (w/ 5-degree resolution) and M/I profiles for 
one airport (Frankfurt) do not provide convincing evidence of a general negative bias in the 
MOPITT retrievals, especially given that MOPITT V6 validation results have been previously 
reported for a large number of NOAA sites and for the HIPPO field campaign (Deeter et al., 
2014). 

The comparison of MOZAIC-IAGOS in situ profiles at Frankfurt against MOPITT is  intended 
only to show that the differences are not due somehow to the mapping procedure, since we get 
similar differences with unmapped MOZAIC data (using Frankfurt as an example),  

p. 19, l. 12 - It is unclear if these comparisons are based on standard MOPITT L3 data, or the 
regridded 5-degree resolution L3 data. 

Added: the comparison is based on the regridded 5-degree resolution MOPITT V6L3 data 

p. 20, l. 12 - It is unclear why MOPITT retrievals in the lower troposphere would only yield a 
lower-bound (although it is true that such retrievals are often highly constrained by the a priori). 



We were citing an observation by Liu et al. (2005), who  noted that MOPITT has low sensitivity 
to CO in the lower troposphere. However, we have removed those remarks in the current version.  

p. 21 - References are needed for the text and equations presented in Section 4.2. 

added p21. l6:: Deeter 2002 and Emmons et al. (2004) 

added p21. l13: Deeter 2002 and Emmons et al. (2004) 

added p22  l5: Deeter 2002 and Emmons et al. (2004) 

 

 

 

 

 

 

 



 

August 2002 to DJF, December 2005 to MAM, December 2011 to JJA and August 2012 to SON 
2001-2012. Total column values correcting the MOPITT layering scheme. 



================================================== 

Deeter, M. N. (2009), MOPITT (Measurements of Pollution in the Troposphere) Validated 
Version 4 Product User’s Guide, National Center for Atmospheric Research. Available at 
http://web3.acd.ucar.edu/mopitt/v4_users_guide_val.pdf. 

Deeter, M. N. (2011), MOPITT (Measurements of Pollution in the Troposphere) Validated 
Version 5 Product User’s Guide, National Center for Atmospheric Research. Available at 
http://www.acom.ucar.edu/mopitt/v5_users_guide_beta.pdf 

Deeter, M. N. (2013), MOPITT (Measurements of Pollution in the Troposphere) Validated 
Version 6Product User’s Guide, National Center for Atmospheric Research. Available at 
https://www2.acom.ucar.edu/sites/default/files/mopitt/v6_users_guide_201309.pdf 

Deeter, M. N. (2002), Calculation and Application of MOPITT (Measurements of Pollution in 
the Troposphere) Averaging Kernels, Available at 
http://www.acom.ucar.edu/mopitt/data/avg_krnls_app.pdf 

 

We thank the referee for his/her careful review and very helpful remarks. 



Response to referee 2 

Interactive comment on “Carbon monoxide climatology derived from the trajectory mapping of 
global MOZAIC-IAGOS data” by M. Osman et al. 

Anonymous Referee #2 

Received and published: 30 November 2015 

General Comments 

The paper of Osman et al. presents a global, height-resolved climatology of tropospheric carbon 
monoxide (CO) from MOZAIC-IAGOS data. A trajectory mapping approach was used to inter- 
and extrapolate the aircraft data to a regular spatial grid. 

Several evaluation and validation efforts of the new climatology are presented. This includes 
detailed comparisons with MOPITT satellite measurements. Furthermore, horizontal and vertical 
distributions and trends of the CO distributions from the climatology as well as correlations with 
ozone distributions are discussed. 

I found that the paper is well written and interesting to read. It fits in the scope of ACP. Most of 
the analyses presented here appear to be scientifically sound. The new data set will be of interest 
for atmospheric modellers looking for CO data sets to initialize and validate their simulations. It 
will be also helpful to retrieval scientists that could use it as a priori information and for 
regularization of the retrievals. My main concern is that the paper is very long. In the revision I 
would suggest to try to shorten and condense the information as much as possible. Specific 
comments and technical corrections for the author’s consideration are given below. 

We thank the referee for his thoughtful remarks. All the referees felt this way, so we have 
removed some sections and figures and tried to reduce the text as well. 

Specific Comments 

p29874, l8-p29875, l2: Such detailed background information on CO photochemistry might not 
be needed in this observational paper. 

We've reduced the discussion of CO photochemistry. 

p29876, l8-10: It seems your climatology is in fact four-dimensional, taking the time domain into 
account? 

That's correct, if we consider time as a dimension. 

p29878, l7: Does the 5% calibration error count as "accuracy" rather than "precision" error of the 
measurements? 



It is described as a calibration uncertainty by Nédélec et al., (2003), so it can be regarded as a 
systematic uncertainty. 

p29878, l23: Is there a general reference for MOPITT? 

Drummond and Mand, 1996. 

p29881, l11-12: How large are the typical vertical errors of your trajectory calculations? 

That is discussed briefly on page 29881, and more thoroughly in our previous work. Also, 
Draxler et al. (1997) suggest that the total error accompanying a HYSPLIT generated trajectory 
to be anywhere from 15-30% of the travel distance. We have expanded slightly on this in the 
revised text. 

p29881, l24-25: Is there a smooth transition of the correlation length between the troposphere 
and stratosphere? 

Not likely --- based on ozone correlation lengths, (Figs. 5a & 5b of Liu et al., 2009) the transition 
is not smooth. 

p29882, l16: Vectors (x, x_a,...) should appear in bold face, I think. You might add an additional 
term (+ G eps) in Eq. (2) to remind the reader that retrieval is also influenced by measurement 
errors (e.g., retrieval noise). 

Done.  

xret = xa +A(x +xa) = Ax +(I+A)xa + ɛ (or Ge) 

where ɛ is the retrieval error due to random errors in the measurement and systematic errors in 
the forward model (e.g., the error in the atmospheric temperature retrieval) and 
where G is a gain matrix and where e is the measurement error vector. 
 
p29883, l9-10: How large are the areas of the averaging kernels? Are they close to one? Another 
interesting quantity would be the FWHM of the averaging kernels, providing a measure of the 
vertical resolution of the retrievals. 

The computed mean area of the averaging kernels is close to unity, but they vary considerably, as 
can be seen from Figure 2 (now Figure 3).  The value of the number of degrees of freedom for 
the signal  (DFS), which is calculated as the diagonal element sum of the averaging kernels, is 
typically 1.5 to 2.  DFS provides an estimate of the number of independent pieces of information 
contained in the measurements. The full-width at half maximum (FWHM) in Fig. 2a (now Fig. 
3a) of the 200-1000 hPa curves is approximately 5-6 km and the largest value of about 7.5 km is 
seen for the 500 hPa curve. In Fig. 2b (now Fig. 3b), the averaging kernels between 300 and 500 
hPa are reasonably sharply peaked with their FWHM  about 6 km.  
 
p29891, l2-23: This text might better fit into the method/theory section (Sect. 2.4)? 



We agree and have moved it as suggested. 

p29892, l1-5: Vectors should be printed in bold face, I think. 

 

 

Done. 

p29902, l14-15: I would also expect that the trajectory approach performs better than 
linear/quadratic interpolation, but this was not shown the paper. 

Strictly speaking, that is true. We have removed this statement from the Conclusions. Instead, we 
note that the trajectory approach takes into account known atmospheric motions from the NCEP 
meteorological wind fields, and therefore can be expected to give a better estimate of the 
redistribution of CO than linear or quadratic interpolation, as it uses additional information about 
the atmosphere.  

Using linear or quadratic interpolation is the default best estimate in the absence of such 
knowledge, so the worst case of trajectory mapping should be equivalent to linear/quadratic 
interpolation.  

p29904, l4-9: Perhaps mention (once more) how the climatology data can be accessed? 

Added on p29904,l9: The data set is publically available at  

ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/ 

Figures: Some figures (e.g., Fig. 2, 3, 15) have very small font sizes and low quality and 
resolution, making it difficult to read labels. 

Done. 

Technical Corrections 

p29879, l12: "southward local equator" -> "southward equator" (?) 

Done. 

p29880, l7: remove brackets around url 

Done. 

p29886, l22: reveals _that_ 

Done. 

ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/


p29886, l24: _an_ increasing number 

Done. 

p29888, l19-20: reword "a very few" (?) 

Replaced by "a very small number" 

p29890, l19: remove "also" 

Done. 

p29890, l19: except _for a_ few 

Done. 

p29892, l13: which _is_ not 

Done. 

p29892, l21: African -> Africa 

Done. 

 

 

We thank the referee for his/her careful review and very useful remarks. 

 



Response to referee 3 

Interactive comment on “Carbon monoxide climatology derived from the trajectory mapping of 
global MOZAIC-IAGOS data” by M. Osman et al. 

Anonymous Referee #3 

Received and published: 10 December 2015 

General comments 

The authors present a new climatology based on the unique dataset of CO profile observations 
from MOZAIC and IAGOS measured since 2001. This data is an invaluable complement to the 
existing global observations from surface stations and satellite retrievals, particularly for the free 
troposphere and UT/LS regions. An attempt is made to widen the unevenly distributed  
observations by calculating forward and backward trajectories. As can be seen from the 
comparison with MOPITT retrievals this works out quite well in most parts of the Northern 
Hemisphere and the Tropics, while the lack of flight data in the Southern Hemisphere hampers 
the climatology completeness and probably also its correctness there. The paper structure is 
sound and the data and methods used for this study are relevant and of importance for global 
chemistry and air quality monitoring. I’d like to see the manuscript published, if the following 
basic items will be addressed: 

We thank the referee for his thoughtful remarks. 

- The influence of the available number of MOZAIC/IAGOS observations on your climatology 
should be examined in more detail. Particularly for the southern edges of the MOZAIC flight 
corridors the agreement of forward and backward trajectories and the comparisons to MOPITT 
seem to be weak as also pointed out in my specific comments. 

Can you give an error estimate for each grid box of the climatology simply based on the number 
of trajectories calculated or give at least a (map) overview of the number of trajectories used in 
each grid box? 

Following the reviewer's suggestion, sample plots of number of samples per grid cell and the 
standard error of the mean associated with the trajectory-mapping have been added. These are 
available for each month/year/decade and level in the climatology. We have added text 
discussing these results as well. We thank the reviewer for drawing our attention to this 
oversight.  

- In several cases it would be more comprehensive to compare zonal averages instead of maps. 
Moreover the chosen months and years in the Figures often look arbitrary. 

We changed Figs. 10 and 11 (now Figs. 12 & 13) to seasonal CO column mean, but have kept 
Fig. 7 (now Fig. 9) as it is, noting in the text that other months show similar distributions. 



Please stick to seasonal climatologies or to a few same examples wherever possible. Total 
column comparisons to MOPITT could be added to Figures 13 and 17. 

Done. 

 



 

 

- The manuscript is too long which can be seen most prominently in the number of Figures. I 
propose to shorten section 6.1 (including Figures S4-S6) significantly as well as the discussion of 
Figures 19-21, skipping Figures 19-20. Figures 2 and 9 can be minimized and Figures 4 and 5 
can be combined into one Figure. 

In order to reduce the size of the paper, section 6.2 has been removed from the manuscript. As 
suggested by the referee, several figures were reduced or removed. 

Specific comments 



p.29875, l.10-14: You could give upper limits of observed values for these polluted regions. 
Values can be higher than 1000 ppb (see e.g. Wang et al., 2004) 

Added. p.29875, l.10-14:  We found the seasonal mean maximum of 1516 ppbv during Fall 
2001-2012 in the same region. 

p.29877, l.3-5: The sentence only repeats your statement on p.29876, l. 25-28. Please combine. 

Done. 

p.29877, l.5-7: Please give some short information (or reference) here on how the source 
distribution of CO can be derived from the O3-CO correlations. 

This section has been removed from the paper to reduce the size of the manuscript. 

p.29878, l.13: Please insert here that you are using only profile data from takeoff and landing. 

OK. 

p.29879, l.6-8: Are there any references available for these MOPITT products? What is the 
version of the total column product? 

Deeter et al. (2014) is a reference for MOPITT V6L3. 

p.29879, l.19-29: To which versions of the MOPITT retrievals do these bias estimates refer to? 
What is the expected or reported difference of version 6 retrievals to those products? 

As they refer to versions of MOPITT other than V6, we have removed from them from the 
manuscript as suggested by Referee.#1. 

p.29880, l.3: In the abstract you limit the maximum altitude to 14 km. Please clarify. 

The maximum altitude of the aircraft at cruise height is about 12 km and the number of advected 
air parcels reaching altitudes above 14 km is very small. Consequently, we report our data for a 
maximum altitude of 14 km. In fact, our upper limit is 20 km, but only a few parcels are seen 
above 14 km. 

p.29880, l.2-6: Did you use the exact horizontal position of the airplane during ascent/descent to 
start the trajectories or did you always start from the airport geographical location? The aircraft 
position can deviate considerably from the airport position, particularly for higher flight 
altitudes. 

We used the exact location of the aircraft to start the trajectories. Text revised to note this. 

p.29882, l.2: Please give the exact path to the CO data. On the given ftp server, several 
directories would fit. 



ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/ 

p.29883, l.25-26: I don’t understand why a horizontal mapping from 1x1 to 5x5 needs a linearity 
in log pressure and CO mixing ratio. Please expand or omit. Figure 2 could be shortened to one 
example. 

This was an error. We have corrected the text.  

p.29884, l.24 – p.29885, l.3: From Figures 3 and S1 I can see quite large differences for many 
occasions, e.g. regions in Northern Asia or the tropical Atlantic ocean, where differences are 
higher than 50%. The quality of Figure 3 needs to be improved. 

As suggested by the referee, Figure 3 (now Figure 4) has been replotted and the quality 
improved.  

p.29885, l.13: Why did you choose the month of May? 

The bias calculations have been done for all months. It does not seem to show seasonal 
dependence and this can be seen in Fig. 5 (now Fig. 6). As a result, we chose May as an example 
to show the bias between the trajectory-mapped and the in situ measurement. 

p.29885, l.14 – p.29886, l.11 and Figures 4-5: You should consider to combine Figures 4 and 5 
to one Figure with less examples. Please give total numbers of profiles which contribute to the 
mean MOZAIC-IAGOS profiles from the airports shown in the Figures. Airports shown here can 
be marked additionally in Figure 1. I doubt that all selected airports represent basically different 
conditions (e.g. Cairo / Tel Aviv or Atlanta / Houston). 

Following the reviewer's suggestion, we reduced the number of figures in Fig. 5 (now Fig. 6) to 
9 (from 12) by removing those airports which do not represent different atmospheric conditions. 
We have removed Atlanta, Cairo, and New Delhi.  

Airport latitude Longitude Number of profiles 
Frankfurt 50.04 8.51 12324 
Houston 29.97 -95.35 130 
Khartoum 15.59 32.55 118 
Lagos 6.57 3.31 265 
Los Angeles 33.94 -118.41 280 
Nagoya 34.88 136.8 439 
New York 40.63 -73.78 978 
Tel Aviv 32.02 34.88 341 
Tokyo 35.77 140.37 929 

Selected airports used in the validations. 

ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/


 

p.29886, l.18-20: You should emphasize that the MOZAIC data for the Southern Hemisphere is 
almost entirely related to flight tracks over the land surfaces. The higher SON values could be 
mostly related to biomass burning events and the values over the southern oceans may be much 
lower. 

Done. 

p.29887, l.12: Which product? V6L3? 

That is correct. MOPITT V6L3 



p.29888, l.25-27: Correlations in Figure 7 are only shown for January, land and ocean are not 
distinguished. Even then you report a correlation coefficient of 0.68 for 300 hPa. Thus I can’t 
believe that correlation coefficients of 0.7 are always reached. 

Figures 9 and 10 (now Figures 11 & 12) suggest that the mapping does a pretty good job over the 
oceans, too, as CO is advected long distances in four days (which is also short compared to its 
lifetime). 

p.29888, l.28: Do you mean for height levels above 700 hPa or for levels with pressures above 
700 hPa? 

We mean (geometric) altitudes above the 700 hPa pressure level. Text revised. 

p.29889, l.9-14: What exactly is compared in Figure 8? Is it monthly means of in-situ profiles 
which afterwards have been transformed using the averaging kernels against monthly means of 
MOPITT retrievals or was the transformation being done with the single profiles? 

The former, monthly means of in-situ profiles have been transformed using the MOPITT 
averaging kernels and plotted against monthly means of MOPITT retrievals. 

p.29889, l.3-19: What are the conclusions you draw from this paragraph? 

We have added: |”This implies that the differences at 500 and 300 hPa are not a result of the 
trajectory mapping.” 

p.29889, l.24-28: I cannot see the dispersion towards the Arabian peninsula from Figure 9. 

Indeed, the transport toward South America is much clearer. We have revised the text. 

p.29889, l.28-29: Which region exactly? 

In southern Africa. Text corrected. 

p. 29890, l.1-14: There is not much new insight for the CO comparison from this paragraph. Also 
your comments on the MOPITT retrieval refer to an older version. You can skip this. 

Agreed.  

p.29890, l.17-20: I don’t agree with this statement. From Figure S2, there are many regions 
where MOPITT is lower than MOZAIC. Showing zonal averages instead of maps could help 
here to quantify. 

The statement is quoting the results of averaging the maps shown. 

p.29891. Eq. 5: How did you derive this equation? Is there any reference?  

It is described in Deeter (2002).   



Deeter, M. N. (2002), Calculation and Application of MOPITT (Measurements of Pollution in 
the Troposphere) Averaging Kernels. Available at 
http://www.acom.ucar.edu/mopitt/data/avg_krnls_app.pdf. Citation added. 

p.29891, l.13-23: Skip the section “The interface . . . column retrievals.” or explain why this 
information is necessary here. 

Removed lines 13-23. 

p.29892, l.26- p.29893, l.2: Your findings are hard to see from Figure 10. It would be more 
elucidating to see a climatology of zonal mean values for both data products. 

We've replaced this figure with one of seasonal means. 

p.29893, l.20-22: Figure 12 shows monthly patterns. Seasonal maps eventually would be 
sufficient. 

We would like to keep it. 

p.29893, l.20- p. 29894, l.19: Section 5.1. needs to be reworked. NH concentrations are not 
higher than SH concentrations for all months, NH biomass burning is negligible in winter. 
Moreover it is not explained why you find so much CO over the southern oceans, far away from 
the sources. How strong is your observational basis (even together with trajectory modeling) for 
these regions? Over Australia and South America there are very few measurements. 

We have rewritten this section to be clearer. There are limited MOZAIC-IAGOS data in the SH. 
The CO over the southern oceans comes from relatively long trajectories as the observations 
(airports) are far away, and so the associated uncertainties are larger. However, CO has a long 
lifetime, so it is not unreasonable to find a lot of CO over the southern oceans, far away from the 
sources. We have compared with global maps of MOPITT CO data, averaged over the same 
period, and we do not see larger differences in those maps between land and sea. We do see a 
bias between our results an MOPITT (our values are larger. One puzzling difference is that 
MOPITT does not show the high values we see between Australia and the southern tip of Africa; 
MOPITT values are elevated there but not as much as ours. A possible explanation, which we 
have not investigated, is that MOZAIC-IAGOS data are not evenly distributed in time; if the 
aircraft sampled some large biomass-burning events these could bias the averages.   

p.29894, l.22-24: You can skip either Figure 13a or 13b, basically it shows the same information. 
Alternatively you could show only one Figure with a comparison to total column CO from 
MOPITT, but for different latitude bands. 

Following the reviewer's suggestion, we have added total CO column for different latitude bands 
to Fig. 13 (now Fig. 15).  

http://www.acom.ucar.edu/mopitt/data/avg_krnls_app.pdf


p.28896, l.15-21: As can be seen from the previous figures, large regions of the extratropical SH 
are not covered by the MOZAIC/IAGOS climatology. It is thus misleading to interpret a zonal 
average profile from this part of the world. I cannot trust the conclusions you draw from this 
section. 

That is true. It is now noted in the manuscript that the trajectory-mapped CO in the SH 
extratropics is mainly representative of the tropics, unlike in the NH extratropics. 

p.29897, l.5-8: It would be intriguing to add a total column comparison to this interesting Figure 
17. 

Done. 

p.39898, l.1 – p.29899, l.2: Given the length of the manuscript and the limited information 
content of the section, I’d propose to skip the section completely or at least to shorten it 
significantly. 

We have shortened this somewhat, and we have removed section 6.2 entirely, to reduce the size 
of the manuscript. 

p.29900, l.8-9: Maximum monthly mean values of about 80 ppbv for ozone at 4.5 km seem to be 
quite high. Is this supported by the literature? 

Yes, such values are common at northern mid-latitudes. For example, Liu et al. (2013) have 
shown monthly mean CO values of about 80 pbbv at 4.5 km. This section has been removed, 
however. 

p.29900, l.12 – p.29901, l.24: This section can be condensed considerably. Your main 
conclusions can be drawn from Figure 21, without showing Figure 19 and 20. 

Agreed. We have removed p.29900, l.12 – p.29901, l.24 since section 6.2 has been removed 
entirely. 

p.29901, l.26: Insert: “as well as interannual variability”. 

Done. 

p.29901, l.29 – p.29902, l.5: Skip the sentence referring to Figure 21. The rest of this paragraph 
belongs to the conclusions section. 

Done. we thank the referee for thoughtful comments. 

p.29902, l.17-20: I have problems to agree with this conclusion about the SH maximum. I don’t 
think your results are based on a solid fundament of observations for this region. 



Text has been added to reflect the fact that our results in the SH are derived from limited data in 
the region. 

Figure 1: Airports from which profiles are shown later on could be marked here. 

O.K. 

Figure 2: Show only one example (max. two). 

Done. 

Figure 4: Combine with Figure 5. 

We have reduced Fig. 4 (now Fig 5).   

Figure 7: Blue line is missing. The last sentence of the Figure caption can be skipped. 

Removed   "the blue line is the line of best fit," from the Fig. 7 (now Fig. 9) captions. 

Figure 8: mention Frankfurt in the Figure caption. 

Done. 

Figure 9: e)-f) can be skipped. 

These show comparisons in the mid-troposphere. 

Figure 11: Why you do not show here a climatology for e. JAN/JUL? Blue line is not explained. 

Now the monthly plot is replaced by a seasonal climatology. The blue line is the line of best fit, 
which is forced  to pass through (0,0). 

Figure 13: The last sentence of the Figure caption can be skipped. 

OK. 

Figure 14: How well are the data on the southern edge constrained. Can you compare to 
MOPITT? 

In the SH MOZAIC-IAGOS data are limited. As a result a clear CO trend in the region cannot be 
observed, unlike the NH. However, the trajectory-mapped CO climatology reflects the major 
features of the region seen in MOPITT maps, for example,  in Fig. 9 (now Fig. 11). However, we 
cannot compare with higher SH latitudes since there are no available MOZAIC-IAGOS data in 
that region.  

Figures S4-S6 can be skipped when rewriting section 6.1. 



Figures S4 & S5 have been removed from the manuscript, but we have kept Fig. S6 (now Fig. 
S4).  

Technical corrections 

p.29875, l.2: Give a reference for IPCC AR5. 

IPCC, 2013 (IPCC AR5): Climate Change 2013: The Physical Science Basis. Contribution of 
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. 
Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA, 1535 pp. 

p.29875, l.14: The reference Zbinden et al., 2013 is missing in the reference section.  

Done.  

Zbinden, R. M., V. Thouret, P. Ricaud, F. Carminati1, J.-P. Cammas, P. Nédélec, Climatology of 
pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC 
in the mid-northern latitudes (24◦ N to 50◦ N) from 1994 to 2009, doi:10.5194/acp-13-12363-
2013, 2013. 
 
p.29875, l.29: NOy is not explained. 

NOy refers to the sum of NOx plus all compounds that are the products of atmospheric oxidation 
of NOx. Text added. 

oxidation products p.29879, l.16: The reference Worden et al., 2010 is missing in the reference 
section. 

Done.  

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Ned´ elec, P. 
P.: Observations ´of near-surface carbon monoxide from space using MOPITT multispectral 
retrievals, J. Geophys. Res., 115, D18314, doi:10.1029/2010JD014242, 2010. 

p.29879, l.16-17: The reference Deeter et al., 2012 is missing in the reference section. 

Done. 

Worden, H. M., M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. P. Nedelec, 
Observations of near-surface carbon monoxide from space using MOPITT multispectral 
retrievals, J. Geophys. Res., 115,doi:10.1029/2010JD014242, 2012. 

p.29879, l.19: “Lou et al., 2007” should be “Luo et al, 2007”. 



Done. Luo et al, 2007 

p.29884, l.14: skip “with”. 

Done. 

p.29884, l.13-14: skip “Eq.” (two times). 

Done. 

p.29886, l.24: Replace “ a increasing” by “an increasing”. 

Done. 

p.29889, l.5: The reference Deeter et al., 2010 is missing in the reference section. 

Done. 

Deeter, M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S.-P., Mao, D., 
Masters, D., Worden, H., Drummond, J. R., and Novelli, P.: The MOPITT Version 4 CO 
Product: Algorithm Enhancements, Validation, and Long-Term Stability, J. Geophys. Res., 115, 
D07306, doi:10.1029/2009JD013005, 2010.  

p. 29891, l.6: Replace “total column vectors” by “total column operator”. 

Done. 

p. 29892, l.8: Replace “times” by “time intervals”. 

Done. 

p. 29892, l.13: Insert “is” in between “which” and “not”. 

Done. 

p. 29892, l.21: Replace “African” by “Africa”. 

Done. 

p. 29893, l.20: Skip “As an example,”. 

Done. 

p. 29899, l.6: Please update this reference in the reference section. 

Manuscript is still under preparation and modified to Osman et al., 2016 

p. 29899, l.20: Replace “correlation” by “positive correlation”. 



Done. 

p.29901, l.6: Replace “Bowman” by “Bowman et al.”. 

Done. 

p.29902, l.25-26: Skip parantheses. 

Done. 

Figure 2: The quality of the Figure needs to be improved. 

Done. 

Figure 3: The quality of the Figure needs to be improved. 

Done. 

Figure 12: The quality of the Figure needs to be improved. 

Done. 

Figure 14: Add “km” in the Figure caption. 

Done. 

Figure 15: The quality of the Figure needs to be improved. 

Done. 

Figure 18: Replace “winter” by “summer” in the Figure caption. 

Done. 

 

 

We thank the referee for his/her careful review and very helpful comments. 

 



The figure numbers were renumbered since some figures have been added and removed from 
the manuscript. The following table shows the current figure numbers vs. previous ones. 
 
Current Figure # Previous Figure # 
Fig. 1                      Fig. 1                      
Fig. 2 Newly added 
Fig. 3 Fig. 2 
Fig. 4 Fig. 3 
Fig. 5 Fig. 4 
Fig. 6 Fig. 5 
Fig. 7 Fig. 6 
Fig. 8 Newly added 
Fig. 9 Fig. 7 
Fig. 10 Fig. 8 
Fig. 11 Fig. 9 
Fig. 12 Fig. 10 
Fig. 13 Fig. 11 
Fig. 14 Fig. 12 
Fig. 15 Fig. 13 
Fig. 16 Fig. 14 
Fig. 17 Fig. 15 
Fig. 18 Fig. 16 
Fig. 19 Fig. 17 
Fig. S1 Fig. S1 
Fig. S2 Fig. S2 
Fig. S3 Fig. S3 
Fig. S4 Fig. S6 
 
*Figs. 18-21, S4 & S5 have been removed from the manuscript in order to 
reduce the size of the paper. 
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Abstract 13 

A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by 14 
trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft 15 
data. CO measurements made during aircraft ascent and descent, comprising nearly 41,200 16 
profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward 17 
and backward trajectories are calculated from meteorological reanalysis data in order to map the 18 
CO measurements to other locations, and so to fill in the spatial domain. This domain-filling 19 
technique employs 15,800,000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS 20 
data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly 21 
from 2001-2012 on a grid of 5o longitude×5o latitude×1 km altitude, from the surface to 14 km 22 
altitude.  23 

The mapping product has been carefully evaluated, first by comparing maps constructed using 24 
only forward trajectories and using only backward trajectories. The two methods show similar 25 
global CO distribution patterns. The magnitude of their differences is most commonly 10% or 26 
less, and found to be less than 30% for almost all cases. The trajectory-mapped CO 27 
datasetmethod has also been validated by comparison comparing profiles for individual airports 28 
with those produced by the mapping method when data from that site are excluded. While there 29 
are larger differences below 2 km, the two methods agree very well between 2 and 10 km with 30 
the magnitude of biases within 20%. Finally, the mapping product is compared with global 31 
MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped dataset, 32 
and with independent data from the NOAA aircraft flask sampling program.  33 
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Maps are also compared with Version 6 data from the Measurements Of Pollution In The 1 
Troposphere (MOPITT) satellite instrument. Both data sets clearly show major regional CO 2 
sources such as biomass burning in central and southern Africa and anthropogenic emissions in 3 
eastern China. While the maps show similar features and patterns, and agreement is goodrelative 4 
biases are small in the lowermost troposphere, the MOPITT CO profile shows negative biaseswe 5 
find differences of ~20%  in CO volume mixing ratios between 500 hPa and 300 hPa. These 6 
upper troposphere biases are not related to the mapping procedure, as almost identical 7 
differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-8 
mapped MOZAIC-IAGOS climatology column agrees withis also higher than the MOPITT CO 9 
total column, by  within ±512-16%, which is consistent with previous reports.  10 

The maps clearly show major regional CO sources such as biomass burning in the central and 11 
southern Africa and anthropogenic emissions in eastern China. The dataset shows the seasonal 12 
CO cycle over different latitude bands and altitude ranges that are representative of the regions 13 
as well as long-term trends over different latitude bands. We observe a decline in CO over the 14 
northern hemisphere extratropics and the tropics consistent with that reported by previous studies 15 
using other data sources. 16 

Similar maps have been made using the concurrent O3 measurements by MOZAIC-IAGOS, as 17 
the global variation of O3-CO correlations can be a useful tool for the evaluation of ozone 18 
sources and transport in chemical transport models. We anticipate  use of the trajectory-mapped 19 
MOZAIC-IAGOS CO dataset as an a priori climatology for satellite retrieval, and for air quality 20 
model validation and initialization. 21 

1 Introduction 22 

Atmospheric carbon monoxide (CO) is an important global air pollutant and trace gas. Due to its 23 
relatively long lifetime of 1-4 months (Hubler et al., 1992; Law and Pyle, 1993), it is an ideal 24 
tracer for long range atmospheric transport (Logan et al., 1981; Lelieveld et al., 2001; Shindell et 25 
al., 2006). Moreover, in the tropics, it is an important tracer of upward transport during 26 
convective events (e.g., Pommrich et al., 2014). Consequently, it has been employed to facilitate 27 
interpretations of chemical measurements (Jaffe et al., 1996; Parrish et al., 1991, 1998; Wang et 28 
al., 1996, 1997) and in validating chemical transport models (Carmichael et al, 2003; Liu et al., 29 
2003; Tan et al., 2004; Wang et al., 2004). The main sources of atmospheric CO are relatively 30 
well understood (Galanter et al., 2000; Granier et al., 2011; Holloway et al., 2000); however, the 31 
magnitude of individual sources and their seasonal variability, especially of biomass burning, are 32 
not well quantified. Stein et al. (2014) also reported that models are also generally biased low 33 
due to either an underestimation of CO sources or an overestimation of its sinks. There are 34 
differences in the emission densities of anthropogenic and natural sources, despite the fact that 35 
the anthropogenic and natural sources are of similar magnitude on a global scale (Granier et al., 36 
2011; Logan et al., 1981). The anthropogenic sources are primarily associated with large 37 
industrial centers or major biomass burning regions while the natural sources, such as oxidation 38 
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of methane (CH4) and non-methane hydrocarbons (NMHCs) are much more diffuse. This makes 1 
CO a good atmospheric tracer gas for anthropogenic emissions as its lifetime allows it to be used 2 
as an indicator of how large-scale atmospheric transport redistributes pollutants on a global scale.  3 

CO plays a vital role in the chemistry of the atmosphere.  This significance mainly comes from 4 
the influence of CO on the concentrations and distributions of the atmospheric oxidants, ozone 5 
(O3), the hydroperoxy (HO2) and hydroxyl radicals (OH) (e.g. Novelli et al., 1994, 1998). 6 
Reaction (R1) between CO and OH represents 90-95% of the CO sink (Logan et al., 1981), and 7 
about 75% of the removal of OH (Thompson, 1992) in the troposphere: 8 

                                         (R1) 9 

                      (R2) 10 

In areas with sufficient NOx (=NO + NO2), HO2 formed in reaction (R2) leads to photochemical 11 
reactions (R3)-(R5) which bring about net O3 production. In urban areas and regions of biomass 12 
burning, large amounts of these O3 precursors will be produced, and O3 can be formed in, and 13 
downwind of, the source region (Crutzen, 1973; Fishman and Seiler, 1983): 14 

                                                                                                         (R3) 15 

                                                                                    (R4)                                                                                                                                                                                         16 
                                                                                   (R5) 17 

O3 is associated with respiratory problems and decreased crop yields (e.g., McKee, 1993; 18 
Chameides et al., 1994). Since CO and OH are principal reaction partners, CO concentrations in 19 
the atmosphere have important climatological implications. OH is also responsible for the 20 
removal of greenhouse gases such as CH4, and other volatile organic compounds in the 21 
atmosphere. Via these interactions with OH, O3 and CH4, CO has an indirect radiative forcing of 22 
about 0.25 W m-2 (IPCC AR5).  23 

Global atmospheric chemistry models require accurate CO concentrations on a global scale in 24 
order to define spatial and temporal variations of atmospheric oxidants and CO. For this reason 25 
measurements of CO are made by different kinds of remote sensing and in situ instruments, in 26 
ground-based networks, aircraft programmes and from space (Novelli et al., 1994, 1998; 27 
Rinsland and Levine, 1985; Zander et al., 1989; Brook et al., 2014; Reichle et al., 1990; 1999; 28 
Worden et al., 2013; Petzold et al., 2015). Long range atmospheric transport redistributes CO 29 
widely due to its relatively long lifetime.  Typical tropospheric background CO levels range 30 
between 50 and 120 ppbv (WHO, 2000).Background CO levels are found in all regions of the 31 
troposphere, where mixing ratios between 45 and 250 ppbv have been reported (Novelli et al., 32 
1994). Extreme mMixing ratios much higher than 250 ppb have been observed in the upper 33 
troposphere over Asia (Nédélec et al., 2005) or over the Pacific (Clark et al., 2015) in biomass 34 
burning plumes of boreal biomass burning. CO values as high as 1800 ppbv have been reported 35 
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over Beijing (Zbinden, et al., 2013)The largest values in the lower troposphere have been 1 
observed over Beijing (Zbinden et al., 2013). 2 

Early studies of ground-based observations showed increasing trends in global CO before 1980 3 
(Khalil and Rasmussen, 1988; Rinsland and Levine, 1985; Zander et al., 1989), followed by a 4 
modest decline in the 1990s (Novelli et al. 1994; 2003; Khalil and Rasmussen, 1994). More 5 
recently satellite observations have shown that the decline has continued: Worden et al. (2013) 6 
report a global trend from 2000-2011 of ~10% per decade on column CO in the northern 7 
hemisphere. Petetin et al. (2015) show a similar decrease of about 2 ppb per year over Frankfurt 8 
throughout the troposphere from 2002 to 2012. The decrease is at least partly due to a decrease in 9 
global anthropogenic CO emissions (Granier et al., 2011). 10 

In-service Aircraft for a Global Observing System (IAGOS), and its predecessor Measurement 11 
of Ozone and water vapor by Airbus in-service airCraft (MOZAIC), have been making 12 
automatic and regular measurements of O3, water vapour and standard meteorological 13 
parameters onboard long-range commercial Airbus A340 aircraft since August 1994 (Marenco et 14 
al., 1998, Petzold et al., 2015).  Measurements of CO (Nédélec et al., 2003) and NOy (the sum of 15 
NOx plus its atmospheric oxidation products) (Volz-Thomas et al., 2005) were added in late 16 
2001. The MOZAIC database currently contains data from more than 71,900 vertical profiles of 17 
O3 and 41,200 vertical profiles of CO, measured during takeoff and landing from 148 airports 18 
around the world. MOZAIC measurements show the general features of the atmospheric CO 19 
distribution (Zbinden et al., 2013; Petzold et al., 2015 and references therein), capturing major 20 
regional features (e.g., strong CO emissions from biomass burning or anthropogenic sources). 21 

The objective of this paper is to present a three-dimensional (i.e., latitude, longitude, altitude) 22 
gridded climatology of carbon monoxide that has been developed by trajectory mapping of 23 
global MOZAIC-IAGOS CO data from 2001-2012. We employ a domain-filling technique, 24 
using approximately 15,800,000 calculated trajectories to map otherwise sparse MOZAIC-25 
IAGOS CO data into a global field.  26 

This is a technique that has been used successfully with tropospheric and stratospheric 27 
ozonesonde data (G. Liu et al., 2013; J. Liu et al., 2013). Stohl et al. (2001) used trajectory 28 
statistics to extend one year of MOZAIC O3 measurements into a 4-season O3 climatology at 10o 29 
longitude by 6o latitude and three vertical heights. Tarasick et al. (2010) developed high 30 
resolution (1o×1o×1 km in latitude, longitude, and altitude) tropospheric O3 fields for North 31 
America from ozonesonde data from the INTEX (Intercontinental Transport Experiment) and 32 
ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) 33 
campaigns, and this was extended to global tropospheric ozonesonde data by G. Liu et al. (2013). 34 
It is possible to apply this technique to CO because the lifetime of CO in the troposphere, as 35 
noted above, is generally of the order of weeks or months. This physically-based interpolation 36 
method, using the reanalysis meteorological data from the National Centers for Environmental 37 
Prediction/National Center for Atmospheric Research (NCEP/NCAR) (Kalnay et al., 1996) to, in 38 



5 
 

effect, interpolate data based on knowledge of atmospheric transport, offers obvious advantages 1 
over typical statistical interpolation methods. Indeed, it is expected to improve global models and 2 
satellite data validation and it can also be used as a priori for satellite data retrieval. 3 

Major regional features of the global CO distribution are clearly evident in the global maps thus 4 
produced, especially regions of intense biomass burning or anthropogenic pollution. The 3D 5 
global trajectory-mapped CO climatology facilitates visualization and comparison of different 6 
years, decades, and seasons, and offers insight into the global variation of CO. Moreover, it will 7 
be useful for climate and air quality model initialization and validation, and can be used as an a 8 
priori climatology for satellite data retrievals. Comparison with similar maps made using the 9 
concurrent O3 measurements by MOZAIC-IAGOS allow us to examine the global variation of 10 
O3-CO correlations, which convey information about the source distribution of CO.O3-CO 11 
correlations are also of great interest around the tropopause region since such correlations 12 
provide information on mixing processes (e.g., Hoor et al., 2004; Pan et al., 2006; Vogel et al., 13 
2011) besides of the source regions. This paper is organized in the following order. Following 14 
discussion of the MOZAIC-IAGOS and MOPITT instruments in Sect. 2.1 and 2.2, respectively, 15 
we describe trajectory mapping calculation via HYSPLIT model in Sect. 2.3. The transformation 16 
of MOZAIC-IAGOS data by applying the MOPITT a priori profile and averaging kernels is 17 
presented in Sect. 2.4. The validation of the trajectory-mapped dataset against MOZAIC-IAGOS 18 
in situ data will be presented in Sect. 3. The same section assesses the differences between the 19 
CO mapping produced using only backward and only forward trajectories, and also compares 20 
with in situ global CO data at cruise altitudes between 8 and 12 km. Subsequently, the 21 
comparison of the trajectory-mapped MOZAIC-IAGOS CO with MOPITT CO retrievals is 22 
presented in Sect. 4. Section 5 discusses  the results obtained from the global 3D trajectory-23 
mapped climatology data. After pointing out the potential applications of the trajectory-mapped 24 
MOZAIC-IAGOS CO climatology (i.e., O3-CO relationship and global variation and trends of 25 
CO) and data coverage and the associated standard errors in Sect. 6, we make concluding 26 
remarks about the results we obtain from this study in Sect. 7.  27 

2 Measurements of CO 28 

2.1 MOZAIC-IAGOS 29 

CO measurements were made by an improved version of a commercial Model 48CTL CO 30 
Analyzer from Thermo Environmental Instruments employing the Gas Filter Correlation 31 
technique. The Model 48CTL is based on the principle that CO absorbs infrared radiation at a 32 
wavelength of 4.67 microns. For 30 s integration time (the response time of the instrument) the 33 
precision achieved is 5 ppb (noise) or 5% (calibration) CO, with minimum detection limit of 10 34 
ppb. The analyzer samples at a horizontal resolution of about 7 km (since the maximum cruise 35 
speed of the Airbus A340 aircraft is nearly 250 m/s) and the vertical resolution during ascents 36 
and descents is nearly 300 m. Nedelec et al. (2003 for MOZAIC, 2015 for IAGOS) give detailed 37 
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descriptions of the CO analyzer, measurement technique, instrument validation and quality 1 
testing. 2 

The airports visited by aircraft equipped with MOZAIC-IAGOS instrumentation  are shown in 3 
Fig. 1. Further details are available at http://www.iagos.fr. 4 

 5 

 6 

Fig. 1. Airports stations visited by MOZAIC-IAGOS aircraft from 2001-2012. The color bar 7 
indicates the number of profiles available from each airport. The squares show the locations of 8 
the selected airports used for the validation in this study. 9 

The sampled data from these airports are unevenly distributed both spatially, and also temporally 10 
because the frequency of visits to airports by aircraft that take part in MOZAIC-IAGOS varies 11 
considerably depending on commercial airlines’ operational constraints. This Thus means that at 12 
airports such as Frankfurt, Germany we find as many as 12,324 CO profiles while from 13 
Dammam, Saudi Arabia we have only 2 CO profiles during the period 2001-2012. The 14 
trajectory-mapping method is valuable for filling the sparse and variable spatial domain. 15 
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2.2 MOPITT 1 

MOPITT is a nadir-viewing gas correlation radiometer which provides global atmospheric 2 
profiles of CO volume mixing ratio (VMR) and CO total column values using near-infrared 3 
radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm (Drummond and Mand, 1996). CO 4 
columns and profiles are retrieved from the IR emission channels (4.6 µm) for all cloud-free 5 
scenes. The MOPITT measurement technique relies on a temperature gradient within the 6 
atmospherethermal contrast between the Earth's surface and atmosphere, leading to a retrieval 7 
dependence on surface temperature, and little sensitivity to CO in the boundary layer. The 8 
retrieval uses a priori profiles that vary geographically and temporally. MOPITT-derived CO 9 
VMR profiles reflect the vertical sensitivity of the measurement as defined by the retrieval 10 
averaging kernel (e.g. Fig. 23) and a priori profile.  In this study, we have used Level 3, Version 11 
6 monthly CO mixing ratio profile data, reported on 10 pressure levels, as well as CO total 12 
column. Nighttime CO observations of MOPITT have not been validated and appear subject to 13 
larger bias (Heald et al., 2004). Hence, we use the daytime data for comparison. MOPITT data 14 
are publicly available at the NASA Langley Research Center Atmospheric Science Data Center: 15 
https://eosweb.larc.nasa.gov/project/mopitt/mopitt_table. 16 

MOPITT was launched in 1999 into sun-synchronous polar orbit with a 1030 local time (LT) 17 
northward or southward local equator cross-over time. The instrument field of view is 22x22 18 
km2. Cross-track scanning with a 612 km swath provides near complete coverage of the surface 19 
of the Earth approximately every 3 days. MOPITT retrievals have gone through intensive 20 
validation against in situ measurements from aircraft on a regular basis since the start of the 21 
mission (Worden et al., 2010; Deeter et al., 2012, 2013, 2014; Emmons et al., 2004, 2007, 2009; 22 
Jacob et al., 2003). MOPITT CO retrievals have also been validated by comparing to ground-23 
based and TES satellite measurements (Jacob et al., 2003 and Lou Luo et al., 2007). Deeter et al. 24 
(2014) employ the MOPITT L3 V6 product and showed biases  to vary from -5.2% at 400 hPa to 25 
8.9% at the surface. However, most of pPrevious studies focused on the earlier versions of the 26 
MOPITT product. In the lower troposphere a mean positive bias of 6-8% against in situ 27 
validation profiles has been reported, and a mean bias and standard deviation for the retrieved 28 
CO column of 5 ± 11% and -0.5 ± 12.1%  for periods, respectively,  March 2000 - May 2001 and 29 
August 2001 - December 2002 (Emmons et al., 2004).  Jacob et al. (2003) reported the CO bias 30 
to be 6 ± 2%, where as Emmons et al. (2007) found approximately 7 ± 8%  bias for summer 31 
2004 measurements. Deeter et al. (2013) also show a total column retrieval bias of about 0.08 x 32 
1018 molecules/cm2 (~4%) against in situ profiles. Furthermore, Deeter et al. (2012) reported a 33 
positive bias of surface-level CO concentrations on the order of a few percent against in situ 34 
profiles.   35 

2.3 Trajectory calculation and global CO mapping via HYSPLIT  36 

For each CO profile of the MOZAIC-IAGOS data set presented here, the mean CO VMR was 37 
calculated for 1-km intervals from sea level up to 12 km (the maximum altitude of the aircraft). 38 

https://eosweb.larc.nasa.gov/project/mopitt/mopitt_table
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Cruise data were not used. The HYSPLIT (Hybrid Single-Particle Lagrangian Integrated 1 
Trajectory) model version 4.9 (Draxler and Hess, 1998, Draxler, 1999) was employed to 2 
calculate trajectories for each level of each profile. We used tThe exact location of the aircraft 3 
was used to start the trajectories. HYSPLIT, publicly accessible at 4 
(http://ready.arl.noaa.gov/HYSPLIT.php), uses the reanalysis meteorological wind fields from the 5 
National Centers for Environmental Prediction/National Center for Atmospheric Research 6 
(NCEP/NCAR) (Kalnay et al., 1996) as an input to describe the transport of CO in the 7 
atmosphere. The reanalysis data are readily available from 1948 until the present. Both forward 8 
and backward trajectories for 4 days at 6-hour intervals (32 positions for each level) were 9 
calculated for 41,200 CO profiles, and the mean CO mixing ratios from each level (i.e., 10 
tropospheric and lower stratospheric air masses) of each profile were assigned to the 11 
corresponding trajectory positions along the forward and backward paths. Trajectories only move 12 
upward and downward with the meteorological vertical velocity fields since the HYSPLIT 13 
kinematic trajectory model employs vertical motions supplied with the NCEP reanalysis 14 
meteorological data set. Numerous studies show that the choice of vertical wind velocity has 15 
significant impact on the transport of tracers (e.g., Schoeberl et al. 2003; Ploeger et al., 2010, 16 
2012). Kinematic models show excessive dispersion for tracers with strong gradients (e.g., O3 in 17 
the vicinity of the tropopause), particularly for trajectories of 7 days or more. We limitHere 18 
trajectories were limited to a maximum offor 4 days in length. Moreover, unlike O3, CO does not 19 
have a strong vertical gradient in the upper troposphere. Trajectories that reach the bottom 20 
boundary (i.e., ground) continue at the surface where the trajectory robustness grows to be is 21 
more uncertain. Trajectories that reach the top height of the model (20,000 m above sea level) 22 
will terminate. Although HYSPLIT is capable of generating a trajectory every hour (i.e., 24 23 
trajectories per day), the average availabletypical maximum frequency of CO measurements (if 24 
the MOZAIC-IAGOS aircraft visits the airports) is around 2 profiles per day (with the exception 25 
of Frankfurt where we can get up to 6 profiles per day). In this version, trajectory-mapped 26 
MOZAIC-IAGOS CO climatology, we did notno attempt was made to exclude identify major 27 
individual anthropogenic CO sources; however, the climatology could in principle be refined by 28 
excluding backtrajectories from  sources identified via emission inventories. We note, however, 29 
that if major anthropogenic sources were a significant source of error, we would see differences 30 
between the CO mapping produced using only backward and only forward trajectories (see Sect. 31 
3.1).  32 

This mapping implicitly assumes that CO chemistry may be neglected over a timescale of 4 days. 33 
Except near major anthropogenic sources, this assumption should be valid, as the lifetime of CO 34 
is much longer. However, trajectories have significant errors over such timescales. Stohl (1998) 35 
in a comprehensive review, quotes typical errors of about 100-200 km/day in the troposphere. 36 
This can be combined with an estimate of the correlation length in the troposphere to yield an 37 
estimate for the information value of a mapped measurement. Liu et al. (2009) find that O3 38 
measurements in the troposphere correlate with an exponential dependence of approximately 39 

http://ready.arl.noaa.gov/HYSPLIT.php
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(
5.1)/( Rre− , wherewith r shown in Eq. (1)),is distance and R is a correlation length of 500-1000 km 1 

in the troposphere, and 1000-2000 km in the stratosphere. The means that the horizontal distance 2 
for the correlation coefficient to decrease by a factor of e is 500-1000 km in the troposphere and 3 
1000-2000 km in the stratosphere. As the CO lifetime is even longer than the ozone lifetime, the 4 
correlation length for CO should be at least as large. Therefore, the trajectory-mapped data were 5 
binned at intervals of 5o latitude and 5o longitude, at every 1-km altitude, and averaged with a 6 
weighting, w, assigned according to the formula: 7 

5.1)/150( Rtew −=                       (1) 8 

where R is the correlation length (taken as 700 km and 1500 km in the troposphere and 1500 km 9 
and in the stratosphere, respectively), and t is the age of the trajectory in days.  10 

The trajectory mapping greatly spreads out the in situ CO information along the trajectory paths, 11 
increasing the spatial domain to include much of the globe. Two different vertical coordinate 12 
systems were utilized for the binning, and hence the maps were generated for elevations above 13 
sea level and above ground level. Data are available publicly at ftp://es-14 
ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/. In this work, we 15 
present global CO maps generated for elevations above sea level. Global maps of monthly, 16 
annual, seasonal and decadal means are presented, for each altitude, from 2001-2012. 17 

2.4 Distribution of data and uncertainties associated with trajectory mapping 18 

Figure 1A2 shows typical standard errors of the mapping product and the number of samples per 19 
grid cell, for typical monthly, annual and decadal maps at 4.5 km altitude above sea level. 20 
Similar figures for other levels are included with the climatology on the FTP site. As can be 21 
seen, the largest number of samples per grid cell and the lowest standard errors are found over 22 
North America and Europe as there are more frequent MOZAIC-IAGOS aircraft flights in this 23 
region. Higher standard errors are found at NH high latitudes and much of the SH, where airports 24 
visits by MOZAIC-IAGOS-equipped aircraft are much fewer. The standard error is computed 25 
using all data points found inside a grid cell. This is probably biased low, since some grid cells 26 
may contain more than one value from a particular trajectory. This bias is likely not more than a 27 
factor of 2, based on typical trajectory lengths. These maps present a visual interpretation that 28 
distinguishes regions where the CO climatology is ’statistically robust’ (for example, North 29 
America and Europe) from those regions where the uncertainty is larger. The average number of 30 
samples is approximately 20, 90, and 140 per grid cell for the monthly, annual and decadal maps, 31 
and this number does not vary greatly among layers. The average standard error is generally 32 
between 3 and 4% of the mean at 4.5 km for all three averaging periods. The monthly mean 33 
shows the highest error and the lowest number of samples per grid cell. 34 

Field Code Changed
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1 
   2 

Fig. 1A2 The standard error of the mean (left panels) and number of samples (right panels) for  3 
monthly (July 2012), annual (2005), seasonal (DJF 2001-2012) means at 4.5 km altitude above 4 
sea level. The month and year shown are chosen as typical; other months and years show similar 5 
patterns. The data are binned on a 5o×5o latitude and longitude grid. 6 
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2.4 5 MOZAIC-IAGOS Comparison with MOPITT 1 

When comparing the MOPITT retrievals with in situ data, it is necessary to take into account the 2 
sensitivity of the retrievals to the true profiles. The method used by MOPITT to retrieve 3 
tropospheric CO profiles follows that of Rodgers (2000). In order to perform the most 4 
meaningful and accurate comparison, the in situ data to be compared must be transformed using 5 

the averaging kernel matrix, , and a priori profile, , as shown by Eq. (2). A “retrieved” 6 

comparison profile, , is calculated by using the in situ profile, , as the ‘‘true’’ profile in 7 
Eq. (2) which is interpolated to the lower resolution of MOPITT. As described by Emmons et al. 8 
(2004), the in situ profile (x) is transformed with averaging kernel matrix  and the a priori CO 9 
profile  to get a profile , the appropriate quantity to compare with the MOPITT 10 
retrievals: 11 

      (2) 12 

where  is the identity matrix and  is the retrieval error due to random errors in the 13 
measurement and systematic errors in the forward model (e.g., the error in the atmospheric 14 

temperature retrieval). , , and   are expressed in terms of the logarithm of the VMR. 15 
The averaging kernels provide the relative weighting between the true and a priori profiles and 16 
reflect the sensitivity of the retrieval to the measurement (Worden et al., 2013). They are very 17 
sensitive to the surface temperature and will be different for each point on the globe. The matrix 18 
A describes the sensitivity of the retrieved CO log(VMR) profile to perturbations applied at each 19 
level of the “true” log(VMR) profile . The quantity , the transformed in situ profile, 20 
represents the result of applying a linear transformation to the in-situ profile in the same way that 21 
the remote sensing retrieval process is believed to transform the true profile. Thus,  can be 22 
directly compared against the MOPITT retrieved CO profile in a manner that is not affected by 23 

varying vertical resolution or a priori dependence. , , and  are expressed in terms of the 24 
natural/common logarithm of the volume mixing ratio (VMR), i.e., / . 25 

The vertical resolution of the retrieved profile is described by the shapes of the averaging 26 
kernels. Figure 2 3 shows that the kernels are broad except at pressure levels between 400-300 27 
hPa and exhibit a large degree of overlap. The overlap of the averaging kernels peaking in the 28 
boundary layer and those at the top of the atmosphere indicates a significant correlation for the 29 
retrieved values at these levels. Typical full-width at half maximum (FWHM) of these curves is 30 
approximately 5-8 km. The retrieved CO values at these levelsboth top and bottom are also 31 
influenced by CO at mid levels, and by the a priori CO profile at all pressure levels. The 32 
averaging kernels also describe the relative contributions, to the CO VMR retrieved at a given 33 
level, of the true and a priori (via I - A) CO profiles at all pressure levels (Eq. (2)).  Where the 34 
area under the averaging kernel is smaller, the a priori information in the retrieved CO profile is 35 
relatively larger. MOPITT CO averaging kernels exhibit variability from month to month, season 36 
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to season as well as nighttime to daytime, depending on the atmospheric temperature profile, 1 
surface pressure and the CO profile itself. 2 

The vertical coordinate of the MOZAIC-IAGOS climatology profile is kilometers above sea 3 
level, while the MOPITT a priori profile and averaging kernels are on pressure levels in hPa. 4 
Therefore, before applying the MOPITT averaging kernels the climatology data were 5 
interpolated using NCEP global pressure profiles that vary as a function of time (month) and 6 
latitude, to the 10 vertical pressure grid levels (1000, 900, 800, 700, 600, 500, 400, 300, 200, and 7 
100 hPa) used by MOPITT. The interpolated profile was then convolved with the a priori profile 8 
and the averaging kernels following Eq. (2) (Emmons et al., 2004). For the atmospheric residual 9 
above the maximum MOZAIC-IAGOS profile altitude, the MOPITT a priori profiles were used.  10 

In order to compare with these transformed CO profiles, the MOPITT CO profiles, averaging 11 
kernels, and a priori profiles were mapped down from the original horizontal resolution of 1ox1o 12 
in latitude and longitude to a reduced 5ox5o grid. The mapping was linear in log pressure and 13 
volume mixing ratio of CO. An Two examples of comparisons of trajectory-mapped MOZAIC-14 
IAGOS CO profiles with an individual (reduced) 5ox5o MOPITT CO profiles is are shown in Fig. 15 
23. The original trajectory-mapped MOZAIC-IAGOS CO profile, the a priori profile, and the 16 
transformed trajectory-mapped MOZAIC-IAGOS CO profile are shown along with the MOPITT 17 
retrieved CO profile. The application of the averaging kernels to the MOZAIC-IAGOS CO 18 
profile results in significant a vertical transformation, which can shift mixing ratios significantly 19 
at some levels. The averaging kernel, for example,  identified as "1000" (i.e.,  surface) shows 20 
how changes to the true CO mixing ratio at all ten retrieval levels would each contribute to a 21 
change in the retrieved value at the surface at 1000 mbar. The original trajectory-mapped 22 
MOZAIC-IAGOS climatology profile is quite different from the transformed climatology profile 23 
and as seen from the same figure the departures of the transformed CO mixing ratio from the true 24 
mixing ratios can be as large as 60 ppb at some pressure levels. 25 

CO total column amounts are retrieved from the MOPITT observations in addition to the profile 26 
retrievals. The retrieved CO total column  (a scalar) is related to the retrieved profile  (a 27 
vector) through the linear relation 28 

                                                             (3) 29 

where T indicates the transpose operation and t is the total column vectors. The CO total column 30 
averaging kernel can be calculated from the profile averaging kernels by 31 

                                                                 (4) 32 

The column operator simply converts the mixing ratio for each retrieval level to a partial column 33 

amount. Using the hydrostatic relation, the operator  is expressed as  34 

                                                                                                                   (5) 35 
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Equation (5) is expressed in molecules/cm2/ppbv and  is the vector of the thicknesses of the 1 
retrieval pressure levels (in hPa).  2 

 3 

Fig. 23. Examples of comparisons of monthly means of the trajectory-mapped MOZAIC-IAGOS 4 
CO profiles, with the corresponding MOPITT's averaging kernels, a priori and retrievals. The 5 
left panels of each subplot show the original trajectory-mapped MOZAIC-IAGOS climatology 6 
profile (green, i.e. unsmoothed in the caption), the a priori profile (black), the transformed 7 
trajectory-mapped MOZAIC-IAGOS climatology profile (red, i.e. smoothed in the caption), and 8 
the MOPITT retrieved CO profile (blue). The right panels of each subplot shows the mean 9 
averaging kernels, for different pressure levels, obtained by averaging all daytime averaging 10 
kernels in the 5ox5o latitude-longitude box centered on the coordinates indicated.  11 

The different colors of the averaging kernel curves indicate the different pressure levels.  12 

3 Validation 13 

Validation of the trajectory-mapped MOZAIC-IAGOS CO dataset product has been performed 14 
by Eq. (1) comparing maps constructed using only forward trajectories against with those 15 
constructed using only backward trajectories,; and Eq. (2) comparing profiles for individual 16 
airports against those produced by the mapping method when data from that site are excluded; 17 
(3) comparing with global MOZAIC-IAGOS cruise-level data, which were not included in the 18 
trajectory-mapped dataset, and (4) comparing with independent data from the NOAA aircraft 19 
flask sampling program. . The airport stations that have been selected in this validation study 20 
represent tropical and northern hemisphere midlatitude locations that are subject to different 21 
meteorological and CO source conditions.  22 
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3.1 Comparison of trajectory-mapped MOZAIC-IAGOS CO profiles 1 

As a first step in validation of the trajectory-mapped climatology, Figs. 3 4 and S1 (in the 2 
Supplement) assess the differences between the CO mapping produced using only backward and 3 
only forward trajectories for different seasons using the 7.5 km level as an example. If chemistry 4 
(i.e. local sources or sinks) were a significant source of error then one would expect to see 5 
differences between these maps. In fact, the CO distribution patterns are very similar (Fig. 34). 6 
Differences are most commonly 10% or less, and found to be less than 30% for almost all cases. 7 
They are typically less than 10% at northern mid-latitudes and less than 20% in the tropics 8 
between ±30º latitude, except in the Pacific and Atlantic oceans where they can be as large as 9 
30%. As Fig. S1 illustrates, dDifferences (Fig. S1) also show no distinct pattern, except for some 10 
clustering in areas where the trajectories are longest, and therefore least reliable. As differences 11 
between the two distributions are comparable with the uncertainties of the mean value estimates 12 
and not systematic, it is reasonable to combine forward and backward mapped values to produce 13 
an averaged CO map.  14 

 15 

 16 
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1 
Fig. 34. Examples of the global distribution, 2001-2012, of trajectory-mapped MOZAIC-IAGOS 2 
CO (ppbv) produced using only backward (right panels) and only forward (left panels) 3 
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trajectories at 7.5 km a.s.l. The pPanels correspond to different seasons: (a, b) December-1 
February, (c, d) March-May, (e, f) June-August and (g, h) September-November 2001-2012.  2 

3.2 Comparison between trajectory-mapped and in situ profiles 3 

A good test of an interpolation model is to examine how it performs in areas where no data are 4 
available. Figure 4 5 compares the trajectory-mapped climatology profiles at three airport sites 5 
(Frankfurt, Germany; Houston, USA; and Tokyo, Japan) with the average of the MOZAIC-6 
IAGOS data from each of these sites for May of 2001-2012. However, since the sampling 7 
frequency varies from airport to airport, Houston and Tokyo are not as well sampled as Frankfurt 8 
throughout the period(Figure 1). The climatology profiles for each location were produced by 9 
excluding data from that location, but using all other MOZAIC-IAGOS data.  10 

Generally, the profiles from the two methods agree very well and the agreement is especially 11 
good in the free troposphere, at altitudes between 2 and 10 km. Referring to the bottom panels of 12 
Fig. 45, the magnitude of the differences for most altitudes is well under 20%.  13 

 14 

Fig. 45. Comparisons of trajectory-mapped MOZAIC-IAGOS CO climatology and MOZAIC-15 
IAGOS profiles at Frankfurt, Germany (left panes), Houston, TX (middle panels), Tokyo, Japan 16 
(right panels)three sites. The top left, middle and right panels show MOZAIC-IAGOS CO 17 
climatology profiles (black) and the corresponding MOZAIC-IAGOS in situ profiles (red) of 18 
Frankfurt (Germany),  Houston (TX, USA) and Tokyo (Japan) respectively for May 2001-2012. 19 
The climatology profiles for each location were produced by excluding data from that location, 20 
but using all other MOZAIC-IAGOS data. The horizontal error bar half-length is twice the 21 
standard error of the mean (equivalent to 95% confidence limits on the averages when the 22 
number of data points is large).  Bottom left, middle and right panels indicate the relative 23 
difference [2(Clim-MOZAIC)/(Clim+MOZAIC)], expressed in %, between the trajectory-mapped 24 
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MOZAIC-IAGOS climatology and MOZAIC-IAGOS in situ profiles from Frankfurt (Germany),  1 
Houston (USA) and Tokyo (Japan) respectively for May 2001-2012. The actual MOZAIC-2 
IAGOS profiles are labeled as MOZAIC, while the profiles from trajectories without input from 3 
the airport station being tested are labeled as Climatology. 4 

In Fig. 5 6 we extend theshows seasonally-averaged comparisons shown in Fig. 4 for other 5 
seasons as well as for another airports that represent different meteorological and  source 6 
conditionsdifferences, using this method, for a number of airports with different characteristics. 7 
The airport stations that have been selected in this validation study represent tropical and 8 
northern hemisphere midlatitude locations that are subject to different meteorological and CO 9 
source conditions. The selected airports are Atlanta (USA), Cairo (Egypt), Frankfurt (Germany), 10 
Houston (USA), Khartoum (Sudan), Lagos (Nigeria), Los Angeles (USA), Nagoya (Japan), New 11 
Delhi (India), New York (USA), Tel Aviv (Israel) and Tokyo (Japan). Again, the sampling 12 
frequency among the airports is not the same throughout the period. Similar to the results shown 13 
in Fig. 4, in Fig. 5 we notice good agreement Agreement between the trajectory-mapped and the 14 
in situ measurements for different locations and seasons across the globeis generally good in the 15 
free troposphere. There are larger differences  below 2 km where trajectories have larger errors 16 
predominantly due to complex dispersion and turbulence in the planetary boundary layer [Stohl 17 
and Seibert, 1998] . However, the overall agreement between 2 and 10 km is very good with 18 
biases  again within 20%. As in previous studies using this method, tThe largest differences are 19 
seen where other sources of data are distant. The smallest overall bias is seen at Frankfurt, even 20 
though the exclusion of Frankfurt data removes  nearly 1/3 of the total number of profiles.  21 
Apparently data from nearby airports such as Munich (Germany) and Brussels (Belgium) map 22 
accurately to the Frankfurt location. The consistency of these validation tests suggests that the 23 
trajectory-mapped dataset provides a reliable picture of the tropospheric CO distribution.   24 
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 2 

Fig. 56. Similar to Fig. 4 (lower panels) but for the seasonal Seasonal mean relative biases 3 
[2(Clim-MOZAIC)/(Clim+MOZAIC)], expressed in %, between trajectory-mapped and 4 
MOZAIC-IAGOS in situ profiles for the period from 2001 to 2012. In each panel, different 5 
colors indicate different seasons: December-February (blue), March-May (green), June-August 6 
(red) and September-November (cyan). The selected airports are representative of different 7 
meteorological and source conditions across the globe. N, lat and lon are the number of profiles, 8 
latitude and longitude of each airports.   9 

3.3 Comparison with the MOZAIC-IAGOS in-situ for Upper Troposphere 10 
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We can also compare the trajectory-mapped profile data and MOZAIC-IAGOS in situ global CO 1 
data at cruise altitudes between 8 and 12 km. The right panels of Fig. 67 The maps found at 2 
http://www.iagos.fr/macc/reanalysis_climatology_CO.php show the global seasonal mean 3 
(December-February, March-May, June-August and September-November) distribution of CO in 4 
the upper troposphere (within 60 hPa below the tropopause) for the period from 2003 to 2011. 5 
The figure clearly shows the seasonal cycle of CO with seasonal maximum in the northern 6 
hemisphere (NH) spring (MAM) and peak CO values in the southern hemisphere (SH) spring 7 
(SON). Elevated CO levels in the upper troposphere are generally seen over the areas where 8 
there is strong biomass burning (central Africa, southern Africa and South America) . The figure 9 
also reveals that hHigh CO emissions are observed over eastern China in MAM primarily due to 10 
a rise in coal use (Boden et al., 2009; Gregg et al., 2008; Tie et al., 2006) and an increasing 11 
number of vehicles (Cai and Xie, 2007). 12 

The left panels of Fig. 67 Figure 6 shows the trajectory-mapped global seasonal variation of CO 13 
for December-February, March-May, June-August and September-Novemberclimatology 2001-14 
2012 at altitudes between 7 and 9 km above sea level. The trajectory-mapping yields more data 15 
over the oceans and NH high latitudes in Fig. 6 than is seen in CO maps cited above. However, 16 
major regional features of the global CO distributions for different seasons are clearly evident in 17 
both figures. The figures show seasonal high CO values in spring in both hemispheres and 18 
elevated CO levels over regions where there is intensive biomass burning (central Africa, 19 
southern Africa and South America) and anthropogenic emissions (eastern Chinaare strong 20 
sources). Comparable CO values are noticeable from the figures over the Northern Atlantic 21 
Ocean, although the trajectory-mapped data appear high over as wellhigh-elevation areas as like 22 
Greenland and the Himalayas.  This may be due to over-correction of trajectories for terrain 23 
differences. Such an oOverall, the good qualitative agreement between the trajectory-mapped 24 
CO and MOZAIC-IAGOS in situ CO cruise data result suggests that the trajectory-mapped CO 25 
dataset performs well appears very good, even in remote areas as well.  26 
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Fig. 67. Global distribution of seasonal mean trajectory-mapped MOZAIC-IAGOS CO between 1 
7-9 km altitudes above sea level for the period from 2001 to 2012. Left: Panels (MOZAIC-2 
IAGOS trajectory). Right: and right ( MOZAIC-IAGOS cruise altitude. 3 

) panels a, b, c, and d show the seasonal mean of CO for December-February, March-May, June-4 
August and September-November from top to down, respectively. 5 

3.4 NOAA CO vertical profiles 6 

The vertical in situ CO profiles acquired through NOAA’s flask sampling program have been 7 
extensively utilized previously for validations of CO measurements of MOPITT [Emmons et al., 8 
2004; Emmons et al., 2009; Deeter et al., 2010; Deeter et al., 2013]. Typically  12–15 flask 9 
samples are utilized to derive an in situ profile and a single flask is used to sample air at a unique 10 
altitude, providing in situ measurements from near the ground up to about 300–350 hPa. The 11 
flasks are shipped to the Global Monitoring Division of NOAA’s Earth System Research 12 
Laboratory (ESRL) for trace gas analysis. Details on procedures of sample collection are found 13 
in Novelli et al. [1992], Lang et al. [1992], and Conway et al. [1994].  14 

Figure 6A8 shows comparisons between NOAA in-situ data and the trajectory-mapped 15 
MOZAIC-IAGOS CO climatology,. for altitude ranges of 0-2, 2-4, 4-6 and 6-8 km The 16 
comparison usesfor all available flask data (1940 profiles for the period from 2001-2012). 17 
NOAA CO data points are matched with the corresponding grid cell (5o ×5o ×1 km) of the 18 
monthly climatology, for the same year and month. If the monthly CO value for a particular grid 19 
cell is missing, the seasonal mean (if it exists) of the trajectory-mapped CO climatology  (2001-20 
2012) is used for the comparison. Above 2 km agreement is fairly good, considering that the 21 
comparison is between point measurements and monthly averages over a large volume. The 22 
positive bias  below 2 km is probably due to the effect of urban sources of CO since airports are 23 
located close to cities. In general, MOZAIC-IAGOS CO measurements at takeoff and landing 24 
are above background. Theis “airport effects” decreases rapidly as can be from the figure for 25 
higher altitudes. Theis decrease is not only because the aircraft ascends above the boundary 26 
layer,s but also sampleds over 150-400 km in distance as the aircraft ascends to, or descends 27 
from, cruise altitude.  28 

 29 



22 
 

 1 

Fig. 6A8 CO mixing ratio comparison between trajectory-derived and NOAA flask data for the 2 
period from 2001-2012, for four altitude ranges. Bias is calculated as the mean of the differences 3 
in %, [2(NOAA-Clim)/(Clim+NOAA)], of all data points. The blue line is the line of best fit, the 4 
red line is the 1:1 line, N is number of data pairs, and R is the correlation coefficient. Monthly 5 
trajectory mapped CO data are used for the comparison, or seasonal mean values if the monthly 6 
mean value for a particular grid cell is not available. 7 

4 Trajectory-mapped MOZAIC-IAGOS Versus MOPITT  8 

This section is devoted to comparing the trajectory-mapped MOZAIC-IAGOS CO dataset with 9 
the extensively validated product from the MOPITT instrument onboard the NASA Terra 10 
satellite, which has been operating continuously since March 2000 (Drummond and Mand, 1996; 11 
Edwards et al., 1999). Global comparison was is made for both CO profiles and CO total column 12 
for different time periods. 13 

4.1 Comparison with MOPITT CO profiles 14 
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As described in Section 2.4, in order to make a rigorous comparison with MOPITT data, the 1 
climatology profiles are first transformed using the corresponding MOPITT a priori profiles and 2 
averaging kernels via Eq. (2). Figure 2 3 shows examples of retrieved CO profiles , 3 
together with the original climatology  and the a priori profiles .  4 

When examining the comparisonng between the MOPITT CO retrievals and the trajectory-5 
mapped CO profile it is useful to keep in mind the shapes and magnitudes (or areas)shapes of the 6 
averaging kernels. For example, the 100 and 1000 mbar kernels are typically less peaked than the 7 
other pressure levels. Consequently, the generally broad and weak averaging kernels for the 100 8 
and 1000 mbar levels  demonstrindicates that a significant fraction of the information used in the 9 
retrieval is from the a priori profile or COand from other layers altitudesor both. Figure 2 3 also 10 
cautions that the transformed trajectory-mapped MOZAIC-IAGOS CO is closer to both the 11 
MOPITT CO retrievals and a priori profiles when there is less information from the 12 
measurement. Furthermore, as can be seen from Fig. 2, the MOPITT retrievals are not able to 13 
resolve the finer scale vertical structure of the trajectory-mapped CO profiles. The departures of 14 
the retrieved CO VMR from the trajectory-mapped VMRs at some pressure levels are as large as 15 
60 ppb. In the lower troposphere the MOPITT CO retrieval profile is positively biased (Deeter et 16 
al., 2014), whereas the bias is negative in the upper troposphere. In Fig. 23, we have used only 17 
the dayside retrievals from MOPITT as the dayside retrievals have the maximum information 18 
content (Deeter et al., 2004). The MOPITT V6 L3 retrievals, which have been regridded to 5o 19 
resolution, are used in this analysis. 20 

 21 

Figure 7 9 shows profile comparisons between MOPITT retrievals and the MOZAIC-IAGOS 22 
climatology for global CO data at pressure levels 900 hPa, 700 hPa , 500 hPa, and 300 hPa. The 23 
slopes biases and correlations between MOPITT CO retrievals VMR and the CO climatology 24 
(after applying the averaging kernels and the a priori profiles) for different levels are indicated in 25 
theeach figureplot. The different dot colors shown in Fig. 7 stand for different latitude bands: 26 
23.5-66.5o S (SH extratropics), 23.5o S - 23.5o N (tropics), 23.5-66.5o N (NH extratropics).  The 27 
same figure shows that there are clearly two distinct clusters of dots in Fig. 7a 9a and 7b9b, and 28 
the high CO VMRs values seen here are from the tropics, with a a very fewvery littlesmall 29 
number from the NH extratropics. The enhanced CO values may have originated from 30 
anthropogenic sources and/or biomass burning; however, identifying individual sources is 31 
beyond the scope of this paper. Recent work by Ding et al. (2015) shows the association of 32 
enhanced CO in the free troposphere with the uplifting of CO from biomass burning and 33 
anthropogenic sources. 34 

MOPITT and trajectory-mapped MOZAIC-IAGOS CO climatology mixing ratios are well-35 
correlated with correlation coefficients of 0.7 or higher, for daytime data over both land and 36 
ocean. However, Fig. 7 9 also reveals significant biases between MOPITT retrievals and the 37 
trajectory-mapped MOZAIC-IAGOS CO climatology (geometric) altitudes above the 700 hPa 38 
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pressure levelabove 700 hPa. Although in Fig. 7 9 we have chosen to show biases for January 1 
DJFwinter 2001-2012, the same analysis for other months and time periodsseasons yields similar 2 
results.  3 

 4 

 5 

Fig. 79. Comparison results for January DJF (December, January, February) 2001-2012. 6 
MOPITT CO retrievals at 900 (a), 700 (b), 500 (c) and 300 (d) hPa are plotted against trajectory-7 
mapped MOZAIC-IAGOS CO climatology profiles that have been transformed using the 8 
MOPITT averaging kernels and a priori data. The red line is the 1:1 line, the blue line is the line 9 
of best fit, N denotes the total number of data points, R is the correlation coefficient, RMS is root 10 
mean square error in ppbv and Bias is the relative bias between them in %. In each panel, the 11 
different color dots show for latitude bands: tropics (cyan), NH extratropics (black) and SH 12 
extratropics (blue). group different latitude bands: 23.5-66.5o S (SH extratropics), 23.5o S - 23.5o 13 
N (tropics) and 23.5-66.5o N (NH extratropics).  In this study, we have used the monthly 14 
MOPITT V6 L3 TIR/NIR daytime product.  15 
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These large differences are surprising, MOPITT seems to underestimate CO VMR by as much as 1 
21% against the trajectory-mapped MOZAIC-IAGOS CO climatology at 500 hPa. This result is 2 
significantly different fromsince  previous work such as Deeter et al. (2014, 2013, 2010) and 3 
Emmons et al. (2004, 2007, 2009). Most of these examined earlier versions of the MOPITT L3 4 
L2 product,   although Deeter et al. (2014), who also use the MOPITT L3 V6 product, and 5 
NOAA flask data (among other sources), and reported biases  varying from -5.2% at 400 hPa to 6 
8.9% at the surface. These results are not dissimilar to our comparison in Figure 6A8, and would 7 
suggest a difference of about 5% between MOPITT and the trajectory-mapped climatology, with 8 
the climatology being higher primarily due to the airport effect. Although the validation data sets 9 
are not identical (owing primarily to incomplete global coverage of the MOZAIC-IAGOS  10 
product), the relative bias of 22%  at 500 hPa seems excessive. In all cases the validation data 11 
consisted of flask samples taken by NOAA aircraft.  In order to eliminate the possibility that 12 
trajectory errors might be contributing to the this bias we find with the MOZAIC-IAGOS CO 13 
dataset, we have also compared MOZAIC-IAGOS in situ CO profiles against MOPITT 14 
retrievals. As an example in Fig. 810, we display the comparison between MOZAIC-IAGOS in 15 
situ CO profiles at Frankfurt (Germany) and MOPITT CO retrievals, which have been regridded 16 
to 5o resolution, over Frankfurt from MOPITT overpasses. The MOZAIC-IAGOS in situ aircraft 17 
CO values  have been transformed using the MOPITT averaging kernels and a priori data, for the 18 
period from December 2001- December 2012. MOPITT and MOZAIC-IAGOS are again 19 
strongly correlated, and biases at 500 hPa and 300 hPa are large, and in fact very similar in 20 
magnitude to those with respect to the trajectory-mapped MOZAIC-IAGOS CO dataset.  This 21 
implies that the differences at 500 and 300 hPa are not a result of the trajectory mapping. 22 
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 1 

Fig. 810. Same as Fig. 7 9 but MOPITT CO retrievals at 900 hPa (a), 700 hPa (b), 500 hPa (c), 2 
and 300 (c) hPa are plotted against MOZAIC-IAGOS CO in situ profiles that have been 3 
transformed using the MOPITT averaging kernels and a priori data. The in situ profiles are 4 
monthly means from 2001-2012 (Frankfurt, Germany). Outliers (CO mixing ratios more than 1.5 5 
standard deviations from the mean at each pressure level) have been removed, which improves 6 
the correlation coefficient at 300 hPa but makes no significant change in other derived 7 
parameters. 8 

A global comparison between the trajectory-mapped MOZAIC-IAGOS climatology and 9 
MOPITT at 600 hPa is displayed in Fig. 911. As can be seen, from the same figure both datasets 10 
capture major features of the CO distribution, particularly anthropogenically polluted (i.e., 11 
northeast China) and biomass burning (i.e., west Africa, central Africa, South Africa and central 12 
America) regions. The CO-rich air in the lower troposphere over west Africa, where biomass 13 
burning fires are active, is convectively lifted vertically upward to the upper troposphere where it 14 
disperses over the African tropics towards the east coast of South America and the south Arabian 15 
peninsula (Edwards et al., 2003). Indeed, the transport toward South America is much clearer. 16 
InOver southern Africa and southeast Asia, where there are strong sources, In this region, and in 17 
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general at 600 hPa, higher CO VMRs are measured found by the MOZAIC-IAGOS mapping 1 
than by MOPITT.  2 

Over southeast Asia, MOZAIC-IAGOS detects highly polluted air-masses. In these areas 3 
MOZAIC-IAGOS also measures higher CO than MOPITT. Comparison of the panels for DJF 4 
with those for SON of Fig. 9 also show that the NH CO VMRs are much higher during 5 
December-February than September-November (a result of the difference in OH, as noted above) 6 
and the latitude gradient in December-February is higher than in September-November. This is 7 
because in the SH the seasonal peak in CO occurs in September-November. This comparison 8 
also reveals a shift of the biomass burning from central Africa to South Africa and central 9 
America. Both datasets capture this, although the TIR/NIR product offers the greatest  sensitivity 10 
to CO in the lower troposphere (Deeter et al., 2014). MOZAIC-IAGOS shows higher CO 11 
concentrations in these regions than MOPITT. On the other hand, Liu et al. (2005) suggested that 12 
since MOPITT (V3 L2) has low sensitivity to CO in the lower troposphere, the CO VMR 13 
estimated may only be a lower bound. The same authors noted that fires can be missed if not 14 
large enough or if they do not coincide with the MOPITT overpass time, or both. The presence 15 
of clouds is also another limitation for missing data. 16 
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 1 

Fig. 911. Global distribution of the seasonal mean trajectory-mapped MOZAIC-IAGOS CO 2 
climatology (left panels), after transformation with the MOPITT a priori profiles and averaging 3 
kernels matrix, and MOPITT CO retrievals (right panels). CO mixing ratio (ppbv) as a function 4 
of latitude and longitude at 800 (a-d) and 600 (e-h) hPa pressure levels. Data are binned at 5ox5o 5 
in latitude and longitude for the period from 2001-2012. The CO mixing ratios shown in panels: 6 
(a, b) at 800 hPa for DJF, (c, d) at 800 hPa for SON,  (e, f) at 600 hPa for DJF and (g, h) at 600 7 
hPa for SON.  8 
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Figure S2 shows global maps of percentage differences between MOPITT and the transformed 1 
trajectory-mapped MOZAIC-IAGOS CO climatology at 800 and 600 hPa pressure levels for DJF 2 
and SON 2001-2012. Differences are generally less than ±20% at 800 hPa, with a negligible 3 
overall bias, but larger at 600 hPa, with MOPITT on average 10-20% higher lower. except for a 4 
few few places over the Caribbean, southeast Asia and central Africa.?? Generally, the 5 
comparisons of the CO profiles of the transformed trajectory-mapped MOZAIC-IAGOS and 6 
MOPITT for both grid cells as well as zonal mean for different latitude bands show a consistent, 7 
significant bias: MOPITT is lower from about 700 hPa to 300 hPa, but shows a negligible bias in 8 
the lowermost troposphere. Above 300 hPa, they seem to agree better, although this may be 9 
partly due to the fact that the retrieved CO values in this region are highly influenced by the 10 
MOPITT a priori data for both cases.  11 

4.2 Comparison with MOPITT CO total column values 12 

CO total column amounts are retrieved from the MOPITT observations in addition to the profile 13 
retrievals. The retrieved CO total column  (a scalar) is related to the retrieved profile  (a 14 
vector) through the linear relation 15 

                                                             (3) 16 

where T indicates the transpose operation and t is the total column vectors. The CO total column 17 
averaging kernel can be calculated from the profile averaging kernels by 18 

                                                                 (4) 19 

The column operator simply converts the mixing ratio for each retrieval level to a partial column 20 

amount. Using the hydrostatic relation, the operator  is expressed as  21 

                                                       (5) 22 

Equation (5) is expressed in molecules/cm2/ppbv and  is the vector of the thicknesses of the 23 
retrieval pressure levels (in hPa). The interfaces of the retrieval layers are set at the surface, top 24 
of the atmosphere, and the midpoints between the standard nine retrieval levels. Determination 25 
of  required in Eq. (5) has to be made individually for each retrieval because of the variability 26 
of the surface pressure. The boundaries of the imaginary layer associated with each level are 27 
located at the pressure midpoints between the levels in the grid.  28 

For example, for a surface pressure of 950 hPa, the fixed retrieval pressure grid levels along with 29 
surface pressure would be (950, 900, 800, 700, 600, 500, 400, 300, 200, 100) hPa. Hence the 30 
corresponding  values would be (25, 75, 100, 100, 100, 100, 100, 100, 100, 100) hPa. 31 
Column amounts are calculated from the in situ profiles according to Eq. (6) to validate the CO 32 
total column retrievals. 33 
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In the same manner as we have done for the retrieved CO profiles, the retrievals of CO total 1 

column  may be compared against total column values derived from in situ profiles . 2 
Utilizing Eq. (2), the retrievals of the total CO column  found in Eq. (3) can be rewritten 3 
alternatively as  4 

                                                     (6) 5 

where  is the a priori total column value corresponding to the a priori profile ,  is 6 

the CO total column averaging kernel and  is the in situ profile. 7 

We have calculated the global total CO columns for both the MOZAIC-IAGOS CO climatology 8 
(using the MOPITT a priori and averaging kernels by applying Eq. (6)) and for MOPITT CO 9 
retrievals and compared different regions of the globe and different times time intervals from 10 
2001-2012. The comparisons between the climatology and the MOPITT observations agree well, 11 
typically to within 10%. For most regions the MOPITT CO total columns are 10-20% slightly 12 
highlower than the trajectory-mapped MOZAIC-IAGOS CO climatology total columns, with 13 
larger differences while in high CO source regions MOPITT seems to underestimate CO 14 
emissions. The SH shows a distinct latitude gradient, which is not evident in the NH.  This is 15 
likely related to the existence of major CO sources in the NH and the absence of large sources of 16 
emission in the SH. Nighttime CO observations of MOPITT have not been validated and appear 17 
subject to larger bias (Heald et al., 2004). Hence, we use the daytime data for comparison. 18 

Figure 10 12 shows global total column CO for August 2002, December 2005, December 2011 19 
and August 2012four seasons. From Fig. 10,I it is clear that MOPITT and the climatology are 20 
similarly able to capture the CO spatial variability. In August 2002 and 2012NH autumn, 21 
elevated total column CO is seen over South America, southeast Asia and west African which is 22 
due primarily to agricultural biomass burning in the regions. In both months, we see high total 23 
column CO over southeast Asia and west Africa. High total column CO is also seen in all 24 
seasons over eastern China, which is one of the major emission regions in the world. Northern 25 
hemispheric total columns are much higher than those in the southern hemisphere, and CO is 26 
somewhat more abundant in the NH winter (December), which is reasonable expected due to the 27 
lower amounts of hydroxyl radical (OH) that are present in the troposphere in that season 28 
(reduced oxidizing capacity). Difference plots for the CO maps shown Fig. 1012 are shown in 29 
Figure S3.  Generally, the MOPITT CO total column retrievals are slightly higher than the 30 
trajectory-mapped MOZAIC-IAGOS CO climatology. 31 

 32 

 33 
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 1 

Fig. 1012. Global total column CO from the transformed trajectory-mapped MOZAIC-IAGOS 2 
climatology and MOPITT data for  August 2002December-February, December 2005March-3 
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May, December 2011June-August and August September-November 2001-2012. Data are 1 
averaged in 5ox5o latitude- longitude bins.  2 

Figure S3 shows global difference plots for the CO maps shown Fig. 10.  Biases generally lie 3 
within ±20%, and the global mean bias between the MOPITT and MOZAIC-IAGOS CO 4 
climatology total columns is typically about 5% or less. While overall bias shows MOPITT  to 5 
be higher, it is also evident that the trajectory-mapped MOZAIC-IAGOS climatology is typically 6 
higher near major sources (eastern China, west central Africa and western South America) as 7 
well as over some areas of the oceans where aircraft data are not available. The negative biases 8 
near major sources are probably due to the limited vertical resolution of MOPITT as previously 9 
noted.  10 

Similar results are found for other years (Fig. 1113). This figure  shows scatter plots of retrieved 11 
MOPITT CO total columns against the transformed trajectory-mapped MOZAIC-IAGOS 12 
climatology for August 2008 December-February, December 2008 March-May, August 2012 13 
June-August and December September-November 2001-2012the same periods shown in Fig. 14 
1012. MOPITT and the trajectory-mapped climatology generally show strong cCorrelations are 15 
strong except in SON 2001-2012, and average biases of less than 2012-165%, with . MOPITT 16 
Tthe trajectory MOZAIC-IAGOAS is higher most cases. This is consistent with previous work, 17 
which alsoHowever, previous shows positive total column retrieval bias against aircraft data 18 
(Deeter et al., 2014, 2013; Emmons et al., 2009, 2007). The trajectory-mapped climatology high 19 
bias might be in part associated with the effects of urban sources of CO since all airport effect; 20 
however the averaging kernels (Fig. 23) are not very sensitive to CO in the boundary layer. 21 

s are located near major urban centers. 22 
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 2 

Fig. 1113. Global MOPITT CO column retrievals versus transformed trajectory-mapped 3 
MOZAIC-IAGOS CO climatology column for the months and years shown abovefour seasons. 4 
The mean difference in %bias is calculated as the difference for each grid cell, [2(MOPITT-5 
Clim)/(Clim+MOPITT)], is calculated for each pixel and then averaged over all pixelsgrid cells. 6 
The blue line is the line of best fit, the red line is the 1:1 line and the correlation coefficient (R),  7 
total number of data points (N) and root mean square error (RMS) are givenindicated.  8 

5 Results  9 

5.1 Global distribution of MOZAIC-IAGOS CO climatology 10 

As an example, Fig.Figure 12 14 shows the monthly mean CO VMR between 4 and 8 km 11 
altitude above sea level for the four seasons (i.e., December-February, March-May, June-August 12 
and September-November) during 2001-2012. The climatology is able to capture the CO spatial 13 
variability fairly well: the northern hemispheric concentrations are much higher, and the biomass 14 
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burning peaks are clearly visible for the NH winter and spring seasons. The climatology shows 1 
more abundant CO in the NH during these seasons. This is due primarily to lower OH levels 2 
during the cold season which permits a longer lifetime for CO, although there also appears to be 3 
an additional source in eastern Asia. Enhanced CO concentration is observed in the tropical 4 
regions where wildfire burning is typical during the DecemberJanuary–February seasonApril, 5 
like west Africa and a large part of central Africa (Sauvage et al., 2005, 2007). At southern mid-6 
latitudes between South America, southern Africa and Australia, we observe high CO from 7 
September to November, during the agricultural burning season. This is accompanied by 8 
enhanced ozone in the same region (e.g. Ding et al., 2015; see also Sect. 5.2), produced via 9 
reactions R1-R5 and similar. Although Fig. 12 14 shows a 12-year global map, the strong 10 
enhanced CO over these regions (west Africa, South America, and southeast Asia) is clearly 11 
observable as an annual feature with significant interannual variability.  12 

Furthermore, Fig. 12 allows us to examine the annual variation of the global distribution of CO 13 
between 4 and 8 km altitudes above sea level. Despite the limited MOZAIC-IAGOS data in the 14 
SH,  the seasonal cycle of CO is clearly shown in both hemispheres. The greatest change of CO 15 
from north to south occurs around the tropics in February-April when CO levels are greatest in 16 
the NH. The reverse gradient appears with a sharp decrease across the tropics in September-17 
October when CO levels peak in the SH. High CO levels are seen in August between Southeast 18 
Africa and Southwest Australia, which is as a result of the long-range transport of CO produced 19 
from biomass burning in the tropical areas (i.e., southern Africa).  20 
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 1 

 2 

Fig. 1214. Global monthly mean CO distribution from the trajectory-mapped MOZAIC-IAGOS 3 
CO VMR as a function of latitude and longitude for January-December 2001-2012 and altitudes 4 
between 4-8 km a.s.l. The data awere averaged with a bin size of 5ox5o latitude and longitude. 5 

5.2 Zonal distribution of MOZAIC-IAGOS CO climatology 6 
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5.2.1   Seasonal variation 1 

 2 

Fig. 1315. Zonally averaged monthly variation of CO for the latitude bands 45oS-45oN (a), 23.5o 3 
S-23.5o N (b), 23.5-66.5o N (c) and 23.5-66.5o S (d),. Monthly mean CO VMRs and total 4 
columns were calculated for the period 2001-2012. The CO mixing ratios are shown , for altitude 5 
ranges 0-2 km, 2-4 km, 4-8 km and 8-12 km, as well as total column (TC) a.s.l. The abscissa is 6 
monthly mean of CO covered during 2001-2012. 7 

In Fig. 13, data are grouped in three bands representing the NH extratropics (Fig. 13c), the SH 8 
extratropics (Fig. 13d), the tropics (Fig. 13b) and for latitude band 45oS-45oN (Fig. 13a). The 9 
zonal mean trajectory-mapped MOZAIC-IAGOS CO climatology for these latitude bands is 10 
shown for the altitude ranges 0-2 km, 2-4 km, 4-8 km and 8-12 km.  11 

As can be seen from Fig. 1315, CO shows distinct seasonal cycles in both hemispheres.  In the 12 
NH extratropics (Fig. 13c15c), maximum CO VMR is observed in February-April following a 13 
steady increase during fall and winter. This is followed by a rapid decrease giving rise to the 14 
lowest CO levels in July-SeptemberAugust. The seasonal decline of CO VMR in summer shows 15 
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the typical seasonal pattern of CO in the NH driven by OH increase during this time (Yurganov 1 
et al., 2008; Novelli et al., 1998).  In the SH extratropics (Fig. 13d15d), CO levels peak in 2 
September-October. This is consistent with previous studies by Novelli et al. (1998). In the SH, 3 
the annual CO maximum is earlier at lower altitudes. Rinsland et al. (2002) suggested this 4 
phenomenon to be associated with the vertical and horizontal CO dispersion away from the 5 
biomass burning region in the tropics. Moreover, CO shows greater seasonal variability, 6 
particularly at higher altitudes, in the SH than in the NH. This can also be seen in Fig. 12. The 7 
seasonal CO cycle in the tropics (Fig. 13b15b) and for latitude band 45oS-45oN (Fig. 13a15a) 8 
both display a July minimum, and a secondary maximum in October while the primary 9 
maximum is in late NH winter/early spring. This The CO cycle in both hemispheres is controlled 10 
by seasonal variations of OH, as OH is the major CO sink  (Logan et al., 1981; Bergamaschi et 11 
al., 2000; Novelli et al., 1998) and the space-time distribution of its sources (Novelli et al., 12 
1998), in particular the biomass burning either in the tTropics (largest fires occur in austral 13 
Africa and South America in SON) orand to a lesser degree at boreal latitudes (largest fires in 14 
June-July-August), and anthropogenic sources at northern mid-latitudes.. 15 

Figure 14 16 shows zonal mean latitude-time cross-section plots of CO VMR at 2.5 km, 4.5 km, 16 
6.5 km, 8.5 km, 10.5 km and 12.5 km altitudes for the period 2001-2012. The latitude-time 17 
cross-section shows the seasonal cycle of zonal mean CO for different altitudes, as seen in the 18 
previous figures, and also the variation of the interhemispheric CO VMR gradient throughout the 19 
year. The strongest interhemispheric gradient occurs in March, at low altitude, and the smallest 20 
gradients are seen in northern summer. The gradient in NH spring reverses at higher altitudes,  21 
and in NH fall where it is especially strong at higher altitudes. Plots 14e, f also clearly show the 22 
weak seasonal cycle in the NH upper troposphere compared to that in the SH.  23 
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 2 
Fig. 1416. Seasonal variation of zonal monthly mean trajectory-mapped MOZAIC-IAGOS CO 3 
climatology at 2.5 (a), 4.5 (b), 6.5 (c), 8.5 (d), 10.5 (e) and 12.5 (f) km altitudes a.s.l. for the 4 
period 2001-2012. The zonal mean data are averaged in 5o latitude intervals. 5 
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5.3.2 Vertical distribution  1 

Figure 15 17 illustrates the variation of CO with altitude for the seasons in which we observe 2 
maximum CO levels in both the SH and NH (i.e., MAM and SON). The seasons demonstrate the 3 
greatest CO VMRs are found at lower altitudes in both hemispheres, although . Even though CO 4 
declines with altitude in both hemispheres, it does so faster in the NH than the SH, . Thiswhich 5 
results in a decrease in the strength of the interhemispheric gradient (SH to NH) with altitude. 6 
This result is consistent with Edwards et al. (2006) who suggested that in the absence of 7 
continued CO input from the source regions (i.e., biomass burning in southern Africa and South 8 
America), the aged CO is gradually distributed vertically throughout the troposphere in the SH. 9 
In fact, in regions where there is deep convection this leads to an enhanced CO concentration in 10 
the upper troposphere, as can be seen on the right-hand side of Fig. 15 17 and in Fig. 1618d. 11 
Moreover, Liu et al. (2006) showed large horizontal CO gradients in association with vertical 12 
and horizontal transport of air originated from with different chemical signatures of origin.  13 

The zZonal CO mean vertical profiles for February, April, July and September, averaged for 14 
2001-2012 over the, latitude bands 23.5-66.5o N (NH extratropics), 23.5-66.5o S (SH 15 
extratropics) and 23.5o S-23.5o N (tropics), are shown in Fig. 1618. The results are displayed for 16 
latitude bands 23.5-66.5o N (NH extratropics), 23.5-66.5o S (SH extratropics) and 23.5o S-23.5o N 17 
(tropics). The CO profiles show strong seasonal and latitudinal variability primarily in the NH 18 
extratropics. The largest VMRs of CO occur at lower altitudes in the NH extratropics in February 19 
and April but the strong decline with altitude causes CO VMRs to be higher in the SH at high 20 
altitudes than in the NH. In the SH in February, April, July and September, there is little 21 
variation of CO with altitude. This is due to the sampling of the lower most stratosphere in the 22 
NH much more frequently than in the SH. The trajectory-mapped CO in the SH extratropics is 23 
mainly representative of the tropics, while unlike in the NH extratropics where there are many 24 
CO measurements north poleward of 40° N. This implies that sampling of the lowermost 25 
stratosphere will be more frequent in the NH than in the SH. The altitude gradients are similar in 26 
July and September, with CO levels in September in the SH higher than those in the NH. This is 27 
typically the influence of tropical biomass burning in South America and austral Africa, which 28 
are the two regions most represented in the climatology in the SH. In the tropics, CO VMRs 29 
show a rapid decrease with altitude in the lower troposphere but above approximately 4-5 km 30 
changes with altitude are minor. 31 
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Fig. 1517. Global distribution of seasonal (the NH spring and fall) mean trajectory-mapped 3 
MOZAIC-IAGOS CO climatology as a function of latitude and longitude for altitudes 1.5, 3.5, 4 
5.5 km, 7.5 km and 9.5 km a.s.l. The left and right columns show average CO VMRs for March-5 
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April-May and September-October-November, 2001-2012. The data are averaged with a bin size 1 
of 5ox5o latitude and longitude. 2 

  3 

 4 

Fig. 1618. Monthly mean profiles of CO from the trajectory-mapped MOZAIC-IAGOS CO 5 
climatology for February (a), April (b), July (c) and September, (d) averaged for 2001-2012. The 6 
different colors represent CO mean VMR for the latitude bands 23.5-66.5oN (blue), 23.5-66.5oS 7 
(green) and 23.5oS-23.5oN (red).  8 

6 Applications 9 

6.1 Global variation and trends of CO 10 

The smoothed time series of the NH extratropical zonal mean CO VMR at 900, 700, 500, and 11 
300 hPa for the trajectory-mapped MOZAIC-IAGOS dataset 2001-2012 is shown in Fig. 1719. 12 
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For purposes of comparison we also show data from MOPITT and from the mapped MOZAIC-1 
IAGOS dataset transformed with the MOPITT averaging kernaels. Gaps in the figure occur 2 
whenever one data source is missing.  The gaps in June-July 2001 and August-September 2009 3 
were due to a cooler failure of the MOPITT instrument. MOZAIC-IAGOS began CO 4 
measurement in December 2001 and there were only partial data available in 2010 and 2011. The 5 
observations show an annual late winter or springtime peak in the NH extratropical zonal CO 6 
loading each year, in conjunction with low wintertime OH levels. The same interannual cycle of 7 
CO is captured by both trajectory-mapped MOZAIC-IAGOS (transformed and untransformed) 8 
and MOPITT. They appear to track short-term changes equally well. However, while all show a 9 
modest decline in the lower troposphere particularity until about 2008-2009 (and thenafter which 10 
CO VMR seems to level off), in accordance with the trends found by Worden et al. (2013), in the 11 
upper troposphere MOPITT shows a modest increase, . and It also shows a significant bias with 12 
respect to the trajectory-mapped MOZAIC-IAGOS data that decreases with time. Although the 13 
untransformed trajectory-mapped MOZAIC-IAGOS CO values show a significant difference 14 
against the transformed at data in the lower troposphere, they seem to agree well at higher levels. 15 
However, tThe untransformed trajectory-mapped MOZAIC-IAGOS data shows higher CO levels 16 
compared tothan MOPITT CO retrievals for at all levels. 17 
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 1 

Fig. 1719. Zonally averaged time series of monthly mean CO VMR, at individual levels and total 2 
columns, as retrievmeasured by MOPITT CO retrievals and from the trajectory-mapped 3 
MOZAIC-IAGOS CO climatology (transformed and untransformed,) and transformed using 4 
MOPITT`s averaging kernels) for the latitude band 23.5o-66.5o N.  5 

Laken and Shahbaz (2014) found increasing CO trends over widespread regions of South 6 
America, Mexico, central Africa, Greenland, the eastern Antarctic, and the entire region of India 7 
and China from MOPITT data. Figure S4The SH extratropics also shows similar time series 8 
similar to those in Fig. 1719 for the SH extratropics, but the negative trend is not as clear as that 9 
in the NH due to limited data. The annual springtime peak in the SH zonal CO loading is again 10 
visible in all of the time series. This is predominantly associated with dry season biomass 11 
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burning emissions in South America, southern Africa,  southeast Asia, and northwestern 1 
Australia. In later months, the CO resulting from these emissions is generally destroyed by more 2 
active photochemistry during the SH summer. At these times, the retrieved zonal CO falls to 3 
background levels (around 40-50 ppbv) which are representative of the remote ocean regions 4 
where CO production by methane oxidation is the dominant source (Edwards et al., 2006). 5 
Biases between MOPITT and MOZAIC-IAGOS are again significant at all levels, but lowest in 6 
the lower troposphere, and again decrease with time. The untransformed trajectory-mapped 7 
MOZAIC-IAGOS data again show higher CO levels than the transformed CO climatology at all 8 
levels. 9 

In Fig. S5, we displayWe looked at the time series of the zonal monthly mean of CO VMR for 10 
the tropics. The biases between the MOPITT retrievals and the trajectory-mapped MOZAIC-11 
IAGOS in general show the same features as for the extratropics, both in time and vertical levels. 12 
The CO values showwhile the seasonal patterns that combine those seasonal patterns of the NH 13 
and SH seen in Figs. 17 19and S4.  14 

In Sect. 4, we found significant biases between the MOPITT retrievals and the trajectory-mapped 15 
MOZAIC-IAGOS CO dataset.  In Fig. S6S4, we display the monthly mean time series for 16 
Frankfurt from December 2001 - December 2012. As can be seen from the figure, These also 17 
showwe notice again significant biases, declining with time, between MOPITT and the 18 
transformed MOZAIC-IAGOS in situ above 700 hPa, in good agreement with the result shown 19 
in Fig. 1719. The biases also appear to decrease similarly with time in the upper troposphere. 20 
Furthermore, MOPITT shows a modest increase in CO levels in the upper troposphere while 21 
MOZAIC-IAGOS in situ (transformed and untransformed) shows a modest decline, consistent 22 
with Petetin et al. (2015), who report a similar decrease over Frankfurt. The MOPITT retrievals 23 
and MOZAIC-IAGOS (transformed and untransformed) CO values also for Frankfurt show the 24 
same seasonal patterns as the NH extratropics (Fig. 17)19). This comparison indicates suggests 25 
that a prominent bias, declining with time, exists between MOZAIC-IAGOS and MOPITT L3 26 
V6 TIR/NIR products. 27 

6.2 Global distribution of O3-CO correlations 28 

Global O3 datasets have been developed by trajectory mapping of ozonesonde, aircraft and 29 
satellite measurements and validated (Tarasick et al., 2010; G. Liu et al., 2013; J. Liu et al., 30 
2013; Osman et al., manuscript in preparation). The maps show consistent agreement with 31 
independent in situ and satellite instruments. As a potential application of such datasets (O3 and 32 
CO maps), we present here the relationship between O3 and CO. The O3-CO correlations were 33 
derived from the concurrent measurements of O3 and CO using MOZAIC-IAGOS.  34 

Since CO is involved in the production and destruction of O3, studies of O3-CO correlation can 35 
offer significant insight into the photochemical origin of air masses (e.g. Parrish et al., 1993; 36 
Chin et al., 1994; Zhang et al., 2008; Voulgarakis et al., 2011; Kim et al., 2013). A positive 37 
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correlation is expected in regions where CO and O3 are related due to emissions and 1 
photochemistry (for example, downwind of major CO and NOx source regions and in the 2 
presence of a significant actinic flux). However, during winter, Parrish (1993) observed that O3-3 
CO were negatively correlated, presumably due to titration of O3 by NO. Strong anticorrelation 4 
is also expected where stratospheric intrusions are a significant source of O3, since CO mixing 5 
ratios in the stratosphere are quite low. For a remote maritime site, O3-CO correlation would 6 
only be expected during periods when the site was downwind of significant CO and NOx 7 
sources. 8 

Although a quantitative interpretation in terms of O3 production is complicated by sampling of 9 
air masses with varying background mixing ratios (Chin et al., 1994; Mauzerall et al., 1998), the 10 
correlation still provides valuable information about anthropogenic influence on O3. Figures 19-11 
21 examine the O3-CO correlations observed by concurrent O3 and CO measurements using 12 
MOZAIC-IAGOS instruments during the period from 2001-2012. 13 

Figure 18 shows the global spatial distribution of O3 and CO from the trajectory-mapped 14 
MOZAIC-IAGOS climatologies for June-August and September-November of 2001-2012 at 4.5 15 
km above sea level. The right panels of Fig. 18 show significantly enhanced CO and O3 VMRs 16 
in the SH between southern Africa and Australia. In central Africa, where there is strong 17 
production of CO as a result of high biomass burning, there appears to be high O3 concentrations 18 
during September-November in anthropogenically polluted and biomass burning regions. In the 19 
polluted region of east China O3 is highest in the summer when photochemical activity is at its 20 
peak. The highest values of O3 in the summertime are seen over the Middle East, north Africa 21 
and central Asia. The global spatial distribution of O3 and CO from MOZAIC-IAGOS is 22 
generally consistent with previous OMI/AIRS results reported by Kim et al. (2013). 23 
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 1 

Fig. 18. Global distribution of seasonal (NH Winter and Fall) mean concentrations of O3 and CO 2 
from the trajectory-mapped MOZAIC-IAGOS climatologies as a function of latitude and 3 
longitude at 4.5 km altitude above sea level. The data are binned on a 5o×5o latitude and 4 
longitude grid. 5 

Correlation coefficients of the trajectory-mapped MOZAIC-IAGOS O3 and CO climatology 6 
seasonal fields from 2001-2012 are displayed in Fig. 19. The seasonal O3–CO correlations for 7 
the three-month time series (DJF, MAM, JJA, SON) of the O3 and CO mixing ratios were 8 
computed for each grid. Figure 19 shows that in June-August and September-November, the O3-9 
CO correlation coefficients in the SH appear to be very strong positive in the southern 10 
midlatitudes in winter–spring. This suggests that in the SH winter, spring (and perhaps even in 11 
autumn) photochemical O3 production is more dominant. In general, in the NH the O3-CO 12 
correlations seem to be fairly positive in all seasons except the scattered low negative correlation 13 
coefficients seen in the spring (and perhaps even in autumn). This indicates that photochemical 14 
O3 production clearly dominates most of the year at lower altitudes. 15 
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 1 

Fig. 19. O3-CO correlation coefficients of seasonal means for 2001-2012 from the trajectory-2 
mapped MOZAIC-IAGOS measurements at 4.5 km altitude a.s.l. The top left, top right, bottom 3 
left and bottom right panels are the O3-CO correlation coefficients for December-February, 4 
March-May, June-August and September-November, respectively.  5 
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 1 

Fig. 20. Same as Fig. 19 but for an altitude of 8.5 km a.s.l. 2 

Figure 20 shows the O3-CO correlation coefficients at 8.5 km altitude. In the SH strongly 3 
positive O3-CO correlation coefficients are notable in all seasons except December-February, 4 
which suggests that photochemical O3 production is dominant here even at this altitude. Strong 5 
negative correlations in the NH mid and higher latitudes in December-February and March-May 6 
indicate that the stratosphere is a major O3 source at this altitude. In the NH summer where 7 
photochemical O3 formation is a dominate source of O3, positive O3-CO correlation coefficients 8 
are seen, consistent with previous work by Zahn et al. (2002). Moreover, the same figure shows 9 
(see also Fig. 21) that in all four seasons O3-CO correlation coefficients in the tropics are 10 
positive. This is consistent with model calculations that estimate the O3 abundance in the tropical 11 
upper troposphere originating from the stratosphere to be only 5–15% (Roelofs and Lelieveld, 12 
1997; Lamarque et al., 1999). Some fraction of the extratropical CO may originate as CO 13 
transported from tropical biomass-burning regions to the extratropics; however Bowman (2006) 14 
showed using MOPITT CO data that transport from the tropics to the extratropics is a 15 
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comparatively slow process while the zonal dispersion of air parcels within the tropics and 1 
subtropics is relatively rapid. 2 

As a summary, in Fig. 21 we display the distribution of the zonal mean of the O3-CO correlation 3 
coefficients from the trajectory-mapped CO and O3 datasets as a function of latitude and altitude 4 
for the period from 2001-2012. The figure shows that in the lower troposphere the O3-CO 5 
correlations have generally positive values as photochemistry is the dominant source of O3, and 6 
the stratospheric influence is relatively small. In the mid and upper troposphere, the influence of 7 
the influx of stratospheric air depends strongly on latitude and season, but it always affects 8 
calculated O3–CO correlation coefficients. The NH high latitudes show negative correlations in 9 
winter, spring and fall, in agreement with previous studies (e.g. Voulgarakis et al., 2011; Parrish 10 
et al., 1998). Due to lack of sunlight, these regions do not experience intense photochemistry and 11 
are dominated by O3 destruction or dry deposition or both (Voulgarakis et al., 2011). Even 12 
though stratospheric intrusion can drive the negative correlations in the region, it is more 13 
frequent in spring (Zhang et al., 2008). In the SH, strong correlations are seen at all altitudes in 14 
all seasons except December-February , in agreement with those reported by Kim et al. (2013).  15 

Further division of the climatology into annual averages may provide a global view of CO 16 
changes and transport. As CO is involved in both the production and destruction of O3, O3-CO 17 
correlations derived from the trajectory-mapped MOZAIC-IAGOS CO and O3 climatology 18 
datasets presented here may provide important insights into the origin of air masses and the 19 
budgets of O3 and CO in the troposphere. Figure 21 demonstrates one aspect of the value of the 20 
MOZAIC-IAGOS continuous, long-term, global, vertically resolved in situ measurements. Such 21 
routine commercial aircraft observations provide valuable information on atmospheric 22 
composition that can improve our understanding of global and regional air quality and the 23 
potential impact of greenhouse gases on climate change.  24 

 25 

 26 
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 1 

Fig. 21. Latitude-altitude cross-section of zonal seasonal means of the O3-CO correlation 2 
coefficients for 2001-2012 from the trajectory-mapped MOZAIC-IAGOS CO and O3 3 
climatologies. The top left, top right, bottom left and bottom right panels are the O3-CO 4 
correlation coefficients for December-February, March-May, June-August and September-5 
November, respectively. 6 

7 Conclusions  7 

We have presented a three-dimensional (i.e., latitude, longitude, altitude) gridded climatology of 8 
CO developed by trajectory mapping of global MOZAIC-IAGOS data. This quasi-global 9 
climatology dataset offers a complement to global satellite measurements, at significantly higher 10 
vertical resolution, that facilitates visualization and comparison of different years and seasons, 11 
and offers insight into the global variation and trends of CO. Even though the MOZAIC-IAGOS 12 
aircraft data are unevenly distributed both in time and space across the globe, the trajectory-13 
mapped dataset is uniformly distributed on a 5o×5o×1 km grid. The trajectory-based interpolation 14 
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method confers significant advantages over linear or quadratic interpolation. Major regional 1 
features of the global CO distribution are clearly evident in the CO maps for different seasons 2 
and altitudes. The trajectory-mapped CO shows distinct seasonal cycles with the CO annual 3 
maximum occurring in September-October in the SH, coincident with the tropical biomass 4 
burning season (Rinsland et al., 2002), and in April in the NH, while the tropics show distinct 5 
maxima in January-February and in October. We notecaution that the observed result in the SH 6 
is obtained from the limited data we have from the region. The interhemispheric CO gradient is 7 
strongest in late winter/early spring, and smallest in northern summer. Time series analysis of the 8 
climatology shows that in the NH and the tropics CO is declining with time. This is consistent 9 
with the previous studies using ground-based, aircraft and satellite data, such as Petetin et al. 10 
(2015), Worden et al. (2013), Laken and Shahbaz (2014) and Novelli et al. (1998). (In the SH, 11 
due to limited MOZAIC-IAGOS data, a clear CO trend cannot be seen.) The consistency of our 12 
findings with those from other global datasets lends increased confidence that the CO 13 
climatology dataset derived from trajectory mapping of global MOZAIC-IAGOS data can be 14 
used for CO trend studies at regional and global scales. 15 

The trajectory-mapped CO dataset has been validated by comparing maps constructed using only 16 
forward trajectories and using only backward trajectories. The two methods show similar global 17 
CO distribution patterns. Differences are most commonly 10% or less, and found to be less than 18 
30% for almost all cases. They are typically less than 10% at northern mid-latitudes and less than 19 
20% in the tropics between ±30º latitude, except in the Pacific and Atlantic oceans where it can 20 
reach as large as 30%. The dataset has also been validated by comparison against in-situ 21 
MOZAIC-IAGOS aircraft measurements, where the data from the validation site are excluded 22 
from the trajectory-mapped data. Although the comparison shows larger differences below 2 km, 23 
the profiles from the two methods agree very well between 2 and 10 km with the magnitude of 24 
bias differences within 20%. A fFurthermore, comparison between the trajectory-mapped result 25 
and MOZAIC-IAGOS in situ CO cruise data, which were not included in the trajectory-mapping,  26 
shows that major regional features of the global CO distribution for different seasons are clearly 27 
evident in both maps and they agree very well qualitativelyin regions of overlap. This suggests 28 
that the trajectory-mapped CO data performs well not only near airports but also in remote areas. 29 
Validation was also performed against independent data from the NOAA aircraft flask sampling 30 
program. The results suggest small or insignificant biases in the upper troposphere, but positive 31 
biases as large as 12% for MOZAIC-IAGOS in the lower troposphere. This is probably due to 32 
the “airport effect”, a sampling bias that occurs because commercial aircraft operate from large 33 
airports near large cities, with typically elevated CO levels in the boundary layer. 34 

The trajectory-mapped CO dataset has also been extensively compared with MOPITT retrievals. 35 
Between 700 and 300 hPa, a prominent bias, declining with time, exists between MOZAIC-36 
IAGOS and MOPITT L3 V6 TIR/NIR products.  37 

A small positive bias for CO total column is found, consistent with those previously reported for 38 
MOPITT (Deeter et al., 2014, 2013; Emmons et al., 2009, 2007).  39 
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Comparison of similar maps made using the concurrent O3 measurements by MOZAIC-IAGOS 1 
permits some insight into the sources of tropospheric O3. The O3-CO correlation shows a 2 
significant seasonal and latitudinal variation. In the tropics, where the influence by stratospheric 3 
air is small, generally positive correlations are seen, as photochemistry is the dominant source of 4 
O3. In the extratropics, strong negative correlations in the NH winter, spring and autumn indicate 5 
that the influx of stratospheric air is a primary source, especially in the upper troposphere, while 6 
the picture is mixed in the summer. Strong O3-CO correlations are noted in all seasons except 7 
December-February over southern Africa, which suggests that photochemistry is generally the 8 
predominant O3 source in this region.  9 

Such constraints on tropospheric ozone sources can be useful for chemical transport model 10 
evaluation, as demonstrated by Kim et al. (2013).  11 

This study demonstrates one aspect of the value of the MOZAIC-IAGOS continuous, long-term, 12 
global, vertically resolved in situ measurements. Such routine commercial aircraft observations 13 
provide valuable information on atmospheric composition that can improve our understanding of 14 
global and regional air quality and the potential impact of greenhouse gases on climate change. 15 
Further division of the climatology into annual averages mayThe dataset  provide a global view 16 
of CO changes and transport as well as interannual variability. Theis unique 3D CO climatology 17 
dataset presented here has the potential to be used for time series and trend analysis, and 18 
provides a quasi-global view of CO changes and transport as well as interannual variability. It 19 
will also be useful as model initial fields, and background and boundary fields. It will be 20 
especially useful as an improved a priori climatology for satellite data retrieval. The global 21 
picture it presents is also expected to be valuable for comparison and validation of model results. 22 
The data isare publically available at ftp://es-ee.tor.ec.gc.ca/pub/ftpdt/MOZAIC_output_CO/. 23 
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