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	18 
Abstract 19 
 20 
Despite its importance as one of the key radiative properties that determines the impact of upper 21 

tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be 22 

one of the more challenging properties to retrieve from space-based remote sensing measurements. 23 

In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging 24 

due to their tenuous nature, extensive spatial scales, and complex particle shapes and light 25 

scattering characteristics. The lack of independent validation motivates the investigation presented 26 

in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 27 

3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-28 

Train observations. An initial comparison revealed a factor of two bias between the MODIS and 29 

CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach 30 

that compares both products with MODIS IR cirrus retrievals developed for this assessment. The 31 

analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased 32 

(high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS 33 

and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases 34 

relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the 35 

C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database 36 



results in the asymmetry parameter (g) varying as a function of effective radius with mean values 37 

that are too large. The MODIS retrievals have been brought into agreement with the IR by 38 

adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma 39 

distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud 40 

optical property models have a constant g≈0.75 in the mid-visible spectrum, 5-15% smaller than 41 

C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 42 

data products. This value is found to be inconsistent with the constrained (predominantly 43 

nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio 44 

of 32 sr for the unconstrained retrievals (an increase of 28%), selected to provide consistency with 45 

the constrained V3 results. These modifications greatly improve the agreement with the IR and 46 

provide consistency between the MODIS and CALIOP products. Based on these results the 47 

recently released MODIS C6 optical products use the single habit distribution given above, while 48 

the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained 49 

retrievals.   50 



	51 

1.	Introduction	52 

While clouds represent one of the largest modulators of Earth’s radiation, with their impact 53 

dependent on a variety of cloud physical and radiative properties, they remain one of the more 54 

difficult components to represent in global climate models (Jiang et al. 2012).  Passive satellite 55 

observational datasets such as those from MODIS (Moderate Resolution Imaging 56 

Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer), HIRS (High-spectral 57 

Infrared Sounder), and ISCCP (International Satellite Cloud Climatology Project) provide long-58 

term, global cloud observations (Wylie et al. 2005) (Heidinger et al. 2013; King et al. 2013; King 59 

et al. 2003; Rossow 1991; Rossow and Schiffer 1999). However assessing the uncertainties in the 60 

cloud radiative properties retrieved by these sensors has proved to be a complex and difficult task. 61 

Until recently, validation of these retrievals was limited to ground and aircraft inter-comparisons. 62 

But with the successful launch of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 63 

Observations) and CloudSat in April 2006 as part of the NASA-led Afternoon Constellation (A-64 

Train) (Stephens et al. 2002; Winker et al. 2010), researchers now have access to a near-continuous 65 

global record of vertically resolved observations of cloud and aerosol properties with nearly 66 

coincident observations from MODIS Aqua.  67 

Since launch, the CALIPSO lidar (the Cloud Aerosol Lidar with Orthogonal Polarization, 68 

or CALIOP) has proven to be a valuable tool for developing and evaluating passive cloud 69 

retrievals (Ackerman et al. 2008; Delanoë and Hogan 2010; Holz et al. 2008; Jin and Nasiri 2013; 70 

Kahn et al. 2014). CALIOP can directly measure cloud-top height with sensitivities that are 71 

significantly greater than the passive retrievals, while the CALIOP depolarization and attenuated 72 



backscatter measurements provide vertically resolved cloud phase discrimination (Hu et al. 2009) 73 

for cloud layers up to a cumulative optical depth of about 3.  74 

Ice Optical Thickness (IOT) has also proved to be one of the more difficult properties to 75 

retrieve from space-based passive sensor measurements and challenging to validate. In particular, it 76 

is difficult to infer the microphysical and radiative properties of optically thin upper tropospheric 77 

ice clouds (cirrus) from observations made by passive space-borne instruments due to their tenuous 78 

nature, extensive spatial scales, complex particle shapes, and a wide range of particle sizes. Active 79 

sensors such as CALIOP have the advantage that they directly measure the vertical structure of 80 

clouds and aerosols however similar to the passive retrievals, assumptions regarding the ice 81 

scattering properties (ie lidar ratio and multiple scattering) are necessary to invert the lidar signal 82 

and retrieve the ice cloud extinction. These lack of constraints in both the MODIS and CALIOP ice 83 

cloud retrievals result in considerable uncertainty and potential bias in the IOT which is the focus 84 

of the manuscript. The manuscript begins by presenting an inter-comparison between the MODIS 85 

C5 and CALIOP V3 IOT retrievals for optical tenuous cirrus (IOT < 3.0). A factor of two bias is 86 

found between MODIS and CALIOP unconstrained retrievals (presented in Figure 1) and 87 

described in section 4, raising a major question regarding the utility of these data records to study 88 

ice cloud radiative processes. We next investigate the bias using an infrared (IR) radiative closure 89 

experiment using collocated the MODIS 11 μm observations.  Based on these results 90 

modifications to the MODIS optical property retrievals with a focus on the ice scattering models is 91 

investigated. For CALIOP experimentation with the value of the assumed lidar ratio used in the 92 

unconstrained retrieval is evaluated. The result from this study provides the basis for the change in 93 

the ice scattering models used by the recently released MODIS C6 ice cloud products and for 94 



CALIOP the results provide one of the key studies motivating the changes to the CALIOP ice 95 

cloud extinction retrievals in the upcoming V4 product.  96 

MODIS	and	CALIOP	Retrieval	Background	97 

Both MODIS and CALIOP IOT retrievals require a priori information concerning the ice 98 

particle scattering properties that relate the measured reflectance (MODIS) or attenuated 99 

backscatter (CALIOP) to the cloud’s IOT and potentially the effective particle size. MODIS ice 100 

cloud forward radiative calculations in the visible/near-infrared (VNIR) depend directly on the ice 101 

particle phase function assumption, and to a first order on the associated asymmetry parameter (g). 102 

For CALIOP, an assumed extinction-to-backscatter ratio is required for the unconstrained 103 

retrievals where the algorithm is unable to make reliable estimates of cirrus IOT by measuring the 104 

attenuated backscatter coefficients in some clear air region immediately above and below cloud 105 

base (Young and Vaughan, 2009). Because solar background signals greatly reduce the signal-to-106 

noise ratio (SNR) of the CALIOP daytime measurements, the vast majority of CALIOP daytime 107 

IOT estimates are derived from unconstrained retrievals.  108 

Uncertainties in the ice scattering property assumptions of either MODIS and/or CALIOP 109 

could account for the biases found in Fig. 1. As will be discussed, an infrared (IR) cirrus IOT 110 

retrieval is relatively insensitive to ice particle size and scattering details compared to MODIS and 111 

CALIOP VNIR measurements, and thus provides an independent means to assess thin to 112 

moderately optically thick ice cloud retrievals (IOT ~ 0–3). In addition, an IR retrieval provides 113 

radiative closure with solar reflectance based on MODIS IOT retrievals in the sense that 114 

consistency in the two retrieved IOTs also implies forward model consistency with the respective 115 

top-of-atmosphere (TOA) VNIR and IR observations.  116 



Using the NASA-funded SSEC Atmosphere Product Evaluation and Test Element 117 

(PEATE), now re-named the Suomi-NPP Atmosphere Science Investigator Processing System 118 

(SIPS), the sensitivity of MODIS retrievals to ice single scattering properties are investigated by 119 

repeated analyses of collocated January 2010 CALIOP and MODIS observations using a variety of 120 

ice crystal habits (Yang et al. 2012) and size distributions. Based on comparisons against IR 121 

retrievals, the MODIS MYD06 Collection 6 (C6) ice cloud optical property algorithm uses a single 122 

habit – severely roughened aggregated columns (Yang et al. 2012) – instead of the size-dependent 123 

multi-habit model (Baum et al. 2005) used for C5. The MYD06 C6 results compare well with a 124 

new CALIOP version that uses a modified (larger) extinction-to-backscattering ratio for 125 

unconstrained IOT retrievals.  126 

The manuscript is organized as follows: Section 2 presents a detailed description of the 127 

algorithms and data sets used in the analysis of the ice cloud optical depths with a focus on the IR 128 

retrievals. Section 3 introduces the global inter-comparison between the MODIS collection 5 and 129 

CALIPSO V3 ice cloud optical depths with section 4 presenting the comparison with the 130 

collocated IR retrievals (ocean only).  Section 5 discusses the impact of the ice model selection 131 

(MODIS) and the assumed lidar ratio and multiple scattering correction (CALIOP) on the ice cloud 132 

optical depth and then presents an inter-comparison of the MODIS and CALIOP retrievals 133 

processed using a modified single scatter look up table (severely roughened aggregated columns) 134 

and a modified of unconstrained lidar ratio of 31 (instead of 25 for V3).  Section 6 summarizes the 135 

results and with a focus on the rational for the selection of a single habit for the new single 136 

scattering properties for the MODIS C6 ice cloud retrievals.  137 



2.	Ice	Cloud	Optical	Thickness	Retrieval	Datasets	138 

An overview of the relevant retrieval methodologies is presented here with a focus on the 139 

forward cloudy radiative transfer modeling assumptions and IR IOT retrievals developed 140 

specifically for this study.  141 

2.1	IR	retrievals	and	radiative	closure		142 

The MODIS channel suite includes a range of IR channels extending well into the CO2 143 

absorption region (13-15 µm). The calibration of the IR channels has been extensively validated 144 

and proven to have high accuracy, with uncertainties less than 0.5 K across a broad temperature 145 

range (Tobin et al. 2006).  For ice clouds, the IR radiative transfer is dominated by absorption, 146 

and thus is less complex than for the VNIR retrieval. In this section we discuss the IR radiative 147 

transfer methodology that is used both to retrieve the IR IOT as well as evaluate the MODIS and 148 

CALIOP retrievals. 149 

 The goal of radiative closure study is to relate the differences in the CALIOP and 150 

MODIS retrieved IOT to the measured TOA channel radiance or Brightness Temperature (BT) 151 

in the MODIS 11 µm channel. To calculate the TOA cloudy radiances requires an accurate 152 

radiative transfer model, knowledge of the cloud boundaries, and well-characterized surface 153 

temperature/emissivity and atmospheric thermodynamic profiles. LBLDIS (Turner et al. 2003), a 154 

cloudy radiative transfer model, is used for this analysis. The model elegantly combines the clear 155 

sky Line By Line Radiative Transfer Model (LBLRTM) (Clough and Moncet 1992) with the 156 

Discrete Ordinates Radiative Transfer (DISORT) (Stamnes et al. 1988), a proven and accurate 157 

cloudy radiative transfer model. The inputs required for LBLRTM are surface temperature and 158 

emissivity, vertically resolved temperature and water vapor profiles, and information regarding 159 

trace gas concentrations such as CO2 and O3. For this analysis the surface temperature and 160 



thermodynamic profiles are extracted from the NOAA Global Data Assimilation System 161 

(GDAS) files that provide profiles at 1° spatial resolution every 6 hours. For each MODIS and 162 

CALIOP FOV, the closest (in both time and space) GDAS profile is selected. A fixed CO2 163 

concentration of 380 ppm and a climatological O3 profile is used. Given these inputs LBLRTM is 164 

run on the selected FOV filtered using the collocated CALIOP V3 5km cloud layer products 165 

(described in Section 3). The results of the clear sky validation are discussed in Section 4. 166 

The cloud microphysics and thermodynamics are defined with a vertical resolution of 500 167 

meters within the cloud boundaries defined by the CALIOP layer product. Only FOV where the 168 

CALIOP is not attenuated at the surface are used greatly reducing uncertainties in the cloud base 169 

determination. For example a cloud with a geometrical thickness of 1.5 km is divided into 3 170 

layers with each layer defined by an optical thickness, effective radius and ice scattering model.  171 

For example for a cloud with a total optical thickness of 1.5 each layer will have an optical 172 

thickness of 0.5.  Using this methodology the vertical temperature profile is accounted for in the 173 

radiative transfer. For daytime IR forward model calculations, the effective radius from the 174 

MODIS optical property retrieval is used for all cloud layers. For nighttime CALIOP 175 

comparisons, a fixed effective radius of 40 𝜇m is used in the IR calculations. It is important to 176 

note that at 11 𝜇m the OT retrieval is relatively insensitive to the assumed effective radius.  177 

The last remaining variable needed to calculate the TOA IR radiance is IOT. LBLDIS is 178 

run independently using either the MODIS or CALIOP retrieved IOT, resulting in high spectral 179 

resolution TOA radiances with the only differences being the assumed IOT (i.e., MODIS or 180 

CALIOP). The spectrally resolved radiances are then integrated over the MODIS Aqua 11 𝜇m 181 

channel (band 31) spectral response function resulting in a simulated TOA radiance that can be 182 

directly compared to the measured MODIS 11 𝜇m observations.  183 



In addition to LBLDIS spectral calculations, TOA longwave fluxes are calculated using 184 

the Rapid Radiative Transfer Model (RRTM) (Mlawer et al. 1997) that is also based on DISORT 185 

and LBLRTM and utilizes a correlated-k method for gas absorption along with broadband ice 186 

cloud parameterizations from (Fu et al. 2000). Identical inputs are used for RRTM and the 187 

LBLDIS TOA calculations with the only variable being IOT. The TOA fluxes are subsequently 188 

used to quantify the impact of the IOT biases on the global characterization of ice cloud radiative 189 

forcing.   190 

 IR observations provide the independent reference to understand differences between 191 

MODIS and CALIOP IOT retrievals. While radiance closure provides valuable information 192 

regarding TOA radiances and fluxes it does not provide a direct assessment of the individual 193 

CALIOP and MODIS IOT biases. To convert observed IR TOA radiance to IOT, two different 194 

retrieval approaches were used. First, we developed an IR window IOT retrieval that uses the 195 

collocated MODIS and CALIOP observations. This “reference” retrieval uses cloud boundary 196 

information from CALIOP coupled with the LBLDIS forward model and then retrieves the IR 197 

IOT using the MODIS 11 𝜇m window channel observations that are coincident and collocated 198 

with CALIOP. A second method uses the spectral emissivity retrieved from the MODIS CO2 199 

emissive cloud-top pressure retrieval that is then related to the IOT and effective radius using a 200 

pre-computed lookup table (Heidinger et al. 2015). This method has the advantage of being 201 

computationally very efficient, not requiring the CALIOP cloud boundaries, and providing IOT 202 

for the entire MODIS swath. Both IR retrieval methods are discussed in more detail in the 203 

following sub-sections. 204 



2.1.1.	Combined	MODIS	IR	Window	and	CALIOP	Retrievals	205 

A single channel IR window IOT retrieval was developed for this study using combined 206 

CALIOP and MODIS observations and the LBLDIS forward radiative transfer modeling 207 

discussed in the previous section. The method constrains the cloud boundaries using the 208 

collocated CALIOP 5km layer products and uses surface and atmospheric temperatures 209 

information from GDAS. TOA radiances are simulated using LBLDIS with IOT retrieved by 210 

minimizing the measured MODIS channel 31 (11 µm) and calculated BT differences. The 211 

retrieval assumes the cloud extinction is evenly distributed in the vertical throughout the cloud. 212 

This simplification has the potential to bias the retrieval for FOV where the IOT is distributed 213 

non-uniformly in the vertical (Maestri and Holz 2009). The cloud geometric thickness is thus 214 

limited to no greater than 4 km to reduce IOT biases that can be introduced by non-homogeneous 215 

layers. 216 

2.1.2.	MODIS	IR	Spectral	Emissivity	Retrievals	217 

The MODIS C6 CO2 slicing algorithm provides retrieved spectral emissivity for the 8.5, 11, and 218 

12 µm channels (channels 29, 31, 32) that have sensitivity to both the IOT and effective radius. 219 

As described in (Parol et al. 1991), β ratios can be approximated based on these emissivities and 220 

are related to the asymmetry parameter (g), single-scattering albedo (ωo), and extinction 221 

efficiency (Qe) as follows: 222 

 223 

(1)   𝜷𝝀𝟏𝝀𝟐 =  𝑸𝒆,𝝀𝟏 𝟏−𝝎𝒐,𝝀𝟏𝒈𝝀𝟏
𝑸𝒆,𝝀𝟐 𝟏−𝝎𝒐,𝝀𝟐𝒈𝝀𝟐

 224 

 225 



Thus β is the ratio of the scaled absorption extinction in two spectral channels (𝜆!and 𝜆!). The 226 

effective radius is first retrieved by matching simulated ice single-scattering calculations of g(r), 227 

ωo(r), and Qe(r), each integrated over the appropriate MODIS spectral response functions, to the 228 

retrieved MODIS β ratios which are calculated for both the 8.5-11 𝜇m and 11 – 12 𝜇m pairs. 229 

For this analysis the scattering properties of severely roughened aggregated columns (Yang et al. 230 

2012) are used to be consistent with the MODIS C6 cloud optical property retrievals. 231 

 Using the effective radius to define g(r), ωo(r), and Qe(r), the extinction optical thickness 232 

is then retrieved by relating the 11 µm emissivity to the extinction optical thickness in the form 233 

((Van de Hulst 1974)):   234 

(2 )  𝝉𝒗𝒊𝒔 =  𝟐
𝑸𝒆

𝝉𝒂𝒃𝒔
𝟏!𝝎𝒐𝒈

 ,. 235 

where 𝜏!"# is the IR absorption optical thickness and 𝜏!"! is the extinction optical thickness at 236 

532 nm. This derivation assumes that the ratio between the absorption and extinction optical 237 

thickness is a factor of 2 in the IR. Based on ice cloud single-scattering calculations (Yang et al. 238 

2012) and assuming that the majority of ice clouds have an effective radius greater than 10 µm, 239 

this assumption is expected to have introduce no more than 10% uncertainty. (Heidinger et al. 240 

2015) provides a more detailed discussion of the retrieval methodology. This approach can be 241 

applied without the need for the CALIOP cloud boundaries, and provides full swath IR IOT 242 

retrievals. We leverage this capability to investigate the MODIS IOT retrieval biases as a 243 

function of view angle. 244 

2.2	CALIOP	Ice	Cloud	Optical	Thickness	Retrievals	245 

CALIOP is a two wavelength elastic backscatter lidar that measures attenuated backscatter 246 

components polarized parallel and perpendicular to the transmitted laser light at 532 nm and total 247 



attenuated backscatter at 1064 nm (Hunt et al. 2009). Once the received signals have been 248 

background-subtracted and calibrated (Powell et al. 2009), a tightly integrated suite of retrieval 249 

algorithms is used to detect layer boundaries (Vaughan et al. 2009) and classify layers as either 250 

clouds or aerosols (Liu et al. 2009). Layers classified as clouds are further classified according to 251 

thermodynamic phase as either ice clouds or water clouds (Hu et al. 2009). Layer optical 252 

thickness (including IOT) is then retrieved using one of two techniques: constrained or 253 

unconstrained retrievals (Young and Vaughan 2009). Constrained retrievals are applied 254 

whenever the effective two-way transmittance of a layer, 255 

  

 256 

(3)   𝚻𝒆𝒇𝒇𝟐 = 𝒆𝒙𝒑 −𝟐𝜼𝝉 = 𝐞𝐱𝐩 −𝟐𝜼 𝝈𝒄 𝒓 𝒅𝒓
𝒍𝒂𝒚𝒆𝒓 𝒃𝒂𝒔𝒆
𝒍𝒂𝒚𝒆𝒓 𝒕𝒐𝒑  257 

 258 
 259 

can be directly and reliably measured. In this expression τ is the layer optical depth (IOT for ice 260 

clouds), σc(r) is the range-resolved cloud extinction coefficient, and η is a multiple scattering 261 

correction factor whose value depends on the lidar sensing geometry and the scattering 262 

characteristics of the particulates being measured. While 2Teff  estimates can be obtained from 263 

measurements of clear air, opaque water clouds, and ocean surfaces (see (Josset et al. 2012; 264 

Yongxiang et al. 2007; Young 1995), respectively), the CALIOP V3 algorithm only implements 265 

the clear air technique, in which 2Teff  can be obtained directly from the ratio of the mean 266 

attenuated scattering ratios calculated in regions of clear air located immediately above cloud top 267 

and below cloud base (Vaughan et al. 2005). Retrieving IOT from measurements of 2Teff  requires 268 

knowledge of the appropriate multiple scattering factor (Winker 2003).  For CALIOP 269 

measurements of cirrus clouds, (Josset et al. 2012) determined the mean multiple scattering 270 



factor to be 0.61 ± 0.15. In the CALIOP V3 algorithm, η is fixed at 0.6 for all cirrus clouds. 271 

More recent results suggest that the multiple scattering factor is dependent on cloud temperature 272 

(Garnier et al. 2015b)which is being considering for the upcoming version 4 products. 273 

Constrained retrievals are the preferred method for retrieving IOT from CALIOP 274 

measurements. However, because solar background light significantly degrades the CALIOP 275 

SNR during daylight operations, V3 constrained retrievals occur almost exclusively during 276 

nighttime observations, thus severely limiting direct comparisons with MODIS IOT retrievals 277 

derived from VNIR solar reflectance.  For the vast majority of daytime observations, CALIOP 278 

IOT retrievals use an unconstrained technique that requires a priori knowledge of the cirrus 279 

extinction-to-backscatter ratio (i.e., lidar ratio), 280 

(4)    𝑺𝒄 =
𝝈𝒄(𝒓)
𝜷𝒄(𝒓)

 281 

where σc(r) and βc(r) are, respectively, the cloud extinction and backscatter coefficients.  IOT is 282 

then obtained by solving the lidar equation using specified values of η and Sc (Young and 283 

Vaughan 2009). Note that while the cloud extinction and backscatter coefficients are explicitly 284 

range-dependent, their ratio is assumed to be range-invariant. Although Sc for ice clouds most 285 

likely varies depending on crystal habit and size distribution, the CALIOP V3 unconstrained 286 

retrievals use a globally constant default value of Sc = 25 sr. Based on ground based lidar 287 

observations there can be significant variability in the lidar ratio. The constant value is 288 

considered one of the primary sources of uncertainty in the V3 ice cloud extinction retrievals. 289 

This value was determined prior to launch from the best information available from numerous 290 

ground-based and airborne data sets e.g., (Holz 2002; Sassen 2001; Yorks et al. 2011).   291 

Errors in lidar ratio selection for unconstrained retrievals generate corresponding errors in 292 

the resultant estimates of IOT. In particular, an underestimate of Sc will result in CALIOP 293 



underestimating IOT. The selection of the default CALIOP lidar ratio is thus one of the potential 294 

major sources of bias in the CALIOP unconstrained retrievals that can be investigated using IR 295 

observations from either MODIS or the CALIPSO IIR (Imaging Infrared Radiometer) instrument 296 

(Garnier et al. 2015a). 297 

 298 

2.3	MODIS	Ice	Cloud	Optical	Thickness	Retrievals	299 

The MODIS imager provides measurements in 36 spectral channels, covering the Visible Near 300 

Infrared (VNIR), Shortwave Infrared  (SWIR), Midwave Infrared (MWIR), and thermal IR 301 

portions of the spectrum. Spatial resolution is 250 m in two VNIR channels, 500 m in the 5 302 

VIS/SWIR channels, and 1 km in the remaining channels.  303 

The MODIS cloud optical/microphysical property algorithm is used to generate a single 304 

cloud product designated by the NASA Earth science data type (ESDT) names MOD06 and 305 

MYD06 for Terra and Aqua MODIS, respectively (hereafter referred to as MYD06 since the 306 

algorithms are essentially identical and this study is focused on MODIS Aqua observations). For 307 

daytime measurements, the 1 km cloud retrieval algorithm uses multiple spectral channels 308 

(primarily six VNIR, SWIR and MWIR channels, as well as several thermal channels) to 309 

simultaneously retrieve cloud optical thickness, effective radius (and derived water path) and 310 

thermodynamic phase for liquid and ice phase clouds. In addition to the 1km MODIS Level-1B 311 

calibrated radiance product, the algorithm requires the following input: MODIS cloud mask 312 

(MYD35) including 250 m mask information (Ackerman et al., 1998), the cloud-top pressure 313 

portion of MYD06 (Ackerman et al. 2008; Holz et al. 2008), and a variety of ancillary datasets. 314 

Heritage algorithm work is discussed in (King et al. 2003; Nakajima and King 1990; Platnick 315 

and Twomey 1994; Platnick et al. 2001).  316 



C5 algorithm-related publications include ice radiative models (Ackerman et al. 2008; 317 

Baum et al. 2005; Yang et al. 2007) multilayer detection (Wind et al. 2010), Clear Sky Restoral 318 

filtering (Pincus et al. 2012; Zhang and Platnick 2011), pixel-level uncertainties, and L3 global 319 

gridded statistics (King et al. 2013). An online list of the recent C6 algorithm updates is available 320 

from the MODIS Atmosphere Team web site (Platnick 2014). The most relevant update for the 321 

current discussion is the adoption of new ice cloud radiative models having an overall smaller 322 

asymmetry parameter, as will be discussed in Sect. 5.1. Note for consistency with the spherical 323 

droplet definition, as well as for use in deriving ice water path, the effective radius of a non-324 

spherical ice particle is defined as ¾ times the ratio of the average volume of the size distribution 325 

to the average cross sectional area (Yang et al. 2007). 326 

 327 

2.4	Collocation	and	the	Merged	Dataset		328 

In this section we present the methods used to collocate and merge the CALIOP and MODIS 329 

observations providing the foundation for the inter-comparisons and analysis presented in the 330 

results of Sect. 4. 331 

The analysis is based on one month (January 2010) of physically collocated CALIOP and 332 

MODIS observations. MODIS is an imaging radiometer while CALIOP is a near-nadir viewing 333 

lidar. Because each instrument has a unique viewing geometry with different spatial resolutions, 334 

accurate inter-comparisons require collocating the observation FOVs. This analysis uses tools 335 

that provide computationally efficient and accurate collocation (Nagle and Holz 2009). The 336 

methodology defines master and follower instruments, with the master typically being the larger 337 

FOV and the follower FOV collocated within the master footprint. In this investigation MODIS 338 

is defined as the master with CALIOP the follower. The MODIS spatial resolution can be 339 



approximated as a rectangular box with a 1×2 km resolution at nadir. The CALIOP IOT retrieval 340 

can be performed over horizontal averaging distances ranging from 5 km to 80 km, depending on 341 

the magnitude of the cloud signal relative to the background noise (Yongxiang et al. 2007). The 342 

CALIOP surface footprint is therefore approximated as an 80-meter wide swath with the along-343 

track length depending on the amount of spatial averaging. The majority of observations used in 344 

this analysis are the 5 km averaged IOT. A more detailed description of the CALIOP and 345 

MODIS collocation is presented in (Holz et al. 2008). 346 

 Leveraging the UW Atmospheric Science Investigator-led Processing System (SIPs) 347 

processing capabilities, a month of collocated MODIS and CALIOP collocated observations 348 

were processed using the CALIOP and MODIS IOT retrievals with the only difference being 349 

incremental changes to the ice cloud parameterizations used in the retrieval algorithms. This 350 

approach isolates the impact of the parameterization changes and/or algorithm modifications and 351 

provides a direct assessment of the changes in IOT.  352 

3.	CALIOP	V3	and	MODIS	C5	Cirrus	Optical	Thickness	Inter-Comparisons	353 

Figure 1 presents the MODIS C5 IOT retrievals compared with CALIOP V3 IOT for one month 354 

(January 2010) of non-polar (±60 degrees latitude) daytime ocean observations. The CALIOP 355 

5 km layer products are used to select only single layer ice clouds were both the CALIOP phase 356 

retrieval (Hu et al. 2009) and the MODIS optical property phase retrieval identify ice clouds. The 357 

CALIOP phase detection is sensitive to scattering from oriented ice (specular reflection), and 358 

such cases are excluded from the data set. Because the CALIOP layer detection algorithm 359 

employs a nested, multi-resolution spatial averaging scheme (Vaughan et al. 2009), the CALIOP 360 

5 km layer products can report distinct layers in cases where the base of the upper layer is 361 



separated from the top of the lower layer by as little as a single range bin (60m). For a passive 362 

retrieval such as from MODIS, a 60 m vertical separation will have little impact on the retrieval 363 

results assuming both layers are ice. To improve the comparison yield and provide a more 364 

representative distribution of single layer ice clouds for inter-comparing the passive 365 

observations, CALIOP 5 km ice cloud layers with a vertical separation of 3 km or less are 366 

merged to form single, vertically contiguous layers. The CALIOP extinction profile is then 367 

integrated for each profile using the redefined layer boundaries, thus providing an aggregated 368 

IOT. Ice clouds with total geometrical thickness greater than 4 km using this single layer 369 

definition are excluded from the comparison.  370 

The MODIS IOT retrievals are filtered using the C5 MODIS Quality Assurance (QA) 371 

parameters and a horizontal heterogeneity threshold. MODIS IOT retrievals, (i.e., with the QA 372 

usefulness flag set to 1 and the QA confidence flag set to 3, are used in the comparison). This 373 

filtering provides all ice cloud retrieval where both the IOT and effective radius successfully 374 

converged within the lookup table. Unlike liquid water clouds QA values of 2 and 1 are not used 375 

for C5 retrievals.  Using this filtering provides the highest quality MODIS retrievals and removes 376 

all cloud edges from the comparison. To reduce uncertainties resulting from spatial sampling 377 

differences between MODIS and CALIOP, the standard deviation of a 5x5 pixel box centered 378 

over the collocated pixel is computed. Only collocated pixels where the MODIS IOT standard 379 

deviation is less than 0.5 are used; we find, however, that the comparison results are relatively 380 

insensitive to this threshold. 381 

   Figure 1 reveals a systematic bias between the MODIS C5 and CALIOP IOT’s, with 382 

MODIS approximately a factor of two larger than the CALIOP unconstrained retrievals. An 383 

independent methodology is needed to assess this difference since both retrievals depend on ice 384 



scattering property assumptions. As discussed in the methodology section, the IR observations 385 

provide sensitivity to the IOT given well-constrained cloud boundaries with uncertainties that are 386 

independent of the CALIOP and MODIS VNIR retrievals. Spectrally resolved TOA radiances 387 

are calculated for the three different retrieval methods – MODIS, CALIOP unconstrained 388 

(daytime measurements), and CALIOP constrained (nighttime measurements) – using LBLRTM 389 

and LBLDIS. All three calculations use identical cloud boundaries defined by the merged 390 

CALIOP 5 km layer heights and the same thermodynamic profiles and ocean surface 391 

temperatures (GDAS), with the only difference being the IOT used in the calculation. The 392 

spectrally resolved TOA radiances are then integrated over the MODIS channel 31 (11 µm) 393 

spectral response function. To investigate the accuracy of the combined GDAS and TOA clear 394 

sky LBLRTM calculations, simulated TOA 11µm BT for clear sky FOVs identified using both 395 

the MODIS and CALIOP cloud masks were compared to the measured MODIS 11µm channel 396 

BTs. The mean bias between the simulated and observed BT is less than 0.2 K, which is within 397 

the expected calibration uncertainty of MODIS (Tobin et al. 2006).  398 

Figure 2a presents the MODIS C5 and CALIOP V3 BT closure results. The figure 399 

reveals a sobering finding which is that neither the MODIS C5 nor the CALIOP V3 400 

unconstrained IOT retrievals provide radiative closure in the window IR. Furthermore, the 401 

respective retrievals are biased in opposite directions. For MODIS C5, the calculated TOA BT is 402 

colder than the measured BT with a mean bias of -8.7K, implying the MODIS IOT is on average 403 

biased high. In contrast, the TOA BT calculated using the CALIOP V3 unconstrained IOT has a 404 

mean bias of +12.1 K, suggesting the CALIOP retrieval is biased low. The CALIOP V3 405 

constrained retrievals, which do not require an assumed lidar ratio but only an estimate of the 406 

multiple scattering correction, demonstrate much better agreement with a mean bias of +1.4 K.  407 



To put the biases into a radiative context, the cloudy IR TOA fluxes are computed for 408 

each collocation using RRTM. The calculations use the CALIOP cloud boundaries, the surface 409 

and atmospheric profiles from GDAS, and the MODIS retrieved effective radius. For each 410 

collocation RRTM calculations are computed with the only difference being the IOT used 411 

(MODIS or CALIOP) with the results presented in Figure 2b.  The mean TOA flux difference 412 

between MODIS and CALIOP unconstrained retrievals is +23 W m-2 with a standard deviation of 413 

21W m-2. For the tenuous ice clouds being investigated, the sensitivity of the TOA flux to IOT is 414 

primarily driven by the thermal contrast between the surface and the mean emitting temperature 415 

of the cloud (Corti and Peter 2009). The very large differences in the wings of the distribution in 416 

Fig. 1b occur primarily near the tropics where the thermal contrast is greatest between the cloud 417 

and the surface. For this region TOA differences as large as 50 W m-2 are found in Figure 2b.  418 

4.	IR	Retrievals	as	a	Reference	Optical	Thickness		419 

Because the sensitivity of IR IOT retrievals to ice crystal habit selection is minimal, these 420 

retrievals provide an independent means to evaluate the CALIOP and MODIS solar reflectance 421 

retrievals. As discussed in Sect. 2, the main sources of uncertainty in the IR IOT originate from 422 

characterizing the surface temperature and having an accurate determination of the cloud 423 

emitting temperature. To reduce the surface temperature uncertainty, the results of this section 424 

are restricted to non-polar (± 60 degrees) ocean-only cases.  425 

 The comparisons with IR window IOT retrievals shown in Figure 3 reveal biases in both 426 

the MODIS (a) and daytime CALIOP unconstrained (b) retrievals (high and low, respectively) 427 

that are consistent with the radiative closure results presented in Figure 2. The magnitude of the 428 

bias relative to the IR is approximately +40% for MODIS. For CALIOP there is a non-linear 429 

dependence between the IOT and the negative bias relative to the IR, with the bias increasing 430 



substantially for IR IOTs greater than unity; the CALIOP results are discussed further in Section 431 

5.2. 432 

 A limitation of the IR window IOT data set is that only a small subset of the MODIS 433 

across track swath can be assessed due to the very close coordination between the MODIS and 434 

CALIOP orbits. To investigate MODIS IOT scan angle dependencies we use the MODIS 435 

spectral IR IOT retrieval described in Sect. 2.1.2. Figure 4a shows the MODIS C5 liquid (warm 436 

colors) and ice (cool colors) phase cloud optical thickness for an example MODIS data granule 437 

(January 11 2010, 06:25 UTC). Fig. 4b presents the histogram of the ratio between the MODIS 438 

IOT and the full swath IR IOT (described in section 2.1.2) separated by viewing angle ranges as 439 

indicated by the colored lines overlaid on the IOT image. A ratio of unity would suggest good 440 

agreement between the spectral IR and VNIR IOT retrievals. However, as illustrated in the 441 

following section, for the MODIS C5 retrievals (solid lines) the modes of the distributions vary 442 

with scan angle, and the bias is seen to be an increasing as a function of scan angle. The 443 

dependence on the scan angle (ie scattering angle) for the C5 retrievals results from the strong 444 

angular variation in the C5 phase functions. This is an important result, as it demonstrates 445 

necessity that this scattering angle dependence can provide an additional constraint on ice 446 

radiative model selection. In addition, because CALIPSO and Aqua have similar orbits, only a 447 

small range of MODIS viewing angles are included in the collocated inter-comparison, thus the 448 

possible strong dependence on viewing angle implies the collocated analysis is representative 449 

only of the view angle ranges sampled. Finally, given the lack of significant scattering in the IR, 450 

the scan dependent bias further suggests the issue is with the MODIS C5 VNIR retrievals. This is 451 

investigated in the next section. 452 



5.	Investigating	the	sensitivity	of	ice	scattering	model	selections	for	MODIS	and	CALIOP	ice	453 
cloud	retrievals	454 

5.1	Ice	Radiative	Model	Sensitivities	in	MODIS	455 

Though a primary focus of this investigation is on optimizing C6 ice models to improve 456 

IOT inter-comparisons, it is understood that ice model crystal habits also affect the particle 457 

single scattering albedo retrieved using the SWIR and MWIR channels that provide effective 458 

particle size information. Figure 5a and Figure 5b show the 2.13µm and 3.7µm channel co-459 

albedo, respectively, as a function of Cloud Effective Radius (CER) for four habit realizations, 460 

namely the C5 habit mixture (black line) and the three severely roughened habits solid aggregate 461 

plates (green line), solid bullet rosettes (red line), and aggregate columns (blue line) (Yang et al. 462 

2012).To the extent that CER retrievals of an asymptotically thick cloud in the SWIR/MWIR are 463 

essentially a retrieval of co-albedo, the difference between the aggregated column and C5 model 464 

co-albedo implies an effective radius difference of +2µm and -8µm at the 2.1µm and 3.7µm 465 

wavelengths, respectively, for a C5 effective radius of about 35µm; smaller C5 retrieved sizes 466 

would result in larger differences. 467 

Figure 6 shows the asymmetry parameter sensitivity to habit for the same four habits 468 

shown in Figure 5. Evidently the habit-sensitivity of the asymmetry parameter is also strong in 469 

both the 2.1µm and 3.7µm MODIS channels. While the asymmetry parameters of three severely 470 

roughened habits are not constant with effective size (though at 2.1µm the aggregate plates and 471 

aggregate columns are nearly constant), the C5 model has much larger size sensitivity at both 472 

wavelengths (Cole et al. 2014; van Diedenhoven et al. 2014; Yang et al. 2008). Aggregated 473 

columns, with smaller asymmetry parameters relative to C5, will result in a larger retrieved CER 474 

estimates. This is because the resulting increase in modeled SWIR reflectance for a given 475 

effective size causes the measured reflectance to be associated with a more absorbing (i.e., 476 



larger) particle. Therefore, the effect of both co-albedo and asymmetry parameter differences 477 

between the severely aggregated column habit and the C5 model act to increase retrieved 478 

effective radii at 2.1µm, while at 3.7µm some cancellation of effects can be expected. 479 

The single habit radiative models shown in Figure 5 and Figure 6 are used to build look-480 

up tables that were integrated into the MODIS C6 cloud retrieval development code. A month of 481 

data was processed for each habit. It was found that the habit that provided the best consistency 482 

with the IR window retrievals (Sect. 2.1.1) is the severely roughened aggregated column model. 483 

The IOT retrieval comparison with the IR window retrievals using this model is shown in Figure 484 

7a, where the MODIS reflectance-based retrievals using the severely roughened aggregated 485 

column model are now clustered around the 1-to-1 line. In addition, this aggregated column 486 

model was used to assess the MODIS retrieval swath dependence previously shown in Figure 4b. 487 

The improvement of the aggregated column model (dashed lines) relative to the C5 model (solid 488 

lines) is significant. Both results led to the decision to use the severely roughened aggregated 489 

column radiative model for the MODIS C6 cloud optical/microphysical property retrievals. 490 

Figure 8 shows an example of ice cloud retrievals for C5 and C6 for typhoon Fung-491 

Wong. The typhoon was located south of Taiwan at the time of the MODIS Aqua data granule 492 

acquisition on September 20, 2014 (0530 UTC). The C5 and C6 ice (cool colors) and liquid 493 

(warm colors) cloud optical thickness retrievals are shown in the middle and right panels, 494 

respectively. In addition to ice radiative model differences, MYD06 C5 and C6 have different 495 

schemes for the cloud thermodynamic phase yielding different ice and liquid phase pixel 496 

populations, though the optical thickness spatial patterns are similar for regions having the same 497 

phase. Because of the different phase assignments made by these two scheme, quantifying ice 498 

model retrieval sensitivities requires the comparisons be restricted to only those pixels for which 499 



both algorithms generate successful retrievals that identify identical cloud phases. With this pixel 500 

filtering, the left panel of Figure 8b shows the normalized IOT distribution for the optical 501 

thickness range of the plot. The C6 IOT mode is roughly 27% smaller than the C5 mode, while 502 

the mean is decreased by about 15%, from 4.16 for C5 to 3.55 for C6. The 2.1µm ice cloud 503 

effective particle radius retrievals are shown in the right panel, with the C6 mode and mean both 504 

increasing by about 4µm (+15%) for C6 relative to C5. 505 

5.2	MODIS	C6	model	selection	methodology	506 

The MODIS IOT retrieval depends strongly on assumed ice scattering properties that are 507 

needed to relate the measured reflectance to the retrieved IOT. The MODIS C5 retrieval used 508 

empirically derived habit and size distributions with asymmetry parameters ranging between 0.79 509 

and 0.88 depending on the ice cloud effective radius (Baum et al., 2005). By conducting an 510 

infrared closure analysis, we have shown that the C5 parameterization is not representative of the 511 

globally averaged ice scattering properties. More recent investigations of the ice cloud asymmetry 512 

parameter suggest that most ice clouds have values around 0.75 in the visible spectrum (Cole et al. 513 

2012; van Diedenhoven et al. 2013). Additionally, use of the C5 ice cloud radiative model results 514 

in MODIS retrieval biases are strongly dependent on the viewing angle, as demonstrated in Figure 515 

4. These findings motivated the investigation of new ice scattering models that have lower 516 

asymmetry parameters and weaker dependence on ice effective radius.  517 

Since the MODIS C5 algorithms were finalized, new ice scattering models that incorporate 518 

roughened ice crystal parameterizations have been developed (Yang et al. 2012). Experimentation 519 

with these new models demonstrates that a modified gamma distribution of severely roughened 520 

aggregated columns provides a significantly lower visible asymmetry parameter (~0.75) that shows 521 

very little dependence on ice effective radius. For testing purposes, the MODIS cloud retrieval 522 



algorithm team implemented these new scattering properties in the MYD06 retrieval algorithm. 523 

The updated algorithm was then run on the Atmospheric PEATE and the resulting data was 524 

collocated with CALIOP measurements. Simulated TOA cloudy MODIS 11 µm brightness 525 

temperatures (BT) were then computed using the reprocessed MODIS IOT retrievals and are 526 

compared to the MODIS measured BT, These new results are presented in Figure 10b.  The 527 

updated ice scattering models generate greatly improved IOT estimates that show very close to a 528 

one-to-one correspondence with the independently derived IR IOT values (Figure 7a) and is 529 

consistent with the findings of (Baum et al. 2014). Additionally the view angle dependent bias is 530 

largely removed, as presented in Figure 4b. Based on these results, the recently reprocessed 531 

MODIS C6 cloud optical/microphysical property product (now in forward production) uses a 532 

modified gamma distribution consisting of a single habit of severely roughened aggregated 533 

columns for ice cloud retrievals. An additional benefit of the single habit is that it simplifies the 534 

retrieval and increases the reproducibility of the scattering properties by the research community. It 535 

is important to note that the selection of the single habit modified gamma distribution was to 536 

provide a radiative consistency with the IR, not a microphysical model.  537 

Figure 10a presents the same filtered 2-D histogram comparing CALIOP and MODIS as 538 

Figure 1 but using the ice radiative model modifications made for MODIS and the updated lidar 539 

ratio (32 sr) for CALIOP.  Figure 10b presents the IR radiative closure for the updated IOT 540 

retrievals for January 2010. Notice the large bias between the MODIS and CALIOP un-constrained 541 

IOT is significantly reduced and the IR radiative closure shows very good agreement for all three 542 

IOT retrievals. There is still a tendency for the MODIS IOT to be larger than CALIOP in Figure 543 

10a. The MODIS C6 IR closure in Figure 10b also demonstrates this bias, with the tail of the 544 



distribution weighted to negative BT differences suggesting the remaining bias is specific to 545 

MODIS.  546 

 547 

5.3	Ice	Lidar	Ratio	Sensitivities	in	CALIOP	548 

As previously discussed, CALIOP uses one of two methods, (i.e., constrained and unconstrained) 549 

to retrieve IOT. The constrained method requires high SNR in clear air regions immediately 550 

above and below the cloud. This SNR requirement limits the constrained retrieval primarily to 551 

nighttime FOVs, because solar background light severely degrades the clear air SNR during the 552 

daytime. This precludes direct comparison of the constrained retrievals with the MODIS daytime 553 

optical property retrievals. The IR retrieval, being day/night independent, allows for direct inter-554 

comparisons between the MODIS IR IOT retrievals and both the constrained and un-constrained 555 

CALIOP IOT retrievals providing a means to evaluate the two retrieval methods against a 556 

consistent reference. 557 

Figure 3b presents the joint histogram between the unconstrained CALIOP and the 558 

MODIS window IR IOT for January 2010 for single layer cirrus. The filtering criteria are the 559 

same as in Figure 1, except both day and night observations are included. The CALIOP layer 560 

optical thickness is filtered using the extinction quality control (QC) flags provided as part of the 561 

L2 products. Only QC values of 0 (unconstrained solution, no lidar ratio adjustment), 2 562 

(unconstrained solution, lidar ratio decreased) and 4 (unconstrained solution, lidar ratio 563 

increased) were selected. Consistent with the findings of (Garnier et al. 2015a), Figure 3b shows  564 

CALIOP unconstrained IOT is significantly low-biased with respect to the IR IOT, with a non-565 

linear dependence as a function of IOT. Figure 9 compares the CALIOP constrained retrievals 566 

(QC=1) to the MODIS IR COT for the same filtering criteria. This comparison reveals a distinct 567 



difference between the CALIOP constrained and unconstrained retrievals (Figure 3b), as the 568 

constrained retrievals demonstrate a significantly smaller bias relative to the IR IOT. While the 569 

CALIOP IOT retrieval requires estimates of the multiple scattering contributions for both the 570 

constrained and unconstrained retrievals, the un-constrained method also requires an assumed 571 

lidar ratio whereas the constrained retrieval does not. Because both retrievals use an identical 572 

fixed multiple scattering factors, the difference between the constrained and unconstrained 573 

retrievals relative to the IR can be attributed to the use of an assumed lidar ratio in the 574 

unconstrained retrieval.  575 

To investigate the sensitivity of the CALIOP IOT retrievals to the lidar ratio, a month of 576 

CALIOP L2 products was processed (January 2010) with the default lidar ratio increased to 577 

32 sr. This revised value is the mean of all V3 constrained solutions of ice clouds with randomly 578 

oriented ice crystals (3,091,952 cases) measured between 28 November 2007 (when CALIPSO 579 

permanently changed its pointing angle to 3° off nadir) and 30 June 2012. It is important to note 580 

that the selection of this new default lidar ratio was based on on-going quality assurance analyses 581 

conducted by the CALIOP algorithm team that were wholly independent of the IR inter-582 

comparisons with the final value dependent on change to the multiple scattering correction and 583 

calibration. In addition the CALIOP team is currently investigating more complex multiple 584 

scatteirng parameterization that depends on the cloud temperature (Garnier et al. 2015b). The 585 

modified CALIOP product was ingested by the Atmospheric PEATE and collocated with both 586 

the MODIS C5 and C6 products and the MODIS IR retrievals. The modified CALIOP 587 

unconstrained retrievals compared to the reference IR IOT is presented in Figure 7b. Compared 588 

to the standard V3 products (Figure 3b) the change in the lidar ratio significantly reduced the 589 

bias compared to IR IOT, and the non-linear behavior at large IOT is almost completely 590 



removed. This is because optical depth is a nonlinear function of lidar ratio, thus weakly 591 

scattering layers show minimal changes in IOT while the changes in strongly scattering layers 592 

are much more substantial. This result strongly suggests that the current V3 unconstrained lidar 593 

ratio of 25 sr should be increased in future versions of the CALIOP data products.  594 

6.	Conclusions	595 

MODIS Collection 5 (C5) ice optical thickness (IOT) retrievals are compared to the version 3 (V3) 596 

CALIOP IOT for one month (January 2010) of collocated single layer ice clouds. The comparison 597 

reveals a factor of two differences between the retrievals as presented in Figure 1. Using IR 598 

observations from MODIS as an independent means of assessing the CALIOP and MODIS IOT 599 

clearly demonstrates that both retrievals have significant biases, but in opposite directions: MODIS 600 

C5 systematically overestimates IOT while CALIOP V3 systematically underestimates IOT.  601 

The decision to use the single severely roughened aggregate column habit as the MODIS 602 

C6 ice cloud radiative model was made solely to achieve closure with IR retrievals in a global 603 

sense. Our use of this model for this purpose does not imply that it is a suitable microphysical 604 

model for use in understanding ice particle physical processes (e.g., size distribution evolution, fall 605 

speed distribution, etc). Furthermore, the IR comparisons were done in conjunction with collocated 606 

CALIOP observations that that allow for the filtering of multi-layer ice phase clouds from the 607 

statistical study; the data set used here is clearly a subset of actual scenes and so may not be 608 

reflective of the full distribution of ice clouds observed by the sensors. It is important to note that 609 

this investigation focuses on ice clouds with optical depths less then 3.0 as this is the limit for 610 

CALIOP.  Finally, it is recognized that using a fixed ice radiative model for global retrievals is 611 

only meaningful in a climatological sense and may be expected to breakdown in instantaneous 612 



and/or regional studies with variations of inferred ice models with region, cloud type, dynamics 613 

and cloud top height shown by (Cole et al. 2014; van Diedenhoven et al. 2014). 614 

The severely roughened aggregated column model adopted for the MODIS C6 ice cloud 615 

algorithm has a fixed aspect ratio with an asymmetry parameter of about 0.75 in the visible for 616 

all effective sizes. This produces results that are quite consistent with those generated using the 617 

Inhomogeneous Hexagonal Mono-crystal (IHM) model derived by (C.-Labonnote et al. 2001) 618 

(asymmetry parameter of about 0.77) that provided a good match with observed POLDER view 619 

angle-dependent VNIR reflectance. Other studies have also suggested that featureless (i.e., 620 

smooth) phase functions indicative of roughened or highly asymmetric aggregated habits with 621 

relatively small asymmetry parameters are needed to match aircraft and satellite observations 622 

e.g., (Baran et al. 2001; C. -Labonnote et al. 2000; van Diedenhoven et al. 2013). 623 

The Generalized Habit Model (GHM) (Baum et al. 2010) was also tested but did not 624 

result in the same level of radiative closure with the IR IOT retrievals compared  to the severely 625 

roughened aggregated columns (comparison shown in Fig. 7a). While there was an improvement 626 

with respect to the C5 ice model (comparison shown in Fig. 3a), the GHM model resulted in IOT 627 

retrievals that were still significantly larger than the IR because of larger asymmetry parameters 628 

in the visible relative to the severely roughened aggregated column model (about 0.77 at an 629 

effective radius of 5 µm up to 0.82 at 60 µm). (Cole et al. 2012) also tested the GHM as well as 630 

single habit models from (Yang et al. 2012) and (Yang et al. 2003) against POLDER polarized 631 

and total reflectance observations across a range of scattering angles.  632 

Polarized angular observations agreed well with a severely roughened version of the 633 

GHM. However, it was concluded that there was no single habit/model that is best in all respects 634 

for the reflectance (derived spherical albedo) consistency tests, though the severely roughened 635 



aggregated column model was not included in the analysis. Similarly, (Baran and Labonnote 636 

2007) also noted that though the IHM model provided good consistency with POLDER 637 

directional reflectance distributions, it was less successful in matching the angular distribution of 638 

polarized reflectances. Due to vertical size stratification in ice clouds it is possible that different 639 

models are needed to match polarized observations (weighted towards the uppermost portion of 640 

the cloud-top) with total reflectance observations (weighted deeper into the cloud), e.g., (Platnick 641 

2000) and (Zhang et al. 2010).  642 

Given that MODIS retrievals are based on total reflectance, it is expected that directional 643 

reflectance consistency with POLDER is the more relevant metric. Further, the study of (Zhang 644 

et al. 2010; Zhang et al. 2009) shows there is little difference between IOT retrieved from 645 

reflectance and IR observations for the model case study considered. (Fauchez et al. 2014) 646 

demonstrated that for 1km IR observations, sensitivities to 3-D effects are limited to horizontal 647 

heterogeneity (plane-parallel approximation or PPA bias) and the effect of vertical heterogeneity 648 

is small. Though more extensive heterogeneity studies are needed, these studies do suggest the 649 

utility of using IR IOT retrievals to assess MODIS reflectance-based ice radiative models. 650 

Finally, we note that recent comparisons have demonstrated consistency between Aqua MODIS 651 

C6 IOT retrievals and those from AIRS Version 6  (Kahn 2015). 652 

For CALIOP it is found that the bias relative to the IR for the V3 IOT retrievals depends on 653 

the retrieval method used. While CALIOP can make direct measurements of the effective two-way 654 

transmittance of the layer, the retrieved optical thickness depends only on an estimate of the 655 

multiple scattering factor and the accuracy of the molecular attenuated backscatter profile 656 

(calculated from a temperature and pressure profile using Rayleigh scattering theory). However, 657 

daytime solar background noise limits the applicability of this constrained retrieval technique to 658 



mostly nighttime observations, thus prohibiting direct comparisons to the MODIS daytime optical 659 

retrievals. For the constrained retrieval we find good agreement with the IR radiative closure 660 

(Figure 2) and the IR IOT in Figure 9. However, the majority of the daytime CALIOP retrievals 661 

use the unconstrained method that requires an a priori specification of the cloud extinction-to-662 

backscatter ratio. It is these unconstrained retrievals that are directly compared to the MODIS C5 663 

IOT in Figure 1 and to the IR in Figure 2 and Figure 3. The CALIOP V3 unconstrained IOT 664 

retrievals show a significant low bias relative to both the IR and the constrained CALIOP 665 

retrievals. Since both CALIOP methods assume an identical multiple scattering correction, this 666 

suggests that the default lidar ratio (25 sr) used in the V3 CALIOP unconstrained retrievals is too 667 

low. As part of this investigation the CALIOP algorithm team processed a month of retrievals 668 

using a lidar ratio of 32 sr for the unconstrained retrievals with results presented in Figure 7b. It is 669 

important to note that the selection of a lidar ratio of 32 sr was not based on the IR inter-670 

comparison studies, but instead was derived from independent analyses of the nighttime 671 

constrained retrievals conducted by the CALIOP algorithm team in order to improve the accuracy 672 

of the CALIOP unconstrained retrievals and increase the consistency of IOTs reported by the 673 

constrained and unconstrained retrievals.  674 
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 901 
Figure 1: A two dimensional histogram comparing MODIS C5 and CALIOP V3 single layer ice 902 
cloud daytime optical thickness retrievals for January 2010 (ocean surfaces, ±60° latitude). 903 
Notice the color scale is logarithmic. 904 

 905 

 906 
Figure 2 presents the radiative closure results (A) for 1 month (January 2010) of collocated 907 
single layer ice cloud observations using LBLRTM and DISORT to calculate the TOA 11 µm 908 
radiance that are compared to MODIS channel 31 observations. The only difference in the 909 
calculations is the IOT retrieval method. The differences in TOA fluxes resulting from using the 910 
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MODIS or CALIOP daytime IOT retrievals in the calculation are presented the right histogram 911 
(B).  912 

 913 

 914 
Figure 3 The 2-D histogram comparing the MODIS C5 (a) and CALIOP V3 (b) retrievals to the 915 
reference IR IOT retrieval. 916 

 917 
 918 

 919 
Figure 4 The MODIS IOT retrievals dependence on scan angle is investigated in the above 920 
figures. The image presents the MODIS C5 OT retrievals on January 11 2010 at 06:25 UTC. The 921 
right figure presents a histogram of the ratio between the MODIS IOT for both C5 (solid line) 922 
and C6 (dashed line) and full swath IR retrieval for only those FOVs which were identified as ice 923 
by MODIS. The histograms are separated by view angle the approximate regions for each color 924 
marked by the associated color lines on the left image.   Notice the significant scan dependent 925 
bias relative to the IR IOT for the MODIS C5 retrievals. 926 
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 929 
Figure 5. The relationship between effective radius and single scattering co-albedo in the 930 
MODIS (a) 2.13 and (b) 3.7 µm channels for different ice particle radiative models. See Fig. 6 931 
for model details. Since effective radius retrievals for an optically thick cloud are a retrieval of 932 
co-albedo, the difference between the C5 and aggregated column model co-albedo implies a 933 
retrieved effective radius difference of +2 µm and -8 µm, respectively, for a C5 effective radius 934 
retrieval of about 35 µm. 935 

 936 

 937 
 938 
Figure 6. The relationship between effective radius and single scatter asymmetry parameter in 939 
the MODIS (a) 0.67 and (b) 2.13 µm channels for different ice particle radiative models. Notice 940 
the strong dependence of the MODIS C5 model asymmetry parameter on effective size. The 941 

d) MODIS 3.7 µm (variance sensitivity)

10 6050403020
Effective Radius (µm)

~ 3 µm

ve = 0.05
ve = 0.10
ve = 0.20

0.00

0.20

0.15

0.10

0.051 
– 

Si
ng

le
 S

ca
tt

er
in

g 
Al

be
do

10 6050403020
Effective Radius (µm)

c) MODIS 2.13 µm (variance sensitivity)

~ 2 µm

b) MODIS 3.7 µm

10 6050403020
Effective Radius (µm)

~ –8 µm

a) MODIS 2.13 µm

C5
Solid Bullet Rosette
Solid Aggregate Plates
Aggregate Columns

0.00

0.20

0.15

0.10

0.051 
– 

Si
ng

le
 S

ca
tt

er
in

g 
Al

be
do

10 6050403020
Effective Radius (µm)

~ +2 µm

b) MODIS 2.13 µm

10 6050403020
Effective Radius (µm)

C5

Solid Bullet Rosette

Solid Aggregate Plates

Aggregate Columns

0.70

0.95

0.90

0.85

0.80

0.75

As
ym

m
et

ry
 F

ac
to

r

10 6050403020
Effective Radius (µm)

a) MODIS 0.67 µm



other models consist of a single habit with severely roughened surfaces. The single habit 942 
calculations are made for a modified gamma size distribution and an effective variance of 0.10. 943 

 944 
 945 

 946 
Figure 7 The joint histogram comparing the MODIS C6 IOT with the reference IOT retrieval 947 
(A). Notice the significant improvement in the agreement resulting from the change to severely 948 
roughened aggregated columns. The CALIOP non-constrained IOT using a modified lidar ratio 949 
of 32 is compared to collocated IR MODIS retrieved IOT in the right figure (B). Notice the 950 
significant improvement in the no-linear bias compared to Figure 3b.  951 

 952 

 953 
Figure 8a Example retrieval results for an Aqua MODIS data granule (MYD06 2014, 20 954 
September, 0530 UTC). The RGB composite is shown in the left panel while IOP retrievals for 955 
Collections 5 and 6 are shown in the center and right panels, respectively. Note the difference in 956 
the phase determination between the two collections. 957 
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 959 

Figure 8b. Collections 5 and 6 distributions of ice cloud optical thickness and effective radius 960 
derived from a combination of the MODIS 0.86 and 2.1µm channels for the data granule of Fig. 961 
8a (or 8). The distributions are limited to common pixels for which both collections agree that 962 
the pixel has an ice phase and the retrievals were successful. The IOT modes are at about 1.5 and 963 
1.1 for C5 and C6, respectively, representing about a 27% reduction in the most recent 964 
Collection; the effective radius modes increase by about 15%. The mean for the range shown in 965 
the plots is given in the legends.  966 

 967 
 968 

 969 
Figure 9 The CALIOP V3 constrained IOT retrieval for single layer clouds is compared to the 970 
LBLDIS reference IOT retrieval. Due to single to noise limitations the comparison is limited to 971 
nighttime only FOV.  972 

COT mode: C5 ≈ 1.5, C6 ≈1.1 
(about 27% decrease)

CER mode: C5 ≈ 26 µm, C6 ≈29-30 µm 
(about 15% increase)
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 974 

 975 
Figure 10  (=> Fig. 10) The CALIOP unconstrained IOT but processed using a modified lidar 976 
ratio of 32 is compared to the new single habit ice scattering LUT used in the updated MODIS 977 
C6 IOT retrievals in the left (A) figure. Notice the improved bias relative to the MODIS C5 and 978 
V3 CALIOP retrievals presented in Figure 1. The radiative closure analysis using the updated 979 
retrievals is presented in the right (B) figure. The modifications have greatly improved 980 
agreement with the measured MODIS 11 µm channel compared to MODIS C5 and the current 981 
V3 CALIOP retrievals presented in Figure 2. 982 
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