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Abstract

Single-particle compositional analysis of filter samples collected on-board the FAAM
BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud
Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March–April
2013). Scanning electron microscopy was utilised to derive size distributions and size-5

segregated particle compositions. These data were compared to corresponding data
from wing-mounted optical particle counters and reasonable agreement between the
calculated number size distributions was found. Significant variability in composition
was observed, with differing external and internal mixing identified, between air mass
trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-10

based dusts and sea salts, with particles notably rich in K and Ca detected in one case.
Source regions varied from the Arctic Ocean and Greenland through to northern Rus-
sia and the European continent. Good agreement between the back trajectories was
mirrored by comparable compositional trends between samples. Silicate dusts were
identified in all cases, and the elemental composition of the dust was consistent for15

all samples except one. It is hypothesised that long-range, high-altitude transport was
primarily responsible for this dust, with likely sources including the Asian arid regions.

1 Introduction

The response of the Arctic environment to the changing climate has received increased
interest in recent years due to the visible loss in sea-ice volume over the past three20

decades (e.g. Serreze et al., 2007; Perovich et al., 2008). The polar regions of our
planet have a unique response to a warming atmosphere due to environmental char-
acteristics vastly different to the mid-latitudes, including high surface albedo and strong
variability in annual solar radiation. These factors cause the Arctic to respond to cli-
matic changes at a heightened pace (Curry et al., 1996). The complexity of the Arctic25

environment requires detailed observations to further our understanding of the feed-
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backs and underlying processes involved; however, the ability to carry out such studies
is hampered by the remote location which is difficult for in-situ investigation.

Existing numerical models do not effectively reproduce the changing Arctic environ-
ment. Discrepancies in forecasted sea-ice coverage, and predicted dates for 100 %
loss, are due to a variety of uncertainties within the models themselves (e.g. de Boer5

et al., 2014). A key uncertainty in our ability to climatologically model how these
changes will progress is in our representation of atmospheric aerosol-cloud interac-
tions (IPCC AR5, 2013). Aerosols play an important role in the Arctic radiative balance,
and their influence is thought to be amplified by the unique environmental conditions of
this region (Quinn et al., 2007). The annual cycle of aerosol concentration in the Arctic10

varies significantly by season – with highs in spring of approximately 4–5 times that
observed in late summer (Heintzenberg et al., 1986) – and such variability impacts the
microphysics of the mixed-phase clouds commonly observed (Verlinde et al., 2007).

The interaction of aerosol particles with clouds as Ice Nucleating Particles (INPs) or
Cloud Condensation Nuclei (CCN) is dependent upon properties such as their size,15

hygroscopicity and composition (Pruppacher and Klett, 1997). The ability of aerosol to
contribute towards microphysical structure via these pathways can have a net influence
on factors such as the cloud optical depth, ice crystal/droplet number or droplet effec-
tive radius (Zhao et al., 2012); properties which can significantly affect the net radiative
impact of the cloud (Curry et al., 1996). The study of INPs has developed significantly20

in recent years via laboratory and field studies (DeMott et al., 2010; Hoose and Möh-
ler, 2012). It is still not clear which properties of aerosol particles promote them to act
as INPs in the atmosphere. They are generally thought to be insoluble; super-micron
in size; have a similar molecular structure to ice (Pruppacher and Klett, 1997); and
have the potential to produce chemical bonds with ice molecules at their surface (Mur-25

ray et al., 2012). For example, mineral dusts are known INPs and are used regularly
in laboratory studies of ice nucleation (e.g. Zimmermann et al., 2008; Connolly et al.,
2009; Kanji et al., 2013; Yakobi-Hancock et al., 2013). Sources of these particles are
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not ubiquitous across the globe and it is not well understood which particles – and from
which sources – facilitate ice nucleation in the Arctic atmosphere.

Previous studies of Arctic aerosol have indicated that the population is primarily com-
posed of organic material, continental pollutants and locally-sourced species such as
sea salt (Behrenfeldt et al., 2008; Geng et al., 2010; Weinbruch et al., 2012). There5

are a wide range of sources which may contribute to this population and it is difficult
to quantify the impact of different regions. Some year-round studies of Arctic aerosol
have been conducted (Ström et al., 2003; Weinbruch et al., 2012) which consider the
differences in particle properties between seasons, showing that the annual cycle of
aerosol composition and concentration is dominated by the influence of the Arctic Haze10

(Barrie, 1986; Shaw, 1995). Between February and April, an influx of aerosol from an-
thropogenic sources becomes trapped in the stable Arctic atmosphere and persists
for long periods of time (up to several weeks) before being removed by precipitation
processes (Shaw, 1995). During this time, the particle concentrations reach a plateau
and the aerosols have the potential to interact with other species, grow and develop15

with a low chance of being removed from the atmosphere. This promotes an enhanced
state of mixing, which compounds the difficulty in understanding how these particles
interact with the clouds in the region. It is thought that the European continent is the
primary source of this aerosol, with only small contributions from North America and
Asia (Rahn, 1981); however, long-range transport from the Asian continent has been20

found to sporadically contribute to this phenomenon (Liu et al., 2015). In addition to the
pollutants (e.g. as sulphate or nitrate gases), some crustal minerals have been identi-
fied in these haze events (Barrie, 1986). Improving our understanding of the properties
of these particles will help us to comprehend how they influence the clouds of the Arc-
tic, and a strong method of achieving this is by identifying the chemical composition of25

the aerosol particles present in the region (Andreae and Rosenfeld, 2008).
The influence of aerosol-cloud interactions on cloud microphysical structure and the

Arctic radiative budget is uncertain (Vihma et al., 2014). By improving our knowledge
of these processes via in-situ observational studies in the Arctic, it is possible to reduce
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this uncertainty and develop models to produce a more accurate representation of the
region’s response to anthropogenic climate change. To this end, the Aerosol-Cloud
Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out
in the European Arctic in 2013, utilising airborne- and ship-based measurements to
collect a detailed dataset of the Arctic atmosphere. The campaign was split into spring5

and summer segments, completed in Mar-Apr and July of 2013 respectively. During the
spring section of the campaign, the FAAM BAe-146 atmospheric research aircraft was
flown in the vicinity of Svalbard, Norway, with the capability of collecting in-situ samples
of aerosol particles on filters. This study presents the analysis of the filter samples
collected during this campaign, with a focus placed upon identifying the compositional10

properties and sources of the non-volatile, coarse-mode aerosol particles present in
the atmosphere during the Arctic spring.

1.1 Campaign overview

The flights of the springtime ACCACIA campaign were mainly conducted in the region
to the south-east of Svalbard, with the exception of flight B768 which was carried out to15

the north-west near the boundary with Greenland. Figure 1 details the science sections
of each of the springtime flights of interest, with direction from Svalbard to Kiruna, Swe-
den in all cases except B765, and the corresponding dates are listed in Table 1. For the
majority of these flights, a focus was placed on obtaining atmospheric measurements
over the marginal ice zone between the sea-ice and the ocean, allowing the variation20

of cloud structure with surface conditions to be investigated.
As part of the springtime campaign, 47mm-diameter Nuclepore polycarbonate filters

were exposed on-board the FAAM BAe-146 aircraft to collect in-situ samples of the
accumulation- and coarse-mode aerosol particles (sizes ∼0.1 µm to ∼10 µm). Such
particle sizes are approximately applicable to the study of CCN and INPs (Pruppacher25

and Klett, 1997). This study presents the analysis of one set of filters from each of the
flights shown in Fig. 1, placed in the context of how the characterised particles may
interact with the cloud microphysics in the region.
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2 Methodology

2.1 Aircraft instrumentation and trajectory analysis

During the spring section of the ACCACIA campaign, a range of cloud microphysics
and aerosol instrumentation were used on board the FAAM BAe-146 aircraft to produce
a detailed record of the observed Arctic atmosphere (as described by Liu et al., 2015;5

Lloyd et al., 2015). In this study, data from the Cloud Droplet Probe (CDP-100 Version
2, Droplet Measurement Technologies (DMT), Lance et al., 2010), the Cloud Aerosol
Spectrometer with Depolarisation (CAS-DPOL, DMT, Glen and Brooks, 2013) and the
Passive Cavity Aerosol Spectrometer Probe (PCASP 100-X, DMT, Rosenberg et al.,
2012) are used to provide context for and a comparison to the filter measurements.10

The accumulation-mode aerosol distribution was monitored by the PCASP, whereas
the CAS-DPOL measured both coarse-mode aerosol and, along with the CDP, cloud
droplet number concentration. These externally-mounted aircraft probes size and count
their relative species via forward-scattering of the incident laser light through angles
35–120◦ and ∼4–12◦ (for both the CDP and CAS-DPOL) respectively. The PCASP15

measures particle concentrations and sizes in the range of 0.1 to 3 µm, the CAS-DPOL
provides similar measurements from 0.6 to 50 µm (Glen and Brooks, 2013), and the
CDP measures cloud droplets from 3 to 50 µm (Rosenberg et al., 2012).

Out of cloud, the CDP and may be used to provide an indication of the wet-mode
diameter of coarse-mode ambient aerosol particles. The CAS-DPOL also measures20

coarse-mode aerosol concentrations when out of cloud. Within cloud, the liquid-water
content (LWC) can be derived from the observations of cloud droplet size. In this study,
a LWC threshold of ≤0.01 g m−3, derived from CDP measurements, was employed to
distinguish between out-of-cloud and in-cloud measurements, and this threshold was
applied to the CAS-DPOL, CDP and PCASP data to obtain an estimate of the ambient25

aerosol size distributions. These out-of-cloud observations are used in this study to
validate the collection efficiency of the filter inlet system.
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In addition to the in-situ data gained from the instrumentation aboard the aircraft,
back trajectory analyses were carried out to further contextualise the filter exposures.
This was achieved using HYSPLIT 4 (Draxler and Hess, 1998), in a similar manner to
Liu et al. (2015). Horizontal and vertical wind fields were derived from GDAS reanal-
ysis meteorology (NOAA Air Resources Laboratory, Boulder, CO, USA) and used to5

calculate trajectories at 30 s intervals along the FAAM BAe-146 flight path. This anal-
ysis allows the direction of the air mass to be inferred; however, it does not explicitly
account for turbulent motions along the derived path and therefore carries a degree of
uncertainty (Fleming et al., 2012). Trajectories dating back 6 days are presented to pro-
vide an indication of the source regions of the particles collected during the ACCACIA10

filter exposures.

2.2 Filter collection

The filter collection mechanism on the FAAM BAe-146 aircraft comprises a stacked-
filter unit (SFU) which allows for two filters to be exposed simultaneously to the air
stream, allowing aerosol particles to be collected on both. In the ACCACIA campaign, a15

combination of two filters with different nominal pore sizes was used in each exposure
– a 10 µm-pore filter was stacked in front of a 1 µm-pore filter – allowing sub-micron
aerosol particles that may pass through the pores of the first to be collected by the
second. This mechanism allows for the approximate splitting of the total aerosol size
distribution onto two filters.20

The design of the inlet follows the same specifications as the MRF C-130 aircraft
filtration system described extensively by Andreae et al. (2000) and allows for sub-
isokinetic sampling, thus removing large cloud droplets from the sampled air and min-
imising any particulate contamination from cloud droplets or rain (Chou et al., 2008;
Johnson et al., 2012). Due to this design, large particles (>10 µm) are also thought25

to be removed from the collected sample, though the collection efficiency of the entire
system is not known to have been formally quantified (Formenti et al., 2008; Johnson
et al., 2012). Despite this, the efficiencies of the filters themselves can be estimated:
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the 50 % cut-off diameter of the 10 µm Nuclepore filter is approximately 0.8–1 µm at
the mean face velocity encountered during this study (∼100 cm s−1) (John et al., 1983;
Crosier et al., 2007), whilst the 1 µm filter has a 50 % collection efficiency at approxi-
mately 0.2 µm (Liu and Lee, 1976). Qualitatively, this sampling method has been found
to compare reasonably well with wing-mounted particle counters (Chou et al., 2008;5

Johnson et al., 2012).
The filters were typically exposed on straight, level runs for approximately 10–30 min

to obtain a sufficient sample for chemically-speciated mass loadings. Although the fil-
ter system was designed to remove cloud droplets, the filters were primarily exposed
out of cloud to further minimise the potential for contamination. Chosen filters were all10

exposed within the boundary layer (<1000 m, see Tables 2 and 5) with no dependence
on whether the surface was sea-ice covered or open ocean. Samples from below cloud
were preferentially studied in this investigation as they likely included the main contri-
butions of CCN and INPs at this time of year; however, one exposure from above cloud
is considered in Sect. 3.4.15

2.3 Environmental scanning electron microscopy

Using a Phillips FEI XL30 Environmental Scanning Electron Microscope with Field-
Emission Gun (ESEM-FEG) in partnership with an Energy-Dispersive X-Ray Spec-
troscopy (EDS) system, automated single-particle analysis of the ACCACIA filter sam-
ples was undertaken at the University of Manchester’s Williamson Research Centre20

(Hand et al., 2010; Johnson et al., 2012).
The coupled EDS system allows for morphological and compositional single-particle

analysis. The electron beam is controlled by the EDS system to provide automated
analysis of the sample and record detailed data of each particle imaged. The resultant
compositional output is a relative elemental weight percentage of each measured ele-25

ment – summed to a total of 100 % – derived from the X-ray spectrum recorded by the
EDAX™ Genesis software. To compute each elemental weight percentage, a standard-
less ZAF correction method was applied; corrections which relate to atomic number,
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absorption and fluorescence respectively. The software detects particles via the in-
tensity of the resultant image and allows the particles to be viewed under greyscale
contrast with the approximately uniform composition of the background filter. The pa-
rameters chosen for this analysis are listed in Table 3 and a carbon-coating was applied
to each sample to allow the analysis to be carried out using the high vacuum mode.5

Contributions from the following elements were measured for each particle detected: C,
O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Fe, Ni, Cu and Zn. The primary morphological
properties computed by the EDS analysis include average diameter, shape and aspect
ratio. These are derived from the particle area measured by the software, which itself is
determined from the number of pixels illuminated per particle analysed. The minimum10

size detectable corresponds to 4 pixels in the given image.
Additionally, to act as a calibration, a blank filter was analysed as Nuclepore filters

have been shown to carry contaminants themselves (Behrenfeldt et al., 2008). A small
number of particles were identified, yet they appeared almost transparent under con-
trast and the majority produced a spectra similar to the background filter when anal-15

ysed. Amongst the remaining particles, there was a notable metallic influence and
some particles were found to have moderate Cr or Fe fractions. This mirrors the result
presented by Behrenfeldt et al. (2008) and their presence casts doubt over the origin of
particles displaying this signature in the real data cases; however, these particles were
found to be few in number and so should not greatly affect the outcome of this analysis.20

This technique has been applied by several studies (e.g. Kandler et al., 2007; Hand
et al., 2010; Formenti et al., 2011; Weinbruch et al., 2012) to investigate the chemical
composition of particles from a variety of sources. These studies have shown that there
are some limitations to consider with this technique. In general, the ESEM/EDS system
is capable of quantifying the weight percentage of any element of an atomic number25

Z > 4 (Beryllium) (Formenti et al., 2011). The filters used in the ACCACIA campaign
are primarily composed of C and O, thus they contaminate the measurements of these
elements in each particle. Previous studies which have used these polycarbonate fil-
ters have excluded precise measurements of carbon and oxygen from their analysis to
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combat this issue (e.g. Krejci et al., 2005; Behrenfeldt et al., 2008; Hand et al., 2010).
In a similar manner, only elements with Z > 11 (Sodium) were considered for the com-
positional analysis undertaken in this study.

The electron beam produced by the ESEM can negatively interact with some particle
species, causing them to deform (Behrenfeldt et al., 2008). This visible deformation is5

caused by the evaporation of the volatile components of the particles, either under the
electron beam or as a result of the high vacuum (Li et al., 2003; Krejci et al., 2005). Lit-
tle can be done to prevent this and it is especially difficult to manage when applying the
automated particle analysis method used in this study. Behrenfeldt et al. (2008) inves-
tigated this phenomenon and found that it only had a small impact on their results and10

could be disregarded. As a result, it can therefore be assumed that the particles anal-
ysed by this method are dry and that any volatile components will have evaporated (Li
et al., 2003). There are also several implicit factors which may contribute some degree
of uncertainty to the quantitative composition measurements gained. For example, er-
rors can be introduced by uncertainties in the spectral fitting of the EDAX™ software15

(Krejci et al., 2005) or from the differing geometries of the individual particles measured
(Kandler et al., 2007). Also, compositional data for particles less than 0.5 µm should
be treated with caution due to increased uncertainty at smaller sizes (Kandler et al.,
2011). As with the study by Kandler et al. (2007), the sample sizes considered here
were too large to consider individual corrections, therefore the compositions achieved20

by the EDS analysis were taken as approximate values. Similarly, manual inspection
of the images and spectra, as carried out by Hand et al. (2010), was not feasible due
to the sample size and so an algorithm was imposed to remove any filter artefacts.
These were typically a result of the software misclassifying the filter background as a
particle itself and therefore displayed only the distinctive background signature. This25

background spectrum presented different characteristics than those considered to be
carbon-based; the artefacts were noisy, with very low detections in all but a few of the
elements, whereas the particles thought to be carbonaceous displayed zero counts
in some elements as expected. The number of detected particles removed by this al-
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gorithm was typically low and it is not possible to conclude if any real particles were
removed. Krejci et al. (2005) placed an estimate of the total error involved with this
technique to be around 10 % and found this value to be dependent on the sample and
elements analysed. These approximations are acknowledged in the different analysis
methods applied to the data in this study.5

2.4 Classifications

Elemental information gained from EDS analysis can be taken further to identify particle
species relevant to the atmosphere. These may typically include organic material, black
carbon, mineral dusts and/or sea salt, dependent on the measurement location.

The classification scheme applied in this investigation was derived from a variety of10

sources (e.g. Krejci et al., 2005; Geng et al., 2010; Hand et al., 2010); however, it is
most prominently based upon the detailed scheme presented by Kandler et al. (2011).
The main criteria of this scheme are summarised in Table 4.

2.4.1 Carbonaceous and biogenic

A crucial property of the classification scheme adopted by Mamane and Noll (1985)15

is that they considered particles with only C and O measurements to be organic or
biological in nature. This approach has been adopted by other studies which applied
a polycarbonate substrate (e.g. Kandler et al., 2007; Behrenfeldt et al., 2008; Hand
et al., 2010). For example, particles included in this category could be soot particles
or pollen grains (Behrenfeldt et al., 2008). Mamane and Noll (1985) developed this20

idea to segregate between carbonaceous and biogenic as they found a high quantity
of measurable coarse-mode pollen grains in their samples. These were found to be
dominated by carbon and have high spectral backgrounds with distinctive small peaks
in P, S, K and/or Ca. The study by Geng et al. (2010) utilises a comparable threshold
to make a similar distinction; however, they also consider small amounts of Cl, S, K, N25
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and/or P as indicators as these elements are important nutrients for plant life (Steinnes
et al., 2000).

The carbonaceous and biogenic classifications likely include particles that may have
some volatile component which cannot be measured by this technique (see Sect. 2.3),
therefore the partial or complete evaporation of these particles will consequently cause5

the presented fraction to be a lower-limit, i.e. only the non-volatile cases can be mea-
sured. Coupled with the difficulty of distinguishing these particles from the filter back-
ground, it is important to note that the particle fractions of the carbonaceous and bio-
genic classes presented by this study are approximations which are likely underesti-
mating the true organic loading on these filters.10

2.4.2 Sulphates, fresh and mixed chlorides

Sodium Chloride from sea salt (NaCl) can enter the atmosphere as a consequence
of sea-surface winds and these particles remain predominantly sodium- and chlorine-
based for a short period of time. The lifetime of Cl is hindered by the tendency of
these particles to accumulate sulphate in the atmosphere, thus producing particles15

primarily composed of Na-S as identified by Hand et al. (2010). Due to the short lifetime
of this Cl source in the atmosphere, its presence is often used to indicate a fresh
contribution from the sea surface (Hand et al., 2010). It is a common conclusion that a
lack of Cl-containing particles and/or a significant fraction of S in a particulate sample
is suggestive of aged aerosol (Behrenfeldt et al., 2008; Hand et al., 2010).20

These aged species can infer an anthropogenic influence in a sample, as they are
thought to require a reaction with sulphur or nitrogen oxides (Geng et al., 2010). How-
ever, the Arctic ocean is a source of dimethylsulphide (DMS); a gas which can also
interact in the atmosphere to form sulphur dioxide. The contribution of this source is
greater during the summer months due to decreased sea-ice (Quinn et al., 2007),25

and therefore is thought to have little influence during the dates of this study. The gas
source cannot be concluded here but it can be stated that Na-S particles will have
been present in the atmosphere for a sufficient length of time to allow the interaction to
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take place. In this study, the mixed chlorides category requires that the particles must
still be predominantly Na- and Cl- based, with a notable S contribution. This category
also accounts for metallic contributions to the base NaCl species. The sulphates and
fresh chloride categories are limited to the extremes of this distribution, with only S-
and Cl-dominated signatures allowed respectively.5

2.4.3 Silicates, mixed silicates, Ca-rich and gypsum

Complex internal mixing in particles is often indicative of a natural origin (e.g. Conny
and Norris, 2011; Hoose and Möhler, 2012); however, coagulated particles can also
be produced by high-temperature anthropogenic activities. Studies have indicated that
a strong method of sourcing internally-mixed particles could involve the identification10

of silicon: particles consisting of this element and various mixed metals are likely to
be naturally-occurring mineral dusts, and industrial by-products may lack this element
in high quantities (Conny and Norris, 2011). Mineral dusts are typically composed of
a variety of elements and tend to include significant fractions of Si and Al, with more
minor contributions from Na, Mg, K, Ca and/or Fe amongst others.15

Dusts are crucial constituents of the aerosol population as they are proven Ice Nucle-
ating Particles (INPs) (Zimmermann et al., 2008; Murray et al., 2012; Yakobi-Hancock
et al., 2013). However, they can also act as Cloud Condensation Nuclei (CCN); Ca-
based dusts have been shown to react with nitrates in the atmosphere to produce hy-
groscopic particles that may act as CCN (Krueger et al., 2003). The concentrations of20

nitrates in the Arctic during March (measured at the Alert sampling station in Canada)
followed an increasing trend over 1990–2003 (Quinn et al., 2007), suggesting there is
some probability that this interaction could take place in this environment. Alternatively,
under specific environmental conditions, internally-mixed particles consisting of dusts,
sulphates and sea salt can act as Giant CCN (Andreae and Rosenfeld, 2008). In this25

study, the presence of such particles may be inferred by the additional detection of S or
Cl with the typical dust-like signatures. This can occur if the dust in question has been
transported over long distances and thus undergone cloud processing or acidification
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reactions (Mamane and Noll, 1985; Behrenfeldt et al., 2008). Or, more simply, these
could be the result of a sea salt or sulphate coating on a mineral dust particle, and such
mixtures have been modelled to have significant effects on warm clouds by augment-
ing the CCN population (Levin et al., 2005). Complex internal mixtures containing Si, S
and/or Cl are therefore indicated in this study under the classification mixed silicates.5

It is difficult to identify particular species of mineral dusts using the EDS method as
these particles are closely related compositionally; there are minimal differences be-
tween the chemical formulae of some dusts and this may not be accurately detectable
by the method. In several studies (e.g. Kandler et al., 2007; Hand et al., 2010), the
specific phases of the mineral dusts observed were not quantified, instead they con-10

sidered both the individual X-ray counts and ratios between the elements measured
to classify their sampled particles into set groups such as silicates and carbonates. It
has often been considered that Al, Ca and K are indicative of aluminosilicates (such as
Kaolinite), carbonate minerals – such as Calcite (CaCO3) and Dolomite (CaMg(CO3)2)
– and clays/feldspars respectively (Formenti et al., 2011). Some mineral classes have15

a distinct elemental relationship and these may be easier to classify; for example, Gyp-
sum (CaSO4 ·2H2O) samples typically do not deviate from their base chemical formu-
lae whereas others (especially amongst the aluminosilicates) can vary widely (Kan-
dler et al., 2007). By this reasoning, Gypsum was included as its own classification,
whereas the vast majority of mineral dusts observed were grouped into the silicates,20

mixed silicates and Ca-rich categories, dependent on the relative quantities of Si, S
and Ca they contained.

2.4.4 Phosphates and metallics

These groups include particles with significant influences from phosphorus and tran-
sition metals respectively. Particles classified as phosphates in this study may include25

those composed of Apatite – a Ca- and P-based mineral group – as factories tailored
towards processing these minerals are common in the nearby Kola Peninsula, Russia
(Reimann et al., 2000).
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The presence of transition metals in the collected particles can be viewed as an
indicator for an industrial origin (Weinbruch et al., 2012). In this study, potential an-
thropogenic local sources for the metallic particles may be the coal burning facilities
on Svalbard (in Longyearbyen and Barentsburg) or various metal smelters in the Kola
Peninsula, Russia (Weinbruch et al., 2012). The metals included in the EDS analysis5

were Ti, Cr, Fe, Ni, Cu and Zn. Contributions from these may be attributable to anthro-
pogenic and/or natural sources and could be in the form of metal oxides or constituents
of complex minerals (Hand et al., 2010). For example, Fe can occur naturally and is
common within clay minerals, but it may also be sourced from anthropogenic smelting
factories and ore mines (Steinnes et al., 2000). Of those measured in this study, Fe10

and Al are the most likely to originate from a variety of sources as they are processed
widely (Steinnes et al., 2000) and are common constituents in silicate-based dusts.
Similarly, Zn may also be associated with biological material in addition to smelting
emissions (Steinnes et al., 2000).

2.4.5 Biomass tracers15

This group was introduced out of necessity given the results obtained. The other clas-
sifications were somewhat expected from hypothesised local sources; however, this
group was introduced to account for the high quantity of potassium-based particles
observed in one of the flights. These particles have negligible measurements of sili-
con and are not thought to be mineralogical in nature. This category has been dubbed20

”Biomass Tracers” as several studies (e.g. Andreae, 1983; Chou et al., 2008; Hand
et al., 2010; Quennehen et al., 2012) have identified particles sourced from biomass
burning events to be rich in this element. These K-rich particles have been found to
be prominent in forest fire and anthropogenic combustion emissions, and may not be
expected to be present in the Arctic atmosphere (Quennehen et al., 2012). Biomass25

burning produces particles known as bottom ashes, which differ from the fly ash parti-
cles that are typically emitted during fossil-fuel incomplete combustion processes (Umo
et al., 2015). Activities which may produce these constituents could include firewood
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or agricultural burning (Andreae, 1983), or wildfires in warmer climates (Seiler and
Crutzen, 1980).

2.4.6 Other

This group contains particles which are not classified by the applied scheme. The im-
plication is that these particles are well-mixed. Figure 2 illustrates the difficulty with5

internally-mixed particles; though local sites on the particle may be strongly influenced
by certain elements, the automated scan will not catalogue the spatial dependencies
and instead computes a mean spectra for presented particle surface area.

Internally-mixed particles are typically either unclassified or classified by their most
abundant elements on average. The particle illustrated in Fig. 2 would be classified10

as a silicate dust since it is well-mixed but has a dominating Si influence. The size of
the samples prevent manual inspection of every internally-mixed particle, therefore the
abundance of well-mixed particles within a dataset must be inferred from the quantity
quoted as “Other”.

3 Results15

3.1 HYSPLIT back trajectories

Air mass histories were calculated using HYSPLIT for each of the filter exposures to
provide context with the environmental conditions in which they were sampled. Fig-
ure 3 shows the spatial extent of these trajectories in the top two panels and the mean
altitudes covered are shown in the bottom panel.20

The mean altitude of the trajectories remains within the lower 1.5km of the atmo-
sphere. The modelled altitude typically increases monotonically with increased time
backwards. The case from B765 is the exception to this trend, as consistent low-altitude
trajectories are modelled for the full duration shown. Also, the majority of these trajec-
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tories are reasonably smooth; however, a significant descent in height is modelled in
the B764 case at approximately -2 days.

A north-easterly wind was observed for cases B760 to B762, bringing air from over
the dense Arctic sea-ice to the region of interest to the south-east of Svalbard. When
extended back by 6 days, it becomes apparent that the history of the air sampled5

in each of these cases is quite different. From Fig. 3, B760 and B761 show some
similarities, with the latter displaying more curvature anti-clockwise than the former.
The trajectories from the B762 exposure are markedly distinct from these two, with
cyclonic curvature around the immediate vicinity of Svalbard and Greenland.

There is a clear partition in the direction of the trajectories as the spring campaign10

progressed. The first three exposures had source regions to the north and west of the
exposure locations, whilst the latter three primarily sampled from the east. These latter
trajectories also appear to be more compact than the first three cases (Fig. 3). The air
from B764 and B765 is traced back across the northern coast of Russia whilst the B768
trajectories split in two and cover the northern coast, inland Siberia and Scandinavia.15

A large portion of these trajectories are clustered towards the continent, suggesting a
strong influence on this sample from this region.

These two trajectory groups can be dissected further; two specific pairs can be iden-
tified (B760 and B761; B764 and B765) which display similar paths, and B762 and
B768 appear unique in comparison. Overall, there appears to be a clear shift in the20

source region of these boundary layer exposures as the campaign progresses; from
over the dense Arctic sea ice, through Greenland and Northern Russia to the Euro-
pean continent.

3.2 Aerosol size and morphology

To investigate any issues with inlet collection efficiency (see Sect. 2.2), size distribu-25

tions of the resultant filter pair analysis were constructed and compared with those
averaged from the wing-mounted aircraft probes. The number size distribution was
computed similarly to Chou et al. (2008); namely, the total number of particles de-
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tected in each scan was normalised by the area covered by the scan and the total
volume of air sampled, then scaled to the full filter area. Figure 4 illustrates these com-
parisons for each below-cloud filter pair analysed. Data from the PCASP, CAS-DPOL
and CDP instruments were combined to give a single distribution for each case: the
CAS-DPOL data were used between sizes 2 and 10 µm, with PCASP data used below5

2 µm and CDP data used above 10 µm. These data use the standard scattering cross-
sections for the aircraft probes and no refractive index corrections were applied due to
the expected well-mixed aerosol population.

The agreement of the filter-derived data with the probe data is clearly dependent on
the conditions sampled. For example, the B762 filter pair was exposed during a section10

where cloud haze was encountered, whereas the B765, B768 and B760 cases were
cleanly exposed out of cloud. The B761 and B764 cases appeared to sample small
amounts of cloud at the end of their exposures – at which point the probes measured
some amount of cloud droplets and/or swollen aerosol particles – therefore the distribu-
tion derived from the external probes differs somewhat to the filter particle distribution.15

Qualitatively, there is reasonable agreement between the probe and ESEM-derived
number size distributions – providing confidence in the analysis presented in this study
– but this similarly highlights the limitations of the sample inlets on the aircraft for coarse
aerosol as described by Trembath (2013).

3.3 Aerosol composition20

The particle classifications detailed in Sect. 2.4 were applied to the compositional data
obtained for each analysed filter pair. An element index was introduced which takes
the ratio of the weight percentages measured for each element to the sum from all ele-
ments measured (excluding C and O) for each particle, thus allowing the relationships
between the elements of interest to be considered in isolation from the filter influence25

(Mamane and Noll, 1985; Kandler et al., 2007).
Figure 5 displays the averaged classifications for each flight, split into sizes less than

and greater than 0.5 µm. There is high variability in composition between each flight.
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The contributions of metallic and mixed chloride particles are approximately indepen-
dent of size; however, some categories display a clear dependence. For example, sul-
phates, carbonaceous and biomass tracers are detected strongly in the sub-micron
range whilst silicates and fresh chlorides dominate the super-micron range.

The dependence of composition on size is emphasised in Fig. 6, where only the sizes5

which show good agreement with the wing-mounted probes have been included (∼0.5–
∼10 µm). Size-segregated compositional data for sizes smaller than this range have not
been included as these may not be representative of the true conditions (see Fig. 4) and
also have increased signal-to-noise issues from the measurement technique (Kandler
et al., 2011).10

Clear trends become apparent when implementing this size-segregated approach.
In all samples, silicate-based dusts are identified, with greater concentrations clearly
found at larger sizes for all cases except B768. The presence of these dusts is most
abundant in the first three cases. Filters from B764 and B765 are heavily dominated
by fresh chlorides at all sizes except the largest bins, and B762 and B768 also have15

significant fractions of this species. The B768 sample differs from the others, display-
ing increased Ca-rich, mixed chloride and other fractions. Similarly, the high sulphate
loading in B760 is unlike the other cases, yet the composition trends of this case can
be associated with the subsequent flight via the abundance of silicates; a link that is
not so clear between B765 and B768.20

With regards to the mineral phase of the silicate dusts collected, elemental ratios
can be used to identify trends. For example, feldspars can be rich in Ca, K or Na, whilst
clays may have significant fractions of Mg and/or Fe. The elemental ratios displayed in
Fig. 7 are variable across the campaign. This variability is heightened in some ratios
with respect to others; from Fig. 7, it is clear that the K/Al ratio is highly changeable25

but the Mg/Si ratio is low for all cases. The median values of the Si/Al ratio do not
differ substantially between the flights; however, the mean value displays a clear peak
during B764. The spread in the Si/Al ratio increases almost monotonically for the first
five cases, with the maximum range displayed in B765. The K/Al and Ca/Al ratios are
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especially heightened in the B768 case, and show consistency across each other case
with the exception of B762. A comparable trend is also evident with the Fe/Si ratio and
the Mg/Si ratio is slightly raised for cases B764 and B765.

3.4 Comparison between below and above cloud samples

The samples detailed previously were all exposed below cloud and were chosen as5

the particles collected likely influenced the cloud microphysics of clouds that formed
above these exposure altitudes. Most of these cases appear to be influenced by local
sources; cases B764 and B765 in particular are predominantly composed of fresh
chlorides. However, these cases do not obviously address the involvement of aerosol
particles from distant sources.10

As a test case, a filter pair exposed above cloud was analysed to compare the parti-
cle compositions. A case study was chosen: flight B764 provided consecutive filter ex-
posures below and above a stratus cloud deck, approximately one hour apart, allowing
a comparison between the respective compositional characteristics. The cloud located
between the exposures was mixed-phase, with a sub-adiabatic CDP liquid-water con-15

tent profile measured. This suggests that entrainment of aerosol from above may be
an important source contributing to changes in the cloud microphysical properties in
this case (Jackson et al., 2012), or that the liquid-water in the cloud has been depleted
via precipitation processes. The air-mass back trajectories varied little between the ex-
posures, with both cases influenced by air from over the Barents Sea and the coast of20

Northern Russia (see Fig. 3). The conditions sampled during each of these exposures
are summarised in Table 5.

Figure 8 highlights the differences between the below and above cloud samples.
The fraction of unclassified particles is greater in the above cloud example for sizes
>0.5 µm (panel b), whilst a similar fraction was observed in both cases for sizes25

≤0.5 µm (panel a). Similarly, a comparable fraction of silicates is found on both fil-
ter pairs. Greater fractions of fresh chlorides are found on the below cloud sample;
however, a moderate loading of sea salt – and aged sea salt – is still identified in the
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above cloud case. The above cloud exposure also has a greater sulphate loading and
the absolute number of particles detected was lower than in the below cloud case. The
size-segregated classifications shown in panel c of Fig. 8 display significant unclassi-
fied fractions across most sizes, with increased contributions at <1 and >3 µm. The
dominating species changes from unclassified to fresh chlorides to silicates as parti-5

cle size increases and significant mixed chloride fractions were also observed at small
sizes.

4 Discussion

4.1 Case overview

The filter-derived and probe-averaged size distributions from Sect. 3.2 compare rea-10

sonably well. The disagreement at the size limits (<0.5 and >10 µm) of these distri-
butions implies that collection issues (e.g. from the sub-isokinetic sampling) are influ-
encing these samples. It is also probable that sub-micron particles either pass through
the filter pores at the time of exposure or are left undetected by the EDS analysis
due to a decreasing signal-to-noise ratio with decreasing particle size (Kandler et al.,15

2007). It is therefore concluded that the extremes of the particle size distribution col-
lected by the filters and analysed by the ESEM/EDS system are under-represented.
This is the same conclusion reached by Johnson et al. (2012) for their ESEM/EDS
comparison with airborne particle measurements, whose samples were analysed us-
ing the same facilities in the Williamson Research Centre. Similarly, the size charac-20

teristics of the aerosol particles collected by Chou et al. (2008) compared reasonably
well – within a 1-σ confidence level – with measurements from optical particle coun-
ters mounted externally on their measurement aircraft. Crucially, Chou et al. (2008)
found that their accumulation-mode filter size distributions derived from Transmission
Electron Microscopy (TEM) correlated better with observational data obtained from25

a cabin-based PCASP variation (CVI-PCASP) than their ESEM-derived distributions.
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Given the similarity between the filtration techniques applied, this may suggest that
the disagreement between the accumulation-mode distributions observed in this study
could be a result of the limitations of the ESEM technique rather than an issue with the
filter sampling from the aircraft. However, Chou et al. (2008) also identified differences
between the performance of their CVI-PCASP and externally-mounted PCASP – with5

the former consistently over-counting compared to the latter – suggesting that possible
inlet losses could be similarly affecting the wing-mounted PCASP used in this study. In
summary, the ESEM technique, the filter mechanism collection efficiency and possible
inlet losses could all be introducing some magnitude of error to the comparisons shown
in Fig. 4, and it is not trivial to identify which source of error is the most influential in10

these cases.

4.1.1 Cases B760–B765

The compositional trends observed in Figs. 5 and 6 are typically different between each
flight. Compositional dominance varies from sulphates to silicates to fresh chlorides
through the first five cases. The difference between dominant classifications at sizes15

less than or greater than 0.5 µm is clear (Fig. 5), and Kandler et al. (2009) observed a
similar size dependence in their sample. They also observed a distinct shift in average
composition of particles at the 0.5 µm diameter limit, where the principal compositions
in their African sample switched from sulphates to silicates and other minerals.

The influence of sulphates, silicates and fresh chlorides varies substantially in the20

first five flights; variability which could be inferred from the differences in the respective
back trajectories. There are distinct similarities between the trends derived for the B764
and B765 cases, with dominant fresh chloride and silicate signatures observed (Fig. 6).
Both cases also display a similar loading of mixed chlorides at sizes >0.5 µm (Fig. 5);
particles which are likely sea salts mixed with sulphates. The chloride classifications25

are not ubiquitously observed in the first five cases, with particularly low measurements
of these species in B760 and B761. This suggests that the ocean was not a strong
source of aerosol particles in these cases, whereas the significance of this source is
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clear in cases B762, B764 and B765. This hypothesis is strengthened by the back
trajectories calculated for these exposures (Fig. 3); the air-mass source for the B760
and B761 cases was the frozen Arctic Ocean, whilst cases B764 and B765 both had
low-altitude trajectories across the sea surface. During the transition over the ocean,
sea salts could have been lifted into the air stream. The B760 case displays a high5

sulphates signature at sub-micron sizes – a characteristic unique from the other cases
– suggesting that the particles had sufficient time to interact with sulphate gases (from
either anthropogenic or marine sources, see Sect. 2.4.2) during transit over the frozen
Arctic Ocean. There is a common link between the first three cases in their respective
silicate loadings; the measured amount of silicate-based dusts was high in these cases,10

with a maximum reached during B761.

4.1.2 Case B768

The B768 sample was collected in a slightly different location – to the north-west of
Svalbard instead of the south-east – than the first five cases (see Table 1). The particle
loading was much greater for this case, as illustrated clearly by the filter-derived size15

distributions shown in Fig. 4. Additionally, there are distinct compositional differences
between the first five cases and the B768 case. This case is the only one not to be
dominated by silicates at super-micron sizes and it was found to have the greatest
proportion of Ca-rich particles, biomass tracers and unclassified particles across the
sizes considered. The B768 case is unique in its dominant particle categories, their20

respective size evolution and air mass back trajectory, emphasising its contrast to the
other cases. This is particularly clear with the sub-micron particles detected (Fig. 5).

The magnitude of the biomass tracer fraction was only sufficient enough to be ob-
served in the B768 case. These particles are more prevalent at small sizes, as seen
in Fig. 5. Andreae (1983) have previously shown that there is a strong relationship be-25

tween biomass particle species and particle size below 2 µm. The K measurements in
these particles mirror the quantities measured by Umo et al. (2015) for bottom ashes,
adding confidence to their identification as biomass products. The modelled back tra-
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jectory for the B768 case hailed from Northern Russia and the European continent.
A potential source of these particles could be from similar boreal forest fire events to
those sampled by Quennehen et al. (2012), which was also observed at approximately
the same time of year, or from European biomass activities.

The Ca-rich particles observed strongly in B768 are distinct and not observed to the5

same magnitude in the other flights, implying a unique source. It is possible that these
are naturally-occurring carbonate dusts; however, Umo et al. (2015) also measured
several species of Ca-based dusts in their wood and bottom ash samples, suggesting
that these could also be sourced from biomass burning activities. The strong detection
of Ca-rich particles alongside the K-dominant biomass particles supports this conclu-10

sion in this case. The relative prevalence of K-rich and Ca-rich particles found in the
sub- and super-micron ranges mirrors the relationship observed in the biomass burn-
ing study by Andreae (1983). The large Ca signature is also observed in the silicate
and mixed silicate spectra for this case (Fig. S1 in the Supplement), and consequently
affects the K/Al and Ca/Al ratios (shown in Fig. 7). It is unclear whether these en-15

hanced values are a result of internal mixing of some silicates with the Ca- or K-rich
biomass particles or if they are real feldspar signatures (as K-feldspar or plagioclase).
The Fe/Si ratio is also elevated for this case and this could be due to increased detec-
tion of clay-like dusts or Hematite, and/or internal mixing with anthropogenic smelting
emissions.20

4.2 Sourcing the dust

Unexpectedly, large fractions of silicate dusts were observed – to different extents – in
every case. These filters were collected in March when the majority of the surrounding
surface was snow-covered, therefore there is no obvious local source of mineral dust.
Weinbruch et al. (2012) also identified large dust fractions in their samples collected25

at Ny Ålesund in April 2008, and these dusts would likely act as a source of ice nucle-
ating particles for clouds in this region. The presence of dust in such quantities could
either be due to some local source, long-range transport or a combination of these two
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avenues. To better understand the characteristics of these dusts, the elemental ratios
in Fig. 7 can be considered. In general, the consistency in the median Si/Al ratio be-
tween each case suggests that the typical composition of the aluminosilicates has low
variability, with each distribution skewed differently to account for the differences in the
mean and variance values.5

Elemental ratios can be used to infer a source of the mineral dusts, and several
studies have investigated characteristic ratios of dusts from a variety of arid regions.
For example, the African dust study by Formenti et al. (2008) calculated these ratios
from airborne filter data and derived Si/Al, K/Al and Ca/Al ratios of approximately
3, 0.25 and 0.5 respectively. These values are within the limits of those calculated in10

this study (Fig. 7); however, a lack of good agreement suggests that these sources
may not be related to the dusts analysed here. Zhang et al. (2001) presented these
ratios for dusts collected at various Asian sites, and their Tibetan and Loess Plateau
samples were found to have Si/Al ratios of 4.6 and 2.5 respectively. The Loess val-
ues are more consistent with the mean values obtained from B760, B761 and B768,15

whereas the Tibetan values lie within the upper bounds of samples B762, B764 and
B765. The Loess samples also had a Ca/Al ratio of 2.7, which lies between the median
and mean values obtained for B768, and is within the upper bound of B762; however, it
is much greater than the average ratio derived for the majority of the cases presented.
The K/Al ratio was found to be 0.95, consistent with the first five cases but not B768.20

This could be due to the heightened K influence in B768 from biomass sources, but
could also be coincidental and care must be taken when attributing a transported dust
sample to a given source via this method. The dust collected by the aircraft filters dur-
ing ACCACIA does appear to have more in common with the Asian samples than the
African samples; however, the composition of dusts originating from the same source25

region is not always consistent and can vary quite substantially between close geo-
graphical locations (Glen and Brooks, 2013). It is also unclear how these ratios would
be affected by transportation, as atmospheric processing will likely alter the composi-
tion of ageing dust with respect to the freshly-emitted dust samples mentioned here.
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Despite this, it is worth noting that Liu et al. (2015) identified high-altitude plumes dur-
ing the springtime ACCACIA campaign which hailed from the Asian continent. It could
be possible that dusts from these sources were advected over large distances in ad-
dition to the black carbon explicitly measured and modelled by Liu et al. (2015). The
increase in mean trajectory altitude with time, as shown in Fig. 3, supports this theory5

as the descent of air from >1000 m could be drawing dusts down to the low-altitudes
considered. The theory that Asian dust contributes to the Arctic Haze is not new, and
some observations indicate that this is the case (e.g. Rahn et al., 1977), yet mod-
els have not been able to produce conclusive evidence (Quinn et al., 2007). A key
question in this hypothesis is theorising how the dust travels up to high altitudes in10

the atmosphere, and subsequently undergoes this long-range transportation, without
experiencing cloud processing. It is possible that frontal uplifts at the source are re-
sponsible, with weakly-scavenging mixed-phase clouds along the trajectories allowing
the dust loading to remain so high.

4.3 Internally-mixed aerosol particles15

The degree of internal mixing in each case is different – as displayed by the variability in
mean fractions shown in Fig. S1 in the Supplement – thus tying in with the differences
between the air mass histories. Particles which have undergone long-range transport
likely have enhanced internal mixing, and may not be adequately classified by the
scheme employed in this study. Unclassified particles are prevalent in the B761, B76220

and B768 below-cloud cases (Figs. 5 and 6). The variability within the categories (as
seen in Fig. S1 in the Supplement) highlights the importance of treating the classifica-
tions with caution: they provide a good representation of the particle species collected,
yet the ability of the classification criteria to accurately account for internally-mixed
species is not always efficient. The extent of the unclassified category must always be25

considered to account for this.
The influence of internally-mixed, transported particles on the population is most

evident from the higher-altitude case: the B764 above-cloud sample detailed in Fig. 8 is
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distinctly different from its below-cloud counterpart (Fig. 6). In addition to the enhanced
other fraction, large mixed chloride, sulphate and mixed silicate loadings were also
identified (Fig. 8); classifications which could be attributed to anthropogenic influences.
The contrast between the below and above cloud cases emphasises the segregation of
the Arctic aerosol sources: whilst being influenced by local surface sources, the Arctic5

atmosphere is also affected by this influx of long-range transported aerosol particles
– the Arctic Haze – during the spring months (Barrie, 1986; Shaw, 1995; Liu et al.,
2015). Both of these aerosol pathways will affect the cloud microphysics, and further
investigation is required to better understand the importance of each.

The differences in composition between the below and above cloud samples can be10

explained by the presence of the cloud in between: the particles present would have
interacted with the cloud as CCN or INPs, and so the cloud inhibited the direct mixing of
these two aerosol populations. This could have unclear consequences for the resultant
cloud microphysics as internally-mixed particles (e.g. with some mineral constituent)
could act as INPs or (Giant) CCN dependent on the mixing state and the hygroscopicity15

of the particle (see Sect. 2.4.3). A complex particle is difficult to clearly categorise as an
INP or CCN as its nucleation will be heavily dependent on the environmental conditions.
The presence of coatings on particles can also have a significant impact on their role in
aerosol-cloud interactions. Coatings of soluble material could enhance CCN ability and
promote secondary ice production via the formation of large cloud drops (Levin et al.,20

1996), whilst organic coatings could suppress the nucleating ability of an efficient INP
(Möhler et al., 2008).

The complexity of internal and external mixing observed indicates that some INP
predictions may be fraught with inaccuracy in this region; for example, DeMott et al.
(2010) relate INP concentration to the total aerosol concentration >0.5 µm under the25

assumption that most of the particles in this limit are INPs. However, efficient INPs (e.g.
mineral dusts) were not found to be consistently dominant in this study. As suggested
by DeMott et al. (2010), this relation may not be applicable in cases heavily influenced
by marine sources, and the high loadings of super-micron sea salt identified in some

29429

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/29403/2015/acpd-15-29403-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/29403/2015/acpd-15-29403-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 29403–29453, 2015

Particle composition
in the Arctic

G. Young et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the ACCACIA cases would qualify these as such. The use of dust-based parame-
terisations such as Niemand et al. (2012) or DeMott et al. (2015) may provide a more
accurate prediction of the INP concentration in these cases. Despite this, the ice nucle-
ating ability of the unclassified and mixed particle categories is not quantifiable in this
study and it is likely that they would influence the INP population; whilst soluble coatings5

may suppress ice nucleating ability, the presence of IN-active coatings and/or complex
internal-mixing could act to enhance it. Examples of IN-active coatings could include bi-
ological material, as some strains of bacteria have been observed to be efficient INPs
in laboratory studies (Möhler et al., 2007; Hoose and Möhler, 2012). Some studies
have identified cases where bacteria has survived long-range atmospheric transport by10

piggybacking dust particles (Yamaguchi et al., 2012). It is possible that such bacteria
could influence the Arctic atmosphere via a similar transportation mechanism. Funda-
mentally, comprehending how these internally-mixed particles interact and impact the
cloud microphysics is a significant step to take towards improving our understanding of
aerosol-cloud interactions in the Arctic springtime.15

5 Conclusions

During the Aerosol-Cloud Coupling and Climate Interactions (ACCACIA) springtime
campaign, in-situ samples of Arctic aerosol particles were collected on polycarbonate
filters. Analysis of these samples has been detailed, with a focus placed upon identify-
ing the composition of the collected particles and investigating their potential sources.20

In total, six below-cloud exposures were analysed to infer how the local sources may
influence the cloud microphysics of the region (Fig. 1). Additionally, one above-cloud
filter pair was analysed to investigate the composition of transported particles (Fig. 8).
The main findings of this study are as follows:

– Single-particle analysis of the filters produced number size distributions which25

were comparable to those derived from the wing-mounted optical particle coun-
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ters (Fig. 4). The composition of the particles collected was strongly dependent
upon size across all samples, with crustal minerals and sea salts dominating the
super-micron range. Carbon- and sulphur-based particles were prevalent in the
<0.5 µm limit (Fig. 5). Large fractions of complex internal mixtures – as shown by
the other, mixed silicate and mixed chloride categories in Figs. 5 and 6 – were5

identified in each case as expected. The impact of these particles on cloud micro-
physics as potential INPs and/or CCN is not quantifiable by this study; however, it
is likely that the silicate dusts identified would act as a source of INPs for clouds
in this region.

– There are distinct size-dependent compositional trends observed in each sam-10

ple, with stark differences between cases (Fig. 6). These differences were at-
tributed to variations in the air mass histories; cases B760 and B761 presented a
clear silicate dust dominance and the B764 and B765 cases were found to have
very similar chloride and silicate abundances. These similarities were mirrored by
their closely-related source regions (Fig. 3). The relationship between composi-15

tion and trajectory was strengthened by the unique attributes of the B768 case;
both the trends and trajectory were distinct in this case, and the particle classifi-
cations identified can be explained by hypothesised sources along the trajectory
presented.

– Crustal minerals were identified in all cases, despite the seasonal local snow20

cover. The HYSPLIT back trajectories (Fig. 3) were variable in direction, yet typi-
cally increased in mean altitude over time. Therefore, these dusts were hypothe-
sised to have undergone long-range, high-altitude transport from distant sources,
through regions containing weakly-scavenging mixed-phase clouds. Some el-
emental characteristics (Fig. 7) were found to be consistent with Asian dust25

sources; however, it is not known how long-range transport may affect the com-
position of these dusts and so this theory cannot be proven with this data.
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The coarse-mode, non-volatile Arctic aerosol particles analysed by this study
showed great variation between subsequent days and different meteorological condi-
tions, therefore it would be difficult to incorporate these findings into models. However,
the measurements from the springtime ACCACIA campaign provide a good opportu-
nity to simultaneously investigate both the properties of aerosol particles in the region5

and the microphysical characteristics of the clouds observed. Further study of the cloud
microphysics of these cases, with reference to these aerosol observations, will allow
us to improve the representation of aerosol-cloud interactions in climate models and
act to reduce the uncertainty in forecasting the Arctic atmosphere in the future.

The Supplement related to this article is available online at10

doi:10.5194/acpd-15-29403-2015-supplement.
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Figure 1. ACCACIA flight tracks of the main science periods undertaken for each flight where
aerosol composition analysis was conducted.
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Figure 2. Well-mixed particle from B765. The circles denote the spots scanned to give the
following dominating elements: Red – Fe, Si and Al; Yellow – Fe, Cr, Ni, Si and Al; Blue – Fe,
Cr, Ca, Cl, S, Si and Al. Scan of full particle indicates Si dominance.
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Figure 3. HYSPLIT air mass back trajectories for each of the 6 exposures, initialised at the
aircraft’s position and calculated 6 days backwards. Top left panel: B760 (black), B761 (green)
and B762 (purple); top right panel: B764 (red), B765 (orange) and B768 (blue). The mean
altitude covered by each of these trajectory groups is shown in the bottom panel.
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Figure 4. Size distributions (dN/dlog10D) of particle data obtained via ESEM analysis com-
pared with the averaged distributions derived from the optical particle counters at the relevant
filter exposure times. Red lines mark the 2 and 10 µm thresholds where the probe data changes
from PCASP to CAS-DPOL and from CAS-DPOL to CDP respectively. Probe data from cases
B761, B762 and B764 show greater loadings at larger sizes due to some in-cloud sampling
during the exposures; this heightens the likelihood that swollen aerosol particles and cloud
droplets are measured by the externally-mounted CAS-DPOL and CDP.
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Figure 5. Averaged particle classifications from each sample. Each case is normalised to show
the fraction (by number) that each given particle class occupies. The number of particles anal-
ysed are listed for each bin. Left panel: average ≤0.5 µm; right panel: average >0.5 µm.
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Figure 6. Size-segregated particle classifications applied to each below-cloud filter pair anal-
ysed from the considered flights, with each bin normalised to show the fraction (by number)
occupied by each classification. The sizes indicated are the bin centres.
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box edges indicate the 25th and 75th percentiles, and the cross and the horizontal line dissect-
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the number of particles analysed are listed in panels (a) and (b). The sizes indicated in panel (c)
are the bin centres.
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Table 1. Details of FAAM flights undertaken during the spring segment of the ACCACIA cam-
paign which had viable filter exposures.

Flight number Date (2013) Flight region
with respect to Svalbard

B760 21 Mar South-East
B761 22 Mar South-East
B762 23 Mar South-East
B764 29 Mar South-East
B765 30 Mar South
B768 3 Apr North-West
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Table 2. Summary of sampling conditions during each filter exposure. The geographic positions
are also listed. Values quoted are averaged quantities, with 1σ in brackets where appropriate.

Flight Conditions Exposure Volume of Latitude Longitude Altitude
Number sampled Length (s) Air (sL) (◦N) (◦E) (m)

B760 Clear 600 2312.3b 76.2 24.5 102 (5)
B761 Cleara 1700 2608.4 76.4 26.5 238 (107)
B762 Cloud haze 660 826.4 76.8 28.0 375 (5)
B764 Cleara 540 754.8 76.6 27.2 91 (86)
B765 Clear 961 1249.3 76.2 22.0 71 (18)
B768 Clear 240 272.7 79.9 2.8 98 (44)

a Filter was collected mostly under clear conditions, although some in-cloud sampling was encountered at
the end of the exposure.
b The total volume of air sampled by B760 is high given its exposure length due to higher-than-average flow
rates applied during that flight.
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Table 3. Main parameters applied with ESEM and EDAX™ Genesis software to carry out anal-
ysis of the ACCACIA aircraft filters.

ESEM/EDAX™ Genesis Analysis Parameters

Beam voltage (kV) 15
Working distance (mm) 10
Operating current (µA) ∼200
Beam spot size 4
Image resolution (px) 1024×800
Particle coverage 70 %
Total number of particles 135 364

Magnifications applied 4000× 1000×
Filters analysed 1 and 10 µm 10 µm
Min. particle size (µm) 0.13 0.52
Field sizes (mm) 0.059×0.046 0.237×0.185

29451

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/15/29403/2015/acpd-15-29403-2015-print.pdf
http://www.atmos-chem-phys-discuss.net/15/29403/2015/acpd-15-29403-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
15, 29403–29453, 2015

Particle composition
in the Arctic

G. Young et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Summary of the classification scheme adopted in this study.

Particle Class Classification Criteria

Carbonaceous Low counts, or zero, in all elements except C and O
Biogenic Similar to carbonaceous; minor traces of K, P, S, Cl, Ca and/or Zn
Fresh Chlorides Significant Na and Cl; low S and/or minor Ca fractions
Mixed Chlorides Major fractions of Na, Cl, S; minor Ca and/or metallic fractions
Sulphates Major S and Na and/or K fractions
Gypsum Significant Ca and S
Ca-Rich Significant Ca, with minor S or Mg
Silicates Mixtures primarily containing Si and Al; variable Ca, Mg, Na, Fe and/or K components
Mixed Silicates Similar to silicates; additional S and/or Cl component
Phosphates Large P fraction
Metallic Major fractions of Fe, Ti, Cr, Cu or Zn; also includes particles with high Al/negligible Si
Biomass Tracers Dominant in K
Other Particles not classified by these criteria
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Table 5. Summary of sampling conditions during the two B764 exposures. Values quoted are
averaged quantities, with 1σ in brackets where appropriate.

Case
Conditions Exposure Volume of Latitude Longitude Altitude
sampled Length (s) Air (sL) (◦N) (◦E) (m)

Below cloud Clear∗ 540 754.8 76.6 27.2 91 (86)
Above cloud Clear 720 1080.2 76.4 27.1 833 (59)

∗ Some cloud base sampling was encountered at the end of the exposure.
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