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Abstract

Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used
in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice
cloud properties. Although there has long been evidence that a single m-D or A-D power law is
often not valid over all ice particle sizes, few studies have addressed this fact. This study develops
self-consistent m-D and A-D expressions that are not power laws, but can easily be reduced to
power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid
over a much larger D range than power laws. This was done by combining ground measurements
of individual ice particle m and D formed at temperature 7' < -20 °C during a cloud seeding field
campaign with 2-dimensional stereo (2D-S) and Cloud Particle Imager (CPI) probe measurements
of D and 4, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The
resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs.
anvil), and are in good agreement with m-D power laws developed from recent field studies

considering the same temperature range (-60 °C < 7'<-20 °C).
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1 Introduction

Measurements of individual ice particle mass have shown that the relationships between ice
particle mass and maximum dimension have the form of habit-dependent power laws (Locatelli
and Hobbs, 1974; Mitchell et al., 1990; hereafter M1990). The treatment of ice particle projected
area and mass is fundamental for the prediction of ice cloud microphysical and radiative properties
in cloud models at all scales. For example, Mitchell (1988) showed how treating ice particles as
spheres in a steady-state snow growth model resulted in poor agreement between the observed and
model predicted height-dependent evolution of ice particle size distributions (PSDs), relative to
PSDs predicted using a non-Euclidian ice particle mass-dimension (henceforth m-D, where D is
maximum dimension) power law relationship. Moreover, ice particle m-D and projected area-
dimension (henceforth 4-D) relationships are used to predict ice particle fall velocities (e.g.
Mitchell, 1996; Heymsfield and Westbrook, 2010). Ice cloud optical properties have also been
formulated in terms of ice particle m-D and 4A-D power laws, as described in Mitchell (1996),
Mitchell et al. (2006) and Mitchell (2000, 2002). The ice PSD effective diameter (D.), used in
other ice optical property schemes (e.g. Fu, 1996; Fu et al., 1998; Yang et al., 2005), is also based
on the ratio of PSD mass to PSD projected area (e.g. Foot, 1988; Mitchell, 2002). From this, it is
apparent that m-D and A-D expressions have the potential to integrate microphysical and radiative

processes in cloud models in a self-consistent manner.

In addition to the treatment of microphysical and radiative processes in cloud models, m-D and 4-
D expressions constitute critical a priori information used to retrieve cloud properties in ground-
and satellite-based remote sensing. For example, uncertainties (standard deviations or ¢) associated
with m-D and A-D expressions strongly contribute to uncertainties in D, and ice water content
(IWC) retrievals that range from 60% to 68% and from 135% to175%, respectively, relative to
their mean values (Zhao et al., 2011). Reducing the uncertainty of m-D and A-D expressions would
reduce the uncertainties associated with these and other cloud property retrievals.

Research over the last decade has used aircraft measurements of bulk IWC and the ice PSD to
develop best estimates of the m-D power law relationship (e.g. Heymsfield et al., 2004; Heymsfield
et al., 2007; Heymsfield et al., 2010; hereafter H2010). Also, McFarquhar et al. (2007) used PSDs
and radar reflectivities measured during spiral decents in the stratiform regions of mesoscale

convective systems to determine the power law for each spiral. In addition, the recent study by
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Fontaine et al. (2014) employed ice particle images and radar reflectivities to derive the
temperature-dependent power exponent and prefactor of power laws for tropical anvil clouds. But
these approaches implicitly assume that the m-D relationship conforms to a single size-
independent power law, whereas Table 1 in Mitchell (1996) indicates that it often takes two or
even three m-D power laws to describe a given m-D relationship over all relevant sizes. For
example, Mitchell (1996) determined three power laws for hexagonal columns for three size
ranges: 30 um <D <100 pm, 100 pm <D <300 um, and D > 300 um. Cotton et al. (2012 ; hereafter
C2012) have developed a bulk IWC approach that yields two m-D power laws that better describe
the observations, assuming an exponent of 3 for the smallest ice particle sizes (D < 70 um). These
m-D relationships consisting of two or three power laws are shown in Fig. 1 where it is seen that
the dependence of m on D in log-log space is non-linear. Note that the C2012 relationship is based
on all ice particle shapes present at the time of sampling whereas four relationships are for specific
ice crystal habits, based on Table 1 in Mitchell (1996). The popular Brown and Francis (1995) m-
D power law, also based on all ice particle shapes present at the time of sampling, is also shown
in Fig. 1 where it exceeds the mass of an ice sphere (the upper mass limit) when D <97 pm. Many
investigators have assumed ice spheres for D < 97 um when applying the Brown-Francis
relationship, but this may introduce some error based on the findings of C2012. Clearly, the
Brown-Francis relationship is not valid over all sizes and two m-D relationships are needed to
address the smaller sizes. In summary, these relationships imply that the m-D relationship has some
curvature in log-log space and a key objective of this study is to parameterize this curvature for a

mixture of ice particle shapes commonly found in ice clouds.

Another main objective of this study is to provide the climate modeling and the ice cloud remote
sensing community with a method for calculating representative ice particle masses and projected
areas in ice clouds at sizes relevant to cirrus clouds in terms of temperature regime and cloud type
(synoptic vs. anvil cirrus), including uncertainty estimates. To date, no direct measurements of
individual ice particle masses have been made from an aircraft, so direct in situ measurements of
size-resolved ice particle mass and dimension are not available. Given this limitation, a system is
developed that attempts to make optimal use of the measurements that currently exist. Thus, this
study is not proposing a solution to this problem, but is proposing an improvement for describing

the m-D and A-D relationships in cirrus clouds.
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Section 2 of this study discusses the data and method, with the first subsection providing a brief
overview of the general approach adopted for estimating m-D expressions in cirrus clouds, and
with the other subsections explaining ground-based measurements of individual ice particle masses
and various aircraft in-situ measurements and their processing methods. Sections 3 and 4 then
provide more details, with Sect. 3 describing how aircraft and ground-based measurements were
used to develop m-D and A-D relationships. In Sect. 4, the aircraft results are compared against
the results from a cloud seeding program called the Sierra Cooperative Pilot Project (SCPP),
described in M1990. In Sect. 5, a method for reducing these m-D and 4-D expressions into m-D
and A-D power law relationships over a limited size range is described, along with uncertainty
estimates for the prefactor and exponent of these power law expressions. Section 6 provides a
method for applying the polynomial fits to two-moment cloud microphysical schemes where an
appropriate power law expression (derived from a polynomial fit) can be applied over the ice
particle size range of interest. This section also describes the impact this scheme is likely to have
on ice microphysical schemes that assume that ice particles are spherical. Summary and

concluding remarks are given in Sect. 7.

2 Data and Methods
2.1 Parameterization approach — general description

To address the challenges described above, a non-standard approach was taken that combines
aircraft measurements and estimates of ice particle projected area and mass, respectively, with
single ice particle field measurements of mass and maximum dimension. The aircraft
measurements were made during the Small Particle In Cirrus (SPARTICUS) field campaign (Mace
et al., 2009), funded through the Atmospheric Systems Research (ASR) program by the
Department of Energy (DOE), which took place during January-June 2010 over the continental
U.S. (see Fig. 2 in Mishra et al., 2014 for the map of flight locations), from which 13 synoptic
cirrus flights and 9 anvil cirrus flights were selected; these are listed in Table 1 of Mishra et al.
(2014). The 2-dimentional Stereo (2D-S) probe (Lawson et al., 2006a; Lawson, 2011) and Cloud
Particle Imager (CPI) probe (Lawson et al., 2001) were onboard the aircraft, and were used in this

study for the PSD measurements. In general, ice particle mass is estimated from the SPARTICUS
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measurements of ice particle projected area, as described in more detail below, giving an ice
particle size range appropriate for ice clouds colder than about -20 °C. Ground-based
measurements of m and D from SCPP corresponding to ice crystals that formed between -20 °C
and -40 °C are then compared with the 2D-S estimates of m and D sampled between -20 °C and -
40 °C, and are found to be in relatively good agreement as discussed in Sec. 3. Due to this
agreement, we postulate that the m-D expression derived from the 2D-S probe data should be
reasonable over this temperature range. We further postulate that ice particle mass estimates at
colder temperatures, based on 2D-S probe ice particle projected area measurements, should be
reasonable provided that the ice particle shape composition of the PSD does not significantly
change at these colder temperatures. Moreover, we assume that a similar shape composition for
anvil cirrus for a given temperature range relative to the shape composition in synoptic cirrus from
-40 °C to -20 °C justifies using the 2D-S probe mass estimates (based on area measurements) for
these anvil cirrus. As a proxy for ice particle shape, we use the mean area ratio (4,) for a given ice
particle size-bin, where the 4, is the measured particle area divided by area of the circle defined
by the particle’s maximum dimension. This assumption extends this m-D parameterization down

to -55 °C. More details about this approach will now be given.

SCPP (see Sect. 2.2) provides unique direct measurements of mass for ice particles, with many
SCPP ice particles having ice particle shapes similar to those found in cirrus clouds. Therefore, we
used this data subset for size greater than 100 pm and CPI data (see Sect. 2.4) for size between 20
pm and 100 pm. Only those SCPP ice particles having formation temperatures between -20 °C
and -40 °C (based on observed habits) were selected. For other temperature ranges of synoptic
clouds and for all temperature ranges of anvil clouds, estimated 2D-S (see Sect. 2.3) mass is used
for size greater than 200 pm and estimated CPI mass (see Sect. 2.4 and Appendix B) for size less
than 100 pm. Since direct measurement of projected area is available for both 2D-S and CPI data,
2D-S area is used for size greater than 200 um and CPI area is used for size less than 200 pm for

all temperature ranges. Additional details are given below.
2.2 SCPP measurements

SCPP was a 3-year field study on cloud seeding funded by the Bureau of Reclamation, and for one

part of that project, the shapes, maximum dimensions and masses of 4869 ice particles were
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determined. As described in M 1990, ice particles were collected during winter storms in a petri
dish and then imaged under a microscope equipped with a camera. The maximum dimension of
each ice particle (i.e. diameter of a circumscribed circle around the particle) was later measured in
the lab. In addition, each ice particle was melted with a heat-lamp under the microscope, with a
corresponding photo taken immediately after melting. This resulted in hemispheric water drops
that were imaged later in the lab to measure the diameter of the hemispheres and from that the
volume and mass of each ice particle was calculated. Although shattering can affect the aircraft
measurements of ice particles due to the high sampling speed, it has no significant effect on the
ground-based measurements. Moreover, the smallest size that is measured during SCPP (~ 150
um) is considerably larger than the size range of shattered ice artifacts (D < 50 um; Jackson et al.,
2012). Therefore, shattering during the SCPP measurements is not a concern. While greater
magnification was used to photograph the ice particles during the last year, for purposes of
measuring ice particle size and mass, the lower magnification (25%) was sufficient. In this study,
we consider those ice particles measured during the SCPP that have shapes initially formed
between -20 and -40 °C. Moreover, the objective of M1990 was to develop m-D power laws for
specific ice particle habits or shape categories (e.g. rimed column aggregates), whereas the
objective of this study is to develop m-D and A-D expressions that are representative of all ice
particles for a given cloud type and temperature interval, suitable for use in climate models (see

Sect. 3 for the discussion of variability in m-D and A-D expressions).

Such field observations, conducted during winter storms in the Sierra Nevada Mountains, provided
measurements for each individual ice particle sampled, including date and time, maximum
dimension, mass, shape (if identifiable), crude level of riming (light, moderate, heavily rimed, or
graupel), and temperature range that produces the observed ice particle shape. Software was
created to extract any combination of ice particle shapes. For the winter storms sampled, most of
the cold habit ice crystals are expected to originate between -20 and -40 °C, although cloud tops
colder than -40 °C are possible. Ice particle shapes associated with 7'< -20 °C that were measured
during this field study include short columns (aspect ratios were < 2) and combinations thereof,
side planes and their aggregates, bullets, bullet rosettes and aggregates thereof, and combinations

of any of these crystal types.
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2.3 2D-S probe

PSDs were sampled using the 2D-S probe, which measures the size-resolved concentrations of ice
particle number and projected area. A total of 193 synoptic ice cloud PSDs and 115 anvil cirrus
PSDs were sampled and analyzed. Ice particle concentrations were measured down to 10 um (5-
15 um size bin) and up to 1280 um in ice particle length. The data in the smallest size bin (5-15
um) should be used with caution, because Jensen et al. (2013) showed that the largest uncertainty
in depth of field for this size bin results in an overestimation of number concentration for particles
in the smallest size bin. Since we used CPI data for the size range smaller than 100 um, the
aforementioned problem does not affect the calculations of m-D and A-D relationships. Ice particle
mass is not directly measured, but is estimated using a power law that relates ice particle projected
area to mass (Baker and Lawson, 2006a; hereafter BL2006). This relationship was developed from
a subset of ice particles (865 particles) measured during SCPP. Using image analysis software, the
projected area of ice particles in this subset was calculated from their photographed magnified
images. The BL2006 study found that ice particle projected area was a more reliable predictor of
particle mass than was maximum dimension. Their m-4 power law was derived from many types
of ice particle habits or shapes, and of the 550 identifiable ice particles, 36% were moderately or
heavily rimed. This m-4 power law is now commonly used to estimate size-resolved mass
concentrations from 2D-S probe measurements of projected area. Integrating these mass

concentrations over the PSD, the PSD IWC is determined.

IWCs based on BL2006, determined by integration over PSDs, have been compared to IWCs
directly measured by the Counterflow Virtual Impactor (CVI) probe during the Tropical
Composition, Cloud and Climate Coupling (TC4) field campaign (Lawson et al., 2010), where the
2D-S and CVI probes were co-located on the same aircraft with identical sampling times. A
regression line relating the 2D-S and CVI IWC measurements had a coefficient of determination

(R?) of 0.88, with 2D-S IWCs being 82% of CVI IWCs on average.

The methodology for extracting m-D expressions from 2D-S probe data was first described in
Mitchell et al. (2010), and is briefly described here. The mean ice particle mass is calculated for
each size-bin of the 2D-S probe by dividing the mass concentration in the bin by the measured

number concentration (N) in the bin. In this way the mean bin mass is related to bin midpoint size
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for each size-bin of the 2D-S probe. The relationship between m and D can then be characterized
by plotting mean bin mass against bin midpoint size and fitting the data to an equation of m and

D. This was done for the SPARTICUS 2D-S data as described below.

The processing of the 2D-S probe SPARTICUS data is described in Mishra et al. (2014). The
original 2D-S data used in this study had been processed by the Stratton Park Engineering
Company (SPEC), Inc. using the M1 technique for measuring ice particle length and area (see
Appendix A in Lawson, 2011). However, the M1 method does not insure that the ice particle is
completely imaged within the sample volume (i.e. that no portion is beyond the photodiode array),
and it uses the length parameter along the direction of travel (L/; see Appendix A) for maximum
dimension. To overcome these drawbacks, the 2D-S data used here were processed using the newly
developed M7 method that insures that the ice particles are completely imaged within the sample
volume (“all-in” criteria), and this method uses the most accurate estimate for maximum
dimension (diameter of circumscribed circle, see Appendix A). Although the sample volume
decreases by using the M7 method, such a decrease is not significant. It is shown in the supplement
(Figs S1 and S3) that the M1 and M7 methods agree well for both number concentration and area
concentration, with the largest difference between the M1 and M7 methods observed for larger
particles (D > 300 um). Moreover, the difference in PSD projected area (i.e. extinction) between
the M1 and M7 methods does not exceed 5 % and 13 % for synoptic and anvil cirrus clouds,
respectively (Figs. S2 and S4; see Appendix A for a detailed discussion on the comparison between
M1 and M7 methods). The 2D-S data were then further processed to insure that ice particle mass
and projected area did not exceed that of an ice sphere having a diameter equal to the ice particle

maximum dimension.

PSDs for each cloud type (synoptic or anvil) were partitioned into temperature intervals of 5 °C
and the PSDs within each temperature interval were averaged to produce 9 mean PSDs (one for
each T-interval) for synoptic and 9 mean PSDs for anvil ice clouds. This covered a temperature

range of -20° to -65 °C for both synoptic and anvil ice clouds.

While ice clouds at temperatures warmer than -38 °C might be mixed phase (containing both liquid
water and ice), all PSDs were examined for the presence of liquid water using a combination of

Forward Scattering Spectrometer Probe (FSSP), CPI and 2D-S probes and relative humidity
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measurements using the Diode Laser Hygrometer (DLH) probe. Only PSDs not associated with
evidence of liquid water were used in this analysis as described in Mishra et al. (2014). Moreover,
the PSD selection process identified cloud regions (cloud extinction > 0.1 Km™') where cloud
extinction and median mass size were relatively stable (i.e. in a 60-second time period, the cloud
extinction and median mass size should not exceed 2 times their mean and should not be less than
0.4 times their mean), making it unlikely that liquid water was present. On the other hand, it is
possible that some ice particles sampled were rimed if riming occurred at levels above the level
being sampled (considered unlikely for these temperatures). The number of PSDs found in each

temperature interval is shown for synoptic and anvil ice clouds in Fig. 2.

There is an out-of-focus problem affecting the 2D-S measurements of projected area, specifically
for ice particle sizes less than 200 pm. For this size range, many images are out-of-focus with
artificial holes in the middle, so that particles have an appearance similar to doughnuts, and the
projected area of these images is overestimated (Korolev, 2007). Therefore, we used the 2D-S M7
projected area for ice particle sizes larger than 200 um, and the CPI projected area for sizes smaller

than 200 um (see next subsection).
2.4 CPI probe

The CPI probe provides digital images of particles that pass through the sample volume at speeds
up to 200 m s The images were processed via CPIview software to determine ice particle length,
width, projected area, perimeter, and crystal habits, with the resolution of 2.3 um, and for particles
in the size range of 10-2000 um (Lawson et al., 2001). The majority of the CPI images are in-
focus, and a few of them that are out-of-focus are resized smaller using Korolev focus correction
(Korolev et al., 1998). For this reason, CPI projected area is more reliable compared to the 2D-S
for ice particle size less than 200 pm and we used CPI projected area for sizes less than 200 pm.
A discontinuity in projected area is observed between the 2D-S using M1 processing and the CPI
for D = 200 um, with 2D-S area being larger than CPI area by a factor of 1.5440.18. There are
three factors that contribute to this discrepancy; first, 2D-S M1 for larger sizes can still be out-of-
focus, though less than that for smaller sizes; second, it seems that 2D-S overestimates size with
errors being 10-30%, even when they are in-focus; third, there are inherent differences between

CPI and 2D-S, since they are two different instruments that use two different measurement

10
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techniques. Using the M7 data processing, the 2D-S area is larger than CPI area by a factor of
1.30+0.15, showing that M7 and CPI are more self-consistent than M1 and CPI. The number of
ice particles imaged by the CPI that were used in this study is 224,719. Hence, the CPI sampling

statistics in each size bin is quite good.

The CPI probe does not measure ice particle mass and the BL2006 m-4 method is not justified for
sizes smaller than 150 um because it was derived from a subset of SCPP data with ice particles
having sizes greater than ~ 150 um. Therefore, we developed a methodology (see Appendix B) to
estimate mass from the CPI measurements of projected area and aspect ratio. This new
methodology assumes that ice particles with size less than 100 pum exhibit hexagonal column
geometry. Such a geometrical assumption seems reasonable based on observations for sizes
smaller than 100 pm (see Lawson et al., 2006b, their Figs. 4 and 5). While other authors have
approximated small (e.g. D < 50 um) ice crystals as “droxtals”, Gaussian random spheres,
Chebyshev particles and budding bucky balls (e.g. Um and McFarquhar, 2009), our study
estimates the mass of small ice particles from processed CPI data that contains measurements of
ice particle projected area, length and width. We developed a method that utilizes all three of these
properties to estimate ice particle mass. For the size-range we considered (20 to 100 pum), the
mean length-to-width ratio was 1.41+0.26, confirming the dominance of high-density ice particles,
and for such aspect ratios, hexagonal columns appear to be as good a surrogate of small particle
morphology as the other shapes noted above for estimating ice particle mass. They also provide a
convenient means of using the aspect ratio estimates. As shown in Appendix B, for an aspect ratio

of 1.0, the difference in ice mass between the spherical and hexagonal column assumption is 4%.

Hexagonal column geometry overestimates the mass for particles with size range of 100-200 pum.
This is not surprising, since this is the size range where ice crystals begin to develop branches or
extensions, becoming more complex and less compact (Bailey and Hallett, 2004; 2009). In other
words, ice particles in this size range have lower density than particles with D <100 pm. Since the
BL2006 m-A expression and the hexagonal column approximation for ice particle mass are not
valid for 100 um < D < 200 um, we used the estimated CPI mass for sizes less than 100 um, and
we did not use any mass estimation for size range of 100-200 pm. The exception is for -65 °C < T
<-55 °C, where we used the BL2006 m-4 method to estimate mass from CPI projected area for D

between 100 and 200 um, because the number of size bins available for D > 200 pum is limited

11
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(See Fig. 4, where it shows that data for this coldest temperature interval is available only for D <
600 um). This appears to be the most accurate approach for this size interval for 7<-55 °C, which
is critical for determining m-D expressions for these colder temperature intervals. The variables in
the smallest bin-size (10-20 um) are not included in our analysis, due to large values of area- and
mass- ratios for this bin-size, indicating ice spheres. Although small particles can be spherical,
there is an abrupt change in both the area- and mass-ratio from 1* size-bin to the 2" size-bin; but
for other bin transitions, there is no abrupt change. This might be a size-resolution limitation of

the optics that tends to make the images for the smallest size-bin appear quasi-spherical.

McFarquhar et al. (2013) discussed that a widely-accepted lower limit is not available for the CPI,
and they found that it was difficult to extract useful shape information from CPI images for
particles with D < 35 pum for mixed-phase arctic clouds. However, in our study, shape is not a
concern for the CPI size range we are using (20 pm < D < 100 pm) since we assume hexagonal
column geometry and only require length and width measurements, which are estimated for these

sizes from a data processing algorithm developed at SPEC, Inc.

3 Mass and area relationships

Figure S5 shows m-D and A-D expressions and data points for all PSDs for all temperatures
considered here. Also shown in this figure is mean and standard deviation in each size bin. In this
way, the natural variability of the m-D and A-D PSD data is presented. While in principle each
PSD can be used to produce an m-D or A-D expression, in practice only the mean PSDs in 5 °C
temperature intervals were used to develop the m-D and 4-D expressions (explained in Sect. 2.3
and in the Supplement, Fig. S6). Although the averaging process reduces scatter, the coherency of
the curves in Fig. S6 is somewhat surprising. The natural variability associated with ice particle
mass measurements was minimized in two ways, thus facilitating the curve-fitting process. First,
m was estimated from the BL2006 m-A relationship for D > 200 um (which represents the mean
m-A behavior in a self-consistent way and thus removes much of the natural variability in m), and
second, variability was reduced by averaging the SPARTICUS PSD within each 5 °C T interval,
as described in Sect. 2, producing one mean PSD of number, area and mass concentration for each

T interval. The latter can be seen in Figs. S5 and S6. The coherency of this data makes it amenable

12



o U A~ W N R

~N

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

to curve-fitting with high precision. McFarquhar et al. (2007) showed that there is considerable
variability in the m-D expression during aircraft measurements of stratiform regions of mesoscale
convective systems, and they used a different m-D expression for each flight. The variability in
our study differs for the reasons stated above. Moreover, as we show further in this section, the
variability in m-D relationship based on 13 flights in synoptic cirrus clouds during SPARTICUS

does not exceed 32% of the mean bin mass value, having a mean overall value of 13.48 %.

If ice particle morphology does not vary much within the ice clouds sampled, then our m-D
expressions should be representative of all ice particles for a given cloud type (continental
midlatitude synoptic or anvil cirrus clouds) and temperature interval. Ice particle images from
various types of cirrus clouds tend to support this assumption, indicating high density, blocky-
shaped irregular crystals with some bullet rosettes and side planes at larger sizes (e.g. Lawson et
al., 2006b; Baker and Lawson, 2006b). But if there is a radical departure from this morphology
genre and planar ice crystals having low aspect ratios (i.e. c-axis to a-axis ratio where c-axis is
length of the prism face) dominate, our m-D expressions could overestimate ice particle mass by
a factor of ~ 3 (Lawson, 2016). Such reasoning may explain findings from Arctic mixed phase
clouds, where Jackson et al. (2012) showed that the application of habit-specific m-D relationships
applied to size/shape distributions in arctic stratocumulus clouds during Indirect and Semi-Direct
Aerosol Campaign (ISDAC) over North Slope of Alaska had better agreement with the measured
IWC (mean difference is ~ 50%) than did the application of the BL2006 approach to the measured
size distributions (mean difference is ~ 100%). Similar findings from Arctic mixed phase clouds

are reported in Avramov et al. (2011).

A curve fit based on SPARTICUS synoptic mean PSDs for -40 °C T < -20 °C is shown in Fig. 3
by the blue curve. This result differs markedly from previous studies where the relationship
between log(m) and log(D) is linear, rather than a slowly varying curve as shown here. This finding
is due to extending the range of ice particle size to smaller sizes, which was made possible by
using data from the CPI probe. The m-D line corresponding to ice spheres is shown for reference
since for a given D, the ice particle mass cannot exceed this value. Also shown is the curve fit for
ice particle mass based on SCPP and CPI m-D measurements and estimates, respectively (the black
curve). This SCPP data is described in detail in Sec. 4.1, but here it is sufficient to say that the 827

m-D measurements (with ice particle shapes corresponding to this temperature range) were

13
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grouped into size-intervals and the mean values within each size-interval are plotted in Fig. 3
(purple filled circles). The close agreement between the blue and black curves indicates that ice
particle masses derived from 2D-S data are adequate surrogates for the SCPP m-D measurements.
This agreement, mentioned in Sec. 2.1, forms part of the rationale for this study as described in

that section.

Values of mean dimension, mass, and projected area were first calculated for each 5 °C T interval,
and plots of m-D and A-D expressions were provided for each 5 °C T interval (Fig. S6). It was then
observed that m-D and A-D expressions for 5 °C T intervals have negligible differences within the
larger temperature ranges of -40 °C < T'< -20 °C, -55 °C < T <-40 °C, and -65 °C < T < -55 °C.
In order to keep m-D and A-D expressions as simple as possible without losing accuracy, the
coefficients of polynomial fits are not provided for each 5 °C T interval. Instead, mean PSDs were
determined for each of the above mentioned three temperature categories and 2" order polynomial
curve fits were calculated for each category as shown in Tables 1 and 2. The “goodness of fit” is

given by the R’ in these tables, and the number of mean data points used is also indicated.

Greater accuracy is obtained by using the fit equation for a specific temperature interval rather
than using the fit equation corresponding to all temperatures sampled. While the temperature-
dependent A4-D and m-D fits are similar, and the R’ values for the temperature-independent A-D
and m-D fits in Fig. S5 (0.9924 and 0.9954, respectively, based on all temperatures) are similar to
those in Tables 1 and 2, the actual values predicted by these temperature-dependent fits does render
more accurate A and m estimates, as shown in Figs. 4 and S6. Since the fits are similar, a climate
model can use these fits without using any smoothing function when crossing temperature
boundaries. In fact, this m-D/4-D scheme has been used in a GCM, as described in Eidhammer et

al. (2016).

Fontaine et al. (2014) found that it is not proper to employ a single temperature-independent m-D
expression for all clouds, because such expression neglects the considerable natural variability of
mass as a function of dimension. We show that it is sufficient to categorize m-D and A-D
expressions into three temperature ranges for a given cloud. Within each of these temperature
ranges, negligible differences are observed between m-D and 4-D expressions corresponding to 5

°C T intervals. The resulting temperature-dependent curve fits are depicted in Fig. 4, where it is
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shown that for 7" < -55 °C, the m-D curves are considerably different for both synoptic and anvil

cirrus relative to the warmer temperature intervals.

It is also seen from Fig. 4 that the mean dependence of ice particle mass on particle size is not
predicted to vary substantially between ice clouds of different type (i.e. synoptic vs. anvil) for a
given temperature regime. The latter differs from the results of H2010, where they showed that m-
D power laws for anvil ice clouds yield masses about a factor of two larger than for synoptic ice
clouds. It is possible that the similarity in m-D expressions found here regarding synoptic and anvil

ice clouds is an artifact if ice particle masses for a given A4 are quite different between these cloud

types.

The 2" order polynomial 4-D curve fits were provided in a similar way that m-D curve fits were
obtained, and are shown in Table 2. An example of the mean PSD data and the polynomial 4-D
curve fit is shown in Fig. 5 for -40 °C < T'< -20 °C. Again the PSD averaging process greatly
reduces the spread in area for a given size. More scatter is seen at the largest sizes since the size
bins here are populated by relatively few ice particles. The line for ice spheres indicates the
maximum possible projected area for a given D. For each temperature interval, fractional
uncertainties for each 2D-S size-bin were calculated as shown in Fig. 6 only for the temperature
intervals having three or more PSDs. Fractional uncertainties are expressed as the ¢ of projected
area divided by the mean projected area for each size-bin midpoint. Uncertainties are highly
variable and range between 0% and 28% of the mean bin A value, having a mean overall value of
11.0%. Uncertainties tend to be zero for D = 10 um since particles in this size bin (5-15 pum)
generally shadow only one pixel in both vertical and time (horizontal) dimensions. Similar to Fig.
6, we calculated the fractional uncertainties for the mean ice particle mass in each size bin of the
measured PSDs (figure not shown). The pattern for the mass fractional uncertainties is similar to
that for area fractional uncertainties. Mass uncertainties range between 0 and 32 % of the mean

bin mass, with a mean overall fractional uncertainty of 13.48 %.

It is important to know whether the measured ice particle area and masses are internally consistent
here since ice cloud properties like D. and the mass-weighted fall speed (V) depend on the ice
particle m/A ratio. The maximum value of the m/4 ratio is given by an ice sphere. Thus a test for

internal consistency is to calculate relative m/A4, which is defined as:
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See Appendix C for the definition of all symbols. This ratio should not exceed a value of 1.0. The

R =

data used to produce Tables 1 and 2 were tested in this way and this ratio never exceeded a value
of 1.0. However, when curve fits provided only by 2D-S probe are used, this ratio exceeded the
value of 1.0 for size less than 20 um where 4 measurements are poorest. An example is shown in
Fig. 7 for -40 °C < T'<-20 °C. As shown by Heymsfield et al. (2002) and others, this ratio should

increase with decreasing ice particle size, which is also demonstrated here.

4 Comparison of curve fits with SCPP measurements of single ice particle mass
4.1 SCPP measurements of ice particle masses characteristic of cold ice clouds

The m-D expressions in Table 1, based on CPI and 2D-S measurements, are valid to the extent that
the BL2006 m-A relationship is valid at those temperatures and sizes. Testing of the m-D
expression for -40 °C < T'< -20 °C by using ice particle masses from habits formed in this same

temperature range is pursued in this section.

The m-D relationships developed in the last section are void of uncertainty estimates, which are
needed in remote sensing for estimating the uncertainties of retrieved cloud properties. To estimate
the uncertainty (o) associated with the curve fits in Table 1, the field measurements described in

M1990 are used.

The distribution of ice particle masses with respect to size is shown in Fig. 8§ for the cold-
temperature habits in the SCPP measurements. The laboratory experiments of Bailey and Hallett
(2004; 2009) found that at significant or substantial supersaturations with respect to ice, bullet
rosettes dominate between -70 °C and -40 °C while complex plate-like crystals (e.g. side planes)
dominate between -40 °C and -20 °C. At very low supersaturations near ice saturation, hexagonal

columns with aspect ratios near unity were common for -70 °C < T < -20 °C. The results in Fig. 8
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are generally consistent with the laboratory results, with side planes dominating over bullet
rosettes, although short columns were most abundant which suggests low supersaturations were
common in these clouds for 7 < -20 °C. Indeed, low supersaturations appear to be common in
clouds where 7' < -20 °C (C2012). While hexagonal columns are generally not the dominant ice
particle shape for 7'< -20 °C, compact irregular ice particles are very common and often dominate
N at smaller sizes (Korolev and Isaac, 2003; Lawson et al., 2006b; Baker and Lawson, 2006b;
C2012). The similarity between the hexagonal column m-D expression and the C2012 m-D
expression in Fig. 1 suggests short hexagonal columns may serve as a proxy for compact irregular
ice. Ice particles classified as unrimed having these shapes were used in Fig. 8, although some
light riming is possible. The three main categories of ice particle shape are color-coded in Fig. 8,
with columnar ice particles more common at small-to-intermediate sizes, side plane type ice
particles more common at intermediate-to-large sizes, and bullet rosettes more common at
intermediate sizes. The m-D curve fit, based on CPI and SCPP measurements, is from Table 1 for

synoptic ice clouds for -40 °C < T <-20 °C.

Also shown are the recently published m-D power law relationships of C2012 and H2010 that were
obtained from synoptic (-60 °C < T' < -20 °C) and from both synoptic and anvil (-60 °C < T <0
°C) ice clouds, respectively. These relationships are plotted over the size range used to produce
them. The C2012 relationship consists of two lines and follows the curve fit remarkably well for
D > 100 pum, with differences never exceeding 50%. The H2010 relationship consists of a single
line and also approximates the curve fit well, except for D < 100 um and D > 1000 um where

differences can reach about 100%.

Figure 9 shows a polynomial curve fit based on mass estimates from the 2D-S (M7 processing)
and CPI probes for sizes greater than 200 pm and less than 100 um, respectively. Also shown is
SCPP data where the ice particle measurements were binned into size intervals of 100 pm between
100 and 1000 um, with subsequent intervals of 200, 200, 400, 600, 600 and 1000 um (up to 4mm)
at larger sizes to provide adequate sampling statistics. The ¢ within each size interval was
calculated for m and D as shown by the vertical and horizontal red bars, respectively. The
intersection point marks the mean value for m and D in each interval. The m-D curve fit for
SPARTICUS synoptic ice clouds for -40 °C < T'< -20 °C is extrapolated to 4 mm in Fig. 9 for

comparison with the masses and sizes of these 827 ice particles sampled during SCPP. In this way,
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the SPARTICUS measurements roughly coincide with the temperatures of origin of these SCPP
cold-habit ice particles. Although the BL2006 m-A4 expression was derived from a subset (865 ice
particles) of the 3-year SCPP field study (4869 ice particles), a detailed comparison of the subset
of 827 cold-habit ice particles used here and the BL2006 subset revealed that only 17.5% of the
ice particles were common to both subsets. Thus, a comparison of an m-D expression based on
SPARTICUS data (derived from the BL2006 m-A4 expression) with the cold-habit m-D
measurements from SCPP is still a meaningful comparison. It is seen in Fig. 9 that the
SPARTICUS curve fit is well within the ¢ values of SCPP mass for all size intervals and is often
close to the mean m values, except for the largest size-bin having a relatively small sample size.

The same is true for the C2012 m-D expression when it is extended to larger ice particle sizes.

Getting still more quantitative, the percent difference of the SCPP cold habit mean mass for a given
size interval was compared with the corresponding ice particle mass from the SPARTICUS curve

fit. In other words, the percent difference is calculated as
100 (mSCPP - mSPARTICUS)/ [(mSCPP + mSPARTICUS)/ 2] for each size bin (figure not shown). Percent

differences are less than 53% in all size bins, and the mean percent difference for all size-bins was
28%. Note that percent difference is calculated on the normal scale, and not on the logarithmic
scale. Given the natural variability observed for ice particle masses, this level of agreement is
considered good. Moreover, the m-D expressions from two completely independent studies, C2012
and H2010, conform closely to the SPARTICUS curve fit and the mean cold-habit (i.e. SCPP) m
values. The convergence in agreement of the SPARTICUS curve fit with the cold-habit SCPP m-
D measurements, the C2012 study and the H2010 study suggest that the SPARTICUS m-D curve
fit is a reasonable representation of ice particle mass over the particle size range considered here.
It uses the BL2006 m-A relationship to estimate m for D > 200 um and our CPI m-4 method for D
<100 pm, and its agreement with the SCPP cold-habit m-D measurements validates its use up to

4 mm for -40 °C < T <-20 °C.
4.2 Extension to colder temperatures

As postulated in Sect. 2, given a validated m-D expression from SPARTICUS and SCPP data
between -40 and -20 °C, this methodology of obtaining m-D expressions from SPARTICUS data

should be appropriate at colder temperatures if ice particle shape does not significantly change.
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Here we use the ice particle 4, as a proxy for ice particle shape. The mean ice particle 4, for each
size-bin is shown for each 5 °C temperature interval in Figs. 10 and 11 for synoptic and anvil
cirrus, respectively. Values of 4, are similar among all temperature intervals excepting those for 7
<-55°C. For D > 60 um, these two coldest intervals exhibit 4, less than that for 7> -55 °C in both

synoptic and anvil ice clouds.

For purposes of calculating PSD A, m, and radar reflectivity (Z), the 4, changes at these larger
sizes are considered more critical than the 4, changes at smaller sizes. It is therefore argued that
for these applications, the noted methodology of obtaining m-D and A4-D expressions from
SPARTICUS data should be appropriate at colder temperatures down to -55 °C. For 7<-55 °C, it
appears that ice particle shape changes, and it is possible that the ice particle geometry changes in
such a way that the BL2006 m-A expression is no longer valid. For example, if the BL2006 m-A4
expression implicitly assumes relatively compact ice particles growing in 3 dimensions, and the
ice particle shape changes to planar crystals with 2-dimensional growth dominating, then the
BL2006 m-A4 expression may perform poorly. We report m-D results for these coldest temperatures
(Table 1), but with the caveat that these m-D expressions are highly uncertain. Additional research
is needed to test these results. Moreover, this study addresses only mid-latitude synoptic and anvil
ice clouds over land, and results may have been different if marine anvil cirrus, orographic cirrus

and/or Arctic ice clouds were considered.

5 Uncertainties in m-D and A-D expressions

Conventional m-D and A-D expressions use power law relationships of the form:

m=aD "’ (2)

A=yD? (3)

to estimate ice particle mass and projected area, where a, f, y and ¢ are constants. This study

indicates that these terms should not be constants over all ice particle sizes, but that they can be
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approximated as constants over a range of particle size with good accuracy. The 2" order

polynomials used in this study have the form:
Inx=a,+a,InD+a,(InD)’ (4)

where x is either m or A4, and a,, a; and a> are constants. Differentiating Eq. (4) with respect to

In(D) gives the slope of this curve which is f for the mass case:

o(Inm)

=f=a +2a,InD - (5)
o(InD)

Thus, S is a function of D, and for a given D, a can be solved for by equating the m-D power law

(Eq. 2) with polynomial fit (Eq. 4):

3 exp[aa +a,InD+a, (lnD)z]
a= o7 :

(6)

The same approach is used to solve for ¢ and y for a given D. Uncertainties for the m-D and 4-D
polynomial fit expressions can be characterized by estimating ¢ for a and y using field
observations of m and 4, and estimating o for £ and J using selected values of D in the fit

equations. This is possible due to the relatively low uncertainty in £ and J, as described below.
5.1 Uncertainties in the exponent of power law expressions

Values of § and ¢ are evaluated at five ice particle sizes and for all temperature intervals sampled
for synoptic and anvil ice clouds, and are shown in Tables 3-6. For the two coldest temperature
intervals, values are not shown for the two largest size categories since PSD did not extend to these
sizes at these temperatures. The mean and o for § are calculated for each of the five ice particle
sizes selected. Then, the mean uncertainty is expressed as a percent for the fraction mean o/mean
p that is averaged over all 5 selected sizes. This mean fractional uncertainty is the final uncertainty
estimate for £ and o that can be applied for any size and temperature range. A key finding is that
mean uncertainties for f do not exceed 9.1% and mean uncertainties for 6 do not exceed 8.5%.
This indicates that most of the scatter in measurements of ice particle mass and area can be

attributed to uncertainties in a and y, respectively.

20



O N o u B W N

10
11
12
13
14

15
16
17

18
19
20

21

22

23

24
25
26
27

Another interesting feature of Tables 3-6 is the evolution of § and ¢ with size. At the smallest sizes,
ice particles tend to be quasi-spherical or isometric (Korolev and Isaac, 2003), with f and o
approaching values of 3 and 2, respectively, with decreasing size. As ice particles grow in size,
they become more complex, often displaying branches in 3 dimensions (e.g. bullet rosettes and
side planes). This produces less mass per unit length, and £ and ¢ decrease. In Tables 5 and 6, 0 is
slightly greater than 2.00 (the maximum theoretical value) at the smallest size for some
temperature intervals. This is likely due to inaccuracies in CPI projected area measurements at

small sizes and an artifact of the curve-fitting process.
5.2 Uncertainties in prefactors of power law expressions

Figure 9 shows o for SCPP m for each size interval. Since changes in § account for a relatively
small portion of this uncertainty, to a first approximation we can attribute all this uncertainty to a.
The percent uncertainty averaged over all sizes is calculated as the mean value of the fractional
uncertainty of each size interval (o/size-bin mean value), and is equal to + 54.4% for the mass o

values in Fig. 9. This is our estimate for the mean fractional ¢ for « for all ice clouds.

A similar analysis is needed for ice particle projected area, and for that we turn to the fractional
uncertainty calculations shown in Fig. 6. The mean percent uncertainty for y based on Fig. 6 is +

11.2%.

These mean ¢ values for a and y should be representative ¢ estimates for the m-D and 4-D
expressions reported in this paper. Moreover, these uncertainties should be useful in characterizing

the uncertainties of retrieved ice cloud properties in various retrieval algorithms.

6 Application to cloud modeling
6.1 Methodology

In regional and global climate models, the microphysical factors most affecting the cloud radiative
forcing and feedback from ice clouds are the ice water path (IWP), the D. and the V.. While ice
cloud optical properties are a strong function of D., the ice cloud lifetime, coverage and IWP are
strong functions of V3, (Sanderson et al., 2008; Mitchell et al., 2008). Both D. and V,, primarily
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depend on the ice particle m/A4 ratio. In many climate models, the D. estimated for the prediction
of ice optical properties is not the D. predicted from the cloud microphysics, introducing an
inconsistency between the microphysics and radiation modules of the climate model (Baran,
2012). Moreover, Vi, and D. are generally not treated consistently in terms of the m/A4 ratio in

nearly all cloud, weather prediction and climate models. Rather, V,, is generally predicted from a
power law of the form V:avDoh" where @, and b, are constants and D, is a characteristic

dimension of the ice PSD (e.g. Morrison and Gettelman, 2008). This can result in non-physical

behavior that substantially affects the cloud radiative forcing.

These model inconsistencies can be easily rectified by recognizing that ice microphysical and
optical properties rest on some fundamental assumptions regarding m and A4; namely the m-D and
A-D power laws (Egs. 2 and 3). By applying these relationships consistently throughout a climate

model (e.g. to predict both D. and V), self-consistency can be achieved.

While these relationships are commonly used in climate models, it is sometimes not recognized
that such power laws are only valid over a limited range of D (examples include Fig. 1 and also
Table 1 in Mitchell 1996). To address this by using 2" order polynomials poses a conundrum since
many physical processes are analytically expressed by integrating m-D and A-D power laws over
the PSD. Thus, using 2" order polynomial fits may pose a quantum leap in model complexity. To

avoid this problem, we propose the following treatment of m-D and 4-D expressions.

To make this treatment practical for climate modeling, a procedure was developed that assumes
advanced approximate knowledge of the PSD dimension of interest (D;). For example, if the ice
cloud microphysical properties and processes being calculated are most relevant to the PSD mass
moment (i.e. IWC), then the median mass dimension (Dn; the particle size dividing the PSD mass
into equal parts) is the D;. Fortunately, 2-moment microphysical schemes in climate models
provide such knowledge since the slope parameter (1) of the PSD is predicted. The m-D exponent
[ is generally near 2 for D > 150 um (see Table 3 and 4) and tends to be ~ 2.7 for D ~ 50 um. Thus,

Dy, can be approximated using an exact expression from Mitchell (1991):

_p+v+0.67 (7

Dm
A
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where it assumes that a gamma function describes the PSD, given as:
N(D)=N,D" exp(-AD) (8)

and v is the PSD dispersion parameter (often assumed to be constant) and N, depends on N or the
IWC. Similarly, Table 5 and 6 show ¢ is near 1.7 for D > 150 um and is close to 2.0 for D ~ 50
um. If the PSD area moment is most relevant to model calculations (e.g. ice optical properties),

then D; is the median area dimension (D,):

DA=5+V+0.67. 9)
A
Moreover, if the PSD radar reflectivity moment is most relevant to model calculations, then D, is

the median radar reflectivity dimension (Dz):

_2p+v+0.67 (10)

D, =

When addressing ice nucleation, either the mean size ( D) or the median number concentration
dimension (Dy) may be used:

_v+0.67 (11)
p)

Dy

Because f and 6 vary slowly with respect to D, D; can be well approximated for a given temperature
regime by evaluating f and ¢ at D = 500 um, and then solving for D;. An iterative procedure can
yield exact solutions for f, o, a, y, and D; using the following steps: (a) f, J, a, y are evaluated at
D =500 um using Egs. (5) and (6). (b) D; is calculated as indicated above, along with any PSD
properties of interest such as D. or V. () 5, 9, a, y are recalculated based on D; and the appropriate
curve fit. (d) These updated values are then used to recalculate D;, along with any PSD properties
of interest. A single iteration yields D4, Dn, 0 and f within 0.5%, 1.5%, 0.6% and 1.9% of their
exact values, respectively. Thus, only one iteration is needed for most applications since changes

in D; are primarily due to changes in /.
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Calculating D, is a means of approximating the size range relevant to the ice properties or processes
being determined. To calculate D;, 4 must be supplied by the cloud resolving model. In the
Community Atmosphere Model version 5 (CAMS; Gettelman et al., 2010), 4 is obtained from the
ratio IWC/N where the PSD is expressed as a gamma function, as shown by Eq. (8). Solving for 4,

(12)

P aF(ﬁ+v+1)N%
| Tw+nIwe

where I' denotes the gamma function. Although the dependence of 4 on a and f complicates
matters, Eq. (12) can be solved iteratively using the following steps: (a) 4 is initially estimated by
evaluating a, £, y and 0 at D = 500 um for a given N and IWC using Egs. (5), (6)Error! Bookmark
not defined.Error! Bookmark not defined., and (12). (b) These values of 4, d and f are then used
to calculate D; as described above. (¢) The revised D; value is then used in Egs. (5) and (6) to
generate revised values for S, a, J, and y, which are then used in Eq. (12) to revise A. (d) This
revised A revises D;, and the cycle repeats but entering at step (c); subsequent iteration involves
only steps (¢) and (d). For solving Eq. (12), D; is equal to D, since the derivation of Eq. (12)
reveals that o and f are associated with the IWC PSD moment. Again, this approach is feasible
since changes in A primarily result from changes in N and IWC. The A produced from a single

iteration has an error of 1.2% when D = 14 um (in the size regime where errors are greatest).

Alternatively, A can be obtained using a look-up table (LUT) that relates A to N and IWC for all
relevant combinations of @ and £. The LUT can be produced through the iterative process described

above.

While the resulting m-D or A-D power law is only valid over a limited size range, since it is
centered on D;, it should be sufficiently accurate for calculating various ice microphysical
properties (some used to calculate optical properties) such as IWC, D., V,, Z or ice nucleation
rates. This also allows many microphysical rates and quantities to be represented analytically in a
simple way since power law expressions are easily integrated over the PSD, and are thus
compatible with climate model architectures. In this way, the m-D and A-D power laws become a
function of the 4. This should significantly improve the accuracy of predicting cloud microphysical

and radiative properties and cloud radiative forcing in general, and also unify microphysical and
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radiative processes under a common treatment of ice particle area and mass. It is noteworthy that
a common data set is used to derive these m-D and 4-D expressions, making them self-consistent

(generally not achieved in past studies).
6.2 Impact on calculations of ice particle N, De, and Vm

First in this subsection, these quantities are calculated in the standard way, assuming constant
values of a, 5, y and o, and then they are calculated using the methodology explained in Sect. 6.1,
where a, 5, y and J exhibit a weak dependence on D. An exponential PSD is assumed (v = 0), and

a, f, y and 0 are based on the warmest temperature regime (-40 °C < 7'<-20 °C).

N can be calculated by manipulating Eq. (12). Figure 12 shows the calculation of N as a function

of the D for constant « and S (black line), variable a and S (blue curve), and o and § based on

C2012 (purple line). Note that D= (v+1)/ A . Also shown is the dependence of N on D when the

CAMS values of a and g for cloud ice are used (CAMS assumes ice spheres having a density of
0.5 g cm™). The differences in N for constant, variable, and C2012 a and S are within about a factor
of 2, and the discontinuity in the C2012 curve is due to an abrupt change in the m-D expression at
D =70 um. This discontinuity highlights the drawback of using multiple m-D or A-D power laws
in climate models and the need for a single m-D or 4-D curve fit. There is a large underestimation
for N (relative to other curves shown) calculated using the CAMS values of a and f. This

underscores the danger of representing ice particles as spheres in climate models.
Based on Foot (1988) and Mitchell (2002), D, is defined as:

13
D, - 3IIWC (13)
2p.4

t

where A is the total PSD projected area and p; is bulk density of ice. Most climate models use

D, to predict ice cloud optical properties. Assuming an analytical PSD given by Eq. (8) and
applying Eqgs. (2) and (3), D. is given as:

D - 3al(B+v+1) e (14)
© 20,70 +v+1)
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From Eq. (14), it is clear that D, strongly depends on a, £, y and 6. When calculating D. for variable
values of a, /3, y and J, a and S were determined from D,, (associated with IWC) while y and 0 were
determined from D4 (associated with PSD projected area). Figure 13 shows that significant
differences exist between D. based on constant and variable values of a, 5, y and J, especially at
D <50umand D >500 um; and at these size ranges, D. based on constant a, /3, y and  is greater
than D, based on variable ones. Also shown is D. based on a, £, y and ¢ values assumed for cloud
ice in CAMS, which shows dramatic overestimation compared to two other methods, and these

changes are greatest when D > 100 pm.

V' is another property that depends on the m/A ratio. The method of Heymsfield and Westbrook
(2010) is sometimes used to predict V" where V' is predicted from the Best number (X), defined as:

| 15
x =L 30 (19
n- A"

»

where pir is the density of air, # is the dynamic viscosity, and g is the gravitational constant. The
PSD V,, was calculated from D,, using the Heymsfield-Westbrook scheme, where a, £, y and o
may be fixed or variable. Figure 14 denotes that considerable differences can exist for V,, at D <
20 pum and D > 500 um, depending on whether ¥, was based on fixed or variable values of a, f,
y and J. Note that V,, based on constant a, 5, y and J is greater than V, based on variable ones. In
addition, V,, was calculated for the fixed values of a, 8, y and 6 used in CAMS for cloud ice. In
this case, errors in V,, are much greater (with greatest error seen at D > 100 um), again

underscoring potential errors that may result by assuming spheres for ice particles.

7 Conclusions and Summary

The findings presented here constitute a fundamental shift in our way of representing ice particle
mass and projected area in atmospheric models and remote sensing algorithms. Rather than having
a multitude of m-D and 4-D power law expressions for different ice particle shapes, size ranges,
temperature regimes and/or cloud types, several 2" order polynomial fits may suffice for ice

clouds at different temperature intervals, perhaps only 3 for each cloud type (see Fig. 4). From
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these fit equations, any number of m-D and 4-D power law expressions can be derived to address

the ice particle size range of interest.

The m-D curves developed here appear representative of ice particle masses in ice clouds for 7' <
-20 °C since they are in good conformity with m-D power laws developed under similar conditions
in recent studies as shown in Figs. 8 and 9. Moreover, they conform well to the masses of ice
particle shapes commonly found between -20 and -40 °C, although measured at ground level

during SCPP.

Ice particle projected area was directly measured using the 2D-S and CPI probes during
SPARTICUS. The mass of ice particles originating between -20 °C and -40 °C was directly
measured for synoptic ice clouds (i.e. SCPP data); otherwise it was calculated from projected area
using the BL2006 m-A relationship for D > 200 pm or it was calculated from CPI measurements
for D <100 um using our new method (see Appendix B). Since the SCPP m-D measurements were
consistent with the 2D-S m-D estimates between -20 and -40 °C, the resulting m-D and 4-D
expressions were essentially developed from the same SPARTICUS data set, containing 158 PSDs
for synoptic ice clouds and 107 PSDs for anvil ice clouds. Therefore, the m-D and A-D expressions
should be self-consistent, as confirmed in Fig. 7. Three temperature regimes were defined such
that, within a given regime, the variance in m or 4 for a given D was minimal, and a couple of m-
D and A-D 2™ order polynomial fits was determined for each temperature regime and for each
cloud type; synoptic and anvil. The m-D and A4-D expressions for synoptic and anvil ice clouds

were very similar within each temperature regime.

A methodology was developed for extracting m-D and A-D power laws from these 2" order
polynomial fits that are appropriate to the ice particle size range (e.g. PSD moments) of interest.
In this way, these polynomial fits can easily be applied to cloud and climate models without much
interference in model architecture (since many of these models have their cloud microphysics
formulated in terms of these m-D and 4-D power laws). The prefactor and exponent for these
power laws vary slowly with D, and significantly greater accuracy can be achieved when
calculating cloud properties from these fit equations relative to power laws having a fixed prefactor
and exponent. Treating ice particles as spheres in cloud models was shown to produce large

microphysical errors.
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Remote sensing algorithms that retrieve cloud properties strongly depend on m-D and 4-D power
laws, with confidence levels for the retrieved cloud property often largely determined by the
uncertainty associated with these power laws (e.g. Delanoe and Hogan, 2010). This study has
quantified these uncertainties and has found that most of the uncertainty lies in the prefactor.
Application of these m-D and 4-D uncertainties to the remote sensing of ice cloud properties will
likely improve the confidence of such retrievals. This study was focused only on mid-latitude
continental ice clouds, and not on marine anvil or synoptic cirrus, orographic cirrus and/or Arctic
ice clouds. Application of BL2006 (which is based on a subset of SCPP data from mid-latitude
continental clouds) to tropical anvil clouds produced IWC with only ~ 18% difference compared
to measured bulk IWC (Lawson et al. 2010). However, use of BL2006 in artic mixed phase clouds
leads to IWC ~ 100% larger than measured bulk IWC (Jackson et al. 2012). Additional research is

required to apply and test the approach introduced in this study in different environments.

Appendix A: Comparison between M1 and M7 methods for 2D-S probe

There are various methods to process 2D-S data, such as M1, M2, M4, and M7 methods (Lawson,
2011). Explanation and comparison of all these methods are beyond the scope of this paper. The
M1 method was originally used in this study, but the newly developed M7 method replaced the
M1 method for two main reasons. First, the M1 and M7 methods differ on the measurement of
particle dimensions, as is shown in Fig. Al. Two ice particles with different shapes are shown to
give the reader an idea of how the different length scales (L1, L4, and MaxLength) for different
ice particle shapes are measured and calculated by the 2D-S and its respective software. The
horizontal direction represents the direction of particle travel into the 2D-S probe and is sometimes
referred to as the time dimension. The M1 method calculates maximum dimension as the
dimension along the direction of travel (length scale L1), whereas the M7 method calculates the
maximum dimension of the particle 2D image as the diameter of a circumscribed circle (length
scale MaxLength). Therefore, M7 method provides a more realistic measurement of maximum
dimension, compared to many other studies that used L/. Note that length scale L4 in Fig. Al is
not the particle “height” range (projected along the vertical photodiode array) during its entire
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transit time through the sample volume; rather it is a measure of particle width at a given instant.

Moreover, L4 is the maximum value of all these time-slices (i.e. widths) measured.

Second, the M1 and M7 methods are distinct in the treatment of particles that intersect the edges
of the 2D-S field of view. Using the M1 method, all particles are included in the measurement of
projected area and number concentration, even particles that intersect the edges of the 2D-S field
of view, and in those cases their maximum dimension and projected area is approximated. When
using the M7 method, only particles that are completely inside the 2D-S field of view (‘“all-in”
particles) are included. This provides an accurate measurement of projected area and maximum
dimension for all particles. Although the sample volume decreases by using M7 method, such a
decrease is not significant. Figures S1 and S3 show number concentration and area concentration
as functions of maximum dimension for cases of synoptic and anvil cirrus clouds, respectively. It
is seen that the M1 and M7 methods agree well for both number concentration and area
concentration, with a larger difference between the M1 and M7 methods observed for larger
particles (D > 300 um). Moreover, the comparison of the M1 and M7 methods for the PSD number
concentration and extinction is displayed in Figs. S2 and S4. The difference in PSD projected area
(i.e. extinction) between the M1 and M7 methods does not exceed 5 % and 13 % for synoptic and
anvil cirrus clouds, respectively. In other words, the difference for projected area is more
pronounced in anvil than in synoptic cirrus due to slightly larger ice particles in anvil clouds that

have a greater chance of intersecting the edges of the 2D-S field of view.

Appendix B: Calculation of ice particle mass from CPl measurements of projected

area and aspect ratio

There is no direct measurement of ice particle mass by the CPI probe. Moreover, the BL2006 m-
A relationship is based on ice particles larger than ~ 150 um. Therefore, we developed a new
method for estimating mass based on CPI measurements of ice particle projected area, length and
width. It is assumed that when 10 um < D < 100 um, all ice crystals are hexagonal columns. The
apparent aspect ratio (¢), defined as the CPI measured mean length-to-width ratio for a given size-
interval, is generally between 1 and 2 in this size range and the ice crystals are known to be

relatively dense (more mass per maximum dimension), making this shape assumption a reasonable
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approximation (Korolev and Isaac, 2003; Lawson et al., 2006b; C2012). This is considerably more

accurate than assuming ice particles to be spherical.

Figure Bl.a shows the geometrical features of a hexagonal prism that has eight faces: two basal
faces with hexagonal shape and six prism faces with rectangular shape. The axis along the prism

face is defined as the c-axis and the maximum dimension across the basal face is defined as the a-

axis. The true aspect ratio () of a hexagonal column is defined as < (Lamb and Verlinde, 2011;
a

Pruppacher and Klett, 1998). Since the CPI provides 2-D images, { and ¢ can be different due to
crystal orientation. As far as we know, there is no preferred orientation for small ice crystals
entering the CPI probe sample volume. Therefore, we assume random orientation and develop a

method to estimate { from ¢ as described here.

Consider three planes in the 3-D space: one plane orthogonal to the direction of view or beam
direction (hereafter called P1; Fig. B1.a), and two planes orthogonal to the first plane in alignment

with the direction of view (hereafter called P2 and P3). When the c-axis is parallel to P1, all
orientations of a hexagonal column yield the projected area equal to area of the prism face (Ap’mx
), as shown in Fig. B1.b. However, when the c-axis is parallel to P2 or P3, the maximum and
minimum projected areas correspond to Ap,max and the area of the basal face (Ab,max), respectively
(Figs. Bl.c and B1.d). Therefore, for both P2 and P3, the average hexagonal column projected area

corresponds to the average projected area of these two extremes; (A, . + 4y mex)/ 2. Thus, the

p,max
average projected area for all orientations <A> can be estimated as the average of the mean

projected area in three planes:

1 Ap,max + Ab,max Ap,max + Ab,max
(4)~ E(Ap’max + + : B1)

3
Since Ap,max is equal to ac (area of rectangle), and Ab’max is equal to 3? a’/8 (area of hexagon):
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<A>zl 2ac + 3%a , (B2)
3 8

1 Noting that ¢ = { a, we can write:

3

0 2
<A>z§ 2§a2+328“ | (B3)

2 Expanding on the insight from Eq. (B1), { can be estimated from ¢. In the P1 plane, ¢ is equal to ¢.

3 However, for P2 and P3, there are two extremes: ¢ = when 4 = 4 ande=1when 4=4

p,max > b,max
4 . So, the crystal orientation and apparent aspect ratio representing P2 and P3 will be the average

5 ofthese two extremes (£ +1)/2. The overall value for ¢ should equal the average apparent aspect
6  ratio corresponding to all three planes. Therefore, ¢ is equal to [¢ + (¢ +1)/2+ (¢ +1)/2]/3, and

7  we can write:

&= %(2; +1). (B4)
8  Solving for { from Eq. (B4):
;G- (B5)
2
9 Let Acpi be the CPI measurement of projected area. Then, Eq. (B3) represents Acpi , and it can be

10  used to estimate a:

N T (B6)
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Volume of a hexagonal column (V) is defined as:

3
32,
Vi= 5|4 (B7)

The mass of a hexagonal column (m) is equal to P,/ where p; is bulk density of ice and is equal

to 0.917 g cm™. Therefore, the ice particle mass can be estimated from a and ( as:

3
35
m.; = p; Y a’s (BY)

Since {and a are calculated from Egs. (B5) and (B6), respectively, m,, is estimated from Acpi and

€.

One benefit of the hexagonal column assumption is consideration of ice particle aspect ratio. The
spherical ice assumption means that the aspect ratio is unity. Assuming that ice particles are

spherical, their mass can be calculated as a function of projected area (e.g.
3/2 . .
M phere = P mz‘lsphe,e ). We calculated the percent difference of mass between the spherical

and hexagonal column assumptions (where column aspect ratio = 1.0), and this value is ~ 4%.

Appendix C: List of symbols

a maximum dimension across the basal face of a hexagonal crystal
a, prefactor in fall speed-dimension power law
A projected area

<A> average projected area of a hexagonal crystal for all orientations
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4, .. areaof the basal face of a hexagonal crystal

Ap,max area of the prism face of a hexagonal crystal

Ar

A

D,

Ol

D.

D;

Dp

IWC

area ratio

total PSD projected area

exponent in fall speed-dimension power law

length along the prism face of a hexagonal crystal
maximum dimension of ice particle
characteristic dimension of the ice PSD
mean maximum dimension of a PSD
median area dimension

effective diameter

dimension of interest

median mass dimension

number concentration dimension
reflectivity dimension

gravitational constant

ice water content

mass of ice particle

number concentration

33



10

11

12

13

14

15

16

17

18

19

20

No

PSD

R2

Vin

prefactor of a gamma PSD
particle size distribution
relative ratio of mass to areca
coefficient of determination
temperature

terminal fall speed of ice particle

volume of a hexagonal crystal

mass-weighted terminal fall speed

radar reflectivity

Best number

prefactor in mass-dimension power law
exponent in mass-dimension power law
prefactor in projected area-dimension power law
exponent in projected area-dimension power law
gamma function

apparent aspect ratio

true aspect ratio

dynamic viscosity of air

slope parameter of a gamma PSD

dispersion parameter of a gamma PSD
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o standard deviation

P  density of air

pP;  bulk density of ice
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Table 1. Polynomial curve fits of the form In m = ap + a; In D + a2 (In D)? for synoptic and anvil
cirrus clouds sampled during SPARTICUS, where m is in grams and D is in cm. The only
exception is for synoptic cirrus between -20 and -40 °C, where SCPP data was used in lieu of
SPARTICUS data, as shown in Fig. 3. The number of m-D samples is given by N, along with the

coefficient of determination (R?) of the curve fit. See Sect. 3 for details.

Temperature Range ao ai a: N R’
Synoptic Cirrus Clouds

40°C<T<-20°C -6.72924 1.17421 -0.15980 201 0.99702
-55°C<T<-40°C -7.21010 1.26123 -0.12184 139 0.99507
-65°C<T<-55°C -11.34570  -0.45436 -0.29627 54 0.99283
Anvil Cirrus Clouds

40°C<T<-20°C -6.67252 1.36857 -0.12293 226 0.99773
-55°C<T<-40°C -6.44787 1.64429 -0.07788 160 0.98368
-65°C<T<-55°C -9.24318 0.57189 -0.17865 49 0.98285
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1 Table 2. Polynomial curve fits of the form In 4 = agp + a; In D + a2 (In D)? for synoptic and anvil
2 cirrus clouds sampled during SPARTICUS, where 4 is in cm? and D is in cm. The number of 4-D

3 samples is given by N, along with the coefficient of determination (R?) of the curve fit.

Temperature Range ao ai a: N R’

Synoptic Cirrus Clouds

-40°C<T<-20°C -2.46356 1.25892 -0.07845 201 0.99803
-55°C<T<-40°C -2.60478 1.32260 -0.05957 139 0.99781
-65°C<T<-55°C -4.63488 0.54233 -0.13260 54 0.99784

Anvil Cirrus Clouds

-40°C<T<-20°C -2.40314 1.29749 -0.07233 226 0.99852
-55°C<T<-40°C -2.38913 1.40166 -0.05219 160 0.99753
-65°C<T<-55°C -2.43451 1.60639 -0.01164 49 0.98606
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1 Table 3. Uncertainty estimates for mass-dimension power f for synoptic cirrus clouds.

Ice Particle Size ( pm)

Temperature Range 50 150 500 1500 4500
Power f

-25°C<T<-20°C 2792 2455 2085 1.748 1.411
-30°C<T<-25°C 2.846 2449 2015 1.618 1.221
-35°C<T<-30°C 2773 2429 2053 1.710 1.367
-40°C<T<-35°C 2,642 2371 2073 1.802 1.530
-45°C<T<-40°C 2556 2254 1923 1.621 1.320
-50°C<T<-45°C 2549 2276 1977 1.704 1.431
-55°C<T<-50°C 2495 2322 2133 1960 1.787
-60°C<T<-55°C 2686 2.064 1382 - -—--

-65°C<T<-60°C 2.863 1.732  ---- o o

Mean S 2,689 2261 1955 1.738 1.438
Standard Deviation of 0.129 0220 0.225 0.109 0.168

Mean Uncertainty (%) 9.031




1

Table 4. Same as Table 3, but for anvil cirrus clouds.

Ice Particle Size ( pm)

Temperature Range 50 150 500 1500 4500
Power S

-25°C<T<-20°C 2614 2387 2138 1911 1.683
-30°C<T<-25°C 2726 2426 2.098 1.799 1.499
-35°C<T<-30°C 2.653 2394 2.110 1.850 1.591
-40°C<T<-35°C 2679 2394 2083 1.798 1.513
-45°C<T<-40°C 2,655 2370 2.058 1.773  1.488
-50°C<T<-45°C 2531 2302 2051 1.822 1.593
-55°C<T<-50°C 2432 2273 2.100 1941 1.782
-60°C<T<-55°C 2533 2105 1.637 - -
-65°C<T<-60°C 2446 1956 1419 - -—--
Mean S 2585 2290 1966 1.842 1.593
Standard Deviation of 0.105 0.159 0.255 0.063 0.108
Mean Uncertainty (%) 6.715
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1 Table 5. Uncertainty estimates for area-dimension power ¢ for synoptic cirrus clouds.

Ice Particle Size ( pm)

Temperature Range 50 150 500 1500 4500
Power o

-25°C<T<-20°C 2.133 1938 1.725 1.531 1.337
-30°C<T<-25°C 2,170 1932 1.671 1432 1.194
-35°C<T<-30°C 2.140 1927 1.693 1480 1.267
-40°C<T<-35°C 2027 1.882 1.722 1576 1.431
-45°C<T<-40°C 2011 1.821 1.612 1422 1.232
-50°C<T<-45°C 1.941 1810 1.666 1.534 1.403
-55°C<T<-50°C 1.861 1.842 1.821 1.801 1.782
-60°C<T<-55°C 1.960 1.669 1350 ---- -

-65°C<T<-60°C 2018 1509 - o -—--

Mean 6 2.029 1814 1.658 1.540 1.378
Standard Deviation of 0 0.103 0.142 0.138 0.128 0.198

Mean Uncertainty (%) 8.428




1

Table 6. Same as Table 5, but for anvil cirrus clouds.

Ice Particle Size ( pm)

Temperature Range 50 150 500 1500 4500
Power 6

-25°C<T<-20°C 2023 1.899 1.763 1.639 1.515
-30°C<T<-25°C 2.108 1.925 1.724 1.541 1.357
-35°C<T<-30°C 2051 1900 1.735 1.584 1.434
-40°C<T<-35°C 2063 1.894 1.708 1.539 1.370
-45°C<T<-40°C 2.055 1.885 1.698 1.528 1.358
-50°C<T<-45°C 1.943 1.828 1.701 1.586 1.470
-55°C<T<-50°C 1.869 1.808 1.740 1.679 1.618
-60°C<T<-55°C 1.760 1.753 1.746  ---- -—--
-65°C<T<-60°C 1.754 1561 1350 ---- -
Mean 6 1.959 1.828 1.685 1.585 1.446
Standard Deviation of 0 0.135 0.114 0.128 0.056 0.097
Mean Uncertainty (%) 6.233
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Figure Captions

Figure 1. Dependence of ice particle mass (m) on ice particle maximum dimension (D), based on
a variety of power law relationships in the literature (see text for details). Ice spheres indicate an
upper limit for m at a given D. P1b, Plc and P1d denote planar crystals with sectorlike branches,

broad branches and stellar dendrites, respectively, as described in Mitchell (1996).

Figure 2. SPARTICUS PSD sampling statistics for synoptic and anvil cirrus clouds where the

PSDs have been grouped into temperature intervals of 5 °C.

Figure 3. Dependence of ice particle mass on D for mean PSDs sampled from synoptic cirrus
clouds during SPARTICUS for -40°C < T'< -20°C (blue curve fit based on CPI and 2D-S data),
where a single mean PSD is the mean of all PSD contained within a 5 °C temperature interval.
Also shown are CPI and SCPP data that are grouped into size-bins for the indicated temperature
ranges and the black curve fit based on these data (see Table 1 for equation). The grey line for ice

spheres gives the maximum possible mass for a given D.

Figure 4. Comparison of all the curve fits in Table 1 for each temperature regime (indicated by
color) and cloud type (indicated by line type; solid or dashed). The anvil and synoptic curve fits

are very similar.

Figure 5. Dependence of ice particle projected area (4) on D based on mean PSD within the
indicated temperature regime. The CPI and 2D-S data have been grouped into size-bins, and the

black solid curve is a fit to these datasets (see Table 2 for equation).

Figure 6. Fractional uncertainties (standard deviation/mean) for the mean ice particle projected
area in each bin of the measured PSDs. Only temperature intervals having more than two PSDs

are considered.

Figure 7. The m/A ratio for ice particles normalized by the corresponding m/A4 ratio for ice spheres
using the m-D and A-D curve fits appropriate for the indicated temperature regime. Blue curve is

based on Tables 1 and 2, but black curve is only based on 2D-S data.

Figure 8. The m-D curve fit based on SCPP and CPI data (for indicated temperature regime) is
compared with individual ice particle m-D measurements from SCPP, corresponding to ice particle
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shapes originating from similar temperatures. The number of ice particles sampled in each shape
category is indicated. Also shown are comparisons with two other studies that derived m-D power

laws from ice cloud field data.

Figure 9. Same as Fig. 8, except the m-D curve fit is based on SPARTICUS (2D-S & CPI) data
and the SCPP field data have been grouped into size-bins; shown are the standard deviations (o)

in m and D for each size-bin. Mean values for m and D are shown by the intersection of the o-bars.

Figure 10. Mean area ratios for each mean PSD size-bin are shown as a proxy for ice particle
shape. Temperature intervals corresponding to each mean PSD are indicated for synoptic ice

clouds.
Figure 11. Same as Fig. 10, but for anvil ice clouds.

Figure 12. Dependence of the ice particle N on D using the 4 methods indicated for determining
o and f. The black and blue curves use the m-D curve fit based on Table 1 for the indicated

temperature range, with the black curve a and g evaluated at D = 500 um.

Figure 13. Dependence of the De on D using the 3 methods indicated for determining a, f, y and
0. The black and blue curves use the m-D curve fit based on Table 1 and A-D curve fit based on
Table 2 for the indicated temperature range, with the black curve a, f, y and o evaluated at D =

500 pm.
Figure 14. Same as Fig. 13, but for the dependence of ¥,, on D.

Figure Al. Geometry of dimension measurements showing length scales for the M1 method (L)
and the M7 method (MaxLength) for two different ice particle shapes. Courtesy of Paul Lawson

and Sara Lance.

Figure B1. a) 3-D geometry of a hexagonal prism, representative of small ice crystals. Assuming
that the direction of view (beam direction) is along the x axis, P1 is orthogonal to x axis, P2 is
orthogonal to y axis, and P3 is orthogonal to z axis. Also shown is the projection of a hexagonal
prism for three extremes, when its c-axis is parallel to b) P1, c) P2, and d) P3. See text for the

definition of various symbols.

49



o v B~ W

i / ]

107" ¢ :

g 1072L |

” - :

2 107

o - Ice spheres —_— .

'_E 107 = Brown & Francis 3

D“_“ - Cotton et al. 2012 ------ -

@ 107° 3 Hexagonal columns E

A : Pib ]

107°%E Plc .

N Pid :

1077 Ll Lol L1 g
101 107 10° 10*

Ice Particle Size (um)

Figure 1. Dependence of ice particle mass (m) on ice particle maximum dimension (D), based on
a variety of power law relationships in the literature (see text for details). Ice spheres indicate an
upper limit for m at a given D. P1b, P1c and P1d denote planar crystals with sectorlike branches,

broad branches and stellar dendrites, respectively, as described in Mitchell (1996).
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Figure 2. SPARTICUS PSD sampling statistics for synoptic and anvil cirrus clouds where the

PSDs have been grouped into temperature intervals of 5 °C.
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Figure 3. Dependence of ice particle mass on D for mean PSDs sampled from synoptic cirrus
clouds during SPARTICUS for -40°C < T < -20°C (blue curve fit based on CPI and 2D-S data),
where a single mean PSD is the mean of all PSD contained within a 5 °C temperature interval.
Also shown are CPI and SCPP data that are grouped into size-bins for the indicated temperature
ranges and the black curve fit based on these data (see Table 1 for equation). The grey line for ice

spheres gives the maximum possible mass for a given D.
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Figure 4. Comparison of all the curve fits in Table 1 for each temperature regime (indicated by
color) and cloud type (indicated by line type; solid or dashed). The anvil and synoptic curve fits

are very similar.
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Figure 5. Dependence of ice particle projected area (4) on D based on mean PSD within the
indicated temperature regime. The CPI and 2D-S data have been grouped into size-bins, and the

black solid curve is a fit to these datasets (see Table 2 for equation).
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are considered.
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Figure 8. The m-D curve fit based on SCPP and CPI data (for indicated temperature regime) is
compared with individual ice particle m-D measurements from SCPP, corresponding to ice particle
shapes originating from similar temperatures. The number of ice particles sampled in each shape
category is indicated. Also shown are comparisons with two other studies that derived m-D power

laws from ice cloud field data.
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Figure 9. Same as Fig. 8, except the m-D curve fit is based on SPARTICUS (2D-S & CPI) data
and the SCPP field data have been grouped into size-bins; shown are the standard deviations (o)

in m and D for each size-bin. Mean values for m and D are shown by the intersection of the o-bars.
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Figure 11. Same as Fig. 10, but for anvil ice clouds.
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Figure 12. Dependence of the ice particle N on D using the 4 methods indicated for determining
o and f. The black and blue curves use the m-D curve fit based on Table 1 for the indicated

temperature range, with the black curve a and f evaluated at D = 500 um.
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Figure B1. a) 3-D geometry of a hexagonal prism, representative of small ice crystals. Assuming
that the direction of view (beam direction) is along the x axis, P1 is orthogonal to x axis, P2 is
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