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Abstract 13 

Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate 14 

change so that, in the future, a climate penalty could jeopardize the expected efficiency of air 15 

pollution mitigation measures. A common method to assess the impact of climate on air 16 

quality consists in implementing chemistry-transport models forced by climate projections. 17 

However, the computing cost of such methods requires optimizing ensemble exploration 18 

techniques.  19 

By using a training dataset from a deterministic projection of climate and air quality over 20 

Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe 21 

and developed statistical models that could be used to predict air pollutant concentrations. The 22 

evolution of the key climate variables driving either particulate or gaseous pollution allows 23 

selecting the members of the EuroCordex ensemble of regional climate projections that 24 

should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-25 

LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex 26 

terminology). 27 
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After having tested the validity of the statistical model in predictive mode, we can provide 1 

ranges of uncertainty attributed to the spread of the regional climate projection ensemble by 2 

the end of the century (2071-2100) for the RCP8.5.  3 

In the three regions where the statistical model of the impact of climate change on PM2.5 4 

offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 5 

concentrations under future climate) of -1.08 (± 0.21) µg/m
3
, -1.03 (± 0.32) µg/m

3
, -0.83 (± 6 

0.14) µg/m
3
, for respectively Eastern Europe, Mid Europe and Northern Italy. In the British 7 

Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model 8 

is not considered skillful enough to draw any conclusion for PM2.5. 9 

In Eastern Europe, France, the Iberian Peninsula, Mid Europe and Northern Italy, the 10 

statistical model of the impact of climate change on ozone was considered satisfactory and it 11 

confirms the climate penalty bearing upon ozone of 10.51 (± 3.06) µg/m
3
, 11.70 (± 3.63) 12 

µg/m
3
, 11.53 (± 1.55) µg/m

3
, 9.86 (± 4.41) µg/m

3
, 4.82 (± 1.79) µg/m

3
, respectively. In the 13 

British Isles, Scandinavia and the Mediterranean, the skill of the statistical model was not 14 

considered robust enough to draw any conclusion for ozone pollution. 15 

 16 

1 Introduction 17 

The main drivers of air pollution are (i) emission of primary pollutants and precursors of 18 

secondary pollutants, (ii) long-range transport, (iii) atmospheric chemistry and (iv) 19 

meteorology (Jacob and Winner, 2009). We can thus anticipate that air quality is sensitive to 20 

climate change taking as example the link between heat waves and large scale ozone episodes 21 

(Vautard et al., 2005). But in addition to the direct impact of climate change on air pollution 22 

through the change in frequency and severity of synoptic conditions conducive to the 23 

accumulation of air pollutants we must also note that climate can have an impact on 24 

anthropogenic and biogenic  emission of pollutants and precursors (Langner et al., 2012b) as 25 

well as on changes in the global background of pollution, and therefore long range transport 26 

(Young et al., 2012). There is therefore a concern that in the future, climate change could 27 

jeopardize the expected efficiency of pollution mitigation measures, even if the available 28 

studies indicate that if projected emission reductions are achieved they should exceed the 29 

magnitude of the climate penalty (Colette et al., 2013;Hedegaard et al., 2013). 30 
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The most widespread technique used to assess the impact of climate change on air quality 1 

consists in implementing regional climate projections in Chemistry Transport Models (CTM) 2 

(Jacob and Winner, 2009). The computational cost of such technique is substantial given that 3 

it involves multi-annual global climate simulations, dynamical downscaling through regional 4 

climate simulations and ultimately CTM simulations. Besides the computational cost, it also 5 

raises technical difficulties in collecting, transferring and managing large amounts of model 6 

data. Unlike many climate impact studies, CTM projections require Regional Climate Model 7 

fields in three dimensions and at high temporal frequency, whereas many regional climate 8 

modelling groups only store a few vertical levels in compliance with the CORDEX data 9 

archiving protocols. Altogether, these difficulties led to the use of a single source of climate 10 

projections in the majority of future air quality projections (Meleux et al., 2007;Katragkou et 11 

al., 2011;Jiménez-Guerrero et al., 2012;Langner et al., 2012b;Colette et al., 2013;Hedegaard 12 

et al., 2013;Varotsos et al., 2013;Colette et al., 2015) or two at most in published studies 13 

(Huszar et al., 2011;Juda-Rezler et al., 2012;Langner et al., 2012a;Manders et al., 2012). 14 

There are examples where more than two climate forcing are used, but then they are 15 

implemented with different CTMs, so that the uncertainties in the spread of RCM and CTMs 16 

is aggregated, thereby offering a poor understanding of the climate uncertainty. In addition, it 17 

should be noted that the choice of the climate driver is generally a matter of opportunity rather 18 

than an informed choice. These studies capture trends and variability but their coverage of 19 

uncertainty is not satisfactory in the climate change context. This unsatisfactory handling of 20 

uncertainties is well illustrated by the divergence in the very sign of the impact of climate 21 

change on particulate matter (e.g. (Lecœur et al., 2014) find a climate benefit for PM2.5 in 22 

Europe while (Manders et al., 2012) suggest the opposite). Thus the lack of multi-model 23 

approach in air quality projections is a serious caveat that needs to be tackled in order to 24 

comply with best practices in the field of climate impact research, where ensemble 25 

approaches is state of the art.  26 

Hence, in order to assess the climate uncertainties on surface ozone and particulate matter 27 

over Europe in a changing climate, we developed an alternative method which does not 28 

require forcing a CTM with an ensemble of climate models. It consists in developing a 29 

statistical model fitted to a deterministic CTM simulation forced by a single RCM that can be 30 

subsequently applied to a larger ensemble of regional climate projections. This method allows 31 
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selecting the members of the RCM ensemble that offer the widest range in terms of air quality 1 

response, somehow the “air quality sensitivity to climate change projections”. These selected 2 

members should be used in priority in future air quality projections. A byproduct of our 3 

statistical air quality projections is that we explore an unprecedented range of climate 4 

uncertainty compared to the published literature that relies, at best, on two distinct climate 5 

forcings. The confidence we can have in these statistical projections is of course limited by 6 

the skill of the statistical model. Our approach of using a simplified air quality impact model 7 

but with a larger range of climate forcing can therefore be considered complementary with the 8 

more complex CTMs used with a limited number of climate forcings. The use of such a 9 

methodology is inspired from earlier work in the field of hydrology, where (Vano and 10 

Lettenmaier, 2014) have estimate future stream-flow by using a sensitivity-based approach 11 

which could be applied to generate ensemble simulations. Such a hybrid statistical and 12 

deterministic approach has also been used in the past in the field of air quality, but mostly for 13 

near-term and local forecasting, relying on statistical models of various complexity (i.e. Land 14 

Use Regression, Neural Network, Nonlinear regression, Generalized Additive Models etc.) 15 

(Prybutok et al., 2000;Schlink et al., 2006;Slini et al., 2006). The most relevant example in the 16 

context of future air quality projection is that of (Lecœur et al., 2014), that use the technique 17 

of wind regime analogues, although they did not apply their approach to an ensemble of 18 

climate projections. 19 

This paper deals with all the steps needed to build the proxy of ensemble. First (Section 2) we 20 

present the methods and input data: the design of the statistical model of the air quality 21 

response to meteorological drivers is presented as well as the deterministic modelling 22 

framework used to create our training dataset. Section 3 focuses on results. The deterministic 23 

air quality projections are presented for ozone peaks and PM2.5 in Section 3.1. The selected 24 

statistical models for each region are evaluated in Section 3.2 for ozone, PM2.5 and each sub-25 

constituent of the particulate matter mix. The relevance of the statistical method to evaluate 26 

climate uncertainties and optimize the exploration of the ensemble of climate projections is 27 

discussed in Section 4.  28 
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2 Methodology  1 

2.1 Design 2 

We consider ozone and PM2.5 as the main pollutants of interest for both purposes: public 3 

health (Dockery and Pope, 1994;Jerrett et al., 2009) and climate interactions (IPCC 2013). 4 

For both of them, we investigated the best correlation that can be found for various European 5 

subregions using the following meteorological variables as predictants: near surface 6 

temperature (T2m), daily precipitation, incoming short wave radiation, planetary boundary 7 

layer (PBL) depth, surface wind (U10m) and specific humidity.  8 

The choice of these meteorological variables is based on an analysis of the literature on the 9 

chemical and physical processes linking air pollution and meteorology. For PM2.5, turbulent 10 

mixing, often related to the depth of the planetary boundary layer, dominates (McGrath-11 

Spangler et al., 2015). A decrease of the PBL depth lead to either (i) an increase of the 12 

concentration of pollutants because the lower mixing volume (Jiménez-Guerrero et al., 2012) 13 

or (ii) a decrease of their concentrations because of their faster dry deposition to surface 14 

receptors (Bessagnet et al., 2010). The wind plays also multiple roles for PM2.5. High wind 15 

speed favors the dilution of particulate matter (Jacob and Winner, 2009) but enhances sea-salt 16 

and dust mobilization (Lecœur and Seigneur, 2013). Precipitation is often reported as a major 17 

sink of PM2.5 through wet scavenging (Jacob and Winner, 2009). Water vapor participates in 18 

aerosol formation during nucleation processes. Moreover, it can have an impact on the rates 19 

of certain chemical reactions, similarly to temperature. The overall impact of temperature on 20 

PM2.5 is difficult to isolate because of the mix of components contributing to PM2.5 21 

(organic, inorganic, dust, sea-salt…) and possible compensating effects. For instance, 22 

according to (Jacob and Winner, 2009), a temperature rise has opposite effects for sulphate 23 

and nitrate (respectively an increase and a decrease of concentrations). But for the overall 24 

PM2.5 mass, an increase in temperature will decrease the concentration as a result of higher 25 

volatility and subsequent higher aerosol to gas phase conversion (Megaritis et al., 2014).  26 

As far as ozone is concerned, temperature is expected to play a major role as it catalyzes 27 

atmospheric chemistry (Doherty et al., 2013). Moreover increasing temperature and solar 28 

radiation enhance isoprene emission which is a biogenic precursor of ozone (Langner et al., 29 

2012b;Colette et al., 2013). Finally changing the amount of incoming short wave radiation 30 
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will play a role on ozone photochemistry, either by enhancing its photolysis by the hydroxyl 1 

radical in the presence of water vapor and short wave radiation or by enhancing its production 2 

in the presence of photolysed nitrogen dioxide (Doherty et al., 2013). The impact of the PBL 3 

depth on ozone varies with the meteorological conditions. Increasing the depth of the PBL 4 

dilutes ozone concentrations, but it may also favors the dilution of nitrogen oxides close to the 5 

sources, therefore leading to an increase in ozone concentrations in NOx saturated areas 6 

(Jacob and Winner, 2009). The amount of water vapor in the atmosphere mostly drives the 7 

abundance of the hydroxyl radical (OH). OH is involved in ozone destruction through several 8 

processes (i.e. photolysis, HNO3 production) (Varotsos et al., 2013). It is also involved in 9 

ozone production via the formation of NO2 and radicals (Seinfeld and Pandis, 2008). 10 

Starting from the above list of meteorological predictants, we aim to develop a statistical 11 

model of ozone and particulate matter for each of the eight European climatic regions defined 12 

in the PRUDENCE project  (Christensen and Christensen, 2007). These regions are: British 13 

Isles (BI), Iberian Peninsula (IP), France (FR), Mid Europe (ME), Scandinavia (SC), Northen 14 

Italy (NI – referred to as the Alps in Climate studies but chiefly influenced by the polluted Po-15 

Valley in the air quality context), Mediterranean (MD) and Eastern Europe (EA). For each of 16 

these regions, a spatial average of predictants (meteorological variables) and pollutant 17 

concentrations values is taken. The statistical model is based on daily averages for all 18 

meteorological and air pollutant concentrations except ozone for which the daily maximum of 19 

8-hr running means is used. The seasonality is removed by subtracting the average seasonal 20 

cycle over the historical period. It should be noted that focusing on aggregated quantities 21 

greatly improves the skill of the statistical model that would struggle in capture higher 22 

temporal frequency and spatial resolution. An analogy is presented in (Thunis et al., 2015) 23 

who demonstrated that annual mean ozone and particulate matter responses to incremental 24 

emission changes were much more linear than previously thought. 25 

For each region and each pollutant, we first select the two most discriminating predictants by 26 

testing all the possible couple of meteorological variable and selecting those that reach the 27 

highest correlation. In a second stage we design the actual statistical model that consists of a 28 

Generalized Additive Model based on the two most discriminating perdictants (Wood, 2006). 29 

It is to facilitate the geophysical interpretation that we use two meteorological variables 30 

instead of a linear combination of multiple variables (i.e. Prior Principal Component Analysis 31 
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axes). Limiting their number to two also allows remaining in a 2D physical parameter space 1 

that supports the discussion as will be illustrated below.  2 

2.2 Training and validation datasets 3 

The datasets used to fit and test the statistical models are produced by the regional climate and 4 

air quality modelling framework presented in (Colette et al., 2013). By using deterministic 5 

climate and chemistry models from the global to the regional scale, they could produce long 6 

term air quality projections over Europe. The Earth System Model (ESM) which drives these 7 

simulations is the IPSL-CM5A-MR (Dufresne et al., 2013). The global data used in this study 8 

were produced for the Coupled Model Intercomparison Project Phase 5 initiative (CMIP5) 9 

(Taylor et al., 2012;Young et al., 2012). Then the climate data obtained by the ESM are 10 

dynamically downscaled with the regional climate model WRF (Skamarock et al., 2008). The 11 

spatial resolution is 0.44 degrees over Europe (Colette et al., 2013). These simulations were 12 

part of the low-resolution simulations performed within the framework of the European-13 

Coordinated Regional Climate Downscaling Experiment program (EURO-CORDEX) (Jacob 14 

et al., 2014). Whereas higher spatial resolution simulations are available in the EuroCordex 15 

ensemble, the 0.44 resolution were considered appropriate for air quality projections in 16 

agreement with other publications (Meleux et al., 2007;Langner et al., 2012a;Langner et al., 17 

2012b;Manders et al., 2012;Colette et al., 2013;Hedegaard et al., 2013;Watson et al., 2015), 18 

and also because higher RCM resolution are not specifically performed to improve the 19 

climate features that are most sensitive for air quality purposes (temperature, solar radiation, 20 

stagnation events, triggering of low-intensity precipitation events etc.). Finally the regional 21 

climate fields are used to drive the CTM CHIMERE (Menut et al., 2013), for the projection of 22 

air quality under changing climate. Since we are only interested in the effect of climate 23 

change, pollutant emissions remain constant at their level of 2010, as prescribed in the 24 

ECLIPSE-V4a dataset (Klimont et al., 2013). Similarly, chemical boundary conditions 25 

prescribed with the INCA model (Hauglustaine et al., 2014) as well as the land-use are also 26 

kept constant.  27 

The Chemistry and Transport Model CHIMERE has been used in numerous studies: daily 28 

operational forecast (Rouïl et al., 2009), emission scenario evaluation (Cuvelier et al., 2007), 29 

evaluation in extreme events (Vautard et al., 2007), long term studies (Colette et al., 30 
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2011;Wilson et al., 2012;Colette et al., 2013) and inter-comparisons models and ensembles 1 

(Solazzo et al., 2012a;Solazzo et al., 2012b).  2 

The model performances depend on the setup but general features include a good 3 

representation of ozone daily maxima and an overestimation of night-time concentrations, 4 

leading to a small positive bias in average ozone (van Loon et al., 2007). Concerning 5 

particulate matter, similarly to most state-of-the-art CTMs, the CHIMERE model presents a 6 

systematic negative bias (Bessagnet et al., 2014). Regarding more specifically its 7 

implementation in the context of a future climate, evaluations of the CHIMERE model are 8 

presented in (Colette et al., 2013;Colette et al., 2015) and also (Watson et al., 2015) and 9 

(Lacressonniere et al., 2016). 10 

The training dataset used to build the statistical models consists of the historical air quality 11 

simulations (1976 to 2005), while projections of air quality under a future climate (RCP8.5 12 

2071-2100) will be used for testing purposes. 13 

In order to evaluate the uncertainty related to climate change, the statistical models should be 14 

skillful for both pollutant concentrations over the historical period (training period) and in 15 

predictive mode. Alternative RCM forcing of the CHIMERE CTM could be used to test the 16 

approach. Unfortunately, such alternatives are not available at this stage. The statistical 17 

ensemble exploration technique presented here will ultimately allow selecting the RCM that 18 

should be used in priority to cover the range of uncertainties in air quality and climate 19 

projections. When such simulations become available, we will be able to further test the skill 20 

of the statistical model. However, so far, the only validation that could be included here was 21 

to rely on a future time period as validation dataset. The underlying hypothesis is that the 22 

historical range of meteorological parameters used to train the model will be exceeded in the 23 

future, therefore offering an appropriate testing dataset. The results of this validation are 24 

presented in section 3.2. 25 

2.3 Projection dataset  26 

To evaluate the uncertainty related to the climate forcing, and identify the RCM that should 27 

be used in priority for future air quality projections, the statistical model of air quality is used 28 

in predictive mode using the regional climate projections performed in the framework of the 29 

EURO-CORDEX experiment (Jacob et al., 2014). The combinations of global/regional 30 
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climate models used here are: CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4; CNRM-CM5-1 

LR/RCA4; EC-EARTH/RACMO2; EC-EARTH/RC4; GFDL-ESM2M/RCA4; IPSL-CM5A-2 

MR/RCA4; IPSL-CM5A-MR/WRF; MIROC5/RCA4; MPI-ESM-LR/RCA4; MPI-ESM-3 

LR/CCLM; NorESM1-M/RCA4 (see Jacob et al., 2014 for details on the model 4 

nomenclature).  5 

The performances of the global models used to drive the regional projections have been 6 

evaluated in (Jury, 2012;Cattiaux et al., 2013). In the general EuroCordex evaluation, 7 

(Kotlarski et al., 2014) finds a good reproduction of the spatial temperature variability even if 8 

the models exhibit an underestimation of temperature during the winter in the north Eastern 9 

Europe. In addition to this general feature, the specificity of the WRF-IPSL-INERIS member 10 

is an overestimation of winter temperatures in the southeast. In terms of precipitations, most 11 

of the models exhibit a pronounced wet bias over most subdomains.  12 

When focusing on WRF members of the EuroCordex ensemble, (Katragkou et al., 2015) 13 

points out that the IPSL-INERIS member offers one of the best balance between precipitation 14 

and temperature skills. Both studies are limited to the evaluation of RCM used with perfect 15 

boundary conditions (ERA-Interim forcing) and no published study has yet evaluated the 16 

various global/regional combinations. It should also be noted that the ensemble is poorly 17 

balanced in terms of GCM/RCM combinations (see the larger weight of the RCA regional 18 

model which raise important question regarding the representativeness of the ensemble). 19 

3 Development and validation of the statistical model  20 

In this part we studied the end (2071-2100) of the century, for one scenario (RCP8.5) which is 21 

an energy-intensive scenario (van Vuuren et al., 2011). This 30 years period is chosen to be 22 

representative regardless of the inter-annual variability (Langner et al., 2012a). We focus on 23 

the RCP8.5 and the end of the century on purpose to reach a strong climate signal. 24 

3.1 Air quality projections 25 

3.1.1 Fine particulate matter 26 

Figure 1.a shows the 30 years average PM2.5 concentrations over the historical period (1976 27 

to 2005). Higher concentrations are modeled over European pollution hotspots: the Benelux, 28 

the Po Valley, Eastern Europe and large cities. A similar pattern is found in the future 29 
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(RCP8.5 – average over the period 2071-2100) albeit with lower concentrations (Figure 1.b). 1 

The difference (future minus historical) is given in Figure 1.c where the statistical 2 

significance of the changes was represented by black points at each grid points and evaluated 3 

by a Student t-test with Welch variant at the 95% confidence level based on annual mean. The 4 

decrease is statistically significant over most of the domain.  5 

Overall, we identify a climate benefit on particulate matter pollution similarly to (Colette et 6 

al., 2013;Lecœur et al., 2014) but in opposition to (Manders et al., 2012). (Hedegaard et al., 7 

2013) finds a decrease in high latitude and an increase in low latitude. The role of future 8 

precipitation projections and more efficient wet scavenging has often been pointed out to 9 

explain such a future evolution of particulate matter (Jacob and Winner, 2009). However, the 10 

lack of robustness in precipitation evolution over major European particulate pollution 11 

hotspots in regional climate models (Jacob et al., 2014) challenges the confidence we can 12 

have in single model air quality and climate projection, supporting again the need for 13 

ensemble approaches. 14 

3.1.2 Ozone peaks 15 

Figure 1.d represents the summer (JJA) average ozone daily maximum concentrations over 16 

the historical period (1976 to 2005). A North-South gradient appears with lower concentration 17 

in the North and higher concentration fields over the Mediterranean Sea. Figure 1.e 18 

corresponds to the summer average ozone projection of the RCP8.5 at the end of the century 19 

(2071-2100) predicted by the model suite presented in Section 2.2. A similar pattern is found, 20 

with higher concentrations in the southern part of the domain (Figure 1.e). The map of the 21 

difference (RCP8.5 - actual), Figure 1.f, indicates an increase of ozone concentrations over 22 

Eastern Europe, Mediterranean land surfaces, and North Africa and a decrease over British 23 

Isles and Scandinavia. Most of the changes are statistically significant except over West 24 

Europe. This concentration rise is frequently associated to an increase of temperature in the 25 

literature (Meleux et al., 2007;Katragkou et al., 2011), see Section 2.1 above for a review of 26 

physical and chemical processes underlying this association.  27 

Following (Langner et al., 2012b;Manders et al., 2012;Colette et al., 2013;Colette et al., 2015) 28 

these result confirm the fact that climate change constitutes a penalty for surface ozone in 29 

Europe.  30 
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3.2 Statistical models 1 

Here we introduce the statistical models trained over the historical period and their evaluation 2 

over the future testing period. First we discuss the impact of key meteorological processes on 3 

pollutants concentration on the basis of the model correlation and put our results in 4 

perspective with the key driving factors reported in the literature. Then we evaluate the 5 

performance of statistical models over the future period in order to discard regions and 6 

pollutants where the skill of the statistical model is too small to draw robust conclusions on 7 

the uncertainties of projections. 8 

3.2.1 Fine particulate matter 9 

The skill and predictors for generalized additive models fitted for each region are given in 10 

Table 1. The depth of the planetary boundary layer is identify as the major meteorological 11 

driver for PM2.5 which is a different finding compared to (Megaritis et al., 2014) who report 12 

a smaller impact for the PBL depth. Near surface temperature is often selected as second 13 

predictor. The wind is pointed out as a relevant predictor twice but only for coastal regions 14 

(respectively BI and MD) where sea-salt is important. Last, precipitation is selected only once 15 

and as 2
nd

 variable for the Iberian Peninsula (IP). It could be partly due to our choice of 16 

statistical model whereas a logical regression would have been more efficient given that PM 17 

correlations are sensitive to the presence/absence of precipitation rather than their intensity. It 18 

is difficult to assess objectively whether the larger role of temperature than precipitation in 19 

our findings is an artifact related to the design of the statistical model. The importance of 20 

precipitation in the impact of climate change on particulate pollution is often speculated in the 21 

literature, with little quantitative evidence. The statistical model used here offers an objective 22 

quantification of that role. It should be added that the importance of temperature is well 23 

supported by the volatilization process for Secondary Inorganic Aerosol and Secondary 24 

Organic Aerosol. Moreover in the CTM CHIMERE, the volatile species in the gas and aerosol 25 

phases are assumed to be in chemical equilibrium. This thermodynamic equilibrium, 26 

computed by ISORROPIA (Fountoukis and Nenes, 2007), is driven by temperature and 27 

humidity and conditions the concentration of several aerosol species (ammonium, sodium, 28 

sulphate, nitrate and so on). This feature could explain the major role of temperature. It is also 29 

supported by the pattern of projected PM2.5 change, which is spatially correlated with 30 

present-day PM2.5 concentration. This spatial correlation suggests an impact of a uniform 31 
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driver which points towards temperature rather than precipitation change that exhibits a strong 1 

north-south gradient in Europe. 2 

Then the predictive skill of these models is tested over the period 2071-2100 by computing 3 

the Normalized Root Mean Squared Error (NRMSE) between the statistically predicted 4 

PM2.5 (concentrations estimated with the statistical models), and the results of the 5 

deterministic regional air quality and climate modelling suite presented in section 2.2 for 6 

2071-2100. The NRMSE is defined as the root mean square error between statistically 7 

predicted and deterministically modelled concentrations changes aggregated by region and at 8 

daily temporal frequency, normalized by the standard deviation of the deterministic model. It 9 

allows describing the predictive power of a model, if the NRMSE is lower or equal to 1 then 10 

the model is a better predictor of the data than the data mean (Thunis et al., 2012).  11 

Figure 2 shows, for each region, the scatter between r-squared over the historical period and 12 

the NRMSE in predictive mode for the RCP8.5 at the end of the century. We expect regions 13 

where the correlation over the historical period is low to be poorly captured by the statistical 14 

model in the future. The fact that the good correlation for EA and ME are associated with a 15 

NRMSE around 0.6 in the future indicates either that the main meteorological drivers in the 16 

future will remain within their range of validity or that extrapolation is a viable 17 

approximation. This feature gives confidence in using statistical models for these regions in 18 

predictive mode. For the NI region, the NRMSE is acceptable (below 0.8) even if the r-19 

squared is low. 20 

Considering that the model skill was satisfactory for the EA, ME and NI regions, we decided 21 

to focus on these regions for the uncertainty assessment in the remainder of this paper. The 22 

fine particulate matter concentrations have been poorly captured for the region BI, SC, FR, IP 23 

and MD. The associated bad NRMSE are explained by the poor performances of model over 24 

the historical. They are thus excluded from the uncertainty assessment. 25 

 26 

3.2.2 Particulate matter composition 27 

Because total PM2.5 is constituted by a mix of various aerosol species, there is a risk of 28 

compensation of opposite factors in the statistical model. In order to assess that risk, we 29 

developed such models for each individual PM constituent in the chemistry-transport model. 30 
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The performances of these statistical models in terms of correlation for the historical 1 

(training) period or in predictive mode for the future period (testing) are presented in Figure 3. 2 

For all regions, the statistical models are not able to capture the variability of mineral dust. 3 

This is because the design of the statistical model is exclusively local (i.e. average 4 

concentrations over a given region are related to average meteorological variables over the 5 

same region), whereas most of the mineral dust over any European region is advected from 6 

the boundaries of the domain, in North Africa. It should be noted however, that except for the 7 

regions IP and MD, the dust represents only a small fraction of the PM concentrations (Figure 8 

4). That could explain why the statistical model for PM2.5 performs poorly over IP and MD, 9 

but it will not undermine the confidence we can have in concluding about the robustness of 10 

the PM2.5 model for the region selected above: ME, EA and NI.  11 

All over Europe, primary particulate matter (PPM) is one of the smallest particulate matter 12 

fractions. Their variability is well captured by the statistical model for all the regions except 13 

SC. But because of their small abundance in that region, they should have a limited impact on 14 

the PM2.5 model performance.   15 

The sea salts are well reproduced by the statistical model for all the regions except NI and 16 

EA. These two regions have no maritime area, therefore sea-salt concentrations are lower and 17 

exclusively due to advection which, as a non-local factor, is not well captured by the 18 

statistical model. 19 

Ammonium (NH4
+
) aerosols are satisfactory captured by the statistical models for five regions 20 

out of eight including those selected for the overall PM2.5 model (ME, EA and NI). 21 

The organic aerosol fraction (ORG) is well reproduced over the historical period and the 22 

predictive skill is satisfactory (NRMSE around 0.7) for ME, EA and NI. 23 

The statistical models are efficient to reproduce the nitrate (NO3
-
) concentrations over the 24 

historical period for ME, EA, AL, MD, FR & BI regions but the predictive skills are only 25 

considered satisfactory for ME, EA, FR and NI, where nitrate constitutes a large fraction of 26 

PM2.5. 27 

Sulphate aerosols (SO4
2-

) are well represented by the statistical models for BI, EA and ME. 28 

The performances are low in the NI region, but sulphates constitute one of the smallest 29 

particulate matter fractions for that region.  30 
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This analysis of the skill of statistical models for each compound of the particulate matter mix 1 

confirms that there is no compensation of opposite factors in the selection of skillful models 2 

for total PM2.5 proposed in Section 3.2.1. The only cases were one of the particulate matter 3 

compound was not well captured by a statistical model, could be attributed to a low, and often 4 

non-local contribution of the relevant particulate matter constituent for the considered regions. 5 

We conclude that the selection of ME, EA and NI as regions where it is possible to build a 6 

statistical model of PM2.5 variability using Generalized Additive Models based on 7 

meteorological predictants would hold if the model had been built for each constituent of the 8 

particulate matter mix.  9 

3.2.3 Ozone peaks 10 

For summertime ozone peaks, as expected, near surface temperature and incoming short wave 11 

radiation are identified as the two main meteorological drivers for most regions (Table 2). 12 

Concerning the region EA, the drivers which give the best results are near surface temperature 13 

and specific humidity. Nevertheless, when using specific humidity as second predictor, the 14 

statistical model is overfitted and has a low predictive skill (NRMSE=0.9). Thus the use of 15 

short wave radiation as second predictor appears much more robust (NRMSE=0.6) even if the 16 

R² is lower. The skill of the statistical model is very low over the British Isles and 17 

Scandinavia. This is because ozone pollution in these regions is largely influenced by non-18 

local contributions (long range transport of air pollution). The poor performances of the 19 

statistical model over the Mediterranean region are more surprising. The lower variability of 20 

temperature and incoming shortwave radiation in this region compared to other parts of 21 

Europe (standard deviation of 12.5 °C and 150 W/m² for MD; from 15 to 20°C and from 220 22 

to 300 W/m² for the other regions) makes them less relevant as statistical predictants of ozone 23 

concentrations.  24 

We conclude that the generalized additive models that can be considered efficient enough in 25 

terms of correlation to capture the ozone variability over the historical period are those of the 26 

following regions: EA, FR, IP, ME and NI.  27 

This selection is further supported by investigating the predictive skill of the models assessed 28 

by computing their NRMSE against deterministic CTM simulations available for a future 29 

period. The regions mentioned above where the correlation of the statistical model is low (BI, 30 
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SC and MD) also exhibit a large NRMSE (Figure 2). So that, only the regions EA, FR, IP, 1 

ME and NI are selected for the remainder of this paper. 2 

4 Exploring the ensemble of climate projections with the statistical model  3 

The statistical models introduced in Section 2, developed in Section 3 and tested in Section 4 

3.2 are applied here to the ensemble of regional climate projections presented in Section 2.3 5 

to develop a proxy of ensemble of air quality and climate projections for each selected region. 6 

This proxy of ensemble will be used to identify the subset of regional climate projections that 7 

should be used in priority in the deterministic modelling suite, but it can also give an 8 

indication on the robustness of the climate impact on air quality where the skill of the 9 

statistical model is considered satisfactory.       10 

4.1 Fine particulate matter 11 

In order to assess qualitatively the robustness of the evolution of regional climate variables 12 

having an impact on air quality, we first design a 2-D parameter space where the isopleths of 13 

statistically predicted pollutant concentrations are displayed (background of Figure 5). Then 14 

the distributions of historical and future meteorological variables as extracted from the 15 

regional climate projections are added to this parameter space. For each Regional Climate 16 

Projection, we show the average of the two driving meteorological variables as well as the 17 

70th percentile of their 2D-density plot, i.e. the truncation at the 70
th

 quantile of their bi-18 

histogram which means that 70% of the simulated days lie within the contour. Both historical 19 

and future climate projections (here for the RCP8.5 scenario and the 2071-2100 period) are 20 

displayed on the parameter space. The climate projections are all centered on the IPSL-21 

CM5A-MR/WRF member so that only the distribution of the latter is shown for the historical 22 

period. 23 

As pointed out in Table 1, the main meteorological drivers are the depth of the PBL and near 24 

surface temperature for the example of PM2.5 over Eastern Europe region displayed in Figure 25 

5. The statistically modeled isopleths in the background of the figure show that PM2.5 26 

concentration decrease when the depth of the PBL increases (x-axis), or when temperatures 27 

increase (y-axis). The interactions captured by the GAM exhibit the strong influence of high 28 

vertical stability events (with low surface temperature and PBL depth) in increasing PM2.5 29 

concentrations. On the contrary, for high temperature ranges, the depth of the PBL becomes a 30 
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less discriminating factor. The comparison of historical and future distributions shows that 1 

both meteorological drivers evolve significantly in statistical terms (Student t-test with Welch 2 

variant at the 95% confidence level based on annual mean). However, even though the PBL 3 

depth constitutes the most important meteorological driver for PM2.5, it does not evolve 4 

notably compared to the surface temperature in the future (Figure 5). Thus the largest increase 5 

of the secondary driver (surface temperature) leads to a decrease of PM2.5 concentrations. 6 

The largest and the smallest PM2.5 concentrations decrease are found for CSIRO-Mk3-6-7 

0/RCA4 and MPI-ESM-LR/CCLM, respectively. But the overall spread of RCMs in terms of 8 

both the evolution of PBL depth and temperature is limited, suggesting that this climate 9 

benefit on particulate pollution is a robust feature. Those isopleths present the same 10 

characteristics for ME and NI regions (Supplementary information Figures S1, S4). The 11 

qualitative evolution represented in Figure 5 is further quantified by applying the GAM to the 12 

future meteorological variables in the regional climate projections. These results are 13 

represented by the probability density functions of the predicted concentrations of each 14 

GCM/RCM couple minus the estimated values for the historical simulation (e.g. 2071-2100 15 

vs. 1976-2005, Figure 6). For EA and ME, the longer tail of the probability density function 16 

of MPI-ESM-LR/CCLM compared to the average of the models reflects that stronger 17 

pollution episodes will occur in the future even if the mean of the concentrations is lower than 18 

the average of the ensemble (Figure 6 for EA and Figure S2 for ME). 19 

Besides the distribution, the ensemble mean and standard deviation of the estimated projected 20 

change in PM2.5 concentrations has been quantified (Table 3). All the selected regions depict 21 

a significant decrease of the PM2.5 concentrations across the multi-model proxy ensemble 22 

indicating that according to the GAM model, the climate benefit on particulate matter is a 23 

robust feature in these regions. The magnitude of the decrease depends on the region, its 24 

ensemble mean (± standard deviation) is -1.08 (± 0.21) µg/m
3
, -1.03 (± 0.32) µg/m

3
, -0.83 ± 25 

(0.14) µg/m
3
, for respectively EA, ME and NI (Table 3). 26 

In order to explain the differences in the response of individual RCM in the ensemble, we 27 

need to explore the historical meteorological variables probability density functions (PDF, 28 

Figure 7) and to compare them with the evolution of IPSL-CM5A-MR/WRF (Figure 7). The 29 

comparison of the historical distribution for the temperature reflects the stronger extremes of 30 

IPSL-CM5A-MR/WRF (e.g. colder than the others when it is cold). It is only for the NI 31 
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region that IPSL-CM5A-MR/WRF lies in the mean of the ensemble. Concerning the PBL 1 

depth, the values are similar to the average of the ensemble for ME even if MPI-ESM-2 

LR/RCA4 and EC-EARTH/RACMO2 present the largest values. IPSL-CM5A-MR/WRF has 3 

a thinner boundary layer for NI and a deeper than the average for EA but the differences are 4 

limited Figure 7).  5 

It is for CSIRO-Mk3-6-0/RCA4 that we find the most important decrease of PM2.5 for the 6 

selected regions (Table 3). This is related to a larger temperature rise compared to the other 7 

models and a larger boundary layer height increase compared to the other member of the 8 

ensemble for these regions Figure 5). CanESM2/RCA4 and CSIRO-Mk3-6-0/RCA4 exhibit 9 

the same features for the ME region. 10 

MPI-ESM-LR/CCLM presents the smallest decrease of PM2.5 for each of the selected 11 

regions (e.g. over ME is almost 3 times smaller than the largest decrease) except EA where 12 

CNRM-CM5-LR/RCA4 presents a smaller decrease (-0.77 µg/m
3 

vs. -0.81 µg/m
3
). As already 13 

mentioned above, the particular tails of the statistically modelled PM2.5 distributions for EA 14 

and ME indicate a larger contribution of large pollution episodes in the future for that RCM. 15 

But the historical distributions exhibit a larger boundary layer than the average models of the 16 

ensemble and a similar temperature. Thus, the low PM2.5 concentration decrease is explained 17 

by the limited average evolution of the meteorological drivers as shown in Figure 5.  18 

Overall we conclude that a climate benefit is identified for the PM2.5 for each of the selected 19 

regions. To the extent that the statistical model is skillful, as demonstrated in Section 3.2.1, 20 

this result is robust across the range of available climate forcings since the whole ensemble of 21 

regional climate projection present consistent features. The regional climate models that 22 

exhibit the largest and smallest responses are CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4 and 23 

MPI-ESM-LR/CCLM, which should therefore be considered in priority for further evaluation 24 

using explicit deterministic projections involving full-frame regional climate and chemistry 25 

models. 26 

4.2 Ozone peaks  27 

For most of the selected regions (FR, IP, ME and NI,) the main drivers are the same (i.e. near 28 

surface temperature and short wave radiation). The isopleth in the background of Figure 5 29 

show that temperature and short wave radiation have a similar impact on ozone peaks, except 30 
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in the larger range of short wave radiation anomalies, where temperature becomes less 1 

discriminating. All the isopleths (Figure 5 for EA and Figures S1, S4 and S7 for ME, NI, FR 2 

and IP) exhibit an increase in the distribution of temperatures because the projected future is 3 

warmer than the historical period. According to the ozone peak concentrations predicted by 4 

the GAM (displayed in the background of Figure 5) these increases will lead to more ozone 5 

episodes. This trend appears for the entire models ensemble so that we can conclude with 6 

confidence that the climate penalty bearing upon ozone is a robust feature even if the specific 7 

distribution of some of the models stand out (CanESM2/RCA4; CNRM-CM5-LR/RCA4; 8 

CSIRO-Mk3-6-0/RCA4; IPSL-CM5A-MR/WRF). 9 

The ozone increase of the ensemble reaches +10.51 (± 3.06) µg/m
3
, +11.70 (± 3.63) µg/m

3
, 10 

+11.53 (± 1.55) µg/m
3
, +9.86 (± 4.41) µg/m

3
, +4.82 (± 1.79) µg/m

3
 for EA, FR, IP, ME and 11 

NI (Table 3). These values confirm the statistically significant climate penalty (the mean is at 12 

least two times larger than the standard deviation). However, as already mentioned for Figure 13 

5, we find minor differences among the models. The meteorological distributions are 14 

marginally different between the models of the ensemble: the summertime temperature 15 

predicted by IPSL-CM5A-MR/WRF has stronger extremes than the other models. Moreover, 16 

it is warmer than the ensemble in EA. Concerning incoming short wave radiation, IPSL-17 

CM5A-MR/WRF lies in the average (Figure S3, S6, S9) except for the region EA where the 18 

amount of incoming radiation is the highest among the ensemble (Figure 7). Note that, only 19 

EC-EARTH/RACMO2 and MPI-ESM-LR/RCA4 exhibits lower values (around half of the 20 

average for MPI-ESM-LR/CCLM). The lower amount of summertime incoming short wave 21 

radiation for the couple MPI-ESM-LR/CCLM is relevant for all the selected regions.  22 

The magnitude of the ozone rise differs between the models and the regions. Note that 23 

CanESM2/RCA4 exhibits the largest difference (i.e. around 1.5 times the ensemble mean) 24 

followed by CSIRO-Mk3-6-0/RCA4 for each selected regions. This is explained by the larger 25 

temperature increase during summertime which is the major driver, as identified by the 26 

statistical models, of ozone concentration. Note that the value is skyrocketing for the region 27 

ME, 5 times the value of IPSL-CM5A-MR/WRF which shows one of the lowest increases. 28 

CNRM-CM5-LR/RCA4 presents the lowest increase.  29 

On the contrary, the lower increase of the summer temperature and sometimes a decrease of 30 

the incoming short wave radiation amount (e.g. IPSL-CM5A-MR/WRF in NI) lead to lower 31 
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ozone concentration changes for IPSL-CM5A-MR/WRF and CNRM-CM5-LR/RCA4 for FR, 1 

IP, ME and NI (Table 3). Note the specific evolution for the region NI, where the IPSL-2 

CM5A-MR/WRF model yields almost no increase of the ozone concentration compared to the 3 

other models while on the map of the differences in the deterministic model (Figure 1.f), the 4 

evolution was statistically significant. This absence of evolution reflects the limitation of the 5 

statistical models.   6 

In figure S5, we can point out an outstanding pattern of the MPI-ESM-LR/CCLM distribution 7 

for the NI region with particularly large tails. The ozone rise would be more pronounced for 8 

the upper quantile which depicts more extreme ozone pollution episode (note that this was 9 

also the case for that model in terms of PM2.5 pollution).  10 

Overall the climate penalty is confirmed even if some regional climate models stand out of 11 

the distribution, such as CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-12 

0/RCA4 which should therefore be considered for further deterministic projections.  13 

5 Conclusions  14 

An alternative technique to assess the robustness of projections of the impact of climate 15 

change on air quality has been introduced. Using a training dataset consisting of long-term 16 

deterministic regional climate and air quality projections, we could build statistical models of 17 

the response of ozone and particulate pollution to the main meteorological drivers for several 18 

regions of Europe. Applying such statistical models to an ensemble of regional climate 19 

projections leads to the development of an ensemble of proxy projections of air quality under 20 

various future climate forcings. The assessment of the spread of the ensemble of proxy 21 

projections allows inferring the robustness of the impact of climate change, as well as 22 

selecting a subset of climate models to be used in priority for future explicit air quality 23 

projections, therefore proposing an optimized exploration of the ensemble.  24 

The main meteorological drivers that were identified are (i) for PM2.5: the boundary layer 25 

depth and the near surface temperature and (ii) for ozone: the near surface temperature and the 26 

incoming short wave radiation. The skill of the statistical models depends on the regions of 27 

Europe and the pollutant.  28 

For PM2.5 and the regions Eastern Europe (EA) and Mid Europe (ME), a generalized additive 29 

model captures about 60% of the variance and for Northern Italy 40%. But for British Isles 30 
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(BI) and Scandinavia (SC), where air pollution is largely driven by long range transport, such 1 

a local approach is not able to reproduce the variability of pollutant concentrations.  2 

The ozone concentrations are well reproduced by the statistical model for the following 3 

regions: Eastern Europe (EA), France (FR), Iberian Peninsula (IP), Mid Europe (ME) and 4 

Northern Italy (NI). The meteorological variables are not discriminating enough for the 5 

Mediterranean region. For the regions where the performances of the statistical model were 6 

considered satisfactory, a proxy of the future pollutant concentrations could be estimated (i.e. 7 

(i) EA, ME and NI (ii) EA, FR, IP, ME and NI). 8 

An overall climate benefit for PM2.5 was found in the proxy ensemble of climate and air 9 

quality projections. The ensemble mean change is-1.08 (± 0.21) µg/m
3
, -1.03 (± 0.32) µg/m

3
, 10 

-0.83 ± (0.14) µg/m
3
, for respectively EA, ME and NI. This beneficial impact of climate 11 

change for particulate matter pollution is in agreement with the deterministic projections of 12 

(Huszar et al., 2011;Juda-Rezler et al., 2012;Colette et al., 2013) but in opposition to 13 

(Manders et al., 2012). These differences could be partly explained by the different time 14 

windows (i.e. 2060 -2041 vs. 2100-2071), climate scenario (i.e. A1B which is similar to 15 

RCP6.0 vs. RCP8.5) and pollutant (i.e. PM10 vs. PM2.5). This impact of climate change on 16 

particulate pollution should be put in perspective with the magnitude of the change that is 17 

expected from the current air quality legislation. Such a comparison was performed by 18 

(Colette et al., 2013) who found (on average over Europe) a climate benefit by the middle of 19 

the century of the order of 0-1 µg/m3, therefore in line with our estimate but also much lower 20 

than the expected reduction of 7-8µg/m3 that they attributed to air quality policies. 21 

For all the selected regions a robust climate penalty on ozone was identified:  +10.51 (± 3.06) 22 

µg/m
3
, +11.70 (± 3.63) µg/m

3
, +11.53 (± 1.55) µg/m

3
, +9.86 (± 4.41) µg/m

3
, +4.82 (± 1.79) 23 

µg/m
3
 for respectively EA, FR, IP, ME and NI. This finding is in line with previous studies 24 

(Meleux et al., 2007;Huszar et al., 2011;Katragkou et al., 2011;Jiménez-Guerrero et al., 25 

2012;Juda-Rezler et al., 2012;Langner et al., 2012a;Langner et al., 2012b;Colette et al., 26 

2013;Hedegaard et al., 2013;Varotsos et al., 2013;Colette et al., 2015). It should be noted that 27 

when comparing the impact of climate change and emission reduction strategies, (Colette et 28 

al., 2013) found a climate penalty of the order of 2-3µg/m3 (which is broadly consistent with 29 

our results given that they focused on the middle of the century) that could be compensated 30 
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with the expected magnitude of the reduction of 5-10µg/m3 brought about by air quality 1 

policies. 2 

The major strength of our approach is to account for the climate uncertainty in the recent 3 

EuroCordex ensemble of regional climate projections, whereas all the published literature 4 

relied on very limited subset of RCM forcing (at best two for a given chemistry-transport 5 

modelling study). We therefore propose an unprecedented view in the robustness of the 6 

impact of climate change on air quality across an ensemble of climate forcing. However, this 7 

achievement is limited by the quality of the underlying statistical model that does not capture 8 

all the variance of the air quality response to climate change. These results should thus be 9 

ultimately compared with further deterministic projections using a range of climate forcings. 10 

Then, our approach can yield precious information in pointing out which regional climate 11 

models should be investigated in priority, therefore proposing a smart exploration of the 12 

ensemble of projections. The following models: CanESM2/RCA4; CNRM-CM5-LR/RCA4 13 

and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM, have been identified as the climate 14 

models that should be used in priority for future air quality. 15 

Finally, we should add that the method applied here for air quality projection also opens the 16 

way for other climate impact studies, where quantifying uncertainties using low 17 

computational demand is desirable. 18 
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 1 

PM25 

Regions R² Meteorological variable 1 Meteorological variable 2 

BI 0,327 PBL-height Surface wind 

IP 0,228 PBL-height Specific humidity 

FR 0,343 PBL-height Near surface temperature 

ME 0,613 PBL-height Near surface temperature 

SC 0,206 Specific humidity Incoming short wave radiation 

NI 0,403 PBL-height Near surface temperature 

MD 0,194 PBL-height Surface wind 

EA 0,595 PBL-height Near surface temperature 

Table 1: Statistical models per region that explain the average PM2.5 concentrations during 1976-2005. 2 

 3 

Ozone max 

Regions R² Meteorological variable 1 Meteorological variable 2 

BI 0,402 Incoming short wave radiation Specific humidity 

IP 0,543 Near surface temperature Incoming short wave radiation 

FR 0,579 Near surface temperature Incoming short wave radiation 

ME 0,709 Near surface temperature Incoming short wave radiation 

SC 0,228 Near surface temperature PBL-height 

NI 0,603 Incoming short wave radiation Near surface temperature 

MD 0,343 Near surface temperature Surface wind 

EA 0,671 Near surface temperature Incoming short wave radiation 

Table 2: Statistical models per region that explain the daily maximum summer ozone levels during 1976-4 

2005. 5 
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 1 

RCP8.5 

2071-2100 

Delta (future - historical) 

Ozone max PM2.5 

GCM/RCM \ Regions EA FR IP ME NI EA ME NI 

CNRM-CM5-LR/RCA4 8,00 6,96 9,75 4,82 3,69 -0,77 -0,82 -0,71 

CSIRO-Mk3-6-0/RCA4 11,26 16,03 13,30 14,15 5,81 -1,39 -1,72 -1,06 

CanESM2/RCA4 17,97 19,03 15,07 21,20 7,46 -1,29 -1,56 -1,03 

EC-EARTH/RACMO2 7,77 11,37 10,79 8,55 6,77 -1,16 -0,98 -0,77 

EC-EARTH/RCA4 10,88 14,43 11,45 12,11 5,15 -0,92 -0,92 -0,75 

GFDL-ESM2M/RCA4 7,26 7,79 10,28 5,85 4,54 -1,04 -0,90 -0,70 

IPSL-CM5A-MR/RCA4 13,76 13,46 12,88 11,02 4,43 -1,28 -1,12 -1,04 

IPSL-CM5A-MR/WRF 10,11 6,05 9,08 5,19 0,01 -1,32 -1,30 -0,86 

MIROC5/RCA4 12,30 11,29 11,61 9,62 3,85 -1,16 -0,86 -0,85 

MPI-ESM-LR/CCLM 6,40 9,63 11,03 6,01 5,58 -0,81 -0,58 -0,62 

MPI-ESM-LR/RCA4 9,56 11,75 11,51 9,64 5,54 -1,02 -0,79 -0,83 

NorESM1-M/RCA4 10,88 12,60 11,58 10,12 5,02 -0,79 -0,88 -0,76 

Ensemble Mean 10,51 11,70 11,53 9,86 4,82 -1,08 -1,03 -0,83 

Ensemble Standard Deviation 3,06 3,63 1,55 4,41 1,79 0,21 0,32 0,14 

Table 3: Predicted concentrations evolution of summertime ozone and PM2.5 (expressed in µg/m
3
)

 
per 2 

selected regions and per model. The ensemble mean and standard deviation are also calculated. 3 

 4 

 5 
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 1 

Figure 1: The left column represents daily average PM2.5 concentrations for the historical (1976-2005) 2 

(a), the end of the century (RCP8.5 - 2071-2100) (b) and the difference between the future and the 3 

historical (c). The statistical significance of this difference is evaluated by a t-test and represented by a 4 



31 

 

black point. The right column presents the same figure for daily maximum ozone projections. For both 1 

pollutants, the CTM CHIMERE has been used to predict the concentration (Section 2.2). 2 

 3 

Figure 2: Statistical model evaluation for PM2.5 (left) and ozone (right). The x-axis represents the 4 

Normalized Mean Square Error applied to the delta (future minus historical) of the generalized additive 5 

model and CHIMERE. The y-axis represents the R² of the statistical model (training period). 6 

 7 

 8 

Figure 3: Statistical model evaluation for each particulate matter constituent (from left to right: Dust, 9 

Primary Particulate Matter, Sea-salt, Ammonium, Organic fraction, Nitrate, Sulphate). The x-axis 10 

represents the Normalized Mean Square Error applied to the delta (future minus historical) of either the 11 
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generalized additive model or CHIMERE. The y-axis represents the R² of the statistical model (training 1 

period). 2 

 3 

 4 

Figure 4: Average particulate matter composition for the historical period per region.  5 

6 
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 1 

2 

 3 

Figure 5: The left figure presents the proxy of ensemble projections for daily average de-seasonnalised 4 

PM2.5 concentrations in Eastern Europe. The right figure represents the proxy for daily maximum de-5 

seasonnalised summer ozone for Eastern Europe. For both figures, the shaded background represents the 6 

evolution of pollutants estimated by the statistical models. The contours are representing the regional 7 

climate projections and the triangles their mean. The black dashed contour represents the historical – 8 

IPSL-CM5A-MR/WRF – and the square its mean.  9 

10 
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 1 

2 

 3 

Figure 6: The left figure represents, for each regional climate model the probability density function 4 

(PDF) of the concentrations estimated with the generalized additive model at the end of the century minus 5 

the estimated concentrations of the historical period for daily average de-seasonnalised PM2.5 6 

concentrations in Eastern Europe. The right figure presents the results for daily maximum de-7 

seasonnalised summer ozone for Eastern Europe. 8 
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 1 
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 4 

Figure 7: The first column of the panel represents the historical distribution of the meteorological 5 

variables identified by our statistical models as the two major drivers (a. PBL Height; b. near surface 6 

temperature) for PM2.5 in Eastern Europe. The second column represents the historical JJA distribution 7 

of the two main drivers for summer ozone (a. near surface temperature; b. incoming short wave 8 

radiation). 9 
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