

1 **Formation of highly oxidized multifunctional compounds:**
2 ***Autoxidation of peroxy radicals formed in the ozonolysis of***
3 ***alkenes – deduced from structure-product relationships***

4

5 **Th. F. Mentel¹, M. Springer¹, M. Ehn^{1,2}, E. Kleist³, I. Pullinen¹, Th. Kurtén⁴, M.**
6 **Rissanen², A. Wahner¹, and J. Wildt³**

7 [1]{Institut für Energie- und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich,
8 Germany}

9 [2]{Department of Physics, University of Helsinki, 00014 Helsinki, Finland}

10 [3]{Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, Jülich,
11 Germany}

12 [4]{Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland}

13

14 Correspondence to: Th. F. Mentel (t.mentel@fz-juelich.de)

15

16 **Abstract**

17 It has been postulated that secondary organic particulate matter plays a pivotal role in the
18 early growth of newly formed particles in forest areas. The recently detected class of
19 extremely low volatile organic compounds (ELVOC) provides the missing organic vapours
20 and possibly contributes a significant fraction to atmospheric SOA. The sequential
21 rearrangement of peroxy radicals and subsequent O₂ addition results in ELVOC which are
22 highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early
23 particle growth is that their formation is induced by one attack of the oxidant (here O₃),
24 followed by an autoxidation process involving molecular oxygen. Similar mechanisms were
25 recently observed and predicted by quantum mechanical calculations e.g. for isoprene. To
26 assess the atmospheric importance and therewith the potential generality, it is crucial to
27 understand the formation pathway of HOM.

28 .

1 To elucidate the formation path of HOM as well as necessary and sufficient structural
2 prerequisites of their formation we studied **homologous** series of cycloalkenes in comparison
3 to two monoterpenes. We were able to directly observe highly oxidized multifunctional
4 peroxy radicals with 8 or 10 O-atoms by an Atmospheric Pressure interface High Resolution
5 Time of Flight Mass Spectrometer equipped with a NO_3^- -Chemical Ionization (CI) source. In
6 case of O_3 acting as oxidant the starting peroxy radical is formed on the so called
7 vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other
8 peroxy radicals, including dimerization, allowed for analysing the observed mass spectra and
9 narrow down the likely formation path. As consequence we propose that HOM are
10 multifunctional percarboxylic acids, with carbonyl-, hydroperoxy-, or hydroxy-groups arising
11 from the termination steps. We figured that aldehyde groups facilitate the initial
12 rearrangement steps. In simple molecules like **cycloalkenes** autoxidation was limited to both
13 terminal C-atoms and two further C-atoms in the respective α -positions. In more complex
14 molecules containing tertiary H-atoms or small **constrained** rings even higher oxidation
15 degree were possible, either by simple H-shift of the tertiary H-atom or by initialisation of
16 complex ring-opening reactions.

17

18 **1 Introduction**

19 The formation of new particles is an important process in the natural and anthropogenically
20 influenced atmosphere (Kerminen et al., 2005; Kuang et al., 2009; Hamed et al., 2007;
21 Kulmala et al., 2004a; Kulmala et al., 2013; Spracklen et al., 2010). While it seems now clear
22 that sulfuric acid molecules, eventually in interaction with amines and ammonia, form the
23 first nuclei (Bzdek et al. 2013; Berndt et al. 2005; Kuang et al., 2008; Sipälä et al., 2010;
24 Vuollekoski et al., 2010; Zhao et al., 2011; Kirkby et al., 2011; Almeida et al., 2013), the
25 mechanisms of growth of such nuclei has been under a debate for a long time (Kulmala et al.,
26 2004b; Kerminen et al., 2010; Riccobono et al., 2012; Kulmala et al., 2013). Since new
27 particle formation is often observed in forest regions with relatively clean air, the amount of
28 sulfuric acid is insufficient to explain the observed growth and it has always been proposed
29 that organic vapors should be involved in particle growth (Zhang et al., 2004; Metzger et al.,
30 2010; Paasonen et al., 2010; Riipinen et al., 2011; Riipinen et al., 2012; Ehn et al., 2012; Ehn
31 et al., 2014; Riccobono et al., 2014; Schobesberger et al., 2013; Kulmala et al., 2013). The
32 organic vapors were supposed to have very low vapor pressures and it was estimated that such

1 vapors could make up more than 50 % of the organic fraction (Riipinen, et al., 2011; Yli-Juuti
2 et al., 2011). However, in the atmosphere volatile organic compounds (VOC) are emitted
3 mainly as hydrocarbons or with low degree of oxidation, otherwise they would not be volatile.
4 Organic molecules with the required degree of oxidation and functionalization to exhibit
5 sufficiently low vapor pressures very often require several oxidation steps to be formed from
6 VOC in the gas phase by OH radicals. Stepwise oxidation by OH radicals makes the overall
7 oxidation process slow and/or would lead to a high degree of diversification of products, as
8 OH is not a very specific oxidation agent. Such sequential oxidation is not suited to produce
9 high supersaturations of organic vapors required for growing molecular size critical nuclei.

10 New instrumentation, namely the atmospheric pressure interface time-of-flight mass
11 spectrometer (APi-TOF-MS, Junninen et al. 2010) enabled the direct measurement of natural
12 ions in the atmosphere. By applying APi-TOF-MS in Hyytiälä, a forestry station in Southern
13 Finland, Ehn et al. (2010) observed ions of organic compounds in mass ranges of 300-400 Da
14 and 500-600 Da. They suggested at the time that these are highly oxidized organics, likely
15 organic nitrates and their dimers. In a study in the Jülich Plant Atmosphere Chamber (JPAC)
16 using APi-TOF-MS, Ehn et al. (2012) demonstrated that the organics observed in Hyytiälä
17 mainly arise from α -pinene ozonolysis; the mass spectrometric pattern derived for β -pinene
18 and isoprene were different than that from α -pinene. The JPAC is operated as continuously
19 stirred flow reactor (Mentel et al., 2009) and the steady state can be conserved for an arbitrary
20 duration. This allowed for long integration times and application of the low sensitivity but
21 high resolution W-mode of APi-TOF-MS. This way Ehn et al. (2012) determined that the
22 compounds seen in the mass spectra in JPAC and Hyytiälä are highly oxidized C₁₀-
23 compounds clustered with NO₃⁻ and the respective dimers, also clustered with NO₃⁻. The C₁₀
24 compounds exhibit O/C ratios close to one or larger and a number of H-atoms similar to the
25 reactant α -pinene (H₁₄ or H₁₆), resulting in molecular formulas C₁₀H_{14,16}O₉₋₁₁. Similar organic
26 molecules were observed independently in the CLOUD studies in cluster with sulfuric acid
27 (Schobesberger et al., 2013).

28 The C₁₀ compounds in question are highly oxidized multifunctional molecules (HOM, Ehn et
29 al., 2012) and thus must have very low vapor pressures. They have been also called extremely
30 low volatile organic compounds (ELVOC, Schobesberger et al. 2013, Ehn et al., 2014) in
31 order to account for their role in the early stage of new particle formation and to distinguish
32 them from other volatility classes such as low volatile organic compounds (LVOC), semi

1 volatile organic compounds (SVOC), and intermediate volatile organic compounds (IVOC)
2 which are discussed in atmospheric formation of secondary organic aerosol (SOA) (Donahue
3 et al., 2012; Jimenez et al., 2009; Murphy et al., 2014). We focus here on the structure and
4 chemistry of ELVOC and not so much on their atmospheric role in particle formation as
5 extreme low volatility condensable organic vapors. We will therefore use the notation HOM
6 (highly oxidized multifunctional molecules, Ehn et al., 2012) when referring to chemical
7 structures and pathways and use the notation ELVOC, when referring to the impacts in the
8 atmosphere.

9 By making use of the fact that ELVOC prefer to cluster with NO_3^- , Ehn et al. (2014) applied
10 NO_3^- -CI-APi-TOF-MS (Jokinen et al., 2012) and demonstrated that the formation of ELVOC
11 is significant with a branching ratio of $7\% \pm 3.5\%$ of the turnover of α -pinene with ozone.
12 Moreover, it seems that endocyclic double bonds in monoterpenes like limonene are structural
13 features that support ELVOC formation (Ehn et al. 2014; Jokinen et al., 2014). Further, it
14 was suggested that a radical chain of peroxy radical formation and intramolecular H-shifts
15 could be the path to ELVOC formation, resulting in multiple hydroperoxides with increasing
16 oxygen content in steps of 32 Da (Ehn et al., 2014). H-migration to peroxy radicals is known
17 at elevated temperatures and for specific atmospheric radicals ((Cox and Cole, 1985;
18 Glowacki and Pilling, 2010, Jorand et al. 2003, Perrin et al. 1998) and the mechanism is
19 commensurable with recent findings for the autoxidation of isoprene and related compounds
20 (Crounse et al., 2012; Crounse et al., 2013; Crounse et al., 2011) and with quantum-
21 mechanical calculations, regarding the oxidation of monoterpenes (Vereecken and Francisco,
22 2012; Nguyen et al., 2010; Peeters et al., 2009; Vereecken et al., 2007). Jokinen et al., (2014)
23 demonstrated HOM formation in detail for limonene, a monoterpene. The detailed chemistry
24 of HOM formation from cyclohexene was elucidated by Rissanen et al. (2014). In this study
25 we investigated experimentally which structural and functional elements in organic molecules
26 favor HOM formation initiated by ozonolysis.

27 In the studies by Ehn et al. (2014, 2012) HOM with odd number of H-atoms were detected,
28 suggesting that highly oxidized peroxy radicals were observed. This observation was recently
29 confirmed by Rissanen et al. (2014) and Jokinen et al. (2014). By increasing NO in the system
30 the peroxy radicals behaved as expected from classical atmospheric chemistry: their
31 concentration decreased as did the concentration of dimer structures and in turn organic
32 nitrates increased (Ehn et al., 2014). As we will show in the following chapters, the peroxy

1 radicals are indeed the pivotal point to understanding HOM formation. By comparing HOM
2 formation of selected model and representative compounds with specific structural properties
3 we will deduce routes to highly oxidized multifunctional molecules, making use of
4 established features of ozonolysis and termination reactions of peroxy radicals, together with
5 the rearrangement of peroxy radicals by H-shift from C-H to $>\text{COO}^\bullet$ groups.

6 **2 Experimental**

7 All experiments were carried out in the Jülich Plant Atmospheric Chamber (JPAC). Details of
8 the set-up are described in Mentel et al. (2009) and Ehn et al. (2014). The largest chamber,
9 with a volume of 1450L, was used in the experiments presented here and it was operated as a
10 continuously stirred flow reactor. Temperature (T= 17°C) and relative humidity (RH= 60%)
11 were held constant during the experiments. Two changes were implemented in the 1450 L
12 reactor since Mentel et al., (2009): the whole UV lamp assembly is now placed in a 100 mm
13 diameter quartz tube flanged in across the chamber from wall to wall, in order to reduce direct
14 contact of the reaction mixture with the warm UV-lamp surface. On top of the Teflon floor of
15 the chamber a glass floor was placed on 10 mm spacers in order to reduce fluorinated
16 compounds and memory effects of HNO_3 detected by Ehn et al. (2012). By pumping away the
17 air in the space between Teflon plate and glass plate at a flow rate of 1.5 L min⁻¹ diffusion of
18 fluorinated compounds into the chamber was diminished.

19 Supply air was pumped through the chamber at a total flow of 30-35 L min⁻¹ resulting in a
20 residence time of 40-50 min. The supply flow was split in two different lines for the reactants
21 in order to prevent reactions in the supply lines. Ozone and water vapor was added to one of
22 the air streams entering the reaction chamber, while the other inlet stream contained the
23 volatile organic compound (VOC) of interest. The individual VOC were taken from diffusion
24 sources which are described in Heiden et al. (2003). The hydrocarbons investigated in this
25 study are listed in Table 1 together with their molecular mass, purity and supply information.
26 The steady state concentrations of the VOC during the experiments are given in Table 1.
27 Independent of the VOC added to the chamber, the ozone flow into the reaction chamber was
28 held constant. As a consequence the steady state O_3 concentrations varied depending on the
29 reactivity of added hydrocarbons with respect to O_3 as given in Table 1. All experiments were
30 performed under low NO (NO < 30 ppt) and low NO_2 (NO_2 < 300 ppt) conditions.

31 The central analytical instrument was an Atmospheric Pressure interface High Resolution
32 Time of Flight Mass Spectrometer (APi-TOF-MS, Aerodyne Research Inc. & Tofwerk AG;

1 Junninen et al., 2010). The API-TOF-MS was equipped with a NO_3^- -Chemical Ionization (CI)
2 source (Eisele and Tanner, 1993; Jokinen et al., 2012; A70 CI-inlet, Airmodus Ltd) for the
3 detection of highly oxidized organic compounds. The reagent ion $^{15}\text{NO}_3^-$ for the CI was
4 generated by using labeled H^{15}NO_3 ($\sim 10\text{N}$ in H_2O , 98 atom % ^{15}N , Aldrich Chemistry),
5 ionized by an in-line ^{241}Am foil. As was shown by Ehn et al. (2012) the anion NO_3^- is able to
6 form a cluster with the expected highly oxidized organic compounds. The labeling with
7 $^{15}\text{NO}_3^-$ enables to distinguish between ^{15}N from the reagent and ^{14}N that has been incorporated
8 into the sample molecules, e.g. through reactions with ^{14}NO in the reaction chamber.

9 The sampling flow from the reaction chamber into the CI source was 10 L/min. The flow into
10 the API-TOF-MS was thereafter reduced to 0.8 L/min by passing a critical orifice.
11 Differential pumping by a scroll pump and a three-stage turbo pump sequentially decreased
12 the pressure from 10^3 mbar in the CI region to 10^{-6} mbar in the Time of Flight region. Once
13 the ions are sampled into the API-TOF region, they are guided by segmented quadrupole mass
14 filters and electrical lenses in the TOF extraction region. Collisions between ions and gas
15 molecules will take place, but the energies are tuned low enough that only weakly bound
16 clusters (e.g. water clusters) will fragment. After extraction into the TOF the ions are
17 separated by their different flight times depending on their mass to charge ratio.

18 The sensitivity of the API-TOF operated as NO_3^- -CIMS is discussed in Ehn et al. (2014). We
19 have indication that once a certain degree of functionalization is achieved (two $-\text{OH}$ or $-\text{OOH}$
20 groups in addition to two carbonyl groups) the sensitivity is fairly the same for all HOM
21 species (Mikael Ehn, Theo Kurten, personal communication). HOM with 6 or less C atoms
22 and less than 6 atoms were not detected. However, we found hints that we may be able to
23 detect HOM with less than 6 O-atoms in molecules with 7 or more C-atoms. Thus, the general
24 polarizability of a molecule may play a role besides directed interactions of functional groups
25 with the NO_3^- ion.

26 To control whether or not peaks in the API-TOF mass spectra originated from oxidation of the
27 added VOC, blank experiments without VOC addition were performed. Ozone was left in the
28 chamber in case of peaks originating from ozonolysis of impurities. Some of the peaks in the
29 mass spectra were abundant also in absence of VOC and likely arise from fluorinated
30 contaminants. All peaks observable without VOC addition were rejected from interpretation.

31 Ozonolysis of alkenes in the dark produces OH radicals. We did not use OH scavenger in
32 most of our experiments. However, in some control experiments OH produced during alkene-

1 ozonolysis was scavenged by adding ~40ppm carbon monoxide (CO). Addition of CO did not
2 change the majority of the patterns in the mass spectra indicating that ozonolysis was indeed
3 the major pathway of HOM formation under the experimental conditions. Nevertheless, CO
4 addition changed the abundance of certain HOM. This was used for to separate OH reactions
5 as origin for these HOM.

6 **3 Methods**

7 The goal of this section is to derive an *a priori* expectation scheme for formation of highly
8 oxidized molecules from ozonolysis of VOC with endocyclic double bonds, and to predict
9 which intermediates and termination products should be formed according to classical
10 understanding and recent mechanistic developments. As we will show, comparison of the
11 expectations to the observed mass spectra (positive hits) will make it easier to identify and
12 organize the observations. Of course the scheme was developed *a posteriori* but presenting it
13 beforehand will help the reader to follow the argumentation.

14 Under our experimental conditions the ozonolysis is the major pathway of alkene oxidation.
15 In case of alkenes with endocyclic double bonds ozonolysis leads to ring opening with a
16 Criegee intermediate at one end of the carbon chain and a carbonyl group on the other end.
17 The Criegee intermediate further reacts in several ways. One of these is the so-called
18 vinylhydroperoxide pathway (R1-R3, see Sequence 1). The decomposition of the
19 vinylhydroperoxides (R2) leads to a radical with mesomeric structures (S1, see Sequence 1).
20 Importantly here, the peroxy radical S2 is formed by subsequent O₂ addition to the oxo-alkyl
21 mesomeric structure (R3) (cf. reviews of Johnson and Marston, 2008 and Vereecken and
22 Francisco, 2012).

23 Peroxy radical S2 is the starting point of the following considerations. As shown in Sequence
24 2 in general, the reaction chain can be terminated by the known reactions of the peroxy
25 radicals (denoted as RO₂) with HO₂ (R4), with other peroxy radicals (R5, R8), or with NO
26 (R7b) leading to termination products with hydroperoxy, carbonyl, or hydroxy groups,
27 alkylperoxides, or organic nitrates. The chain can also be continued by peroxy-peroxy (R6a)
28 and peroxy-NO (R7a) reactions via alkoxy intermediates. The latter form carbonyl
29 compounds (R6b) or fragment into smaller units (e.g. Vereecken and Francisco, 2012). In
30 addition, alkoxy radicals can undergo isomerization reactions like the H-shift with subsequent
31 O₂ addition (see Sequence 3, Vereecken and Francisco, 2012; Vereecken and Peeters, 2010;).
32 Note, that the peroxy functionality is recycled in Sequence 3, generating OH-functionalized

1 peroxy radicals Hydroxy-peroxy radicals can be terminated in the usual way (Sequence 2).
2 All these principle pathways are either known (e.g. Finlayson-Pitts and Pitts Jr., 2000) or have
3 been recently discussed, based on either calculations (e.g. Vereecken and Francisco, 2012)
4 and/or observations for C₅ VOC (e.g. Crounse, et al, 2013).

5 We will also allow for H-shifts from C-H bonds also in peroxy radicals (Sequence 4), leading
6 to –OOH functionalized peroxy radicals (Crounse et al. 2013, Vereecken et al. 2007). This
7 rearrangement was known for processes at elevated temperatures (Cox and Cole, 1985,
8 Glowacki and Pilling, 2010, **Jorand et al., 2003, Perrin et al., 1998**), but has not been
9 considered as important in gas-phase atmospheric chemistry until recently. In addition
10 intramolecular termination R9c can occur, an H-shift from the C-H bond that carries the
11 hydroperoxy group, leading to a split off of OH and a carbonyl termination product (Crounse
12 et al. 2013; Rissanen et al. 2014). Sequence 4 explains the mass increase in steps of 32 Th in
13 the type of HOM observed by Ehn et al. (2012, 2014) and investigated here. Since it requires
14 only a single attack by the oxidant O₃ and then proceeds by itself under involvement of only
15 molecular oxygen, it can be interpreted as an autoxidation process.

16 We will apply the known steps (R4 –R6, Sequence 2) and rearrangement and autoxidation of
17 peroxy radicals (Sequences 4 and 3) to construct a pathway to form atmospheric HOM which
18 is in accordance with both, our mass spectral observations and experimental findings as well
19 as the quantum mechanical calculations by Rissanen et al. (2014). Since we were working at
20 low NO_x (< 300 ppt) and under conditions of negligible NO₂ photolysis we will neglect the
21 NO pathways (R7, Sequence 2).

22 In this study we will focus on such pathways where the peroxy radicals and their termination
23 products retain the carbon number of the reactants. These are the majority of the observed
24 products. In addition, we will consider their dimers with twice the number of C-atoms (R8,
25 Sequence 2).

26 As we will show, most of the observed HOM arise from the straight peroxy autoxidation path
27 (Sequence 4), which we will denote as peroxy path. However, often a minor fraction of
28 products arises from Sequence 3, which we will call the hydroxy-peroxy path. Peroxy radicals
29 arising from the hydroxy-peroxy path are OH substituted and contain an *odd* number of O-
30 atoms (like S3 in Sequence 3). The hydroxy-peroxy radical can carry on the autoxidation
31 (Sequence 4) and terminate in usual ways (R4-R6 and R8 in Sequence 2).

1 Applying the principles outlined above to the example of cyclopentene, we may expect from
2 the *peroxy path* the type of species in Table 2a; possible intermediates and products from
3 the *hydroxy-peroxy path* are shown in Table 2b. According to the vinylhydroperoxide path the
4 *starting* peroxy radical in the series (upper left corner of Table 2a) is a C₅ chain with aldehyde
5 functions on both ends. In addition a peroxy radical function is located at the C-atom in α -
6 position to one of the aldehyde groups: S2 with R= (CH₂)₂ (see Sequence 1).

7 Radical S2 is the *starting* point for either further H-shift/O₂ addition (Table 2a, down the first
8 column) or termination products (along the line). The scheme does not explain the relative
9 importance of the pathways, only that they could be *a priori* possible. In reality, the
10 abundances of stable termination products and postulated peroxy radicals are the result of
11 detailed local molecular structure and a complex formation and destruction scheme as
12 discussed below (individual lifetimes, cf. Rissanen et al., 2014). Moreover, our detection
13 method may require a certain minimum degree of oxidation of the analyte molecules before
14 they can be detected as nitrate clusters. The parent peroxy radicals with molecular mass *m* and
15 their termination products form a repeated pattern *m*-17 (carbonyl), *m*-15 (hydroxy), *m*, *m*+1
16 (hydroperoxy) in the mass spectra. This is indicated in second line of Table 2a

17 The first entrée in Table 2b is a hydroxy-peroxy radical of type S3 which is formed by
18 Sequence 3 from the starting intermediate S2 in Table 2a. The hydroxy-peroxy radicals noted
19 in the first column of Table 2b can be either formed by Sequence 3 from the corresponding
20 peroxy radicals noted in the first column of Table 2a or in increments of O₂ by H-shift/O₂
21 addition (Sequence 4) of the previous hydroxy-peroxy radical.

22 It is evident from Table 2 that both peroxy and hydroxy-peroxy pathways generate
23 progressions in the mass spectra with distance 32 Da (2xO). However, the two progressions
24 are shifted by 16 (the O of the hydroxy group in the hydroxy-peroxy radical) with respect to
25 each other. This can lead to isobaric overlap of hydroperoxides (*m*+1) from the peroxide *m*
26 and hydroxy termination products from the corresponding hydroxy-peroxide at *m*+16 (*m*+16-
27 15, cf. column 4 in Table 2a and column 3 in Table 2b).

28 We investigated several compounds to detect structural prerequisites of the formation of
29 HOM. The cyclic alkenes cyclopentene, cyclohexene, and cycloheptene were used to study
30 the impact of chain length on HOM formation. 1-methyl-cyclohexene was used to study
31 possible impacts of methyl-substitution of the double bond, with structural similarity to α -
32 pinene. In 3-methyl-cyclohexene and 4-methyl-cyclohexene the methyl substituent is moving

1 away from the endocyclic double bond, and they provide branched C₇ variations of
2 cycloheptene.

3 Finally, we studied the formation of HOM from the functionalized linear alkenes (Z)-6-
4 nonenal, (Z)-6-nonenol, (5)-hexen-2-one, and 1-heptene. These compounds were chosen
5 because during ozonolysis they should produce a peroxy radical function located in α -position
6 to the forming aldehyde group (similar to S2, Sequence 1), but carry a different or none
7 functional group at the other, the terminal or ω -C-atom, end of the chain. The reason was to
8 study the impact of a functionalization on atmospheric HOM formation. Two monoterpenes,
9 α -pinene and Δ -3-carene, both abundant in nature, serve as test cases for atmospherically
10 relevant, complex bicyclic molecules. α -pinene and Δ -3-carene carry tertiary H-atoms, as do
11 3-methyl-cyclohexene and 4-methyl-cyclohexene.

12 **4 Results**

13 Closed shell HOM and their peroxy intermediates were detected as clusters with one ¹⁵NO₃⁻
14 ion attached (Ehn et al., 2012; 2014). Note that the postulated peroxy radicals have odd
15 molecular masses because of the missing hydrogen atom, but due to the use of ¹⁵N labeled
16 nitric acid to generate ¹⁵NO₃⁻ as reagent ion they will be detected as ¹⁵NO₃⁻-cluster at even
17 masses. In the same sense all closed shell molecules will be detected as ¹⁵NO₃⁻-clusters at odd
18 masses.

19 Figure 1 shows a typical mass spectrum observed for cyclopentene ozonolysis in range
20 between 240 Th and 280 Th which is where the nitrate clusters of C₅-HOM are expected. It
21 shows that we indeed observe the set of termination products as developed in the Method
22 section. In addition, we found a peak at 258 Th to which we attributed the molecular formula
23 C₅H₇O₈NO₃⁻. This cluster has an odd number of H-atoms indicating that the organic moiety
24 is not a closed shell molecule. As we will show in the following chapter, this indeed is the
25 peroxy radical. The corresponding termination products are indicated by their mass difference
26 to the peroxy radical at m=258 Th, as introduced in the Method section. The signal at 273 Th
27 is the carbonyl termination product from the next progression shifted by 32 Th. The peak at
28 255 Th is a cluster with a perfluorinated acid (chamber artefact).

29 Figure 2 shows the same mass spectrum in the region of dimer structures. The two largest
30 peaks at 421 Th and 389 Th have organic moieties with molecular formulas C₁₀H₁₄O₁₄ and
31 C₁₀H₁₄O₁₂, which we will attribute to peroxides formed by recombination of peroxy radicals.
32 The molecular formulas assigned to the peaks at 343 Th and 375 Th contain 16 H-atoms and

1 odd number of oxygen ($C_{10}H_{16}O_9$, $C_{10}H_{16}O_{11}$) and the compounds are obviously formed on a
2 different formation path. As we did not **scavenge** OH radicals also formed in the vinyl
3 hydroperoxide path, oxidation by OH may be involved in the formation of these compounds.

4 Similar mass spectrometric patterns were observed for all investigated compounds that form
5 HOM and Table 3 gives the overview which of the compounds formed HOM in our
6 ozonolysis experiments. In Table 3 we also list the functionalization at the ω -C-atom, the
7 opposite end of the initial peroxy radical, as explained by structures S2, S4a, S4b, and S5-S7
8 in Figure 3. In case of methyl-substituted double bonds the symmetry is broken and the initial
9 peroxy radical can be either formed at the unsubstituted site of the double bond, then the ω -
10 terminal group is **an** acetyl group (S5) or at the substituted site (S4a,b) then the ω -terminal
11 group is an aldehyde. In case of the linear alkenes, we consider only the product with the
12 longer C-chain after ozonolysis of the double bond. The peroxy group resides in α -position to
13 the remaining C-atom of the double bond leaving the ω -terminal group to whatever was at the
14 other end of the parent molecule.

15 Efficient formation of highly oxidized molecules was found for the ozonolysis of all
16 endocyclic alkenes, including α -pinene and Δ -3-carene, and from ozonolysis of (Z)-6-
17 nonenal. In contrast ozonolysis of 1-heptene, (Z)-6-nonanol and 5-hexen-2-on did *not* lead to
18 substantial formation of highly oxidized molecules. In all the positive cases the mass spectra
19 were dominated by few peaks, analogous to Figures 1 and 2, and these are listed in Table 4 -
20 10, 12, and 13. All these compounds have in common that the respective starting peroxy
21 radicals of type S2 or S4a,b in Figure 3 can be formed.

22 The absence of highly oxidized molecules of 1-heptene, (Z)-6-nonanol, and especially 5-
23 hexen-2-on suggests that an *aldehyde group* at the ω -C-atom facilitate HOM formation. No
24 functionality (CH_3-), a methyl-oxo group $CH_3-C(=O)-$, or an alcohol group $HO-CH_2-$ at the
25 ω -end of the molecule obviously do not strongly promote formation of HOM. The positive
26 results for 1-methyl-cyclohexene, and both monoterpenes (MT) indicate that the peroxy
27 radical group can be located either in α -position to a keto- or an aldehyde group. Applying our
28 scheme, this means that ω -aldehyde functionality in peroxy radicals S2 and S4a,b in Figure 3
29 favors H-shifts, while the other groups in S5-S7 do not.

1 **5 Discussion**

2 **5.1 Unsubstituted cycloalkenes, peroxy radicals, and (Z)-6-nonenal**

3 Table 4, Table 5, and Table 6 list the molecular masses of the organic moieties that were
4 attributed to highly oxidized molecules, derived from the mass spectra for the cases of
5 cyclopentene, cyclohexene, and cycloheptene. The mass of the nitrate ion was subtracted and
6 termination products of peroxy radicals with mass m were classified as by $m-17$ (carbonyl),
7 $m-15$ (hydroxy) and $m+1$ (hydroperoxy), as in Table 2 of the Method section. Only such
8 molecular structures that were indeed observed are noted, together with their molecular mass
9 and the precise m/z at which the molecules were detected as cluster with NO_3^- . Clearly, we did
10 not **find** all possible intermediates and termination products derived in the Method section.

11 As shown already in Figure 1, we often observed quite strong peaks at such odd masses m
12 where we would expect the peroxy radicals. From the molecular formula alone, which is
13 assessable by APi-TOF-MS, their chemical character as alkyl-, alkoxy- or peroxy radicals
14 cannot be distinguished. Alkoxy and alkyl radicals react with the O_2 in air, while peroxy
15 radicals react mainly with other peroxy radicals or NO , the latter being low in our
16 experiments. We can exclude alkyl and alkoxy radicals, as their lifetime is too short to allow
17 for formation in measurable amounts (and to survive in the APi-TOF-MS). Other candidates
18 would be organic nitrates, which we exclude by the observed mass defects and because of our
19 low NO_x conditions. Moreover, highly oxidized nitrates would be expected at $m+30$, so they
20 cannot interfere with O or O_2 progressions of m . A contribution of ^{13}C isotope can be
21 excluded if there is no strong signal at $m-1$. We conclude that the strong peaks at m are
22 peroxy radicals. It is known that peroxy radicals can have lifetimes of minutes (e.g.,
23 Finlayson-Pitts and Pitts Jr, 2000, Section 6.D.2.e), so they can be built up in high enough
24 concentrations and obviously survive in our APi-TOF-MS. HOM peroxy radicals were also
25 observed in previous studies (Ehn et al. 2014; Jokinen et al., 2014; Rissanen et al., 2014).
26 However, in case of a significant contribution of the hydroxy-peroxy path leading to hydroxy-
27 peroxy radicals at $m+16$ the corresponding carbonyl termination product resides at the $m-1$
28 ($m+16-17$) position. In these cases the ^{13}C contribution of the carbonyl termination product at
29 m must be considered and corrected.

30 According to the scheme in Table 2, the starting point for formation of highly oxidized
31 molecules is the peroxy radical of type S2 (Sequence 1) with $\text{R} = (\text{CH}_2)_{2-4}$ and four O-atoms.

1 The first detected peroxy radicals were $C_5H_7O_8$, $C_6H_9O_8$, and $C_7H_{11}O_8$ and the most oxidized
2 were the O_{10} -analogues (Tables 4-6). Peroxy radicals with odd oxygen numbers likely involve
3 alkoxy rearrangement Sequence 3 at one step. We will discuss both findings later in detail.

4 The next columns in Tables 4-6 list the stable HOM produced in termination reactions from
5 the peroxy radical in the first column. All intensities were normalized to the strongest signal.
6 For cyclohexene and cycloheptene this is the O_9 -carbonyl termination product (m-17) which
7 is formed from the peroxy radical carrying ten O-atoms either via R5, R6 (Sequence 2) or, as
8 shown by Rissanen et al. (2014), via R9c (Sequence 4). The corresponding peak is second
9 largest for cyclopentene; here the O_7 -carbonyl termination product from the precursor peroxy
10 radical with eight O-atoms is about a factor of two larger (Table 4). The analogous product
11 appeared also for cyclohexene, however contributing only 20% of the largest carbonyl
12 termination product (Table 5), and it is unimportant for cycloheptene (Table 6). In general
13 carbonyl termination products (m-17) arising from R5 and R6 are expected to be the major
14 products at typical atmospheric concentrations of NO , HO_2 , and RO_2 .

15 Compared to carbonyl termination products, hydroxy (m-15) and hydroperoxy termination
16 products (m+1) are less important termination products and only for cyclopentene we find
17 significant contribution of hydroxy and hydroperoxy termination products of 10% - 20%.
18 Their contribution is decreasing with increasing chain length, and their contribution in case of
19 cycloheptene is less than 1 %. Increasing chain length may make the geometry of the H-shift
20 more favourable (i.e. 1,6 instead of 1,5 or 1,4 etc). Thus, the H-shifts of longer-chain peroxy
21 radicals become faster, while bimolecular reactions are more or less unchanged, thus giving
22 more carbonyl termination products in relation to hydroxy and hydroperoxy termination
23 products. The detailed product distribution must be also dependent on the reaction conditions,
24 i.e. reactant and oxidant concentrations, temperature etc. For example the formation of
25 hydroperoxy groups is controlled by HO_2/RO_2 ratio and we did not take specific measures to
26 hold this ratio constant.

27 For cyclopentene the hydroperoxide $C_5H_8O_8$ provides a substantial contribution of 19% under
28 the given conditions. $C_5H_8O_8$ can be either the hydroperoxy termination product from $C_5H_7O_8$
29 + HO_2 (R4) or an hydroxy termination product formed in reaction (R5, Sequence 2) including
30 the hydroxy-peroxy radical $C_5H_7O_9$. Both lead to same isobaric mass (Table 4). Since the
31 corresponding carbonyl termination product is missing and the precursor $C_5H_7O_9$ of the
32 hydroxy termination product is much less abundant than that of the hydroperoxy product

1 C₅H₇O₈, we suggest that the main fraction of the peak observed for C₅H₈O₈ is the
2 hydroperoxy termination product.

3 As is obvious from Tables 4 and 5, for cyclopentene and cyclohexene, only molecules with
4 more than seven oxygen atoms were detected. However, as can be seen in Table 6 for
5 cycloheptene, five or less O-atoms can be detected for C₇ compounds, but only in traces. This
6 is corroborated by Tables 7 for (Z)-6-nonenal and Tables 8 and 9 for the methyl-
7 cyclohexenes.

8 We can already deduce some rules for formation of HOM from the results of cyclopentene,
9 cyclohexene and cycloheptene and construct a mechanistic scheme as shown in Figure 4 (cf.
10 Rissanen et al., 2014). The most abundant peaks in the monomer range of HOM can be
11 attributed to products preserving the C-atom number of the precursor. They form regular
12 patters in the mas spectra, which can be explained by expected termination products of RO₂
13 termination reactions Sequence 2 and the intramolecular termination R9c (Rissanen et al.,
14 2014), either directly via the peroxy path Sequence 4 or via an alternative, the hydroxy-
15 peroxy path, involving alkoxy rearrangement Sequence 3 as intermediate step.

16 Stable, closed shell termination products are most abundant. Carbonyl termination products
17 (S8, S11) are more abundant than hydroperoxy (S10, S13) and hydroxy termination products
18 (S9, S12, S14) and all together they are more abundant than the peroxy radicals. Products of
19 the hydroxy-peroxy path gain importance with increasing chain length, but remain sparse and
20 less abundant than products from the peroxy path. Independent of the chain length the
21 maximum number of oxygen atoms observed in peroxy radicals and hydroperoxides is ten, or
22 nine for corresponding carbonyl and hydroxy termination products, because here one O atom
23 is lost in termination reactions R5 and R6a (Sequence 2). The starting radicals S2 have 4 O-
24 atoms - two carbonyl end groups (2 x O) and a peroxy functionality (1 x OO[•]) in α -position to
25 one of the end groups. Therefore, the H-shift/O₂-addition mechanism of peroxy radicals can
26 operate up to 3 times introducing up to 6 further O-atoms. This together with the sensitivity of
27 formation of highly oxidized molecules to an aldehyde ω -terminal group (Table 3) suggest
28 that H-shifts, which are competitive at the experimental peroxy radical lifetimes, are limited
29 to the two terminal C-atoms and the two C-atoms in α -position to them. The H-atoms of the
30 aldehyde groups are relative weakly bound (Rissanen et al., 2014) and so it is not surprising
31 that they are preferably attacked as shown in the first steps on the left hand side in Figure 4.
32 (Additional constraints are the steric availability of the H-atoms.) In general the binding

1 energy of an H-atom to a carbon atom depends on the functional group added to the
2 respective C-atom. Low binding energies certainly will favor H-shifts (given a suited
3 geometry) and therefore favor the autoxidation mechanism (e.g. Glowacki and Pilling, 2010).

4 Attack on aldehyde H-atom leads to peroxy radicals of type $-C(=O)OO^{\cdot}$ and after further H-
5 shift to percarboxylic acid groups $-C(=O)OOH$ (Figure 4). We suggest that percarboxylic
6 acid groups are able to activate the H-atoms at their neighbor C-atom in α -position. This will
7 support one more autoxidation step. Termination here can lead to the dominant carbonyl
8 termination products. From these observations we deduce that a highly oxidized carbonyl
9 compound should have the structure S11 in Figure 4, i.e. a di-percarboxylic acid with
10 hydroperoxide group and keto group, both in α -position to the percarboxylic acid groups, at
11 least in the case of the plain cycloalkenes discussed here. Assuming that a percarboxylic acid
12 group is required for H-shift activation at its neighboring α -C-atom the corresponding
13 hydroperoxy and hydroxy termination products should look like structures S12 and S10 in
14 Figure 4.

15 If the percarboxylic group is able to activate the H-atoms at its α -C-atom to be competitive
16 with a shift of an aldehyde-H, the final attack could also occur at the aldehyde group. This
17 would lead to either S13 under hydroperoxy termination or to the structure S14, a mixed
18 carboxyl percarboxylic di-acid with hydroperoxide groups at the C-atoms in α -position of the
19 acid functions, isobaric to S12 in Figure 4.

20 Our interpretations are corroborated by the findings for (Z)-6-nonenal. Ozonolysis of (Z)-6-
21 nonenal leads to either a C_3 -Criegee intermediate and a C_6 -dialdehyde, or propanal and a C_6 -
22 Criegee intermediate. Via the vinylhydroperoxide path the latter forms the same starting
23 peroxy radical as the ring opening of cyclohexene. Indeed, two peroxy radicals were detected
24 for (Z)-6-nonenal and the dominant peak is the carbonyl termination product from the O_{10} -
25 peroxy radical (Table 7).

26 **5.2 Methyl substitution of cyclohexene**

27 In order to support the suggested reaction path to HOM in Figure 4, we now will investigate
28 the effect of methyl substitution of the double bond. This is also one step further towards α -
29 pinene, the most abundant MT, which forms ELVOC in the atmosphere (Ehn et al., 2012,
30 2014). Table 8 lists the results for 1-methyl-cyclohexene. Here the largest peak is the carbonyl
31 termination product $C_7H_{10}O_7$ arising from the peroxy radical $C_7H_{11}O_8$. The corresponding O_7 -

1 hydroxy and O₇-hydroperoxy termination products can be also identified. As in the case of
2 cycloheptene, highly oxidized molecules with less than seven O-atoms are detectable, but in
3 very small amounts only. Compared to cycloheptene (and cyclohexene) the HOM arising
4 from the O₈ peroxy radical dominate while termination products from the O₁₀ peroxy radical
5 are sparse.

6 The methyl substitution at the double bond introduces asymmetry, leading to three different
7 vinylhydroperoxides and three different starting peroxy radicals S15-S17 (Figure 5). The
8 peroxy radical S17 in Figure 5 has a methyl-oxo and *not* an aldehyde group as ω -terminal
9 group. In case of 5-hexen-2-on only the S17 analog, S5, (Figure 3) is formed and 5-hexen-2-
10 on did not undergo HOM formation. Peroxy radicals in S15 and S16 (Figure 5) can rearrange
11 under H-shift from the ω -aldehyde group and subsequent O₂ addition. S15 and S16 are similar
12 with only the hydroperoxide group at different positions. According to the scheme developed
13 here this should lead to the same set of isobaric products, and for clarity we will only follow
14 the fate of peroxy radical S15. In case of S15 the autoxidation mechanism would lead to
15 peroxy radical S18 and in a further step to peroxy radical S19. S19 terminates in the usual
16 way or intramolecular (R9c) to either ketones (S20, S21) or a hydroxy product (S22), or a
17 hydroperoxide (S23). The isobaric carbonyl termination products (S20, S21) are by far the
18 largest contribution in the spectrum, as hydroxy and hydroperoxy termination products
19 contribute only about 1-2% in total. It is notable that the maximum oxidation is indeed limited
20 to 7/8 O-atoms, two less compared to the major termination products of cycloheptene.

21 The products of 3- and 4-methyl-cyclohexene (Table 10, 11), as well as cycloheptene (Table
22 6) show similar patterns. Methyl substitution leads only to minor variations of the
23 cycloheptene HOM pattern with the 3-methyl-hexene being little more deviant. This could
24 indicate steric effects, which fade if the methyl group moves away from the double bond, i.e.
25 away from the molecule ends of the ring opening products susceptible to H-shifts.

26 Table 9 compares the HOM of all C₇ cycloalkenes investigated. As discussed, 1-methyl
27 substitution leads to unique HOM pattern wherein the highest oxidation step is only very
28 weakly expressed. This is likely caused by the fact that the ring opening for 1-methyl
29 cyclohexene leads only to one aldehyde group, instead of two as for cycloheptene, 3-methyl-
30 cyclohexene, and 4-methyl-cyclohexene.

31 In case of 4-methyl cyclohexene (Table 11) we find small contributions of C₇H₁₀O₁₁
32 indicating that in complex molecules higher degrees of oxidation may be achieved. We

1 hypothesize, that the tertiary H-atom at the methyl branching may be susceptible to H-shift of
2 peroxy groups. The observation of the O₁₁-carbonyl termination products suggests that the
3 attack on the tertiary H-atom is not necessarily the final step, as tertiary peroxy radicals
4 cannot stabilize into ketones. If several H-atoms are susceptible to H-shift of peroxy groups -
5 with different rates – permutation of pathways will occur according to the respective rate
6 coefficients. For 3-methyl-cyclohexene the effect of the tertiary peroxy radicals is not so
7 distinct, because the methyl group resides on the α -C-atom next to an aldehyde group from
8 which we expect H-shift anyhow.

9 **5.3 Monoterpenes and tertiary H-atoms**

10 Table 12 and Table 13 show the result for two bicyclic MT, α -pinene (cf. Ehn et al., 2014)
11 and Δ -3-carene. Both MT contain the same methyl-substituted 6-ring structure as 1-methyl
12 cyclohexene. In case of 1-methyl cyclohexene we are quite confident that the highest peroxy
13 radical should look like S19 in Figure 5 and 6. If we *construct* the analogous peroxy radicals
14 for α -pinene and Δ -3-carene they should look like S24 and S25 in Figure 6, so the maximum
15 oxidation degree in analogy to the cycloalkenes should be limited as for 1-methyl-
16 cyclohexene, i.e. either bimolecular or intramolecular termination.

17 Comparison shows that for the MT higher oxidation degrees were achieved (Tables 12 and
18 13). While for 1-methyl cyclohexene the major termination product is a ketone with seven O-
19 atoms, α -pinene and Δ -3-carene generate substantial amounts of ketones with nine (α -pinene,
20 Δ -3-carene) or even 11 (α -pinene) O-atoms. While for simple cycloalkenes carbonyl
21 termination products dominate (Table 4-8), the major termination products of α -pinene and 3-
22 carene appear at the *m/z* of the corresponding to hydroxy termination with nine O-atoms
23 (presumably four OOH groups), and α -pinene also generates the next higher hydroxy
24 termination product with 11 O-atoms (see Tables 12 and 13).

25 As already indicated for 4-methyl cyclohexene, which shows HOM with 11 O-atoms, H-shift
26 from tertiary C-atoms can obviously lead to a spread of formation routes (tertiary H-atoms
27 shown in Figure 6). So far, MT molecules are too complex to guess the pathways only from
28 the observed mass spectra. However, the fact that the dominant MT termination products are
29 hydroxy rather than carbonyl compounds indicates that alkoxy involving steps maybe more
30 important for MT than for the simpler alkenes and that ring opening of the cyclobutyl/propyl
31 rings is involved in HOM formation (Rissanen et al., 2015). A relative gain in hydroxy and

1 hydroperoxy termination products is also commensurable with a higher number of peroxy
2 radicals at tertiary C-atoms, which cannot form ketones via H-abstraction by air oxygen.
3 Please note, that although the oxidation degree is higher than to be expected from our
4 formation scheme for plain C₅-C₇ cycloalkenes, the mass spectrometric pattern of peroxy-
5 radical with *m/z* = *m*, carbonyl *m*-17, hydroxy *m*-15, hydroperoxy *m*+1 still applies and helps
6 to order the analysis of the mass spectra. We conclude that the routes to HOM for simple
7 molecules proposed by us are basic but not sufficient to explain HOM formation in complex
8 molecules.

9 **5.4 Dimers and peroxyradicals**

10 Besides HOM with the same number of C-atoms as the precursor, we observe also HOM
11 molecules with twice the C-atom numbers of the precursors, thus having dimer character.
12 Table 14 lists the detected and assigned HOM dimers from cyclopentene, which had the
13 highest chemical turnover (due to the fastest rate coefficient and the largest O₃ concentration).
14 The peak intensities were normalized to the dominant dimer. The two most abundant dimers
15 contain even number of O-atoms and 14 H-atoms. But we found also dimers with 16 H-atoms
16 and odd number of O-atoms. The molecular compositions discussed here are not
17 commensurable with peroxyhemiacetals (proposed by Tobias and Ziemann, 2000) that would
18 have been formed by reaction of HOM peroxy radicals and HOM carbonyl compounds and
19 should have an odd number of O-atoms but 14 H-atoms.

20 Since we observe the peroxy radicals directly it is suggestive to test if the dimers are
21 peroxides and arise from recombination of two peroxy radicals according to R8 (Sequence 2).
22 We assume that two peroxy radicals recombine to a peroxide under elimination of O₂. Table
23 15 lists the dimers expected for cyclopentene by simply permuting all observed and some
24 additional peroxy radicals (those with less O-substitution, which we expect but probably are
25 not detectable for cyclopentene). The molecular formulas of dimers which were observed are
26 marked in bold face. The most abundant, identified peroxy radicals (compare Table 4) are
27 also marked in bold face.

28 The dimer with the largest signal has the molecular formula C₁₀H₁₄O₁₄, and it can be formed
29 by reaction of two C₅H₇O₈, the dominant peroxy radical (cf. Table 4). But it is also clear that
30 several combinations of peroxy radical pairs can lead to dimers with the same molecular
31 mass. Formulas in Table 15 set in bold face and italic indicate dimers which involve the two

most abundant peroxy radicals. We also detect dimers which comprise the involvement of low O precursors (Table 15 first line, normal face). This is indicative of their existence, although due to instrument limitations we probably are not able to detect them. Not all combinations are of the same likelihood. For example, $C_{10}H_{14}O_{16}$ is less likely formed by dimerization of $C_5H_7O_9$, which would arise from the minor hydroxy-peroxy path, but more likely by recombination of $C_5H_7O_8$ and $C_5H_7O_{10}$. Of course each combination of suited peroxy radical pairs may contribute somewhat to the observed dimer. The findings of $C_{10}H_{14}O_{12,14,16}$ dimers in Table 14 mutually support our assignments of peroxy radicals as well as our assignments of dimers. It overall supports the basic formation schemes developed in the Method section.

Notably, there are still the two dimers in Table 14 with odd numbers of oxygen atoms which contain 16 H-atoms. Due to the 16 H-atoms these dimers cannot be simply formed by any combination of the peroxy radicals detected during cyclopentene ozonolysis, which carry only seven H-atoms. However, the $C_{10}H_{16}O_9$ dimer may be formed as a re-combination of the most abundant $C_5H_7O_8$ peroxy radical and a peroxy radical with the molecular formula $C_5H_9O_3$. In the same way $C_{10}H_{16}O_{11}$ dimers could be formed by the observed $C_5H_7O_{10}$ peroxy radical and the $C_5H_9O_3$ peroxy radical. $C_5H_9O_3$ is the molecular formula of the first peroxy radical in the oxidation chain of cyclopentene by OH. Production of the $C_5H_9O_3$ peroxy radical from cyclopentene occurs via OH addition to one site of the double bond and addition of O_2 at the other site, which is an alkyl radical site. Reactions with OH are possible since we did not routinely quench dark OH in the ozonolysis experiments.

As first peroxy radical in the OH-oxidation chain of cyclopentene, the $C_5H_9O_3$ peroxy radical should be quite abundant. Due to the low number of O atoms in this radical it is not detectable with our API-TOF-MS scheme. To test the hypothesis of OH reactions being involved in the formation of these dimers, CO was added as OH scavenger (~ 40 ppm) in a cyclopentene ozonolysis control experiment. Figure 7 shows the overlay of the dimer spectra from cyclopentene ozonolysis with and without CO addition.

CO addition led indeed to a decrease in the abundance of both H_{16} -HOM dimers detected at 343 Th and 375 Th, suspected to arise from the $C_5H_9O_3$ peroxy radical. Furthermore, the abundance of $C_{10}H_{14}O_{12}$ (detected at 389 Th) and that of $C_{10}H_{14}O_{14}$ (detected at 421 Th) increased. This is in accordance with suppression of the competition by $C_5H_9O_3$ from cyclopentene + OH reaction. After suppression of OH more ozonolysis products in general and more dimers by ozonolysis-only products are formed, e.g. $C_5H_7O_8 + C_5H_7O_8$.

1 Moreover, there are more peaks which decrease by CO addition. This means, that these
2 molecules likely involve oxidation by OH radicals at some step. It's noticeable that all peaks
3 that decrease can be attributed to dimer structures containing an odd number of oxygen atoms
4 (the reagent ion $^{15}\text{NO}_3^-$ subtracted). In contrast dimer structures which contain an even
5 number of oxygen atoms increase under CO addition, indicating that their formation involve
6 ozonolysis-only products.

7 In the monomer region, the addition of CO should increase the relative contribution of
8 hydroperoxide termination products since quenching with CO converts OH to HO_2 molecules,
9 thus increasing the HO_2 concentration. **Docherty and Ziemann (2005) discussed such an effect**
10 **of increasing HO_2 concentration by scavenging OH in the dark on the formation of**
11 **hydroperoxides (R4) in competition to dimer formation by $\text{RO}_2 + \text{RO}_2$ reactions.** This would be
12 a further support of our assignment of peroxy radicals and their termination products but
13 deserves more detailed investigations.

14 **5.5 Role of the hydroxy peroxy path**

15 As can be seen from the Tables (4-10, 12, 13), peroxy radicals with even numbers of O-atoms
16 were often observed. In contrast peroxy radicals with odd numbers of O atoms as well as their
17 termination products were only rarely found. We hypothesize, that peroxy radicals with odd
18 numbers of O-atoms can be formed from alkoxy radicals that undergo an H-shift (Vereecken
19 and Peeters, 2010), and thereby form the alkyl radical to which the O_2 is added. Their low
20 abundance can be understood applying basic steady state considerations. H-shifts of alkoxy
21 radicals (R6c) formed in reaction R6a, and subsequent O_2 addition (R6d), has to compete with
22 the termination reaction R6b, if the alkoxy C-atom carries an H-atom. As O_2 concentrations
23 are very high, the chemical lifetime of an alkoxy radical is much shorter than that of a peroxy
24 radical. This also presupposes that the consecutive addition of molecular oxygen after H-
25 shifts in peroxy radicals is highly efficient.

26 **6 Summary and conclusions**

27 A key to our analysis was the direct observation of highly oxidized peroxy radicals in
28 oxidations initiated by ozone. As to be expected in atmospheric oxidation processes, peroxy
29 radicals were the pivotal point to elucidate the pathways of HOM formation and therewith the
30 pathways to atmospherically relevant ELVOC. Peroxy radicals are formed in ozonolysis via
31 the vinylhydroperoxide pathway, and are sequentially oxidized by rearrangement (H-shift)

1 and subsequent addition of molecular oxygen, renewing the peroxy radical at the next level of
2 oxidation (Ehn et al. 2014, Rissanen et al., 2014). Since only a single initial oxidation step by
3 ozone is required and thereafter oxidation proceeds perpetuating a peroxy radical under
4 addition of air oxygen alone, this process can be conceived as autoxidation of the peroxy
5 radicals.

6 By our experimental studies of HOM formation using selected molecules with systematically
7 varying structural properties, we deduced important steps on the route to HOM formation
8 during ozonolysis. Peroxy radicals are formed via the vinylhydroperoxide path. Initially,
9 aldehyde functionality facilitates the shift of an H-atom from a C-H bond to a peroxy radical
10 group $>\text{COO}^\cdot$. As a consequence peroxy-carboxyl radicals are formed, which on further H-
11 shift reactions form percarboxylic acid groups. These are able to activate the H-atoms on their
12 neighbor α -C atom. Thus, in the ozonolysis of simple endocyclic alkenes up to 10 O-atoms
13 can be incorporated in a peroxy radical, of those 6 O-atoms by the sequential autoxidation
14 mechanism. We conclude that intermediates with two aldehyde end groups form di-
15 percarboxylic acids with further carbonyl, hydroxy or hydroperoxide functionalities. We
16 observed that presence of tertiary H-atoms by methyl substitution or constraint ring structures,
17 like for α -pinene and Δ -3-carene, leads to more options for the autoxidation mechanism to
18 proceed. This is allowing for addition of more than six O-atoms (here eight O-atoms) and a
19 widening of the termination product spectrum.

20 An aldehyde group at the ω -end of the initial peroxy radical S2 favors the achievement of the
21 highest oxidation degree. In the cases investigated here, methyl, hydroxy and keto groups are
22 not efficient in promoting H-shift of C-H bonds at neighboring α -C-atoms to peroxy groups.
23 The 1,4 H-shift from the aldehyde group to the peroxy radical in those molecules (S5, S6, S7)
24 may lead to a hydroperoxide, percarboxylic acid or hydroperoxy carboxylic acid, but then
25 likely the autoxidation stops. If such molecules are formed, we may not be able to detect them
26 with the NO_3^- -APi-TOF-MS. A key finding for the role of ω -substitution is that (Z)-6-nonenal
27 is forming the same major HOM as cyclohexene (Rissanen et al., 2014).

28 In the first few steps, as long as H-atoms susceptible to H-shift are available, autoxidation can
29 compete with the termination reactions. At later stages termination reactions become more
30 important and carbonyl, hydroxy, and hydroperoxy termination products are formed in our
31 NO poor system. Self-reactions of the HOM peroxy radicals lead to another class of dimer
32 termination products, very likely peroxides. The elemental composition and relative

1 abundance of the dimer structures indicate involvement of the monomer peroxy radicals of all
2 oxidation stages in their formation. The most abundant dimers always involve the most
3 abundant peroxy radicals. In addition we found dimers from the most abundant HOM peroxy
4 radicals with the O₃-peroxy radicals formed in the first step after attack addition of OH to the
5 double bond. These disappeared when OH was quenched by CO. In general quenching with
6 CO suppresses the OH pathways and shifts termination towards HOO, as would be expected.
7 Overall the mass spectrometric patterns of termination products and dimer formation support
8 the pivotal role of highly oxidized peroxy radicals and that we indeed observe them directly.

9 We observe peroxy radicals with an odd number of oxygen, however, during ozonolysis their
10 concentration were minor. The observations of peroxy radicals with an odd number of oxygen
11 can be explained by the same concepts if we allow for a side pathway involving one
12 intermediate step of alkoxy rearrangement (H-shift in an alkoxy radical, thereby formation of
13 an alkyl radical and O₂ addition).

14 Considering the degree of oxidation as well as the functional groups in HOM, monomers and
15 even more so dimers must have very low vapor pressures. Thus, HOM must play as ELVOC
16 an important role in particle formation and SOA condensation (Ehn et al., 2014). The
17 estimated molecular yields of ELVOC for α -pinene of 7% (Ehn et al. 2014) and cyclohexene
18 of 4% (Rissanen et al., 2014) indicate that ELVOC formation is in any case a minor part from
19 the viewpoint of gas-phase chemistry. However, considering molar yields of a few percent
20 and the high degree of oxidation, a substantial part of atmospheric SOA mass should be
21 formed from ELVOC. The organic fraction of particles at early stages of formation should
22 consist nearly exclusively of ELVOC (Ehn et al., 2014).

23 Actually, in JPAC we earlier observed linear growth curves in SOA formation, which we did
24 not understand at the time. A characteristic of those experiments was that particle formation
25 was induced based on relatively low BVOC input and in presence of the BVOC-ozonolysis
26 products (Mentel et al., 2009; Lang Yona et al., 2010). SOA growth curves of quasi non-
27 volatile reaction products should be linear as Raoult's law does not apply and everything
28 condenses. (The SOA yield curves were still curved as there was threshold before particle
29 formation started (Mentel et al. 2009).)

30 An open question is the fate of HOM in the particulate phase. It seems obvious that the
31 multifunctional HOM will not survive but undergo condensation reactions. The products of
32 those are probably not retrievable by thermo-evaporation methods. It also raises the question

1 how HOM based SOA relates to recently discussed glassy state of SOA particles (Koop et al.,
2 2011; Shiraiwa et al., 2013; Virtanen et al., 2010; Zobrist et al., 2008).

3 We are confident that we deduced the main route of atmospheric oxidation that leads to
4 “quasi” instantaneous formation of highly oxidized organic molecules. We are also confident
5 that we deduced the major functionalization of HOM. Of course in our deductions there are
6 still positive gaps (observations which we cannot explain with our current concepts) and
7 negative gaps (missing structures that we would expect). But even at that level it is evident
8 that formation of HOM is likely a general phenomenon, which was overlooked until very
9 recently. To fully explore the general impact of HOM we need also to understand the role of
10 OH oxidation and how the chemical systems behave at reasonably high NO_x concentrations.
11 CI-APi-TOF-MS constitutes an enormous progress as it allows for unambiguous
12 determination of the molecular formulas of HOM in laboratory experiments. However, for
13 detailed mechanism development one would need also structural information and
14 quantification of (all) intermediates and products.

15

16 **Acknowledgements**

17 This work was supported by the EU-FP7 project PEGASOS (project no. 265148). M.E. was
18 supported by the Emil Aaltonen foundation. T. K. thanks the Academy of Finland for funding.
19 Larger parts of this work were subject of the Bachelor thesis (2013) of M. S. We would like to
20 thank Prof. Gereon Elbers, FH Aachen(Jülich) for support and supervising the Bachelor thesis
21 of M.S.

22

1 **References**

2 Almeida, J., Schobesberger, S., Kuerten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A.
3 P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,
4 Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
5 A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H.,
6 Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen,
7 A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S.,
8 McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I.,
9 Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S.,
10 Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tome,
11 A., Troestl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
12 Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T.,
13 Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H.,
14 and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the
15 atmosphere, *Nature*, 502, 359-363, 10.1038/nature12663, 2013.

16 Berndt, T., Böge, O., Stratmann, F., Heintzenberg, J., and Kulmala, M.: Rapid formation of
17 sulfuric acid particles at near-atmospheric conditions, *Science*, 307, 698-700,
18 10.1126/science.1104054, 2005.

19 Bzdek, B. R., Horan, A. J., Pennington, M. R., DePalma, J. W., Zhao, J., Jen, C. N., Hanson,
20 D. R., Smith, J. N., McMurry, P. H., and Johnston, M. V.: Quantitative and time-resolved
21 nanoparticle composition measurements during new particle formation, *Farad. Discuss.*, 165,
22 25-43, 10.1039/c3fd00039g, 2013.

23 Cox, R. A. and Cole, J. A.: Chemical aspects of the autoignition of hydrocarbon-air mixtures,
24 *Combustion and Flame*, 60, 109-123, 10.1016/0010-2180(85)90001-x, 1985.

25 Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical
26 isomerization in the oxidation of isoprene, *Phys. Chem. Chem. Phys.*, 13, 13607-13613,
27 10.1039/c1cp21330j, 2011.

28 Crounse, J. D., Knap, H. C., Ornsø, K. B., Jørgensen, S., Paulot, F., Kjaergaard, H. G., and
29 Wennberg, P. O.: Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization
30 Following Addition of OH and O₂, *J. Phys. Chem. A*, 116, 5756-5762, 10.1021/jp211560u,
31 2012.

1 Crounse, J. D., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., and Wennberg, P. O.:
2 Autoxidation of Organic Compounds in the Atmosphere, *J. Phys. Chem. Lett.*, 4, 3513-3520,
3 10.1021/jz4019207, 2013.

4 Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of organic peroxides
5 to secondary aerosol formed from reactions of monoterpenes with O₃, *Environ. Sci.*
6 *Technol.*, 39, 4049-4059, 10.1021/es050228s, 2005.

7 Donahue, N. M., Trump, E. R., Pierce, J. R., and Riipinen, I.: Theoretical constraints on pure
8 vapor-pressure driven condensation of organics to ultrafine particles, *Geophys. Res. Lett.*, 38,
9 L16801, 10.1029/2011gl048115, 2011.

10 Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional
11 volatility basis set - Part 2: Diagnostics of organic-aerosol evolution, *Atmos. Chem. Phys.*, 12,
12 615-634, 10.5194/acp-12-615-2012, 2012.

13 Ehn, M., Junninen, H., Petaja, T., Kurten, T., Kerminen, V. M., Schobesberger, S., Manninen,
14 H. E., Ortega, I. K., Vehkamaki, H., Kulmala, M., and Worsnop, D. R.: Composition and
15 temporal behavior of ambient ions in the boreal forest, *Atmospheric Chemistry and Physics*,
16 10, 8513-8530, 10.5194/acp-10-8513-2010, 2010.

17 Ehn, M., Kleist, E., Junninen, H., Petaja, T., Lonn, G., Schobesberger, S., Dal Maso, M.,
18 Trimborn, A., Kulmala, M., Worsnop, D. R., Wahner, A., Wildt, J., and Mentel, T. F.: Gas
19 phase formation of extremely oxidized pinene reaction products in chamber and ambient air,
20 *Atmos. Chem. Phys.*, 12, 5113-5127, 10.5194/acp-12-5113-2012, 2012.

21 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M.,
22 Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M.,
23 Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T.,
24 Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T.,
25 Petaja, T., Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and
26 Mentel, T. F.: A large source of low-volatility secondary organic aerosol, *Nature*, 506, 476-
27 479, 10.1038/nature13032, 2014.

28 Eisele, F. L., and Tanner, D. J.: Measurement of the gas-phase concentration of H₂SO₄ and
29 Methane sulfonic acid and estimates of H₂SO₄ production and loss in the atmosphere, *J.*
30 *Geophys. Res.-Atm.*, 98, 9001-9010, 10.1029/93jd00031, 1993.

1 Finlayson-Pitts, B. J., and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere,
2 Academic Press, San Diego, 2000.

3 Glowacki, D. R., and Pilling, M. J.: Unimolecular Reactions of Peroxy Radicals in
4 Atmospheric Chemistry and Combustion, *ChemPhysChem*, 11, 3836-3843,
5 10.1002/cphc.201000469, 2010.

6 Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M.,
7 Cavalli, F., Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., Lehtinen, K. E. J., and
8 Laaksonen, A.: Nucleation and growth of new particles in Po Valley, Italy, *Atmos. Chem.*
9 *Phys.*, 7, 355-376, 2007.

10 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
11 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
12 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A.,
13 Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
14 P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J.,
15 Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y.,
16 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell,
17 L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y.
18 M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
19 Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and
20 Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, *Science*, 326, 1525-1529,
21 10.1126/science.1180353, 2009.

22 Johnson, D., and Marston, G.: The gas-phase ozonolysis of unsaturated volatile organic
23 compounds in the troposphere, *Chem. Soc. Rev.*, 37, 699-716, 10.1039/b704260b, 2008.

24 Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lonn, G., Hakala, J., Petaja, T., Mauldin, R.
25 L., III, Kulmala, M., and Worsnop, D. R.: Atmospheric sulphuric acid and neutral cluster
26 measurements using CI-APi-TOF, *Atmos. Chem. Phys.*, 12, 4117-4125, 10.5194/acp-12-
27 4117-2012, 2012.

28 Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P., Stratmann, F., Worsnop,
29 D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid Autoxidation Forms Highly
30 Oxidized RO₂ Radicals in the Atmosphere, *Angew. Chem. Internat. Ed.*, 53, 14596-14600,
31 10.1002/anie.201408566, 2014.

1 Jorand, F., Heiss, A., Perrin, O., Sahetchian, K., Kerhoas, L., and Einhorn, J.: Isomeric hexyl-
2 ketohydroperoxides formed by reactions of hexoxy and hexylperoxy radicals in oxygen, *Int. J.*
3 *Chem. Kin.*, 35, 354-366, 10.1002/kin.10136, 2003.

4 Junninen, H., Ehn, M., Petaja, T., Luosujarvi, L., Kotiaho, T., Kostiainen, R., Rohner, U.,
5 Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass
6 spectrometer to measure atmospheric ion composition, *Atmos. Meas. Techn.*, 3, 1039-1053,
7 10.5194/amt-3-1039-2010, 2010.

8 Kerminen, V. M., Lihavainen, H., Komppula, M., Viisanen, Y., and Kulmala, M.: Direct
9 observational evidence linking atmospheric aerosol formation and cloud droplet activation,
10 *Geophys. Res. Lett.*, 32, L14803, doi:14810.11029/2005GL023130, 2005.

11 Kerminen, V. M., Petäjä, T., Manninen, H. E., Paasonen, P., Nieminen, T., Sipilä, M.,
12 Junninen, H., Ehn, M., Gagne, S., Laakso, L., Riipinen, I., Vehkamäki, H., Kurten, T., Ortega,
13 I. K., Dal Maso, M., Brus, D., Hyvärinen, A., Lihavainen, H., Leppä, J., Lehtinen, K. E. J.,
14 Mirme, A., Mirme, S., Horrak, U., Berndt, T., Stratmann, F., Birmili, W., Wiedensohler, A.,
15 Metzger, A., Dommen, J., Baltensperger, U., Kiendler-Scharr, A., Mentel, T. F., Wildt, J.,
16 Winkler, P. M., Wagner, P. E., Petzold, A., Minikin, A., Plass-Dülmer, C., Pöschl, U.,
17 Laaksonen, A., and Kulmala, M.: Atmospheric nucleation: highlights of the EUCAARI
18 project and future directions, *Atmos. Chem. Phys.*, 10, 10829-10848, 10.5194/acp-10-10829-
19 2010, 2010.

20 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne,
21 S., Ickes, L., Kurten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S.,
22 Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,
23 Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud,
24 W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E.
25 Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela,
26 A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y.,
27 Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
28 Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U.,
29 and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
30 aerosol nucleation, *Nature*, 476, 429-433, 10.1038/nature10343, 2011.

31 Koop, T., Bookhold, J., Shiraiwa, M., and Poeschl, U.: Glass transition and phase state of
32 organic compounds: dependency on molecular properties and implications for secondary

1 organic aerosols in the atmosphere, *Phys. Chem. Chem. Phys.*, 13, 19238-19255,
2 10.1039/c1cp22617g, 2011.

3 Kuang, C., McMurry, P. H., McCormick, A. V., and Eisele, F. L.: Dependence of nucleation
4 rates on sulfuric acid vapor concentration in diverse atmospheric locations, *J. Geophys. Res.-*
5 *Atm.*, 113, D10209, 10.1029/2007jd009253, 2008.

6 Kuang, C., McMurry, P. H., and McCormick, A. V.: Determination of cloud condensation
7 nuclei production from measured new particle formation events, *Geophys. Res. Lett.*, 36,
8 L09822, 10.1029/2009gl037584, 2009.

9 Kulmala, M., Kerminen, V. M., Anttila, T., Laaksonen, A., and O'Dowd, C. D.: Organic
10 aerosol formation via sulphate cluster activation, *J. Geophys. Res.-Atm.*, 109, D04205,
11 10.1029/2003jd003961, 2004a.

12 Kulmala, M., Vehkamaki, H., Petajda, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili,
13 W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a
14 review of observations, *J. Aerosol Sci.*, 35, 143-176, 2004b.

15 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T.,
16 Petaja, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Jarvinen, E.,
17 Aijala, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J.,
18 Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamaki,
19 H., Back, J., Kortelainen, A., Riipinen, I., Kurten, T., Johnston, M. V., Smith, J. N., Ehn, M.,
20 Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V. M., and Worsnop, D. R.:
21 Direct Observations of Atmospheric Aerosol Nucleation, *Science*, 339, 943-946,
22 10.1126/science.1227385, 2013.

23 Mentel, T. F., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Dal Maso, M., Fisseha,
24 R., Hohaus, T., Spahn, H., Uerlings, R., Wegener, R., Griffiths, P. T., Dinar, E., Rudich, Y.,
25 and Wahner, A.: Photochemical production of aerosols from real plant emissions, *Atmos.*
26 *Chem. Phys.*, 9, 4387-4406, 2009.

27 Metzger, A., Verheggen, B., Dommen, J., Duplissy, J., Prevot, A. S. H., Weingartner, E.,
28 Riipinen, I., Kulmala, M., Spracklen, D. V., Carslaw, K. S., and Baltensperger, U.: Evidence
29 for the role of organics in aerosol particle formation under atmospheric conditions, *PNAS*,
30 107, 6646-6651, 10.1073/pnas.0911330107, 2010.

1 Murphy, B. N., Donahue, N. M., Robinson, A. L., and Pandis, S. N.: A naming convention for
2 atmospheric organic aerosol, *Atmos. Chem. Phys.*, 14, 5825-5839, 10.5194/acp-14-5825-
3 2014, 2014.

4 Nguyen, T. L., Vereecken, L., and Peeters, J.: HOx Regeneration in the Oxidation of Isoprene
5 III: Theoretical Study of the key Isomerisation of the Z-delta-hydroxy-peroxy Isoprene
6 Radicals, *ChemPhysChem*, 11, 3996-4001, 10.1002/cphc.201000480, 2010.

7 Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petaja, T., Plass-Dulmer, C., Flentje,
8 H., Birmili, W., Wiedensohler, A., Horrak, U., Metzger, A., Hamed, A., Laaksonen, A.,
9 Facchini, M. C., Kerminen, V. M., and Kulmala, M.: On the roles of sulphuric acid and low-
10 volatility organic vapours in the initial steps of atmospheric new particle formation, *Atmos.*
11 *Chem. Phys.*, 10, 11223-11242, 10.5194/acp-10-11223-2010, 2010.

12 Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regeneration in the oxidation of
13 isoprene, *Phys. Chem. Chem. Phys.*, 11, 5935-5939, 10.1039/b908511d, 2009.

14 Riccobono, F., Rondo, L., Sipilä, M., Barmet, P., Curtius, J., Dommen, J., Ehn, M., Ehrhart,
15 S., Kulmala, M., Kuerten, A., Mikkila, J., Paasonen, P., Petaja, T., Weingartner, E., and
16 Baltensperger, U.: Contribution of sulfuric acid and oxidized organic compounds to particle
17 formation and growth, *Atmos. Chem. Phys.*, 12, 9427-9439, 10.5194/acp-12-9427-2012,
18 2012.

19 Perrin, O., Heiss, A., Sahetchian, K., Kerhoas, L., and Einhorn, J.: Determination of the
20 isomerization rate constant $\text{HOCH}_2\text{CH}_2\text{CH}_2\text{CH}(\text{OO}\cdot)\text{CH}_3 \rightarrow (\text{HOC}\cdot\text{HCH}_2\text{CH}_2\text{CH}(\text{OOH})\text{CH}_3$.
21 Importance of intramolecular hydroperoxy isomerization in tropospheric chemistry, *Int. J.*
22 *Chem. Kin.*, 30, 875-887, 10.1002/(sici)1097-4601(1998)30:12<875::aid-kin2>3.0.co;2-8,
23 1998.

24 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L.,
25 Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E.
26 M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M.,
27 Keskinen, H., Kupc, A., Kuerten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K.,
28 Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F.
29 D., Schallhart, S., Seinfeld, J. H., Sipilä, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F.,
30 Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner, P. E.,
31 Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby,

1 J., Kulmala, M., Worsnop, D. R., and Baltensperger, U.: Oxidation Products of Biogenic
2 Emissions Contribute to Nucleation of Atmospheric Particles, *Science*, 344, 717-721,
3 10.1126/science.1243527, 2014.

4 Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Hakkinen, S., Ehn, M., Junninen, H.,
5 Lehtipalo, K., Petaja, T., Slowik, J., Chang, R., Shantz, N. C., Abbatt, J., Leaitch, W. R.,
6 Kerminen, V. M., Worsnop, D. R., Pandis, S. N., Donahue, N. M., and Kulmala, M.: Organic
7 condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN)
8 concentrations, *Atmos. Chem. Phys.*, 11, 3865-3878, 10.5194/acp-11-3865-2011, 2011.

9 Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petaja, T., Worsnop, D. R., Kulmala, M., and
10 Donahue, N. M.: The contribution of organics to atmospheric nanoparticle growth, *Nature
11 Geoscience*, 5, 453-458, 10.1038/ngeo1499, 2012.

12 Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J. A., Kangasluoma, J., Sarnela, N.,
13 Junninen, H., Jørgensen, S., Schallhart, S., Kajos, M. K., Taipale, R., Springer, M., Mentel, T.
14 F., Ruuskanen, T., Petäjä, T., Worsnop, D. R., Kjaergaard, H. G., and Ehn, M.: The
15 Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene, *J.
16 Am. Chem. Soc.*, 136, 15596–15606, DOI: 10.1021/ja507146s, 2014.

17 Schobesberger, S., Junninen, H., Bianchi, F., Lonn, G., Ehn, M., Lehtipalo, K., Dommen, J.,
18 Ehrhart, S., Ortega, I. K., Franchin, A., Nieminen, T., Riccobono, F., Hutterli, M., Duplissy,
19 J., Almeida, J., Amorim, A., Breitenlechner, M., Downard, A. J., Dunne, E. M., Flagan, R. C.,
20 Kajos, M., Keskinen, H., Kirkby, J., Kupc, A., Kuerten, A., Kurten, T., Laaksonen, A.,
21 Mathot, S., Onnela, A., Praplan, A. P., Rondo, L., Santos, F. D., Schallhart, S., Schnitzhofer,
22 R., Sipilä, M., Tome, A., Tsagkogeorgas, G., Vehkamaki, H., Wimmer, D., Baltensperger, U.,
23 Carslaw, K. S., Curtius, J., Hansel, A., Petaja, T., Kulmala, M., Donahue, N. M., and
24 Worsnop, D. R.: Molecular understanding of atmospheric particle formation from sulfuric
25 acid and large oxidized organic molecules, *PNAS*, 110, 17223-17228,
26 10.1073/pnas.1306973110, 2013.

27 Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle partitioning of
28 atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology, *Phys.
29 Chem. Chem. Phys.*, 15, 11441-11453, 10.1039/c3cp51595h, 2013.

1 Sipilä, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J.,
2 Mauldin, R. L., III, Hyvarinen, A.-P., Lihavainen, H., and Kulmala, M.: The Role of Sulfuric
3 Acid in Atmospheric Nucleation, *Science*, 327, 1243-1246, 10.1126/science.1180315, 2010.

4 Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering,
5 S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M.,
6 Laakso, L., Lihavainen, H., Kivekas, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G.,
7 Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P.,
8 Sellegrí, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M.,
9 Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of
10 primary emissions and particle formation, *Atmos. Chem. Phys.*, 10, 4775-4793, 10.5194/acp-
11 10-4775-2010, 2010.

12 Tobias, H. J., and Ziemann, P. J.: Thermal desorption mass spectrometric analysis of organic
13 aerosol formed from reactions of 1-tetradecene and O₃ in the presence of alcohols and
14 carboxylic acids, *Environ. Sci. Technol.*, 34, 2105-2115, 10.1021/es9907156, 2000.

15 Vereecken, L., Mueller, J. F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-
16 initiated atmospheric oxidation of alpha-pinene: impact of non-traditional peroxy radical
17 chemistry, *Phys. Chem. Chem. Phys.*, 9, 5241-5248, 10.1039/b708023a, 2007.

18 Vereecken, L., and Peeters, J.: A structure-activity relationship for the rate coefficient of H-
19 migration in substituted alkoxy radicals, *Phys. Chem. Chem. Phys.*, 12, 12608-12620,
20 10.1039/c0cp00387e, 2010.

21 Vereecken, L., and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms
22 in the troposphere, *Chemical Soc. Rev.*, 41, 6259-6293, 10.1039/c2cs35070j, 2012.

23 Virtanen, A., Joutsensaari, J., Koop, T., Kannisto, J., Yli-Pirila, P., Leskinen, J., Makela, J.
24 M., Holopainen, J. K., Poeschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An
25 amorphous solid state of biogenic secondary organic aerosol particles, *Nature*, 467, 824-827,
26 10.1038/nature09455, 2010.

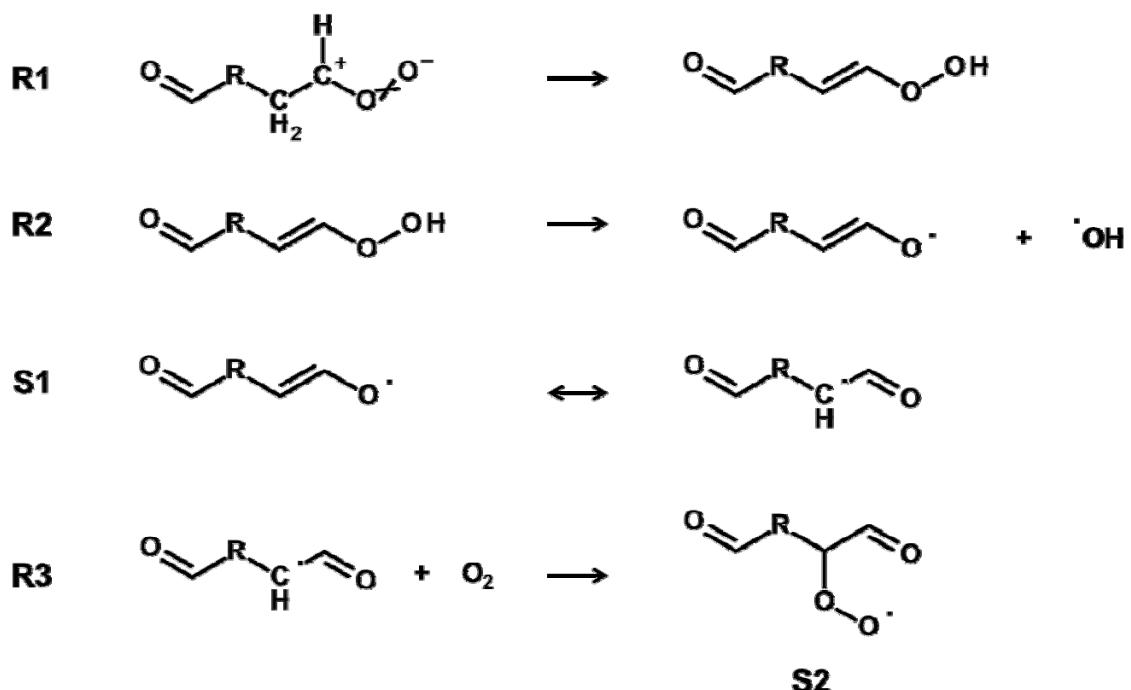
27 Vuollekoski, H., Nieminen, T., Paasonen, P., Sihto, S.-L., Boy, M., Manninen, H., Lehtinen,
28 K., Kerminen, V.-M., and Kulmala, M.: Atmospheric nucleation and initial steps of particle
29 growth: Numerical comparison of different theories and hypotheses, *Atmos. Res.*, 98, 229-
30 236, 10.1016/j.atmosres.2010.04.007, 2010.

1 Yli-Juuti, T., Nieminen, T., Hirsikko, A., Aalto, P. P., Asmi, E., Hõrrak, U., Manninen, H. E.,
2 Patokoski, J., Dal Maso, M., Petäjä, T., Rinne, J., Kulmala, M., and Riipinen, I.: Growth rates
3 of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle
4 size, season, data analysis method and ambient conditions, *Atmos. Chem. Phys.*, 11, 12865-
5 12886, 10.5194/acp-11-12865-2011, 2011.

6 Zhang, R. Y., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X. X., Molina, L. T., and
7 Molina, M. J.: Atmospheric new particle formation enhanced by organic acids, *Science*, 304,
8 1487-1490, 10.1126/science.1095139, 2004.

9 Zhao, J., Smith, J. N., Eisele, F. L., Chen, M., Kuang, C., and McMurry, P. H.: Observation of
10 neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements,
11 *Atmos. Chem. Phys.*, 11, 10823-10836, 10.5194/acp-11-10823-2011, 2011.

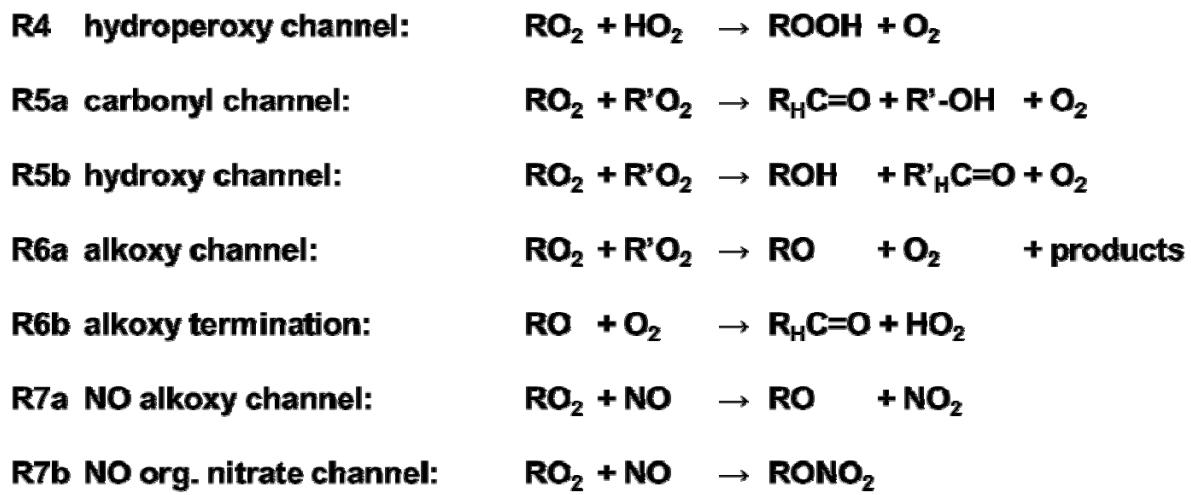
12 Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmospheric aerosols form
13 glasses? *Atmos. Chem. Phys.*, 8, 5221-5244, 2008.


14

15

1 Reactions, schemes and molecular structures

2 Sequence 1: vinylhydroperoxide path in ozonolysis


3

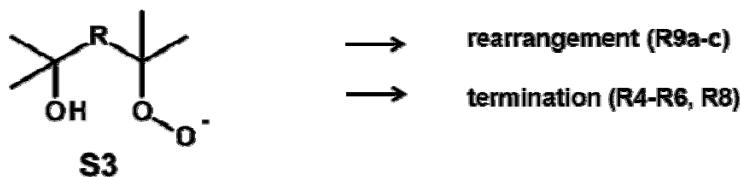
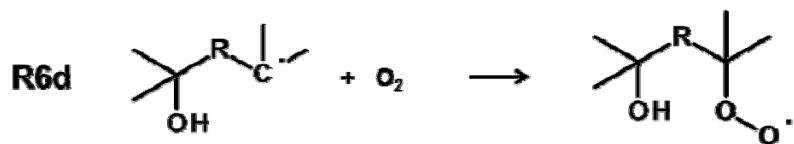
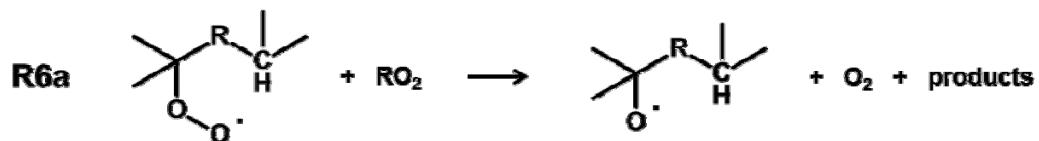
4

5

1

2 **Sequence 2: general RO₂ reactions**

3

4

5

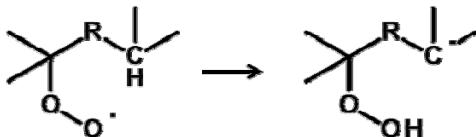
1 Sequence 3: hydroxy-peroxy path via alkoxy channel

2

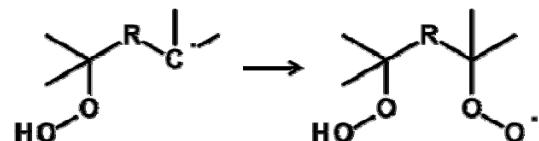
3

4

5

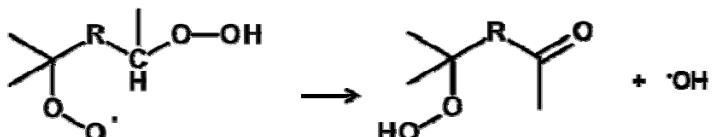

6

1 Sequence 4: peroxy path


2

auto-oxidation pathway

R9a H-shift:



R9b O₂-addition:

intramolecular termination

R9c carbonyl termination:

3

4

5

1 **Table 1.** VOC investigated in this study, steady state mixing ratio of VOC and O₃ during the
 2 ozonolysis experiments, rate coefficient for the VOC + O₃ reactions at 298 K.

VOC	Molecular formula	Molar mass [g/mol]	Purity [%]	[VOC]ss [ppb]	[O ₃]ss [ppb]	k _{O₃+VOC} ⁵ [cm ³ ·s ⁻¹]
cyclopentene ²	C ₅ H ₈	68.12	96	81	90	6.5·10 ⁻¹⁶
cyclohexene ¹	C ₆ H ₁₀	82.14	>99	136	65	8·10 ⁻¹⁷
1-methyl-cyclohexene ¹	C ₇ H ₁₂	96.17	97	50	75	1.5·10 ⁻¹⁶
3-methyl-cyclohexene ²	C ₇ H ₁₂	96.17	>93	26	84	5.5·10 ⁻¹⁷
4-methyl-cyclohexene ²	C ₇ H ₁₂	96.17	98	88	70	7·10 ⁻¹⁷
cycloheptene ¹	C ₇ H ₁₂	96.16	97	40	80	2.5·10 ⁻¹⁶
1-heptene ¹	C ₇ H ₁₄	98.19	97	33	105	1.5·10 ⁻¹⁷
(Z)-6-nonenal ¹	C ₉ H ₁₆ O	140.22	92	44	90	
(Z)-6-nonen-(1)-ol ³	C ₉ H ₁₈ O	142.4	≥95	1.4	80	
5-hexen-2-one ¹	C ₆ H ₁₀ O	98.14	99	33	90	
α-pinene ¹	C ₁₀ H ₁₆	136.24	>99	10	100	9·10 ⁻¹⁷
Δ-3-carene ⁴	C ₁₀ H ₁₆	136.24	≥98.5	10	100	4·10 ⁻¹⁷

3 ¹ Aldrich

4 ² TCI

5 ³ SAFC

6 ⁴ Fluka

7 ⁵ NIST Gas Phase Kinetic Data Base (<http://kinetics.nist.gov/kinetics/>)

8

9

1 **Table 2.** a) Possible peroxy radicals from cyclopentene and products of their reactions with
 2 peroxy radicals (cf. Sequence 2). b) Analogous scheme for the hydroxy-peroxy path. The first
 3 peroxy radical in Table 2b arise from the first peroxy radical in Table 2a by reaction with
 4 another peroxy radical (or NO).

	Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
A	m	m-17	m-15	m+1
autoxidation ↓	C ₅ H ₇ O ₄ 131 Da	C ₅ H ₆ O ₃ 114 Da	C ₅ H ₈ O ₃ 116 Da	C ₅ H ₈ O ₄ 132 Da
	C ₅ H ₇ O ₆ 163 Da	C ₅ H ₆ O ₅ 146 Da	C ₅ H ₈ O ₅ 148 Da	C ₅ H ₈ O ₆ 164 Da
	C ₅ H ₇ O ₈ 195 Da	C ₅ H ₆ O ₇ 178 Da	C ₅ H ₈ O ₇ 180 Da	C ₅ H ₈ O ₈ 196 Da
	C ₅ H ₇ O ₁₀ 227 Da	C ₅ H ₆ O ₉ 210 Da	C ₅ H ₈ O ₉ 212 Da	C ₅ H ₈ O ₁₀ 228 Da
termination →				
B	m	m-17	m-15	m+1
autoxidation after Sequence 3 ↓	C ₅ H ₇ O ₅ 147 Da	C ₅ H ₆ O ₄ 130 Da	C ₅ H ₈ O ₄ 132 Da	C ₅ H ₈ O ₅ 148 Da
	C ₅ H ₇ O ₇ 179 Da	C ₅ H ₆ O ₆ 162 Da	C ₅ H ₈ O ₆ 164 Da	C ₅ H ₈ O ₇ 180 Da
	C ₅ H ₇ O ₉ 211 Da	C ₅ H ₆ O ₈ 194 Da	C ₅ H ₈ O ₈ 196 Da	C ₅ H ₈ O ₉ 212 Da
termination →				

5
6

1

2 **Table 3.** Observation of HOM formation as function of compound and functionalization

Compound	Formula	HOM products	ω -Terminal group ¹
Cyclic alkenes			
cyclopentene	C ₅ H ₈	yes	aldehyde
cyclohexene	C ₆ H ₁₀	yes	aldehyde
cycloheptene	C ₇ H ₁₂	yes	aldehyde
1-methyl-cyclohexene	C ₇ H ₁₂	yes	ketone / aldehyde
3-methyl-cyclohexene	C ₇ H ₁₂	yes	aldehyde
4-methyl-cyclohexene	C ₇ H ₁₂	yes	aldehyde
Linear alkene			
1-heptene	C ₇ H ₁₄	no	methyl
Linear alkenes with additional functional group			
(Z)-6-nonenal	C ₉ H ₁₆ O	yes	aldehyde
(Z)-6-nonenol	C ₉ H ₁₇ OH	no	alcohol
5-hexen-2-one	C ₆ H ₁₀ O	no	ketone
Monoterpenes			
α -pinene	C ₁₀ H ₁₆	yes	ketone / aldehyde
Δ -3-carene	C ₁₀ H ₁₆	yes	ketone / aldehyde

3 ¹ at the opposite end to the oxoic radical groups in Figure 3

4

5

1
2 **Table 4.** HOM observed during ozonolysis of cyclopentene. The second header line shows at
3 which molar masses the termination products are expected relative to the peroxy radical with
4 molar mass m (unit masses). Filled cells indicate that these compounds were detected with
5 given elemental composition and relative intensity (second line in the same cell). Relative
6 intensities were normalized to the largest HOM signal. The third line in the cell gives the
7 molar mass [Da] in unit mass resolution and the precise *m/z* [Th] at which the molecule was
8 detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
C₅H₇O₈ 54 % 195 / 257.9995	C₅H₆O₇ 100 % 178 / 240.996	C₅H₈O₇ 14 % 180 / 243.0124	C₅H₈O₈ 19 % ² 196 / 259.0073
C₅H₇O₉¹ 1 % 211 / 273.9944		C₅H₈O₈ 19 % ² 196 / 259.0073	
C₅H₇O₁₀ 6 % 227 / 289.9893	C₅H₆O₉ 43 % 210 / 272.9866	C₅H₈O₉ 11 % 212 / 275.0022	

9 ¹ hydroxy-peroxy path Sequence 3

10 ² C₅H₇O₈ + HO₂ → C₅H₈O₈ or C₅H₇O₉ + RO₂ → C₅H₈O₈

1 **Table 5.** HOM observed during ozonolysis of cyclohexene. The second header line shows at
 2 which molar masses the termination products are expected relative to the peroxy radical with
 3 molar mass m (unit masses). Filled cells indicate that these compounds were detected with
 4 given elemental composition and relative intensity (second line in the same cell). Relative
 5 intensities were normalized to the largest HOM signal. The third line in the cell gives the
 6 molar mass [Da] in unit mass resolution and the precise *m/z* [Th] at which the molecule was
 7 detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
C₆H₉O₈ 7 % 209 / 272.01453	C₆H₈O₇ 24 % 192 / 255.01270	C₆H₁₀O₇ 1 % 194 / 257.02523	C₆H₁₀O₈ 5 % 210 / 273.0230
	C₆H₈O₈¹ 14 % 208 / 271.00724		
C₆H₉O₁₀ < 1 % 241 / 304.00582	C₆H₈O₉ 100 % 224 / 287.0024		C₆H₁₀O₁₀ < 1 % 242 / 305.00889

8 ¹ hydroxy-peroxy path Sequence 3

9
10

1 **Table 6.** HOM observed during ozonolysis of cycloheptene. The second header line shows at
 2 which molar masses the termination products are expected relative to the peroxy radical with
 3 molar mass m (unit masses). Filled cells indicate that these compounds were detected with
 4 given elemental composition and relative intensity (second line in the same cell). Relative
 5 intensities were normalized to the largest HOM signal. The third line in the cell gives the
 6 molar mass [Da] in unit mass resolution and the precise m/z [Th] at which the molecule was
 7 detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
	C₇H₁₀O₅ < 1 % 174 / 237.0395		
C₇H₁₁O₇¹ < 1 % 206 / 269.0462			
C₇H₁₁O₈ 2 % 223 / 286.02945	C₇H₁₀O₇ 3 % 206 / 269.02775	C₇H₁₂O₇ < 1 % 208 / 271.0409	
	C₇H₁₀O₈¹ 8 % 222 / 285.02306		
C₇H₁₁O₁₀ 1 % 255 / 318.02027	C₇H₁₀O₉ 100 % 238 / 301.01758		C₇H₁₂O₁₀ < 1 % 256 / 319.02544
C₇H₁₁O₁₁¹ < 1 % 271 / 334.01508	C₇H₁₀O₁₀¹ < 1 % 254 / 317.0141		

8 ¹ hydroxy-peroxy path Sequence 3

9

10

1
2 **Table 7.** HOM observed during ozonolysis of (Z)-6-nonenal. The second header line shows at
3 which molar masses the termination products are expected relative to the peroxy radical with
4 molar mass m (unit masses). Filled cells indicate that these compounds were detected with
5 given elemental composition and relative intensity (second line in the same cell). Relative
6 intensities were normalized to the largest HOM signal. The third line in the cell gives the
7 molar mass [Da] in unit mass resolution and the precise *m/z* [Th] at which the molecule was
8 detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hxdroxy	Hydroperoxy
m	m-17	m-15	m+1
C₆H₉O₈			
10 %			
209 / 272.0151			
C₆H₉O₉¹			
3 %			
225 / 288.0101			
C₆H₈O₁₀	C₆H₈O₉		
5 %	100 %		
241 / 304.0050	224 / 287.0022		

9 ¹ hydroxy-peroxy path Sequence 3

10
11

1 **Table 8.** HOM observed during ozonolysis of 1-methylcyclohexene. The second header line
 2 shows at which molar masses the termination products are expected relative to the peroxy
 3 radical with molar mass m (unit masses). Filled cells indicate that these compounds were
 4 detected with given elemental composition and relative intensity (second line in the same
 5 cell). Relative intensities were normalized to the largest HOM signal. The third line in the cell
 6 gives the molar mass [Da] in unit mass resolution and the precise m/z [Th] at which the
 7 molecule was detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
C₇H₁₁O₆ < 1 % 191 / 254.03857	C₇H₁₀O₅ < 1 % 174 / 237.03855		
C₇H₁₁O₇¹ < 1 % 207 / 270.03179	C₇H₁₀O₆¹ 1 % 190 / 253.0331		
C₇H₁₁O₈ 2 % 223 / 286.03086	C₇H₁₀O₇ 100 % 206 / 269.02829	C₇H₁₂O₇ 2 % 208 / 271.3858	C₇H₁₂O₈ 1 % 224 / 287.04046
C₇H₁₁O₉¹ < 1 % 239 / 302.02700			
	C₇H₁₀O₉ < 1 % 238 / 301.01326	C₇H₁₂O₉ < 1 % 240 / 303.03521	

8 ¹ hydroxy-peroxy path sequence 3
 9

1 **Table 9.** HOM products observed during ozonolysis of 3-methylcyclohexene. The second
 2 header line shows at which molar masses the termination products are expected relative to the
 3 peroxy radical with molar mass m (unit masses). Filled cells indicate that these compounds
 4 were detected with given elemental composition and relative intensity (second line in the
 5 same cell). Relative intensities were normalized to the largest HOM signal. The third line in
 6 the cell gives the molar mass [Da] in unit mass resolution and the precise *m/z* [Th] at which
 7 the molecule was detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
	C₇H₁₀O₅ < 1 % 174 / 237.0382		
	C₇H₁₀O₆¹ < 1 % 190 / 253.0331		
C₇H₁₁O₈ 12 % 223 / 286.0308	C₇H₁₀O₇ 25 % 206 / 269.0281		C₇H₁₂O₈ 6 % 224 / 287.0386
C₇H₁₁O₉¹ 5 % 239 / 302.0257	C₇H₁₀O₈¹ 19 % 222 / 285.0230		
C₇H₁₁O₁₀ 9 % 255 / 318.0206	C₇H₁₀O₉ 100 % 238 / 301.0179	C₇H₁₂O₉ 13 % 240 / 303.0335	

8 ¹ hydroxy-peroxy path sequence 3

9

10

1 **Table 10.** HOM products observed during ozonolysis of 4-methyl-cyclohexene. The second
 2 header line shows at which molar masses the termination products are expected relative to the
 3 peroxy radical with molar mass m (unit masses). Filled cells indicate that these compounds
 4 were detected with given elemental composition and relative intensity (second line in the
 5 same cell). Relative intensities were normalized to the largest HOM signal. The third line in
 6 the cell gives the molar mass [Da] in unit mass resolution and the precise m/z [Th] at which
 7 the molecule was detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
	C₇H₁₀O₅ < 1 % 174 / 237.03635		
C₇H₁₁O₇¹ < 1 % 207 / 270.0359	C₇H₁₀O₆¹ < 1 % 190 / 253.03390		
C₇H₁₁O₈ < 1 % 223 / 286.02825	C₇H₁₀O₇ 2 % 206 / 269.0281	C₇H₁₂O₇ < 1 % 208 / 271.0437	C₇H₁₂O₈ < 1 % 224 / 287.03770
C₇H₁₁O₉¹ < 1 % 239 / 302.0224	C₇H₁₀O₈¹ 5 % 222 / 285.02215		
C₇H₁₁O₁₀ 2 % 255 / 318.02114	C₇H₁₀O₉ 100 % 238 / 301.01848		C₇H₁₂O₁₀ < 1 % 256 / 319.02566
C₇H₁₁O₁₁¹ < 1 % 271 / 334.01626	C₇H₁₀O₁₀¹ 1 % 254 / 317.01331		
	C₇H₁₀O₁₁ < 1 % 270 / 333.01163	C₇H₁₂O₁₁ < 1 % 272 / 335.02524	

8 ¹ hydroxy-peroxy path sequence 3
 9

1 **Table 11.** Comparison of HOM products resulting from C₇H₁₄ compounds.

	Cycloheptene	1-MCH	3-MCH	4-MCH
Peroxy radical				
C ₇ H ₁₁ O ₆	--	X	--	--
C ₇ H ₁₁ O ₈	X	X	X	X
C ₇ H ₁₁ O ₁₀	X	--	X	X
Carbonyl				
C ₇ H ₁₀ O ₅	X	X	X	X
C ₇ H ₁₀ O ₇	X	X	X	X
C ₇ H ₁₀ O ₉	X	X	X	X
C ₇ H ₁₀ O ₁₁	--	--	--	X
Hydroxy				
C ₇ H ₁₂ O ₇	X	X	--	X
C ₇ H ₁₂ O ₉	--	X	X	--
C ₇ H ₁₂ O ₁₁	--	--	--	X
Hydroperoxy				
C ₇ H ₁₂ O ₆	--	interference	--	--
C ₇ H ₁₂ O ₈	--	X	X	X
C ₇ H ₁₂ O ₁₀	X	--	--	X
Hydroxy-peroxy radical				
C ₇ H ₁₁ O ₇	X	X	--	X
C ₇ H ₁₁ O ₉	--	X	X	X
C ₇ H ₁₁ O ₁₁	X	--	--	X
Hydroxy-peroxy path carbonyl				
C ₇ H ₁₀ O ₆	--	X	X	X
C ₇ H ₁₀ O ₈	X	--	X	X
C ₇ H ₁₀ O ₁₀	X	--	--	X

2
3

1
2 **Table 12.** HOM products observed during ozonolysis of α -pinene. The second header line
3 shows at which molar masses the termination products are expected relative to the peroxy
4 radical with molar mass m (unit masses). Filled cells indicate that these compounds were
5 detected with given elemental composition and relative intensity (second line in the same
6 cell). Relative intensities were normalized to the largest HOM signal. The third line in the cell
7 gives the molar mass [Da] in unit mass resolution and the precise m/z [Th] at which the
8 molecule was detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
C₁₀H₁₅O₈ 46 % 263 / 326.0621	C₁₀H₁₄O₇ 88 % 264 / 309.0594		
C₁₀H₁₅O₉¹ 5 % 279 / 342.0570	C₁₀H₁₄O₈¹ 14 % 262 / 325.0543		
C₁₀H₁₅O₁₀ 40 % 295 / 358.0519	C₁₀H₁₄O₉ 83 % 326 / 341.0492	C₁₀H₁₆O₉ 100 % 280 / 343.0648	C₁₀H₁₆O₁₀ 37 % 296 / 359.0597
	C₁₀H₁₄O₁₁¹ 69 % 327 / 373.0390	C₁₀H₁₆O₁₁¹ 29 % 312 / 375.0547	

9 ¹ hydroxy-peroxy path sequence 3

10

11

12

1
2 **Table 13:** HOM products observed during ozonolysis of Δ -3-carene. The second header line
3 shows at which molar masses the termination products are expected relative to the peroxy
4 radical with molar mass m (unit masses). Filled cells indicate that these compounds were
5 detected with given elemental composition and relative intensity (second line in the same
6 cell). Relative intensities were normalized to the largest HOM signal. The third line in the cell
7 gives the molar mass [Da] in unit mass resolution and the precise m/z [Th] at which the
8 molecule was detected as cluster with $^{15}\text{NO}_3^-$.

Peroxy radical	Carbonyl	Hydroxy	Hydroperoxy
m	m-17	m-15	m+1
C₁₀H₁₅O₈			
10 %			
263 / 326.0621			
C₁₀H₁₅O₁₀	C₁₀H₁₄O₉	C₁₀H₁₆O₉	
94 %	47 %	100 %	
295 / 358.0519	278 / 341.0492	280 / 343.0648	

9
10
11

1

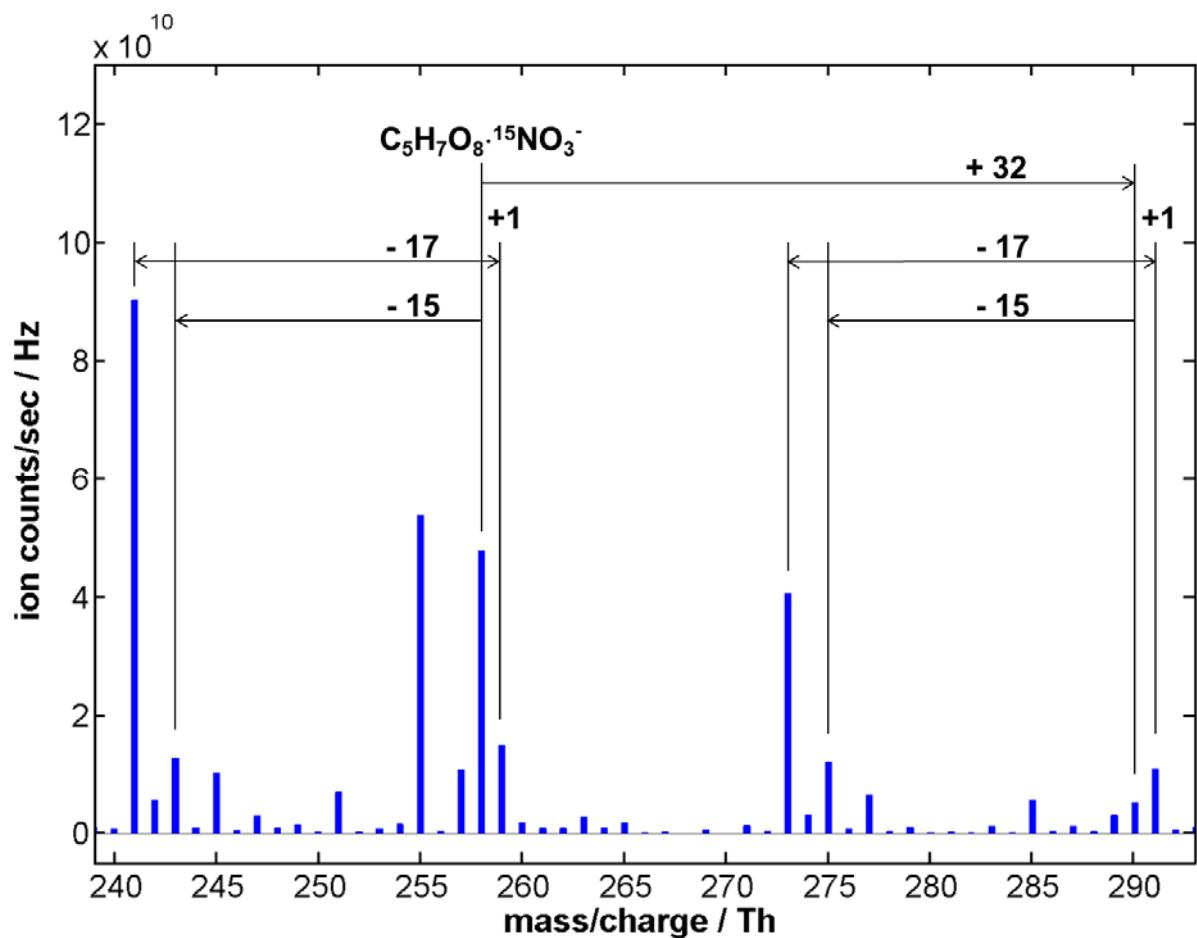
2 Table 14: Detected and identified dimers observed during ozonolysis of cyclopentene.

<i>m/z</i> [Th]	Formula	Intensity [%]
389.0339	$\text{C}_{10}\text{H}_{14}\text{O}_{12}\cdot^{15}\text{NO}_3^-$	44
421.0238	$\text{C}_{10}\text{H}_{14}\text{O}_{14}\cdot^{15}\text{NO}_3^-$	100
453.0136	$\text{C}_{10}\text{H}_{14}\text{O}_{16}\cdot^{15}\text{NO}_3^-$	2
343.0648	$\text{C}_{10}\text{H}_{16}\text{O}_9\cdot^{15}\text{NO}_3^-$	24
375.0547	$\text{C}_{10}\text{H}_{16}\text{O}_{11}\cdot^{15}\text{NO}_3^-$	6

3

4

5


1 Table 15: Possible dimers produced by permutations reactions of the monomer peroxy
 2 radicals of cyclopentene. Bold face: entities were detected. Italic: dimers were detected and
 3 arise from two most abundant peroxy radicals.

	C ₅ H ₇ O ₆	C ₅ H ₇ O ₇	C₅H₇O₈	C₅H₇O₉	C₅H₇O₁₀
C ₅ H ₇ O ₆	C ₁₀ H ₁₄ O ₁₀	C ₁₀ H ₁₄ O ₁₁	C₁₀H₁₄O₁₂	C ₁₀ H ₁₄ O ₁₃	C₁₀H₁₄O₁₄
C ₅ H ₇ O ₇		C₁₀H₁₄O₁₂	C ₁₀ H ₁₄ O ₁₃	C₁₀H₁₄O₁₄	C ₁₀ H ₁₄ O ₁₅
C₅H₇O₈			<i>C₁₀H₁₄O₁₄</i>	C ₁₀ H ₁₄ O ₁₅	<i>C₁₀H₁₄O₁₆</i>
C₅H₇O₉				C₁₀H₁₄O₁₆	C ₁₀ H ₁₄ O ₁₇
C₅H₇O₁₀					C ₁₀ H ₁₄ O ₁₈

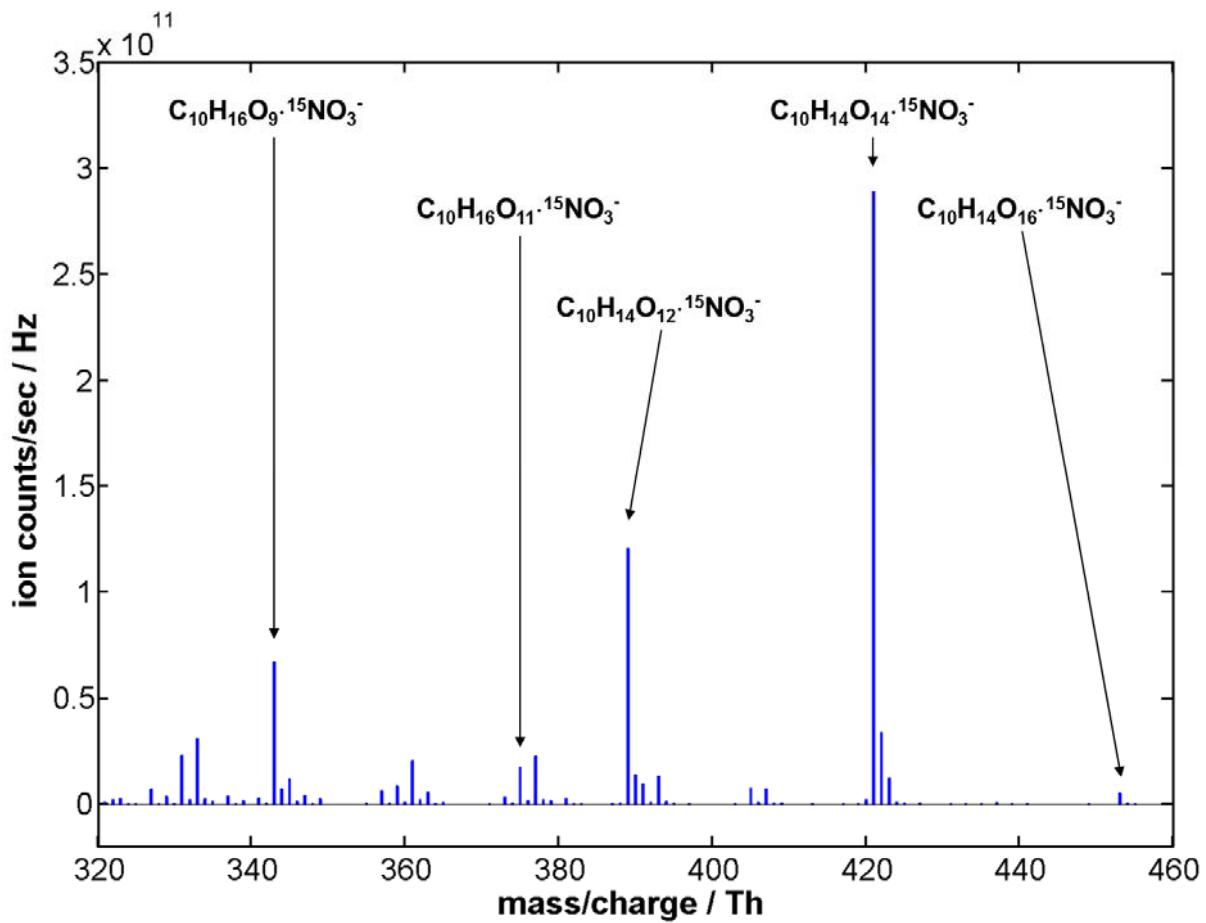
4

5

1

2

3


4

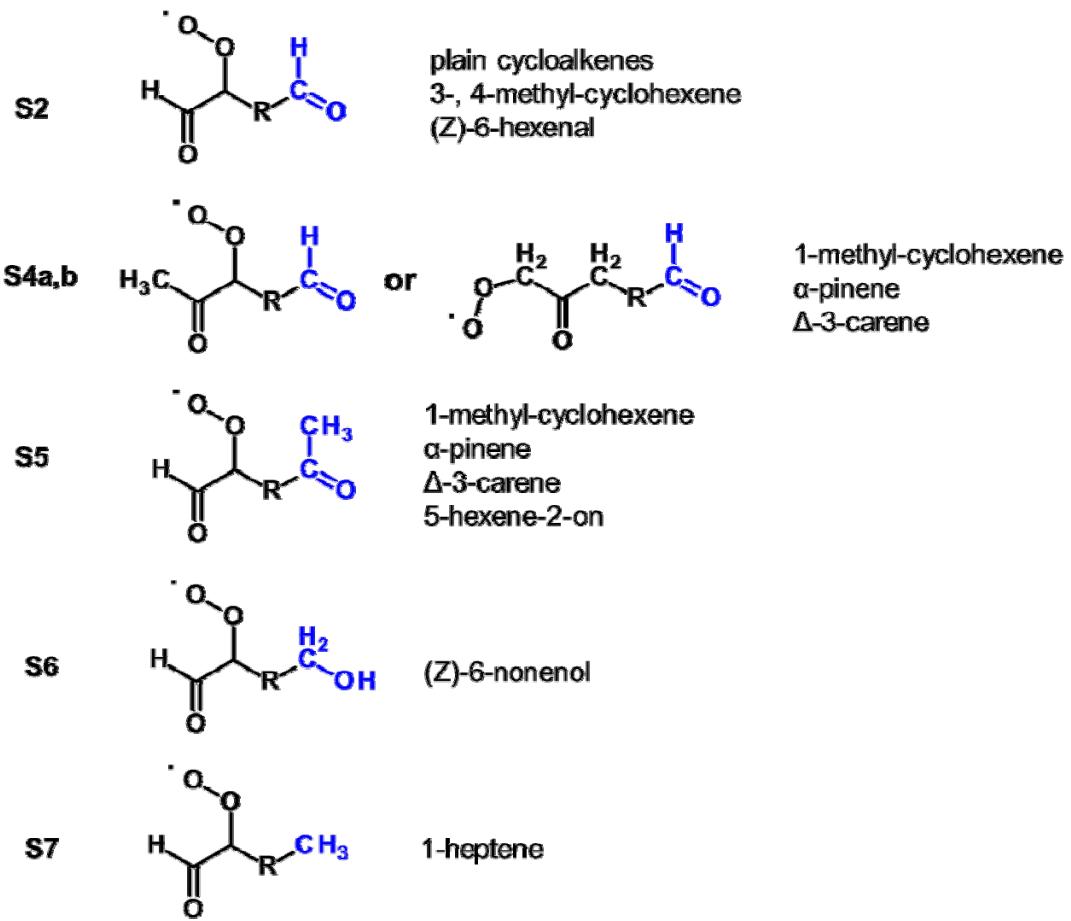
5 **Figure 1:** Spectrum of ozonolysis products of cyclopentene. The most abundant peroxy
 6 radical $C_5H_7O_8 \cdot ^{15}NO_3^-$ and its termination products are marked as well as the next higher
 7 peroxy radical (+32 Th) and termination products. The m/z differences in [Th] are indicated.

8

9

1

2

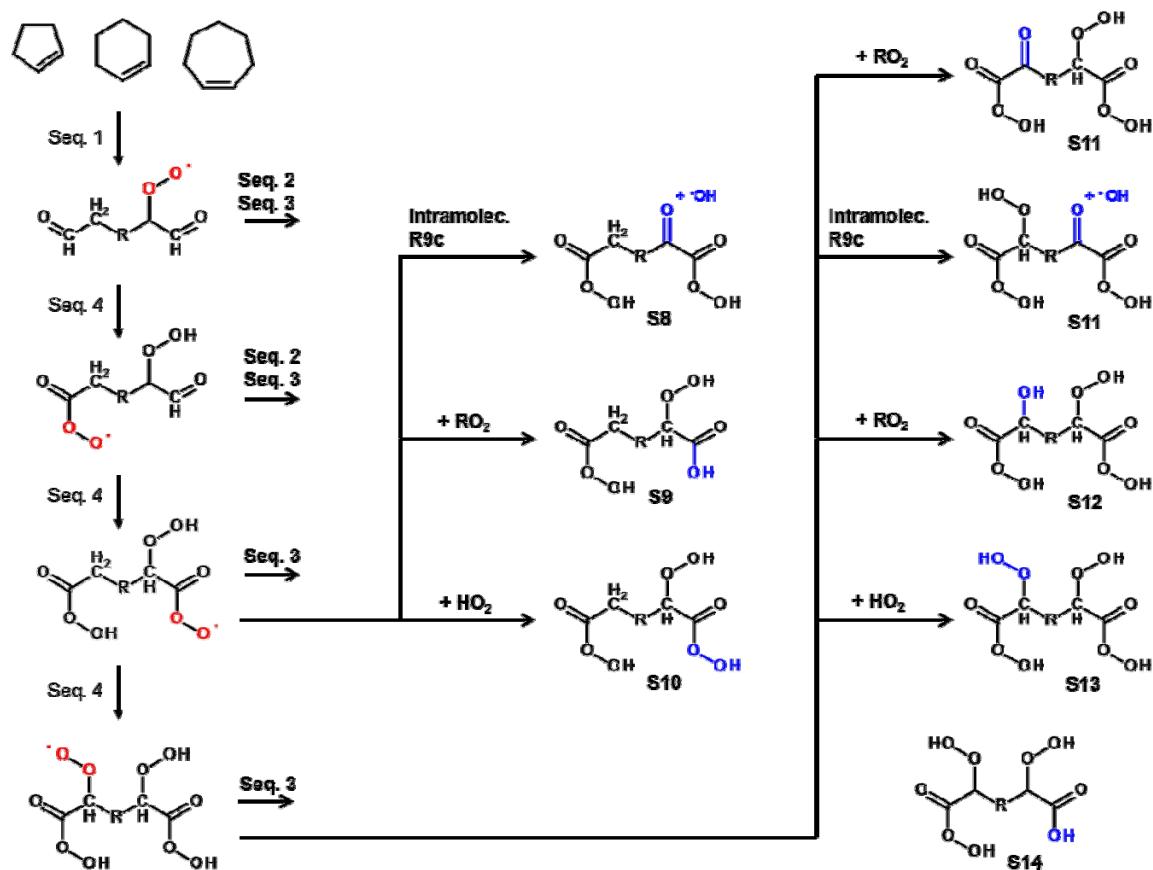

3

4 **Figure 2:** Spectrum of ozonolysis products of cyclopentene with dimer character. The
5 detected elemental compositions are indicated (cf. Section 5.4).

6

1

2

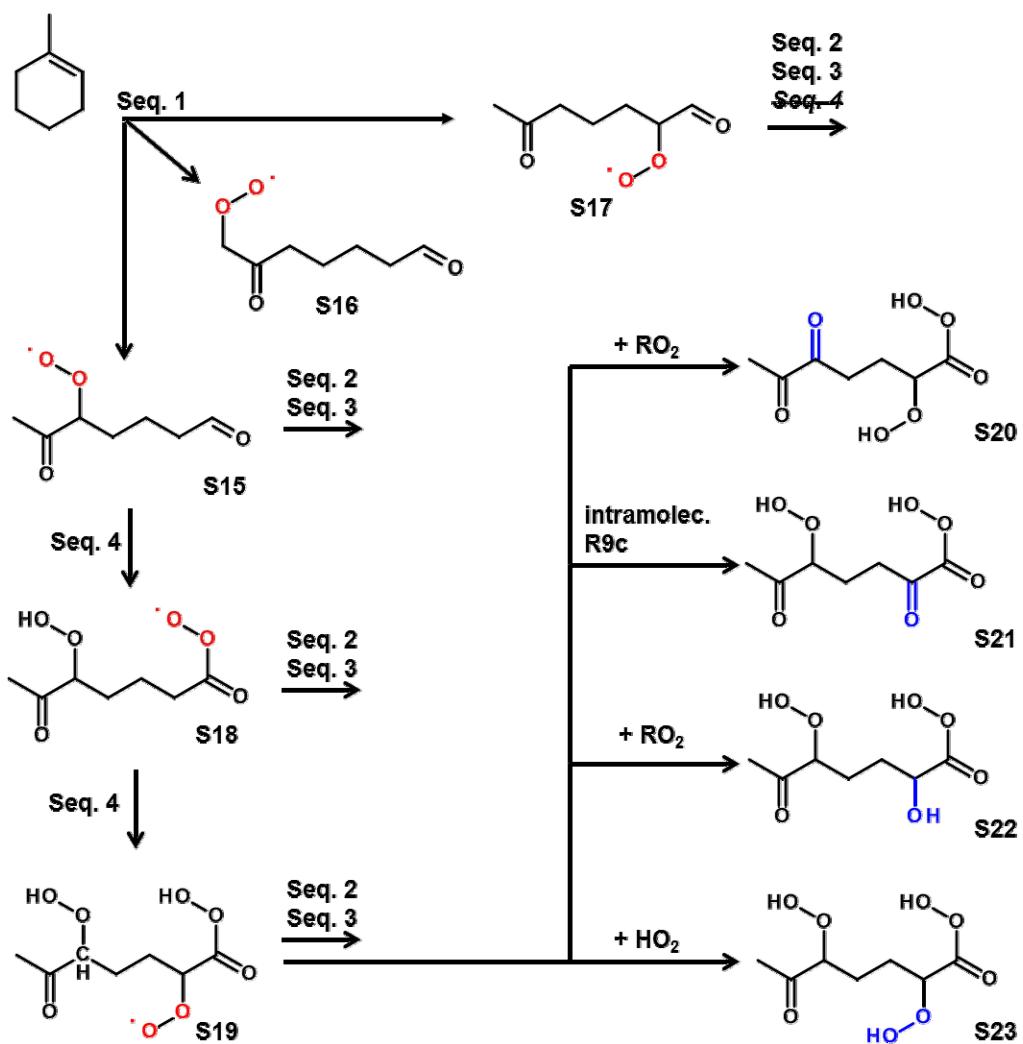

3

4

5 **Figure 3:** Peroxy radicals of the investigated VOC as expected from the vinylhydroperoxide
6 path. Position of the peroxy group and functionality at the ω -terminal end.

7

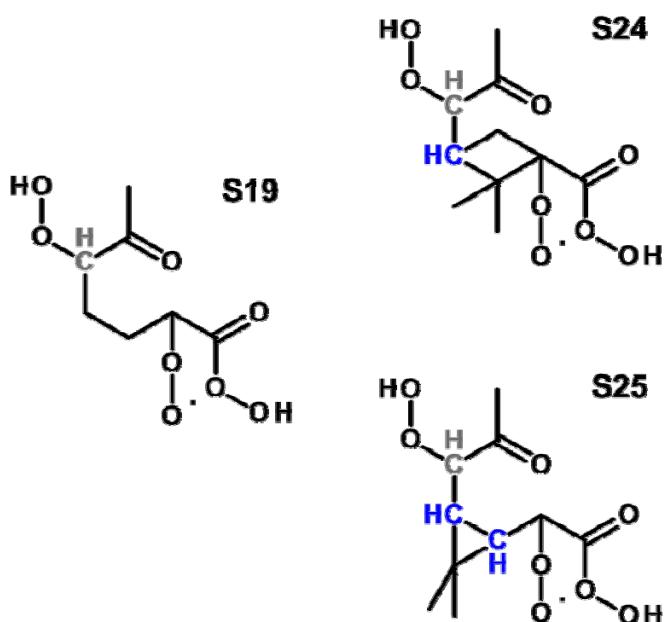
1


2

3

4 **Figure 4:** Examplaric mechanistic scheme in accordance with the results of the ozonolysis of
 5 cycloalkenes. Cyclopentene: R = (CH₂), cyclohexene: R = (CH₂)₂, cycloheptene: R = (CH₂)₃.
 6 The peroxy radicals with increasing number of O-atoms ($m/z = m$) on the left hand side are
 7 formed by autoxidation (Sequence 4). They can undergo either termination reactions in
 8 Sequence 2 or follow the hydroxy-peroxy path (Sequence 3). The carbonyl (m-17), hydroxy
 9 (m-15) and hydroperoxy (m+1) termination products are shown for the O₈-peroxy radical (S8-
 10 S10) and the O₁₀-peroxy radical (S11-S12) in the middle and right hand column, respectively.
 11 The functional groups formed by the termination reactions are shown in blue. The products
 12 S8 and S11 from the intramolecular termination R9c are the same as for the intermolecular
 13 termination reactions R5a and R6b. Note that in principle the series of rearrangements can be
 14 also permuted. If the H-atoms at the C-atom in α -position to the second aldehyde group are
 15 subject to H-shift before attack on the aldehyde group itself, structures like S14 could be
 16 formed, isobaric to S12.

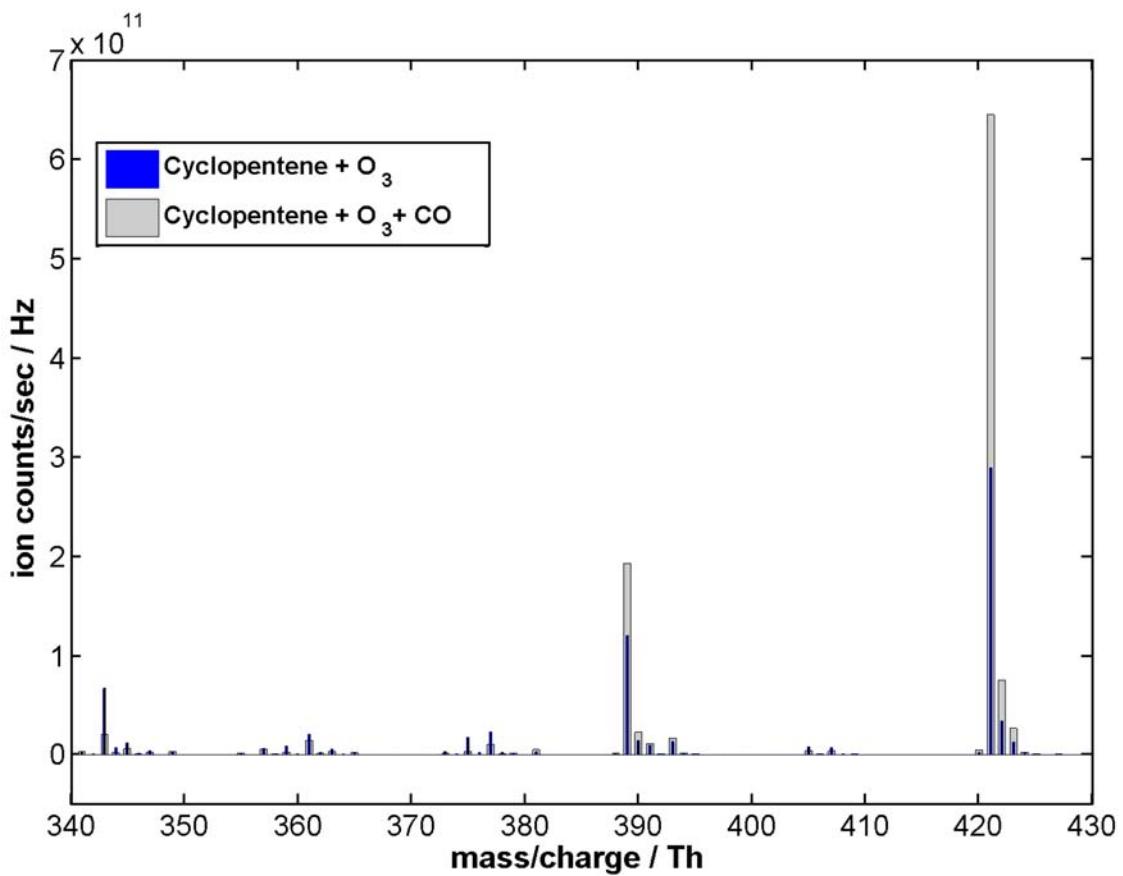
17


1
2

3
4
5
6
7
8
9

5 **Figure 5:** Schematics of HOM formation of 1-methyl cyclohexene. The major products are
6 carbonyl termination products, either S20 or S21. Higher oxidation products are minor.
7 Peroxy radical S17 has no terminal ω -aldehyde group. Peroxy radical S16 will produce
8 isobaric products analogous to S15.
9

1


2

3

4 **Figure 6:** Comparison of *deduced* highest oxidized O₈-peroxy radical of 1-methyl
 5 cyclohexene (S19) to analogously *constructed* O₈-peroxy radicals of α -pinene (S24) and Δ -3-
 6 carene (S25). Tertiary H-atoms in blue are explicitly shown. The H at the carbon atom
 7 carrying the hydroperoxy group, which is shifted in R9c is shown in grey. In an isomeric
 8 modification the hydroperoxide group at C₃ could be located also at C₁.

9

1

2

3 **Figure 7:** Comparison of the dimer HOM spectra resulting from ozonolysis of cyclopentene
4 with CO addition (grey) and without CO addition (blue). The fraction of dimers which
5 involve the O₃-peroxy radical from the addition of OH to the double bond of cyclopentene are
6 reduced.