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Abstract

We examine the relationship between the number concentration of boundary-layer cloud
condensation nuclei (CCN) and light extinction to investigate underlying aerosol processes
and satellite-based CCN estimates. For a variety of airborne and ground-based observations
not dominated by dust, regression identifies the CCN (cm™) at 0.4+0.1% supersaturation with
10713697 where 6 (Mm™) is the 500 nm extinction coefficient by dried particles and a is
the Angstrom exponent. The deviation of one-kilometer horizontal average data from this
approximation is typically within a factor of 2.0. dlogCCN/0logo is less than unity because,
among other explanations, growth processes generally make aerosols scatter more light
without increasing their number. This, barring special meteorology-aerosol connections,

associates a doubling of aerosol optical depth with less than a doubling of CCN, contrary to

previous studies based on heavily averaged measurements or a satellite algorithm.
1 Introduction

Aerosol-cloud interactions (ACI) are the largest source of uncertainty in estimates of radiative
forcing responsible for the on-going climate change (Boucher et al., 2013). ACI for warm
clouds depend on the number concentration of cloud condensation nuclei (CCN), the particles
capable of initiating drop formation at a given supersaturation (Pruppacher and Klett, 1980),
not on aerosol optical properties. Yet, aerosol optical depth (AOD) and its variants weighted
by the spectral dependence over visible and near infrared (VNIR) wavelengths are commonly
substituted for CCN in ACI studies (see below for examples). The substitution is motivated

by the wide availability in space and time of satellite retrievals, an advantage over the sparse
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CCN measurements. But underlying assumptions on the relationship between CCN and VNIR
AOD remain to be examined with direct observations over a horizontal resolution relevant to

common clouds (e.g., near one kilometer).

The CCN-AOD relationship is complicated partly because these quantities refer to different
volumes of air. Whereas the CCN most relevant to ACI are located at the cloud base altitude,
the AOD is defined for the entire vertical column. Aerosols at other altitudes contribute to it
but not to the CCN. The air mass interacting with clouds may be kilometers away from, or
hours after, clear-sky satellite measurements of AOD, and may have finer horizontal and
temporal resolution. These differences matter because aerosol spatio-temporal distribution is

generally inhomogeneous.

Even the CCN-extinction relationship at a given location and time is complicated, as each of
these quantities depends on particle size and hygroscopicity in its own convoluted way. Most
CCN are in the Aitken mode and the smaller sizes of the accumulation mode, the exact lower
limit depending on the hygroscopicity. That is because particles are typically most numerous
in these size ranges (Seinfeld and Pandis, 2006) and because the critical dry diameter for
droplet activation at a supersaturation of 0.2-0.6% is usually 50-120 nm (Pringle et al., 2010).
The light extinction at midvisible wavelengths is normally dominated by the accumulation or
coarse mode where both particle volume and scattering efficiency are greater than for smaller
sizes (Waggoner et al., 1981). Particles that are relatively small may grow into optically
active sizes at high ambient relative humidity (RH) due to uptake of water. As a result,
particles near 100 nm can add to the CCN number without significantly changing the light
extinction, and the extinction can increase upon humidity rises without changing the CCN
number. Other aerosol intensive properties such as refractive index, mixing state, particle

shape and surface tension can also influence the relationship.

The CCN-AOD relationship has been approximated by several parameterizations, each based
on either heavily averaged measurements or a satellite algorithm. Some of them are applied to
satellite AOD products to study the aerosol effects on warm clouds. Virtually all existing
parameterizations have 0logCCN/6logAOD of unity or greater, i.e., the CCN concentration at

least doubles as AOD doubles. These parameterizations can be sorted into four groups.

The simplest CCN retrieval strategies scale CCN concentrations with AOD at a single
wavelength. They implicitly assume negligible variability in the combination of aerosol

spatio-temporal distribution and intensive properties. Andreae (2009) finds from dozens of

3
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field experiments that, on an experiment average basis, AOD at 500 nm is correlated to CCN
concentration at 0.4% supersaturation as AOD500nm=O.0027CCN0,4%O'640 with an R? of 0.88.
There is about a factor-of-four range of CCN concentrations at a given AOD. The exponent
0.640 on CCN means that a doubling of AOD is associated with nearly a tripling of CCN. In
an even simpler approach, Kaufman et al. (2005) use MODIS AOD as a surrogate for the
concentration of the aerosols that interact with the cloud layer, i.e., dlogCCN/0logAOD=1, to
study the aerosol effect on shallow liquid clouds. Koren et al. (2008) employ the same
technique to study aerosol effects on clouds over the Amazon, and Bellouin et al. (2013) to
estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols.
Quaas et al. (2008) and Quaas et al. (2009) evaluate variously modeled aerosol effects in
terms of their relationship with AOD. Their results indicate that global climate models
generally overestimate the cloud albedo effect, though this, along with the effects on cloud
droplet number concentration, liquid water path and other cloud properties, varies with the

location and model.

Another prevalent strategy is to multiply a single-wavelength AOD by the Angstrom
exponent, i.e., -1 times the slope of extinction spectrum in logarithmic scales. Nakajima et al.
(2001) hypothesize that this product, now commonly called aerosol index (AI; not the
TOMS/OMI aerosol index), is approximately proportional to the column aerosol number

concentration_(rather than CCN). Liu et al. (2011)_examine the CCN-AI relationship directly

using the observation over a polluted site in China. Bréon et al. (2002), Sekiguchi et al.

(2003), Quaas et al. (2004) and Penner et al. (2012) study the relationship of Al with satellite-

derived or modeled cloud microphysical properties. Penner et al. (2011) refer to model-
simulated AOD and Al to evaluate the aerosol effects on cloud droplet number concentration
(CDNC), leading to the conclusion that satellite methods underestimate the indirect climate
forcing by aerosols. The assumptions behind these uses of Al are that the impact of particle
size is partly accounted for by the Angstrom exponent and that the impact of spatio-temporal
distribution and particle hygroscopicity is negligible. Importantly, Al is proportional to AOD
for a constant Angstrom exponent, i.e., 0logAl/0logAOD=1. Nakajima et al. (2001) mention
that a more accurate proxy for column aerosol number is the Al raised to the power of 0.869
based on the AVHRR retrieval algorithm. This statement has been widely ignored by

subsequent studies.
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Another strategy relies on satellite-retrieved aerosol size distribution. Gassé and Hegg (2003)
compute CCN concentration by three different methods. One of them relies on the MODIS
over-ocean algorithm. The algorithm matches spectral radiance calculated from combinations
of nine pre-set aerosol models to the spectral radiance observed over VNIR wavelengths by
the space-borne sensor. This yields aerosol size distribution, among other products. The
MODIS CCN product is the integral of the small-mode aerosol size distribution from a fixed
radius of 30 nm (Appendix B of Remer et al. (2005), renamed PSMLO003_Ocean for MODIS
Collection 6 (Levy et al., 2013)). This strategy, similar to the Al, accounts for the impact of
particle size and refractive index only. The derived column-integral CCN concentration is
proportional to the derived AOD. This product remains unvalidated and underutilized.
Spectral fitting has been applied to ship-based columnar remote-sensing measurements as

well (Sayer et al., 2012).

The study by Liu and Li (2014) is unique. Their analysis of five ground-based long-term
measurements yields parameterizations that not only account for the size effect with
Angstrom exponent. They also eliminate the impact of aerosol vertical distribution by
referring to ground-level in situ optical measurements. The strategy should work with passive
satellite observations of column AOD as input, as long as additional measurements or a
transport model estimate the aerosol vertical profile. The impact of hygroscopicity is not

directly accounted for, though they provide assessments on the changes in light scattering

upon humidity changes and on single scattering albedo (SSA). The impact of horizontal-

temporal distribution is obscured by the bin-averaging applied to a large number of CCN data.
0logCCN/0logos,=1.5178 in their parameterization with the 450 nm scattering coefficient, o,
for <80% ambient RH and SSA between 0.85 and 0.95. Jefferson (2010) also parameterizes
the CCN concentration with ground-based optical observations; the use of backscattering

fraction distinguishes her study from those mentioned above and the present study.

We propose a new parameterization between the CCN concentration and light extinction of
dried particles, based on airborne and ground-based observations of aerosols at about one-
kilometer horizontal resolutions. We also discuss underlying aerosol processes and satellite-
based CCN estimates. This paper does not address advanced remote sensing capabilities such
as angles, polarization and, setting aside a mention of its vertical resolution, lidar (Feingold
and Grund, 1994; Ghan and Collins, 2004; Ghan et al., 2006; Miiller et al., 2014; Veselovskii

et al., 2002). This paper does not address pre-industrial era estimates either.
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2 Methods

2.1 Experiments and Instruments

We use in situ aerosol measurements made aboard the NASA P-3 aircraft during the central
Canada phase of ARCTAS (Jacob et al., 2010) and the California phase of DISCOVER-AQ
from altitudes up to one kilometer, and ground-based long-term observations at several sites
run by the US Department of Energy ARM program and Svalbard (Table 1). In addition, we
use the AOD observed from the P-3 during ARCTAS Canada.

A solid diffuser inlet delivered ambient air to all the airborne in situ aerosol instruments. This
inlet and sample plumbing pass aerosol with dry aerodynamic diameter at least up to 5.0 um
with better than 50% efficiency (McNaughton et al., 2007). The partial loss of coarse particles
leads to an underestimate of light extinction, but its magnitude should be typically smaller
than 15-25%, an estimate established for the NCAR Community Aerosol Inlet (Shinozuka et
al., 2004) that passes fewer particles than do solid diffuser inlets (Huebert et al., 2004). The
submicron particles that almost always dominate CCN are sampled isokinetically with a near
100% efficiency. The timing of the airborne records used in this study is adjusted by 7-10s,
depending on the instrument and experiment, to account for the transport between the inlet tip
and the instrument. The CCN and extinction coefficient generally see sudden changes at
identical time stamps after this adjustment. At the ground sites other than Svalbard, the
nephelometer and PSAP instruments (see below) were downstream of a set of switched 1.0
pm and 10 pum impactors. This study uses the measurements behind the 10 um impactor only.

There is no aerosol size cut-off for the Svalbard data.

The light scattering and absorption of dried (RH~20%) particles were measured with TSI
model 3563 nephelometers and Radiance Research particle soot absorption photometers
(PSAP) at all locations. The sum of the scattering and absorption coefficient gives the
extinction coefficient for dried particles. It is adjusted from two of the instrument wavelengths,
450 and 550 nm of the nephelometers and 470 and 530 nm of the PSAPs, to 500 nm assuming
the linear relationship between the logarithm of coefficient and the logarithm of wavelength.
The exception is the Svalbard single-wavelength (525 nm) PSAP, for which an absorption
Angstrom exponent of unity is assumed. The extinction coefficient at 450 and 550 nm is also
calculated, to derive the Angstrom exponent, o, again assuming the linear relationship on the

logarithmic scales.
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We estimate 5-10% as the uncertainty in the 500 nm dry extinction coefficient, 6. The
uncertainty is smaller for finer particles (larger Angstrom exponent) due to smaller
uncertainty in the nephelometer’s angular truncation error (Anderson and Ogren, 1998). The
uncertainty is set to 5% at minimum, because up to 7% differences have been reported
between nephelometers (Heintzenberg et al., 2006). The ARM ground-based observations of
extinction above 500 Mm™" are screened out. We expect that this ceiling is seldom exceeded,

with a possible exception of the dusty Niamey site in Niger.

CCN concentrations were measured using a Droplet Measurement Technologies streamwise
thermal-gradient CCN counter (CCNC) (Lance et al., 2006; Lathem et al., 2013; Roberts and
Nenes, 2005) at all locations. The CCNC consists of a cylindrical flow tube with wetted walls,
on which a linear streamwise temperature gradient is applied. Owing to the greater diffusivity
of water vapor than heat in air, a supersaturation is generated, which is highest at the center
line of the flow tube. Sampled particles were exposed to the supersaturation along the vertical
column. The supersaturation in the CCNC was corrected for the water vapor depletion due to
high particle concentration during ARCTAS after Lathem et al. (2013). Activated particles
were detected by an optical particle counter at the exit of the column. We estimate the
uncertainty to be 10% of the best estimate plus 5 cm™. We exclude the CCN measurements at
Southern Great Plains between May 20 and October 28, 2007 when the instrument

temperature was not properly controlled.

This study also uses the aerosol size distributions measured with a scanning mobility particle
sizer (SMPS) with a long differential mobility analyzer (TSI 3081 with custom electronics) in
ARCTAS (McNaughton et al., 2011). The SMPS measured particles between 10 and 500 nm
over a 60s period every 85s, for air volumes collected over 20s into a grab sampler. The grab
chamber ensured that every point of each SMPS scan measures the particles from the same

volume of air.

The CCN concentration observed during ARCTAS at the corrected instrument supersaturation
between 0.3 and 0.5% was adjusted to a constant 0.4% using the aerosol size distribution
measured with the SMPS. We first integrate the size distribution from the largest size bin until
the concentration matches the measured CCN concentration (Lathem et al., 2013; Moore et
al., 2011). The critical dry diameter determined this way is then adjusted from instrument

supersaturation to 0.4% based on the Kohler theory to compute the CCN concentration at the
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reference supersaturation. The adjusted CCN concentration is typically within 5% of the

measured concentration. We did not make the adjustment for the data from other experiments.

The measured aerosol size distribution provides adequate counting accuracy and temporal
resolution for the supersaturation adjustment. Matching or scaling with coincident
condensation particle counter (CPC) measurements would exclude time periods when the
aerosol number exceeded the CPC’s upper detection limit, and otherwise has little influence
on the adjustment of CCN concentration to a single supersaturation. The 1 Hz CPC counts
indicate that plumes that lasted less than SMPS sample time or took place between the SMPS
samples have negligible impact on the supersaturation adjustment. An assumption that 20% of
the particles in each SMPS size bin are hydrophobic (i.e., external mixing), instead of internal
mixing, also makes a negligible difference in the supersaturation adjustment according to our

simulation.

Many recent studies have shown that the influence of aerosol composition on CCN activity
can be efficiently represented by a single hygroscopicity parameter, k, which simply
expresses the affinity of a given aerosol particle for water (Petters and Kreidenweis, 2007). «
is near 0.1 for many organic species (Jimenez et al., 2009; Lathem et al., 2013) and 0.67 for
ammonium sulfate (Petters and Kreidenweis, 2007). Derived « is 0.03-0.16 for two thirds of
the central Canada data, with a median of 0.08. This is plausible for the high organic content
expected in the fresh biomass burning particles that we observed in central Canada. The
arithmetic mean is 0.18, similar to the observations of biomass burning particles from the DC-
8 aircraft in the same experiment (Lathem et al., 2013). The arithmetic mean is greater than
the median and sensitive to a few data points with large values, as the histogram of the

calculated «k values resembles a lognormal distribution rather than a normal one.

In ARCTAS, the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) measured
direct solar beam transmission in narrow wavelength channels by using detectors in a tracking
head mounted externally to the aircraft. It recorded 3s average data every 4s. The AATS-14
provides above-aircraft AOD with a small and well-characterized error (~0.01) at 13
wavelengths between 354 nm and 2139 nm. Shinozuka et al. (2011) describe data acquisition,
screening, calibration, reduction and uncertainty analysis, as well as the vertical profiles,
inter-comparison and fine-mode fraction of the AOD observed in ARCTAS. To compute the
full-column AOD, below-aircraft contributions were estimated with coincident in situ

observations under the assumption that the extinction coefficient for the ambient particles was
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constant below the aircraft (at one kilometer or below). Specifically, the scattering coefficient
was adjusted to the ambient humidity at the aircraft altitude, based on the f(RH) humidity
response measured with a pair of nephelometers at ~20% and ~80% RH, before being added
to the absorption coefficient and multiplied by the aircraft altitude. Note that the f(RH)
adjustment imposed a negligible effect on our analysis because the ambient humidity was
often below 50% over central Canada. The below-aircraft contributions thus calculated are 0-
20% of the observed above-aircraft AOD in most cases. We assign half of the magnitude of
this compensation, i.e., 0-10% of the above-aircraft AOD, as the best estimate of its
uncertainty. This is combined with the 0.01 uncertainty in the above-aircraft AOD assuming
these two components are independent of each other (calculated as the root of the sum of the

squares), resulting in the uncertainty in the full-column AOD of 0.01-0.02 for most cases.

2.2 Resolution and Regression

McComiskey and Feingold (2012) say, “The ensuing effects of aggregation by averaging and
loss of variance on common calculations of statistics [...] are rarely discussed when inference
is made from analyses of ACI at varying scales in the literature.” Cantrell (2008) says, “While
the literature is full of detailed analyses of procedures for fitting straight lines to values with
uncertainties, a surprising number of scientists blindly use the standard least-squares method
[...] that assumes no uncertainties in the x values.” Applying the appropriate regression
method at the relevant resolution is important for the studies of CCN-extinction relationship
where the analysis centers around regression. In this regard our study departs from previous

ones in two ways.

First, this study minimizes data aggregation. Averaging data prior to regression generally
improves correlation, but the results do not represent the variance of original data points. We
do not average data over an entire experiment or CCN bins, because cloud microphysics
occurs in scales much finer than hundreds of kilometers or weeks. We aggregate CCN and
extinction data over 10-11s for the airborne data, 240-300s for the ground-based data. These
time periods roughly correspond to one-kilometer horizontal distance for the typical P-3
ground speed near the surface (~120 m/s) and for the ground-based observations under the ~4
m/s winds. The aggregation is achieved by means of averaging, except for the data from the
airborne nephelometers in which sample air resides for time periods comparable to 10s; we let
a single scattering coefficient recorded in the middle of each time period represent it. The
ARCTAS data are averaged over 11s instead of 10s with every 12th second discarded, to

9
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encompass three AOD measurements instead of two. The data from the ARM ground sites are
delivered as 60s averages. The first 60s CCN measurement after each supersaturation step is
often influenced by the supersaturation instability and is removed. The rest are averaged over

240s. The Svalbard data are averaged over 300s.

Second, this study employs a bivariate regression method, with one over the estimated
measurement uncertainty squared as weights for both x and y. When both x and y have
uncertainties, the simple least-squares method underestimates the magnitude of the slope (see,
for example, Cantrell (2008)). That leads to an underestimate of 6logCCN/0logAOD when x
is logAOD and y is logCCN; an overestimate when, as in Andreae (2009) and Liu and Li
(2014), x is logCCN and y is logAOD. Bivariate regression avoids this bias, as it gives the
same slope regardless of the choice of variable for x and y by iteratively minimizing the sum
of the squares of the diagonal distances (York et al., 2004). This feature forces the linear-
correlation coefficient, R, to be near unity; we evaluate the goodness of the fit by two other
measures. One is the variance of the slope estimated after Reed (1992) with the number of
independent measurements determined with an autocorrelation analysis after Bretherton et al.

(1999). The other is the root-mean-square (RMS) of the deviation of individual data points.

3 Results

3.1 The relationship of CCN to AOD and in situ dry extinction coefficient

Figure 1a compares the CCN concentration and AOD observed over central Canada during
ARCTAS below one-kilometer altitude. Each grey circle represents the average over 11s in
which our aircraft traveled a little over one-kilometer horizontal distance (see Section 2.2).
The CCN concentration is adjusted to 0.4% supersaturation using the SMPS aerosol size
distribution (Section 2.1). The 500 nm AOD presented here is measured with the upward-
viewing AATS-14 and augmented for the below-aircraft contributions using coincident in situ
aerosol extinction measurements. The resulting full-column AOD values are consistent with
the AERONET ground-based observations within 0.02 for low-level fly-over events
(Shinozuka et al., 2011).

The bivariate regression applied to 10g;0CCNss=04% and log;oAODsponm yields a slope of
0.74+0.11, expressed as the best estimate + the square root of the variance (one sigma). The
RMS of the difference between the individual data points and fit is 0.35 on the logjo basis,

which means that the fit estimates CCN concentrations within a factor of 2.3 (100'35, numbers

10
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do not match due to rounding) of the observed value for about two thirds of the cases. A
similar result is obtained from the standard least-squares regression (thin solid line): a slope of
0.71£0.19 and the deviation within a factor of 2.2. For the standard least-squares fit, the
coefficient of determination (R?) is 0.59. The similarity between the two regression results is
expected for the relatively small measurement errors (see Section 2.1 and 2.2). The results
appear insensitive to the choice of wavelength of the AOD: bivariate regression against the
observed above-aircraft AOD spectra indicates that the RMS fitting error varies only by £0.01

between 350 and 800 nm with little variation in the slope.

The deviations from the fit arise mainly from aerosol vertical profile and intensive properties.
Of the other factors mentioned in Section 1, measurement errors are much smaller than a
factor of 2.3. So is the impact of water uptake on AOD, owing to the low (mostly <50%)
ambient RH and the low particle hygroscopicity in this environment. Aerosol horizontal-
temporal variability is not an issue with the airborne observations where all instruments
operated from a single platform at high temporal resolutions. If we minimize the impact of the

vertical profile, we can focus on studying the impact of the intensive properties.

We remove the impact of the vertical profile by replacing the column integral AOD with the
local extinction coefficient, in a manner similar to Shinozuka (2008) and Liu and Li (2014).
Because the extinction coefficient is measured for dried particles, the impact of the humidity
growth on light extinction is also removed. The slope remains similar, 0.75+0.05 (Figure 1b).
The deviation is reduced from a factor of 2.3 to a factor of 1.7. As a reference, Figure 1b
shows a line that goes through the geometric average of CCN (640 cm™) and o (27 Mm™") with
a slope of unity. It deviates most from the average of the CCN concentrations near the high

and low ends of AOD.

The wide dynamic range of the ARCTAS data is advantageous for the regression analysis. If,
for example, we remove extinction above 30 Mm™', both the square root of the variance of the
estimated slope and the RMS fitting error amplify, from 0.05 and 1.7 to 0.17 and 2.0,
respectively. x and y values that span narrow ranges should be avoided for the regression

analysis.

The impact of the vertical profile is difficult to parameterize; so is that of the humidity
response of extinction. Our strategy is to set these issues aside and examine the relationship

between the coincident measurements of CCN concentration and extinction coefficient for

11
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dried particles. The following subsection shows this relationship sorted by Angstrom

exponent for ARCTAS and other experiments.

3.2 The CCN-extinction relationship for dried particles and its connection with
Angstrom exponent

The slope and deviation are similar for other locations that cover a broad range of aerosol and
meteorological environments. Figure 2 shows the subset of data from central Canada,
Southern Great Plains, Cape Cod and Black Forest with an extinction Angstrom exponent
between 1.5 and 1.7, and that from Ganges Valley, Graciosa Island, Svalbard and Niamey
with an Angstrom exponent between 0.3 and 0.5. Data from the ground sites are averaged
over 240-300s, which corresponds to about one-kilometer horizontal distance under typical

wind speeds (Section 2.2). The slope is smaller than unity for all cases.

All CCN data shown here are measurements at 0.3-0.5% supersaturation. This range is wide
enough to allow sufficient data for regression analysis. But it results in an isolated group of
data points for a handful of cases, such as ~10% of the Black Forest data. This effect is
evident despite the fact that data points up to one minute after each change in pre-set
supersaturation are excluded. This is because the instrument supersaturation at the ARM
ground sites, once recalculated for the actual instrument temperature, occasionally takes steps
within the range, for example from just above 0.3% to just below 0.5%, rapidly changing the
CCN concentration. The rate of this change varies with supersaturation and location. It is
relatively high near 0.4% for Black Forest where the aerosol was highly variable with
pollution from Stuttgart, organics from agriculture and nearby forest and heavy nitrate
fertilization. Some of the isolated data points may be attributable to irregular instrument

performance.

No adjustment to a single supersaturation value is made, except for the central Canada data.
Adjustment is discouraged by the lack of supporting observations (e.g., size distribution) in a
statistically significant volume. We refrain from scaling the CCN-extinction relationship with
the supersaturation, because the observed relationship varies widely even over narrower

ranges of supersaturation.

We applied the bivariate regression for other subsets of data. Figure 3a and Table 2 show
regression results for the 0.2-wide Angstrom exponent bins where at least 100 data points

exist with at least a factor of 1.5 variability, measured by the geometric standard deviation, in

12
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both the CCN and extinction. For 85% of the bins, the best estimate of slope is between 0.5
and 1.0. The square root of the variance in the estimated slope is typically 0.03-0.2. The
results are somewhat sensitive to the assumption on measurement uncertainty. The
uncertainties assumed here, as detailed in Section 2.1, are 10% of the best estimate plus 5 cm’
3 for the CCN, 5-10% for the extinction. Taken together, these considerations make us
estimate that the expression 0.75+0.25 encompasses the one standard deviation range of the
true values of the slope. The fitting error is between a factor of 1.5 and 2.0 for most cases
(Figure 3b and Table 2). The exceptions are the data from Niamey, presumably due to the
frequent presence of coarse dust particles that significantly contribute to extinction but are
scarcely related to CCN number. Figure S1 in the supplementary materials shows that
regression results are similar with 450 nm extinction instead of 500 nm. It also demonstrates
that the standard least-squares method yields similar results whereas bisector and binned

standard least-squares methods lead to significantly poorer fits.

Unlike the slope and deviation, the intercept shows a systematic trend with Angstrom
exponent. To make the comparison among locations and Angstrom exponent bins easier, we
recalculate the intercept for individual pairs of CCN and extinction for a fixed slope of 0.75,
instead of using the bivariate regression results. Small dots in Figure 3¢ show the intercept for
Graciosa Island as an example. The arithmetic mean of the intercept is indicated with bigger
markers, for this location and others. The intercept increases with increasing Angstrom
exponent. This is qualitatively consistent with the fact that smaller particles are generally
more numerous for a given extinction. This effect is weaker for the data from pristine
Svalbard (light green markers in Figure 3c), for unknown reasons. Since the linear fit is made
on the logjo-logio coordinates, 10™ePt §s an estimate of the geometric mean of the CCN

concentrations at 1 Mm™! dry extinction coefficient.

The mean intercept can be approximated as 0.30+1.3 (dashed line in Figure 3c). Data from
Niamey, Niger are excluded from this approximation for the presumed influence of dust,
which is less prevalent than marine aerosols over the globe under warm and mixed-phase
clouds. The approximation deviates widely from the Svalbard data over high Angstrom

exponent values as well. This approximation completes the expression:
CCNis.o 495(cm)=10030+136075 (Eq. 1)

where 6 (Mm™) is the 500 nm extinction coefficient for dried particles and a, its Angstrom

exponent. The estimated CCN concentration is within a factor of 2.0 of the individual
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measurements, excluding Niamey (Figure 3d). The deviations tend to be greater, a factor of
10 for some, for observed CCN concentrations below 100 cm™. The deviation would be a

factor of 2.7 without the use of Angstrom exponent.

The same analysis for other supersaturations (Figure S2, S3, S4 and S5 of the supplemental

material) yields:
CCNisg.0 (e )=10°3¢+105075 (Eq. 2)
CCNis.o gop(cm)=10030 14075 (Eq. 3)

The exponent tends to slightly decrease with increasing supersaturation, as expected for the
decreasing overlap between the optically important particles and CCN. But, because this
tendency is dwarfed by the variability with location and Angstrom exponent, we have retained
a slope of 0.75 for the parameterizations above. Note also that the parameterization for ~0.2%
supersaturation is associated with a greater variability and fitting error (a factor of 3.0; Figure
S3d) than for ~0.4% supersaturation. This is because a greater fraction of the observed CCN
concentration is below 100 cm™ and because variability among the locations is pronounced at

this supersaturation.
4 Discussion

Based on the observed CCN-extinction relationship, we discuss underlying aerosol processes

and satellite-based CCN estimates.

4.1 Indications of underlying aerosol processes

CCN concentration and dry extinction coefficient are each influenced by a host of aerosol
processes, of production, transformation, mixing and removal, in air and clouds. The
logCCN-vs-logo relationship embodies the combined effect of the processes. Some drive the
slope to less than unity. Some are responsible for the factor of 1.5-2.0 variability. Here we
discuss such processes, especially those common for various locations and Angstrom
exponent values. We present observed aerosol properties as circumstantial evidence for

aerosol processes, noting that direct analysis with model simulations should be undertaken.

Recall that extinction is partly dependent on size and refractive index, not entirely on number.
Two distributions that are similar in the Aitken mode concentrations may have a factor of ten

difference in extinction, if they differ roughly tenfold in the accumulation mode. Spheres up
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to 200 nm are more efficient at scattering with higher black carbon content (Figure 15.7 of

Seinfeld and Pandis (2006)).

These phenomena are evident in the aerosol number size distribution observed in ARCTAS
Canada. Figure 4a shows the distribution that is grouped by the concurrent 500 nm dry
extinction coefficient and Angstrom exponent and averaged on the logarithmic scale. The

accumulation mode varies with the extinction; the Aitken mode varies less.

To show the same data in a slightly different way, Figure 4b has the same grouped size
distributions that are divided by the extinction and averaged (solid curves). Greater extinction
is associated with proportionally fewer particles in the typical CCN sizes, one explanation for
0logCCN/dlogo<1. Two things might seem counter-intuitive. One is the de-emphasis of the
Aitken mode with extinction up to 300 Mm™, given that the Angstrom exponent, which is
commonly regarded as a size indicator, is restricted to 1.7-1.9 for this demonstration. The
other is the lower peak height in the accumulation mode for extinction values beyond 300
Mm™', given that the distributions are normalized by the extinction. Simple Mie calculations
applied to these distributions (dashed curves in Figure 4b) clarify that they are not odd. First,
the particles up to ~100 nm have little influence on extinction. Variations in the Aitken mode
have little influence on the Angstrom exponent in the detailed level, although the exponent
does signal the CCN-extinction relationship to the extent shown in Figure 3c and reduces the
typical deviation from a factor of 2.7 to 2.0. Second, the extinction distribution calculated for
two refractive index values, 1.5-0.01i and 1.6-0.1i, demonstrates that a change in chemical

composition can result in the same extinction with fewer accumulation-mode particles.

The de-emphasis of the Aitken mode may reflect aerosol growth processes. Coagulation, for
example, decreases the number and increases the size. Condensation and in-cloud processing
also make particles scatter more light while hardly increasing their number. Such ubiquitous
processes may well be the primary reason for the similarity in the observed slope among the

locations and Angstrom exponent bins.

The implied differences in refractive index, on the other hand, may reflect emissions and

transformation unique to biomass burning particles. In ARCTAS, extinction values exceeding

between 30-300 Mm™' were observed around both flaming and smoldering fires, with an SSA

of 0.97+£0.02. The SSA difference might be a result of secondary aerosol production and
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oxidation, of the coatings on soot-containing particles among others, in addition to the

diversity in combustion mechanisms.

Combustion mechanisms and post-emission physicochemical processes may be doubly
effective in lowering the slope from unity, acting not only on refractive index but also on
hygroscopicity. The critical dry diameter (see Section 2.1) tends to be greater, hence the CCN
proportionally fewer, for greater extinction observed in the biomass burning particles (Figure
4a). The implied negative correlation between particle hygroscopicity and extinction might be

attributable to the processes.

Besides the production and transformation, mixing and removal can conceivably influence the
slope, although we do not have observational evidence. Dilution with clean air, for example,
should work to bring the slope to unity, since optically effective particles and CCN are
reduced by the same rate. So should the types of rain wash-out that scavenge particles
regardless of their size and hygroscopicity. Such processes might explain slopes higher than
0.75 in some locations (Figure 3a, Table 2), though this might be caused by a few data points
separate from the rest. Mixing, be it internal or external, of dust particles with hygroscopic
particles can influence the slope, as indicated by the Niamey data (Figure 2 and 3, Table 2).
Generally, fine-tuning of our parameterization for local meteorology and aerosol conditions

should improve its accuracy.

Figure 4 helps explain not only the slope but also the variability in the CCN-extinction
relationship. The shades in Figure 4b indicate the one geometric standard deviation range of
the normalized size distributions, each of which corresponds to unit extinction and an
Angstrom exponent near 1.8. As such, the shades, which encompass roughly +70% of the
geometric mean at most CCN sizes, represent the number of particles that can be added or
removed without significantly influencing the extinction and its wavelength dependence. The

variation in calculated critical diameter (horizontal bar in Figure 4a), by roughly +40 nm,

size and hygroscopicity. The emissions and transformation of the biomass burning particles
could be the main driver for the variability observed over central Canada, not just for the

slope.

Of the two elements of the variability, the normalized size distribution is expected to depend

partly on the choice of wavelength. But this dependence may be insignificant, because the

particle sizes important for the number and the extinction are so far apart. The same
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calculation for a wavelength of 350 nm instead of 500 nm would lower the extinction peak

diameter from ~300 nm to ~210 nm, narrowing the difference from the number peak diameter

(~100 nm) but not closing it. And the variability in the critical diameter would remain

unchanged. This view makes it less surprising that the ARCTAS CCN-AOD relationship

appears insensitive to the choice of wavelength of the AOD (Section 3.1). We need more

extinction/AOD data that are spectrally wide and coincident with CCN measurements to study

the impact of wavelength.

While our observation over central Canada is influenced by local biomass burning as the
single dominant source, multiple emissions followed by mixing can also diversify the CCN-
extinction relationship. The extinction coefficient at Graciosa Island with the Angstrom
exponent between 0.3 and 0.5 should be dominated by coarse marine aerosols, setting aside
occasional influences of dust. Fine pollution particles of continental origin may also be
included in the extinction, but only to a degree that keeps the Angstrom exponent low. The
CCN number, on the other hand, can be dominated by either pollution or marine aerosols.
Specifically, continental outflow influences the site in the summer, whereas high wind speed
increases marine aerosols in the winter (Clarke et al., 1997; Logan et al., 2014; Wood et al.,
2014). The seasonal cycle thus contributes to the variability in CCN-extinction relationship
(Figure 5): The average CCN concentration coincident with the extinction of 202 Mm’', for
example, is 426 cm™ in June, 245 cm™ in December. Mixing in various time scales may also
explain the high variability in the data from Black Forest and Cape Cod (Figure 2), sites that
sample air masses with a number of different geographic origins. In fact, the location where
data are collected appears to have a large impact on the variability (Figure 3b), in comparison
with the Angstrom exponent which shows no obvious tendency with the RMS deviation. The
deviation is not necessarily higher for smaller Angstrom exponent, as might be expected for

the smaller overlap between optically important particles and CCN.

Any process that influences the particle hygroscopicity can contribute significantly to the
variability around the dry CCN-extinction relationship. In general, knowledge of typical local
aerosol size distribution and chemical composition helps constrain the impact of variation in
hygroscopicity on the CCN concentration (Moore et al., 2012). While local observations and
transport models can also help, these properties, especially the composition, are difficult to
observe from satellite. Despite the negative correlation between the hygroscopicity and

extinction, the CCN-extinction relationship in central Canada does not show a systematic
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trend with SSA or f(RH=85%), optically observable indicators of particle composition. Such a
trend, if present, must be obscured by the size and refractive index effects. Particle

hygroscopicity is essentially ignored in the existing CCN parameterizations as well as in ours.

In another location the chemical composition is related to optical properties in a discernible
manner. Shinozuka et al. (2009) find that the wavelength dependence of extinction was anti-
correlated with the organic fraction of refractory mass of submicron particles (OMF) as
0=—0.70xOMF+2.0 for Central Mexico’s urban and industrial pollution. Shinozuka et al.
(2009) and Russell et al. (2010) also show that absorption Angstrom exponent increased with
the OMF, more rapidly for higher SSA, as expected for the interplay between soot, some
organic species and dust. Such observations may assist remote sensing of aerosol chemical
composition and CCN concentration in specific regions, making regional aerosol

characterization an important element of improved satellite retrieval of CCN.

In principle, the discussion above would be less relevant if data were extensively aggregated.
The aerosol physicochemical processes and transport phenomena would be less traceable in
data averaged over, say, 1000 km or a year. Figure 6 shows the arithmetic mean and standard
deviation of the CCN and dry extinction for each of the eight deployments with
supersaturation between 0.3% and 0.5% and with no limit on Angstrom exponent. This figure
lacks the spread of data points that is present in Figure 2 and Table 2. This figure hides the
general trend that the CCN almost triples as the Angstrom exponent is increased from 0.5 to

2.0 in the finer resolution.

In practice, regression results do not change drastically upon aggregating the CCN and dry
extinction. The slope through the deployment averages excluding Niamey is 0.90+0.19 with
the bivariate regression (Section 2.2) when one over the standard deviation squared is used as
weights for both x and y. This largely falls in the 0.75+0.25 range, though the one-sigma (the
square root of the variance) value, 0.19, is greater than the values for the sorted fine-
resolution data (Figure 2 and Table 2). Figure 6 also demonstrates that the standard least-
squares method is sensitive to the choice of dependent and independent variables, to reiterate
our remark in Section 2.2. 0logCCN/0logo is 0.80 when x is logo and y is logCCN, 0.94 when
x is logCCN and y is logo.

The discussion above on aerosol processes, built on observed aerosol properties, remains to
be verified with direct analysis. That probably requires model simulations. The slope between

simulated CCN concentrations and dry extinction coefficient for a given location and
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Angstrom exponent should be 0.75+0.25 to compare well with observations. Simulations
without certain aerosol processes, coagulation and condensation for example, can reveal their
impact on the CCN-extinction relationship and permit fine-tuning of their model

representation.

Besides, co-variance of two aerosol properties should complement each of them as a model
constraint. That is because taking the consistency between them should increase the chance
that either property is estimated correctly. Think, as an example, a probabilistic evaluation of
regional aerosol simulations where histograms are compared between simulations and
observations separately for CCN concentration and dry extinction coefficient. The error in the
estimate of each quantity may be obscured by its dynamic range and overlooked. This is less
likely with the CCN/c"” ratio, because the CCN-o relationship is tighter than is the dynamic
range of either property. The relationship varies by a factor of 1.5-2.0 for most of the
individual non-dusty locations and Angstrom exponent bins (Figure 3b, Table 2), whereas the
dry extinction and CCN vary by a factor of 1.7-2.4 and 1.8-2.7, respectively (numbers given
on the log;o basis in Table 2). Thus, the evaluation of the simulations would be more effective

if the histograms of the ratio are considered in addition to those of each quantity.

4.2 Implications for satellite-based CCN estimates

The relationship of CCN to AOD, rather than to the dry extinction, is relevant to the satellite-
based CCN estimates with passive sensors. The relationship is influenced considerably by the
vertical profile of aerosols and their humidity growth. These strongly meteorology-dependent
variables are difficult to parameterize and better left with transport models and direct
observations to determine. Here we argue that, in general, these variables should not make
logCCN-logAOD relationship steeper than the logCCN-logc. We also consider how the
variability in the CCN-AOD relationship is greater than that of the CCN-c due to these
variables as well as horizontal-temporal variability and measurement errors. We simulate
CCN-AOD relationship for two scenarios, compare the results with the existing

parameterizations and discuss implications for the study of ACI.

The relationship between boundary layer CCN concentration and column AOD in a given
humidity environment is influenced by aerosol spatio-temporal distribution and intensive
properties, as well as measurement errors (see Section 1). Our analysis of the central Canada

data illustrates a way to isolate these influences from each other. The observed CCN-AOD

19



AN L A WD =

10
11

12

13
14
15
16
17

18
19
20
21
22

23
24
25
26
27

28
29
30
31

relationship in large part reflects the CCN-extinction relationship for dried particles within
boundary layer air masses, as indicated by their resemblance in slope and a minor reduction in
deviation (Section 3.1, compare Figure 1a and 1b). This data set is exceptionally suitable for
demonstrating the resemblance, thanks primarily to the predominance of low-altitude
aerosols, low RH and high organic content of the particles from local forest fires, as well as

the wide dynamic ranges that make the regression robust.

For other environments the vertical profile and the humidity response of light extinction are
harder to determine. But estimates can be made by a transport model (Chin et al., 2002; Heald
et al., 2011; Koffi et al., 2012) or lidar observation with the aid of in situ dry measurements
(Tesche et al., 2014; Ziemba et al., 2013). One can then reduce a satellite observation of AOD

to the dry light extinction, for example by applying the following:
o = (AOD-AODy,) / H/ f(RH) (Eq. 4)

where AODy; is the stratospheric AOD and H, the aerosol layer thickness. f(RH) is the
extinction coefficient of the ambient particles divided by that of dried particles, which is
approximated by a scalar in this expression in spite of its altitude dependence. The extinction
and its Angstrom exponent can then be inserted into Equation 1 to yield a CCN concentration

estimate.

This strategy assumes that the CCN-extinction relationship found in our airborne (<lkm
altitude) and ground-based measurements holds for the cloud-base altitude. This assumption
may or may not be valid. Ghan et al. (2006) find that the vertical profile of normalized dry
extinction closely follows that of CCN concentration on most of the flights they examine,

particularly within the lowest kilometer above the surface.

When estimating the CCN-AOD relationship, the uncertainties in the vertical profile and the
humidity response needs to be combined with the factor of 2.0 error associated with our CCN-
extinction parameterization. Uncertainties also arise from horizontal-temporal variability and
measurement errors for the satellite-based estimates, though these additional factors are

negligible for our airborne and ground-based data.

The presence of a dust layer aloft, for example, complicates the CCN-AOD relationship. The
vertical profile depends on aerosol source and evolution as well as meteorological conditions,
and may exert an uncertainty comparable with, or greater than, a factor of 2.0. The slope is

also influenced and might be systematically decreased from 0.75+0.25, due to widening of the

20



O 0 9 N N kR WD =

—_
o

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32

relative dynamic range, as the dry extinction is replaced with AOD. A systematic increase in
the slope is unlikely. It would imply a negative correlation between the aerosol layer depth
and boundary-layer dry extinction coefficient. To be sure, a meteorology-aerosol connection
is present in some regions. For example, the planetary boundary layer height generally
increases and aerosol loading decreases away from the coast in the subtropical regions. But
such a negative correlation is not known to exist systematically over the globe. Higher
satellite resolution in vertical, horizontal and temporal dimensions, if achieved without
significantly sacrificing AOD retrieval accuracy, will better constrain the relationship. Model
estimates of aerosol layer thickness over wide horizontal and temporal extents will continue

to be useful and might be improved with assimilated satellite data.

The response of light extinction to humidity changes is also difficult to ascertain, especially
from remote sensing. Because the enhanced scattering due to water uptake by the particles can
exceed a factor of 2.0 and varies widely in humid environment (Howell et al., 2006;
Shinozuka et al., 2007; Tesche et al., 2014), its uncertainty might be comparable with or
greater than a factor of 2.0, especially if the ambient humidity is unknown, high, or variable
(Kapustin et al., 2006). In theory, the response of light extinction to humidity changes should
be partly correlated with particle hygroscopicity, at least for aerosols whose chemical
composition varies little with size. If such an association existed in humid environments,
increases in light extinction would tend to be accompanied by lower critical dry diameter for
activation and hence higher CCN concentrations. This would work to reduce the variability in
the CCN per extinction and might help remote sensing of CCN concentration. However, such

association is not evident in the central Canada data.

Like the vertical profile, the humidity response should randomly diversify the slope or,
possibly, systematically decrease it. If the impact of hygroscopicity is greater on the AOD
than on the CCN concentration, as is probably the case for all but hydrophobic particles in dry
conditions, this effect may work to lower the slope when the extinction for dried particles is
replaced with the ambient AOD for humid environment (not evident in the dry central
Canada). A slope increase would imply higher f(RH) (i.e., higher RH, particle hygroscopicity
or both) at lower dry extinction coefficient — possible but uncommon. Thus, while most of our
observations (Section 3) refer to the in situ extinction of dried particles, it is logical to expect
the relationship to the columnar ambient (not dried) AOD to have a slope smaller than unity

as well.
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The effects of horizontal-temporal variability are difficult to assess. The variability in the
CCN concentration is partly a consequence of that in aerosol intensive properties such as size
and hygroscopicity. This is accounted for in the factor of 2.0 error in our CCN-to-dry-
extinction parameterization. Some of the horizontal-temporal variability in extensive
properties is also accounted for, if the uncertainty in the estimate of vertical profile
encompasses the horizontal-temporal variability of the vertical profile itself. The same is true
for the humidity response of extinction. With the CCN-o link, vertical profile and humidity
response taken care of, the horizontal-temporal variability that remains to be accounted for is
only of the AOD. More precisely, we should consider the AOD variability between the
satellite and model grid boxes that is not included in the uncertainty estimate for the satellite
AOD products, and enter this into the overall uncertainty in satellite-based CCN estimates.

This way only the impact of the humidity response is double-counted.

The AOD horizontal-temporal variability within satellite grid boxes is negligible in
comparison with other sources of uncertainty associated with AOD-based estimates of CCN.
The AOD seldom varies by a few tens of percent within satellite grid cells (Shinozuka and
Redemann, 2011) or within a time window in which the air travels tens of kilometers. This is
small compared with the factor of 2.0 variability associated with the local dry CCN-extinction
relationship. Note that the AOD presented in Shinozuka and Redemann (2011) is measured
from a single aircraft and averaged over one-kilometer distance. The variability over one-
kilometer distance must be generally smaller than that over 1x1 km? area, and is probably
closer to that over 0.5x0.5 km® area (see Section 2.6 and Supplement of Shinozuka and
Redemann (2011)). These statistics are meant to encompass two thirds of all cases. There are
cases with higher variability. They include plumes from strong sources nearby and
hydrophilic particles under high and variable humidity. Also, the variability is greater over
longer distances, which matters if the CCN concentration for cloud pixels is to be estimated

from AOD retrieved for clear-sky pixels hundreds of kilometers away.

Besides these aerosol properties, the satellite retrieval uncertainties can also pose a challenge
to AOD-based estimates of the CCN concentration. For example, an AOD retrieval
uncertainty of 30% translates into a 22% uncertainty in the CCN concentration because of the
0.75 exponent. An Angstrom exponent uncertainty of +0.2 translates into a +15%/-13%
uncertainty ((10&0‘2*0‘3)-1)x100%). If these two sources of uncertainties are independent of

each other (which may not be correct), then the retrieval uncertainty alone makes the
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estimated CCN uncertain by +26%/-25%. Satellite retrieval uncertainties may be greater,
especially over land with passive sensors (Kahn et al., 2009; Levy et al., 2013; Levy et al.,
2010) and for small AOD. An AOD error by 100% and an Angstrom exponent error by 0.5
result in a +80%/-74% uncertainty in the estimated CCN — comparable with our observed

factor of 2.0.

We illustrate in Figure 7a how our CCN-c parameterization can be translated into the CCN-
AOD relationship for given scenarios. Values of the Angstrom exponent, layer depth,
humidity response and AOD retrieval uncertainties are assumed separately for remote marine
aerosols (0.2+0.2, 2+1 km, 3+1, £0.03+0.05xA0D for AOD between 0.02 and 0.2; blue
dashed curve) and polluted continental ones (2+0.2, 3£1.5 km, 240.5, £0.05£0.15xA0D for
AOD between 0.03 and 0.3; red dashed curve). The slight bend near AOD of 0.01 with both
curves is caused by the assumed stratospheric AOD of 0.01 that is not converted to CCN. This
treatment makes the CCN-AOD slope steeper for small AOD values that many satellite
pixels, especially those in pristine marine conditions, observe. The uncertainties represented
by shades were computed by means of Monte Carlo simulations for the factor of 2.0
variability of our parameterization and the assumed uncertainties indicated above. The overall

uncertainties are a factor of ~3 for AODsgo,m <~0.1 and a little over a factor of 2 for the rest.

Experiment averages over hundreds of kilometres and months shown in Figure 1 and Table 2
of Andreae (2009) are marked in our Figure 7a with diamonds. Our simulations come fairly
close to them. In this sense the two studies are mutually consistent. However, there are
important differences. Our curves are less steep. Our results for multiple Angstrom exponent
values do not form a single line. Our simulation here explicitly accounts for the vertical
profile and the humidity effect on extinction. Data aggregation seems to influence regression
in the logCCN-logAOD space, in a manner not possible in the logCCN-logo space (Section
4.1, Figure 6): Indifference to the humidity effect and vertical profile seems to invite the
logCCN-logAOD slope to appear greater than it actually is in finer scales within aerosol types.
If so, this could mislead satellite-based estimates of ACI. Also, the use of standard least-
squares regression may exacerbate the overestimate of the slope when uncertainties associated
with both the CCN and AOD are large (see Section 2.2). The uncertainties in this context

include the effect of the spatio-temporal gap between the two measurements.

Al can work well for fine particles. The dash-dot lines in Figure 7b show that with an

adequate constant of proportionality (say, 3000), the 500 nm AOD multiplied by the
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Angstrom exponent can predict the number concentration nearly as well as our measurement-

based parameterization does.

However, two characteristics of this product deviate from the reality. First, Al decreases as
rapidly as Angstrom exponent does. At a=0.2, the Al-based CCN estimate is significantly
lower than ours (blue curves in Figure 7b); at a<0, Al is negative. Our parameterization,
derived from log-log plots, always returns a positive CCN concentration as long as the

extinction coefficient is positive.

Second, Al is proportional to the AOD with the Angstrom exponent kept unchanged.
Nakajima et al. (2001) suggested raising the product to the power of 0.869, which subsequent
studies neglected. Doing so would make it a better surrogate for CCN, closer to 0.75, the
value we find through the direct observations. The parameterizations by Gassé and Hegg

(2003) and Liu and Li (2014) also have a slope greater than ours (see Section 1).

The fact that the slope is smaller in our parameterization than any of the existing ones may
have implications for satellite-based CCN estimates and ACI studies. The smaller slope, we
expect, is translated into a smaller CCN variability, at least by a simplistic model where
satellite AOD is directly converted to the CCN using such a parameterization. As a result,
satellite-based estimates of radiative forcing through the interactions between aerosols and
warm clouds may be lowered in magnitude. However, the differences arising from the choice
of CCN-AOD parameterization may correspond to a considerably lower uncertainty in CDNC
in the conditions where the cloud dynamics makes the response of CDNC to CCN sublinear

(Morales Betancourt and Nenes, 2014).
5 Conclusions

Approximating the number concentration of CCN with satellite retrievals of AOD is common.
The existing methods of this approximation have not been critically evaluated with
observations at one-kilometer horizontal resolution. If satellite-based CCN estimates are to
continue to complement purely model-based ones, what CCN-AOD relationship should we
assume and how large is the associated uncertainty? This study has examined airborne and
ground-based observations of aerosols to address these questions, and discussed underlying

aerosol processes.

For a realistic estimate of the CCN concentration at the warm cloud base, we propose starting

with the in situ extinction coefficient for dried particles. That is to take advantage of

24



A W oD =

O 0 9 N W

10

12
13

14
15
16
17
18

19
20
21
22
23
24

25

26
27
28
29
30
31

increasingly available lidar observations and transport model products in combination with
the columnar ambient AOD spectra from a passive satellite sensor. Determine the CCN

0()‘3a+lA3

concentration at | Mm™' extinction by 1 (cm™) where a is the Angstrom exponent, and

multiply it by "7 for a given dry extinction coefficient 6 (Mm™).

This approximation returns values within a factor of 2.0 of most of our direct measurements
averaged over one-kilometer horizontal distance. This variability is, though large, finite. This
means that a moderate level of connection exists between the CCN number and dry
extinction, justifying the parameterization as an approximation. Further investigations on the
impact of particle hygroscopicity and region-specific tailoring may improve the accuracy of
our parameterization. The uncertainty in the CCN-AOD relationship arises not only from the
uncertainty in the CCN-c but also from the humidity response of light extinction, the vertical
profile, the horizontal-temporal variability and the AOD measurement error. Depending on

the quality of the estimate of these factors, the uncertainty can be closer to a factor of three.

The slope of the log;gCCN-log;oc relationship, 0.75+0.25, is smaller than any existing
parameterization. Aerosol growth processes such as condensation, coagulation and in-cloud
processing generally make particles scatter more light while hardly increasing their number.
Other processes of production, transformation, mixing and removal may play a role too. Our

observations and analysis should help to evaluate their representation by models.

It is logical to expect the 1ogCCN-logAOD relationship for ambient (not dried) aerosols to
have a slope smaller than unity as well. Exceptions may arise from extensive data aggregation
over space, time or aerosol types and, possibly, from special meteorology-aerosol connections
influencing the vertical profile or humidity growth. With the slope smaller than unity, a
doubling of AOD is associated with less than a doubling of CCN. This marks a departure

from existing CCN proxies such as AOD and Al and can impact estimates of ACL
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Table 1. Data sets used in this study.

Latitude
Central Canada (ARCTAS) 56°+6° N
California, USA (DISCOVER-AQ) 37°+2° N

Southern Great Plains, USA (ARM) 36° 36' 18" N

Cape Cod, USA (ARM) 42°1'48"N
Black Forest, Germany (ARM) 48°32'24"N
Ganges Valley, India (ARM) 29°21'34"N
Graciosa Island, Azores (ARM) 39°5'28"N
Svalbard 78°54'0" N

Niamey, Niger (ARM) 13°28'39" N

Longitude

109°+7° W

120°+2° W
97°29'6" W
70°2'56" W
8°23'49"E
79°27'29"E
28°1'45"W
11° 51'60" E
2°10'28"E

Altitude (m)

50-1000
50-1000

320

47
511
1936

15
474
205

Dates
2008/06-2008/07
2013/01-2013/02

2006/09-2007/05, 2007/11-2008/07,
2008/09-2009/08, 2009/11-2011/03
2012/07-2012/10, 2013/01-2013/05
2007/04-2007/12
2011/06-2012/03
2009/04-2009/12, 2010/07-2010/12
2009/01-2009/04, 2012/05-2012/12
2005/12-2006/05, 2006/08-2006/12

Time Int. (s)
11
10

240

240
240
240
240
300
240

D59 refers to the particle size for which the estimated passing efficiency is 50%.

D (m)sox
>5
>5

10

10
10
10
10
Not Applied
10
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2

3
4

Table 2. The results of bivariate regression analysis for 0.3-0.5% supersaturation.

Ang. Exp. N

100
123
106

102
254
605
1473
3271
7141
11545
8260
2687
561

1.3-15 1522
1.5-1.7 2402
1.7-1.9 611

218
. 489
0.5-0.7 1738
0.7-0.9 3691
0.9-1.1 1994
1.1-1.3 778

-0.3--0.1 1496
-0.1-0.1 2031
0.1-0.3 2291
0.3-0.5 1462
0.5-0.7 933
0.7-0.9 597
0.9-1.1 296

231
1557
1064
838
570
303

127

log10(Ext.) log10(CCN)  Slope

Central Canada, 11s avg., <1 km alt.
1.5240.47 2.83+0.42 0.77+0.22
1.6610.59 2.98+0.48 0.75+0.12
1.80£0.72 3.13+0.59 0.74%0.13

Southern Great Plains, USA, 240s avg.

1.2140.39 2.38+0.27 0.54%0.19
1.2440.38 2.47+0.31 0.70£0.13
1.35#0.38 2.66+0.34 0.74%0.09
1.4240.37 2.78+0.31 0.61%0.05
1.5140.38 2.84+0.30 0.55+0.03
1.5540.33 2.90+0.28 0.58+0.03
1.56£0.29 2.9740.27 0.62+0.02
1.534#0.28 3.05£0.29 0.77+0.03
1.4610.31 3.07+0.33 0.91+0.05
1.3940.37 3.07+0.40 1.02+0.08
Cape Cod, USA, 240s avg.

1.54£0.23 2.40£0.29 1.07£0.12
1.5340.24 2.53+0.33 0.74£0.09
1.3540.22 2.54+0.22 0.81%0.12
1.25#0.23 2.54£0.25 0.82#0.13
1.16%0.23 2.61#0.26 0.81%0.14
1.1440.23 2.74+0.25 0.85+0.13
1.1740.24 2.83+0.24 0.76%0.10
1.25#0.30 2.90+0.31 0.70£0.07
1.384#0.30 3.04£0.30 0.70£0.06
1.2040.32 2.99+0.26 0.77+0.11
Black Forest, Germany, 240s avg.

1.56%0.50 2.63+0.41 0.52%0.10
1.5840.46 2.56%0.64 0.68+0.06
1.5840.36 2.79+0.42 0.72+0.04
1.6040.29 2.84+0.46 0.87+0.06
1.54£0.31 2.87+0.44 0.79%0.10

Ganges Valley, India, 240s avg.
2.2940.21 3.09+0.21 0.83%0.11
2.3840.27 3.21+0.28 0.90+0.06
2.374#0.25 3.23#0.26 0.96%0.04
2.17#0.25 3.13#0.26 0.96%0.02
1.8840.28 2.93+0.33 1.02+0.03
1.5040.23 2.55+0.40 1.33+0.09
Graciosa Island, Azores, 240s avg.
1.56%0.24 2.27+0.24 0.90£0.03
1.5140.26 2.46+0.25 0.81+0.02
1.4340.26 2.52+0.25 0.80+0.02
1.334#0.26 2.60+0.26 0.87+0.02
1.25#0.28 2.63+0.27 0.81%0.03
1.2240.26 2.69+0.25 0.79+0.04
1.2140.31 2.74+0.30 0.76%0.05
Svalbard, 300s avg.
0.34£0.37 1.590.37 0.74%0.60
0.47+0.35 1.68+0.35 0.89+0.73
0.49+0.38 1.71+0.34 0.73%0.26
0.660.55 1.87+0.45 0.63:0.16
0.56x0.37 1.79+0.35 0.76%0.23
0.61+0.33 1.84+0.30 0.76%0.23
0.63+0.37 1.90+0.29 0.80%0.19
0.68+0.31 1.94#0.32 0.92%0.19
0.70£0.32 1.99+0.31 0.870.17
0.71+0.33 2.02+0.30 0.71%0.15
0.65+0.36 2.00+0.34 0.67+0.20
0.56x0.32 1.95%0.33 0.850.32
0.46x0.28 1.99+0.33 1.440.90
0.30+0.30 1.86+0.38 1.42+0.98
Niamey, Niger, 240s avg.

2.25#0.27 2.37+0.39 0.30£0.09
2.20£0.29 2.46%0.50 0.45:0.04
2.01#0.29 2.52+0.61 0.76%0.06
1.8740.25 2.61+0.54 0.90+0.06
1.834#0.28 2.73+0.45 1.01%0.06
1.88£0.32 2.89+0.38 0.95:0.08
1.9640.37 3.03+0.38 0.86%0.12

Ang. Exp. Is the Angstrom exponent of the extinction

Intercept

1.6740.08
1.7540.05
1.8240.06

1.7540.08
1.6240.05
1.68+0.04
1.9340.03
2.0240.02
2.0240.01
2.03£0.01
1.8940.01
1.7540.02
1.66+0.04

0.77+0.05
1.43£0.04
1.45£0.05
1.5340.05
1.68+0.04
1.78+0.04
1.9540.03
2.05£0.03
2.08+0.02
2.0740.04

1.88+0.06
1.63+0.04
1.70£0.03
1.51£0.04
1.71£0.06

1.1940.07
1.06+0.05
0.96+0.03
1.04£0.02
1.03£0.02
0.600.04

0.89+0.03
1.2440.03
1.3840.02
1.44£0.02
1.6240.02
1.7340.04
1.83£0.05

1.3740.06
1.2740.08
1.39£0.04
1.51£0.03
1.40£0.03
1.40£0.03
1.39£0.03
1.3340.03
1.3940.03
1.54£0.02
1.5940.03
1.49+0.04
1.2340.09
1.3740.07

1.7840.10
1.61£0.05
1.1740.06
1.08+0.06
0.94+0.06
1.1340.08
1.36£0.11

RMSe

1.68
1.54
1.70

1.63
1.67
1.73
1.71
1.69
1.66
1.70
1.69
1.66
1.67

1.50
1.95
1.45
1.58
1.61
1.57
1.56
1.80
1.68
1.33

1.91
3.32
2.06
2.53
2.42

1.31
1.35
1.34
1.30
1.42
1.74

1.50
1.52
1.56
1.46
1.45
1.52
1.60

2.27
2.21
1.97
1.99
1.88
1.78
1.94
1.73
1.70
1.65
1.76
1.82
2.53
2.22

2.49
3.19
3.95
3.53
2.30
1.82
1.74

coefficient, N is the number of data

points, the Ext. is the 500 nm extinction coefficient (Mm™) for dried particles, CCN is the
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number of CCN concentration (cm™). RMSe given here is 10 raised to the root mean square
of the fitting error; an RMSe of 2, for example, means that the deviation of individual data
points is typically within a factor of 2 of the best estimate. The value after the + symbol

indicates the standard deviation or the square root of the variance.
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Figure 1. (a) CCN concentration and 500 nm AOD measured from the NASA P-3 aircraft
over central Canada in summer 2008 during ARCTAS. Shown here is the subset of data from
the lowest 1 km altitude with the CCN instrument supersaturation between 0.3% and 0.5%.
The CCN concentration is adjusted to 0.4% supersaturation using the coincident
measurements of aerosol size distribution and averaged over 11 seconds. The AOD from the
airborne sunphotometer is augmented for the aerosols below the aircraft using simultaneous in
situ measurements. The bivariate regression (thick solid line) on the 711 data points yields
CCN=1.9x10°A0OD"7**!! RMSe=2.3. The standard least-squares regression (thin solid line)
yields CCN=2.0x10°A0D"""** R?=0.59, RMSe=2.2. The expression from Andreae (2009),
AOD=0.0027CCN***_ig also shown for reference (dash-dot line). (b) CCN concentration and
500 nm light extinction coefficient for dried particles, . The bivariate regression (thick solid
line) on the 826 data points yields CCN=556""*"% RMSe=1.7. The standard least-squares
regression (thin solid line, nearly identical to the bivariate fit) yields CCN=536"7709,
R’=0.82, RMSe=1.7. An expression that sets the CCN proportional to the extinction is also

shown for reference (dash-dot line).
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Figure 2. CCN and 500 nm extinction coefficient for dried particles measured over central
Canada and at seven ground sites. The first four panels show the subset of data with the
extinction Angstrom exponent between 1.7 and 1.9, and the last four, between 0.3 and 0.5.

The number of data points is indicated by the color, blue for 1 and red for >20, for each

10 100 1000 10000 1 10 100 100010000
Dry Extinction Coefficient (Mm™) at 500 nm

square whose sides (Alogjox, Alog;py) are 0.05 long. The thick and thin solid lines represent

the bivarite and standard least-squares linear regression, respectively. The dashed line

represents our parameterization.
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Figure 3. (a) The slope in log;oCCN vs. logjoo estimated by the bivariate linear regression for
0.2-wide Angstrom exponent bins. The square root of its variance is indicated by the vertical
bar. (b) The RMS relative fitting error of the bivariate linear regression. (c) (dots) The
intercept estimated for individual pairs of the CCN and extinction, calculated for a fixed slope
of 0.75. This, plotted against the left axis, is identical to log;o of CCN concentration (cm'S)
estimated for 1 Mm™' dry extinction coefficient at 500 nm (right axis). Only the Graciosa
Island data are shown as an example. (bigger markers) The average and +one standard
deviation range of the intercept, for the Graciosa Island data (red) and other locations (other
colors). The black dashed line represents our parameterization. (d) CCN concentration at
0.4% supersaturation estimated from our parameterization, compared with the observation at
0.3-0.5% supersaturation at the eight locations. See the legend in (a) for the locations. The

RMS difference calculated for all but Niamey data is a factor of 2.0.
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Figure 4. (a) The number size distribution (dN/dlogioD in the logarithmic scale) measured

with an SMPS over central Canada at <1 km altitude during ARCTAS. The subset that

coincides with an Angstrom exponent between 1.7 and 1.9 are shown, grouped by the 500 nm

extinction coefficient for dried particles and averaged. The circle and horizontal bar indicates

the mean and standard deviation of the dry critical diameter for 0.4% supersaturation. (b) The

number and extinction size distributions divided by the extinction coefficient before being

averaged. The unit is em™/Mm’ for the number (solid curves), non-dimensional times 100 for

the extinction (dashed). The shade represents the one standard deviation range (encompassing

the center 68%) of number distribution for each group. The extinction distribution is

calculated for a refractive index of 1.5-0.01i (thick curves) and, for the 300-3000 Mm'!

extinction, 1.6-0.1i (thin). It does not sum to the observed extinction coefficient.
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Figure 5. The Graciosa Island CCN-extinction relationship for the Angstrom exponent
between 0.3-0.5 and supersaturation between 0.3-0.5%, color-coded with the time of the year

in 2009 and 2010. No valid measurements are available between January and mid-April.
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standard least-squares (thin solid lines) regression yields CCN=35¢ " and, when logo is

chosen as dependent variable, 6=3.8x10CCN",
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42



The relationship between cloud condensation nuclei (CCN)
concentration and light extinction of dried particles:
indications of underlying aerosol processes and
implications for satellite-based CCN estimates

Supplementary material

43



1

Table S1. The results of bivariate regression analysis for 0.1-0.3% supersaturation.

Ang. Exp.

1.1-1.3
1.3-15

N log10(Ext.) log10(CCN)  Slope Intercept
California, USA, 10s avg., \leq 1 km alt., 0.27% SS
108 1.3540.45 2.48+0.26 0.40+0.29 1.96%0.06
489 1.8240.55 2.71#0.29 0.42%0.08 1.96%0.03
1017 1.9040.40 2.84+0.28 0.59+0.07 1.73%0.03
1481 1.9340.36 2.96+0.26 0.62+0.05 1.76+0.02
1859 1.874#0.29 3.02#0.19 0.55+0.05 1.990.02
1222 1.7740.25 3.02+0.18 0.61+0.07 1.95:0.02
411 1.6840.27 3.01%+0.22 0.77+0.11 1.72+0.03
Southern Great Plains, USA, 240s avg.
124 1.2340.32 2.22+0.38 0.62+0.36 1.54+0.14
232 1.1840.34 2.29+0.29 0.57+0.16 1.66%0.06
439 1.25#0.35 2.384#0.30 0.60£0.10 1.670.04
976 1.3340.36 2.50+0.31 0.59+0.06 1.74+0.03
1927 1.4240.36 2.59+0.31 0.59:0.04 1.78:0.02
3849 1.51#0.34 2.71#0.30 0.61%0.03 1.80%0.02
6472 1.5540.31 2.78+0.31 0.67+0.03 1.76%0.02
5725 1.524#0.29 2.83+0.33 0.74%£0.04 1.7210.02
2814 1.4840.30 2.87+0.32 0.74%£0.05 1.790.02
887 1.4140.34 2.88+0.36 0.89+0.08 1.63+0.04
200 1.24£#0.31 2.81#0.34 1.04£0.17 1.52%0.07
Cape Cod, USA, 240s avg.
242 1.5140.20 2.13+0.28 1.13+0.24 0.46%0.10
408 1.534#0.23 2.28+0.36 0.93£0.14 0.90%0.06
257 1.354#0.22 2.23#0.29 0.95:+0.21 0.98+0.08
282 1.2240.22 2.21#0.29 0.94+0.19 1.11+0.06
304 1.15£#0.22 2.25+0.30 1.03%£0.20 1.09:0.06
329 1.1440.22 2.33#0.29 0.84+0.21 1.41+0.07
382 1.1440.23 2.42+0.28 0.75+0.19 1.59+0.06
543 1.25#0.30 2.52+#0.37 0.78+0.11 1.590.04
381 1.3340.34 2.57+0.48 0.75+0.11 1.66%0.04
Black Forest, Germany, 240s avg.
349 1.5840.50 1.75+0.61 0.34£0.10 1.53%0.07
1223 1.6940.44 1.87+0.60 0.54+0.07 1.22+0.05
3763 1.64£0.35 1.98+0.56 0.74%0.05 0.98:0.03
5279 1.6240.28 2.04+0.56 1.050.06 0.550.04
1422 1.5540.30 1.98+0.59 0.99+0.11 0.68+0.07
Ganges Valley, India, 240s avg.
245 2.26%0.21 2.41#0.49 2.45%0.58 -3.07+0.40
549 2.3840.25 2.59+0.46 1.54+0.23 -1.02+0.17
2233 2.3840.24 2.70+0.39 1.34%0.10 -0.47+0.08
4524 2.1740.26 2.56%0.41 0.92%0.06 0.640.04
2396 1.9040.28 2.31+0.45 0.73+0.07 1.04+0.04
858 1.50£0.24 1.89+0.53 1.14#0.15 0.35%0.07
Graciosa Island, Azores, 240s avg.
202 1.4240.29 1.66+0.26 0.54+0.08 0.96%0.09
2913 1.56£0.24 1.93#0.26 0.92+0.02 0.52:0.03
4117 1.5140.26 2.11+0.28 0.86%+0.02 0.85:0.02
4438 1.4340.26 2.19+0.28 0.78+0.02 1.10%0.02
2865 1.334#0.26 2.25+0.28 0.83+0.02 1.18:0.02
1819 1.2740.27 2.29+0.29 0.78+0.02 1.33+0.02
1127 1.2240.27 2.31+0.31 0.88+0.03 1.26+0.03
625 1.2240.30 2.38+0.33 0.87+0.04 1.360.04
186 1.1440.31 2.33#0.34 0.72+0.08 1.57+0.07
Svalbard, 300s avg.
142 0.4520.34 1.50+0.36 0.51+0.39 1.38+0.04
212 0.45+0.32 1.54+0.33 0.50+0.28 1.400.03
233 0.440.36 1.53%0.45 0.67+0.24 1.32+0.03
362 0.68+0.55 1.7330.38 0.51+0.11 1.46%0.02
392 0.57+0.35 1.71+0.40 0.65+0.16 1.42+0.02
451 0.58+0.32 1.76%0.35 0.73+0.17 1.38+0.02
746 0.49+0.44 1.92#0.35 -0.21%#0.11 2.17#0.01
807 0.67+0.32 1.89+0.34 0.86+0.12 1.33+0.02
872 0.72+0.32 1.96+0.34 0.90+0.12 1.33+0.02
829 0.76+0.31 2.00+0.34 0.87+0.11 1.36+0.02
596 0.70+0.34 1.96+0.35 0.79+0.13 1.44+0.02
360 0.61+0.35 1.88+0.36 0.68+0.20 1.53+0.03
185 0.42+0.33 1.80+0.40 0.89+0.37 1.46+0.04
118 0.37+0.26 1.78+0.31 1.28+0.91 1.28+0.07
Niamey, Niger, 240s avg.
174 2.3440.27 1.70+0.39 0.60+0.21 0.49:0.24
1271 2.21#0.27 1.62#0.52 0.56%0.07 0.72%0.08
1068 1.9240.27 1.62+#0.62 0.42%0.07 1.24%0.07
1169 1.7740.22 1.82+0.55 0.38+0.08 1.42+0.07
952 1.75#0.22 1.95+0.46 0.47+0.09 1.32:0.08
620 1.75#0.26 1.94+0.49 0.47+0.10 1.320.09
252 1.8240.31 2.05+0.47 0.39£0.15 1.55%0.13
138 1.85#0.33 2.1440.49 0.75+0.21 0.90%0.20

RMSe

1.56
1.49
1.45
1.38
1.28
1.27
1.26

2.45
1.83
1.72
1.71
1.68
1.70
1.76
1.93
1.81
1.77
1.61

1.63
2.09
1.74
1.70
1.71
1.85
1.85
2.05
2.7

3.96
3.53
3.28
3.42
3.73

2.79
2.37
2.09
2.23
2.59
2.91

1.65
1.60
1.62
1.65
1.62
1.61
1.69
1.68
1.91

2.21
2.01
2.42
1.85
2.14
1.93
2.45
1.74
1.78
1.67
1.71
2.13
2.00
1.77

2.54
4.08
5.57
4.22
3.16
3.30
3.23
2.86
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Ang. Exp. Is the Angstrom exponent of the extinction coefficient, N is the number of data
points, the Ext. is the 500 nm extinction coefficient (Mm'l) for dried particles, CCN is the
number of CCN concentration (cm™). RMSe given here is 10 raised to the root mean square
of the fitting error; an RMSe of 2, for example, means that the deviation of individual data
points is typically within a factor of 2 of the best estimate. The values after the + symbol

indicates the standard deviation or the square root of the variance.
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Table S2. The results of bivariate regression analysis for 0.5-0.7% supersaturation.

Ang. Exp. N log10(Ext.) logl0(CCN)  Slope Intercept RMSe
Southern Great Plains, USA, 240s avg.
209 1.344#0.37 2.81#0.35 0.650.16 1.98:0.07 2.00
471 1.4340.39 2.90+0.37 0.56%0.11 2.14+0.05 2.10
1126 1.49£0.36 2.96%0.33 0.54%0.07 2.18:0.03 1.89
2597 1.5340.33 3.01+0.32 0.53%0.05 2.23+0.02 1.89
4391 1.55#0.31 3.10£0.28 0.54%0.04 2.28:0.02 1.75
3457 1.5240.29 3.16%0.30 0.72%0.05 2.070.02 1.76
1646 1.4940.31 3.16+0.33 0.88+0.06 1.850.03 1.74
381 1.40£0.36 3.15#0.39 1.02#0.12 1.72%0.06 1.77
Cape Cod, USA, 240s avg.
215 1.6940.23 2.55+0.26 0.93+0.18 0.98+0.08 1.46
293 1.59£0.20 2.64+0.44 0.82+0.21 1.410.09 2.68
310 1.3940.21 2.71#0.21 0.64+0.20 1.84+0.07 1.53
331 1.30£0.25 2.75+0.25 0.75+0.19 1.78:0.07 1.64
450 1.2440.25 2.83+0.25 0.68+0.13 2.00%0.04 1.63
530 1.2140.27 2.91#0.23 0.60+0.11 2.19+0.04 1.54
509 1.184#0.29 2.95+0.23 0.56%0.11 2.300.04 1.54
598 1.3540.34 3.08+0.26 0.51+0.08 2.41+0.03 1.60
643 1.40£0.30 3.154#0.31 0.550.08 2.40%0.03 1.86
119 1.2640.28 3.16+0.23 0.70+0.20 2.29+0.06 1.39
Black Forest, Germany, 240s avg.
104 1.60£0.49 2.91+0.34 0.58+0.09 1.99:0.05 1.51
393 1.6340.47 2.92+0.36 0.60+0.05 1.96%0.03 1.65
1319 1.61#0.37 3.03#0.30 0.63£0.04 2.03%0.02 1.56
1929 1.6140.28 3.13+0.30 0.71%0.04 2.00%0.02 1.69
477 1.5540.30 3.14+0.33 0.73+0.06 2.02+0.04 1.76
Ganges Valley, India, 240s avg.
170 2.3740.26 3.31+0.28 0.94+0.13 1.08+0.09 137
669 2.3840.23 3.34#0.26 1.01%£0.09 0.93:0.06 1.42
1423 2.16%0.25 3.24+#0.26 0.92+0.04 1.250.03 1.34
791 1.9040.29 3.11#0.32 0.99+0.06 1.25+0.03 1.40
280 1.534#0.25 2.81#0.37 1.26%0.16 0.900.08 1.63
134 1.2240.18 2.45+0.35 1.62+0.36 0.50%0.13 1.73
Graciosa Island, Azores, 240s avg.
118 1.384#0.30 2.07+0.28 0.87+0.13 0.89%0.13 1.76
1488 1.5740.23 2.36+0.24 0.97+0.04 0.85:0.04 1.61
2038 1.51#0.26 2.56%0.26 0.84:+0.03 1.300.03 1.62
2267 1.4340.26 2.61+0.26 0.83+0.03 1.43+0.03 1.65
1446 1.334#0.26 2.69+0.26 0.89+0.03 1.52:0.03 1.51
904 1.26%0.27 2.74+0.24 0.73£0.03 1.82:0.03 1.45
581 1.2240.26 2.76+0.27 0.85+0.05 1.74+0.04 1.58
318 1.20£0.32 2.81#0.32 0.76%0.06 1.91%0.05 1.69
Svalbard, 300s avg.
129 0.52#0.37 1.75%0.32 0.71+0.70 1.40+0.08 2.09
166 0.42+0.32 1.77+0.40 1.21+0.78 1.23+0.08 2.81
245 0.67+0.52 1.92+0.43 0.66+0.18 1.53+0.03 1.97
293 0.57+0.33 1.89+0.33 0.97+0.43 1.32+0.06 2.26
435 0.62+0.33 1.87+0.31 0.79+0.25 1.39+0.04 1.86
522 0.63+0.34 1.91+0.33 0.9330.24 1.32:0.04 1.99
614 0.71#0.31 1.99#0.31 0.96+0.21 1.30£0.03 1.81
711 0.72+0.30 2.03+0.30 0.93+0.21 1.35#0.03 1.81
615 0.72+0.30 2.05%0.28 0.89+0.21 1.40£0.03 1.72
450 0.67+0.35 2.03+0.31 0.74+0.22 1.55+0.03 1.77
280 0.57+0.32 2.01+0.36 0.91+0.44 1.49:0.06 2.14
172 0.40£0.32 1.92#0.38 1.37+0.83 1.27+0.09 2.56
Niamey, Niger, 240s avg.

0.1-0.3 238 2.26+0.27 2.51+0.34 0.49£0.10 1.44+0.12 2.13
0.3-0.5 1479 2.19#0.30 2.65+0.44 0.45:0.04 1.730.04 2.64
0.5-0.7 924 2.0240.30 2.78+0.45 0.74%0.05 1.35+0.05 2.51
0.7-0.9 784 1.85+0.26 2.84+0.33 0.98+0.05 1.05+0.05 1.80
0.9-1.1 544 1.8240.28 2.95$0.33 0.98+0.05 1.17+0.04 1.60
1.1-1.3 300 1.84+0.30 3.05+0.32 0.99+0.06 1.24+0.05 1.43
1.3-15 134 1.9240.37 3.21#0.34 0.87£0.07 1.55+0.07 1.41

Ang. Exp. Is the Angstrom exponent of the extinction coefficient, N is the number of data
points, the Ext. is the 500 nm extinction coefficient (Mm™) for dried particles, CCN is the
number of CCN concentration (cm™). RMSe given here is 10 raised to the root mean square

of the fitting error; an RMSe of 2, for example, means that the deviation of individual data
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1 points is typically within a factor of 2 of the best estimate. The values after the + symbol
2 indicates the standard deviation or the square root of the variance.
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Figure S1. Results of additional regression analysis. The color corresponds to the locations

indicated in Figure 3a. The dot is for the 450 nm extinction coefficient; all others are for 500

nm. The square is for the standard least-squares method, the plus for the same method applied

after the individual data points are averaged over 0.5-wide log;oc bins, and the cross for the

bisector method. The two bivariate markers and the standard least-squares overlap between

each other in several cases, especially for the RMS relative deviation.

48



Central Canada

1 10100000000

1? 083 0.02 1?-!

California, USA Southern Great Plains, USA

1 10100000000

10000 2 10000 2~ 10000 ‘
1000// 1000 gupf® 1000| .z
100 = 100, = 100 %4,
1? .15 " _(L59_0 07 " "0.74+0.04
10100)000000 1 10100000000 1 10100000000
Cape Cod, USA Black Forest, Germany Ganges Valley, India
10000 10000 10000
1000 v 1000 1000
S %
°L_0.75+0.19 "9% .06 "0~ :
1 10100000000 1 10100000000 1 10100000000
Graciosa Island, Azores Svalbard Niamey, Niger
10000 7 10000 L.~ 10000 s
1000; _._a2¢® 1000 e 1000 e
100 100§ 100| _.-33

+0.11 "9F +0.07

1 10100000000

Dry Extinction Coefficient (Mm'1) at 500 nm

Figure S2. Same as Figure 2 but for supersaturation of 0.1-0.3% instead of 0.3-0.5%. This

includes data from DISCOVER-AQ California for Angstrom exponent between 1.7 and 1.9.
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Figure S3. Same as Figure 3 but for supersaturation of 0.1-0.3% instead of 0.3-0.5%. The

RMS difference calculated for all but Niamey data is a factor of 3.0.
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Figure S4. Same as Figure 2 but for supersaturation of 0.5-0.7% instead of 0.3-0.5%.
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Figure S5. Same as Figure 3 but for supersaturation of 0.5-0.7% instead of 0.3-0.5%. The

RMS difference calculated for all but Niamey data is a factor of 2.1.
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