
The relationship between cloud condensation nuclei (CCN) 1 

concentration and light extinction of dried particles: 2 

indications of underlying aerosol processes and 3 

implications for satellite-based CCN estimates 4 

Y. Shinozuka1,2, A.D. Clarke3, A. Nenes4,5, A. Jefferson6,7, R. Wood8, C.S. 5 

McNaughton3,9, J. Ström10, P. Tunved10, J. Redemann11, K.L. Thornhill12, R.H. 6 

Moore13, T.L. Lathem4,14, J.J. Lin4, Y.J. Yoon15 7 

[1] NASA Ames Research Center Cooperative for Research in Earth Science and 8 

Technology, Moffett Field, California, USA 9 

[2] Bay Area Environmental Research Institute, Petaluma, California, USA 10 

[3] School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, 11 

Hawaii, USA 12 

[4] School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, 13 

Georgia, USA 14 

[5] School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 15 

Atlanta, Georgia, USA 16 

[6] Cooperative Institute for Research in Environmental Science (CIRES), University of 17 

Colorado, Boulder, Colorado, USA 18 

[7] NOAA Earth System Research Laboratory, Boulder, Colorado, USA 19 

[8] Department of Atmospheric Sciences, University of Washington, Seattle, Washington, 20 

USA 21 

[9] Golder Associates Ltd., Saskatoon, Saskatchewan, Canada 22 

[10] Department of Applied Environmental Science, Stockholm University, Sweden 23 



[11] NASA Ames Research Center, Moffett Field, California, USA 1 

[12] Science Systems and Applications Inc., Hampton, Virginia, USA 2 

[13] NASA Langley Research Center, Hampton, Virginia, USA 3 

[14] Phillips 66 Research Center, Bartlesville, Oklahoma, USA 4 

[15] Korea Polar Research Institute, Yeonsu-Gu, Incheon, Korea 5 

Correspondence to: Y. Shinozuka (Yohei.Shinozuka@nasa.gov) 6 

 7 

Abstract 8 

We examine the relationship between the number concentration of boundary-layer cloud 9 

condensation nuclei (CCN) and light extinction to investigate underlying aerosol processes 10 

and satellite-based CCN estimates. For a variety of airborne and ground-based observations 11 

not dominated by dust, regression identifies the CCN (cm-3) at 0.4±0.1% supersaturation with 12 

100.3α+1.3
σ

0.75 where σ (Mm-1) is the 500 nm extinction coefficient by dried particles and α is 13 

the Angstrom exponent. The deviation of one-kilometer horizontal average data from this 14 

approximation is typically within a factor of 2.0. ∂logCCN/∂logσ is less than unity because, 15 

among other explanations, growth processes generally make aerosols scatter more light 16 

without increasing their number. This, barring special meteorology-aerosol connections, 17 

associates a doubling of aerosol optical depth with less than a doubling of CCN, contrary to 18 

previous studies based on heavily averaged measurements or a satellite algorithm. 19 

1 Introduction 20 

Aerosol-cloud interactions (ACI) are the largest source of uncertainty in estimates of radiative 21 

forcing responsible for the on-going climate change (Boucher et al., 2013). ACI for warm 22 

clouds depend on the number concentration of cloud condensation nuclei (CCN), the particles 23 

capable of initiating drop formation at a given supersaturation (Pruppacher and Klett, 1980), 24 

not on aerosol optical properties. Yet, aerosol optical depth (AOD) and its variants weighted 25 

by the spectral dependence over visible and near infrared (VNIR) wavelengths are commonly 26 

substituted for CCN in ACI studies (see below for examples). The substitution is motivated 27 

by the wide availability in space and time of satellite retrievals, an advantage over the sparse 28 



CCN measurements. But underlying assumptions on the relationship between CCN and VNIR 1 

AOD remain to be examined with direct observations over a horizontal resolution relevant to 2 

common clouds (e.g., near one kilometer).  3 

The CCN-AOD relationship is complicated partly because these quantities refer to different 4 

volumes of air. Whereas the CCN most relevant to ACI are located at the cloud base altitude, 5 

the AOD is defined for the entire vertical column. Aerosols at other altitudes contribute to it 6 

but not to the CCN. The air mass interacting with clouds may be kilometers away from, or 7 

hours after, clear-sky satellite measurements of AOD, and may have finer horizontal and 8 

temporal resolution. These differences matter because aerosol spatio-temporal distribution is 9 

generally inhomogeneous. 10 

Even the CCN-extinction relationship at a given location and time is complicated, as each of 11 

these quantities depends on particle size and hygroscopicity in its own convoluted way. Most 12 

CCN are in the Aitken mode and the smaller sizes of the accumulation mode, the exact lower 13 

limit depending on the hygroscopicity. That is because particles are typically most numerous 14 

in these size ranges (Seinfeld and Pandis, 2006) and because the critical dry diameter for 15 

droplet activation at a supersaturation of 0.2-0.6% is usually 50-120 nm (Pringle et al., 2010). 16 

The light extinction at midvisible wavelengths is normally dominated by the accumulation or 17 

coarse mode where both particle volume and scattering efficiency are greater than for smaller 18 

sizes (Waggoner et al., 1981). Particles that are relatively small may grow into optically 19 

active sizes at high ambient relative humidity (RH) due to uptake of water. As a result, 20 

particles near 100 nm can add to the CCN number without significantly changing the light 21 

extinction, and the extinction can increase upon humidity rises without changing the CCN 22 

number. Other aerosol intensive properties such as refractive index, mixing state, particle 23 

shape and surface tension can also influence the relationship. 24 

The CCN-AOD relationship has been approximated by several parameterizations, each based 25 

on either heavily averaged measurements or a satellite algorithm. Some of them are applied to 26 

satellite AOD products to study the aerosol effects on warm clouds. Virtually all existing 27 

parameterizations have ∂logCCN/∂logAOD of unity or greater, i.e., the CCN concentration at 28 

least doubles as AOD doubles. These parameterizations can be sorted into four groups.  29 

The simplest CCN retrieval strategies scale CCN concentrations with AOD at a single 30 

wavelength. They implicitly assume negligible variability in the combination of aerosol 31 

spatio-temporal distribution and intensive properties. Andreae (2009) finds from dozens of 32 



field experiments that, on an experiment average basis, AOD at 500 nm is correlated to CCN 1 

concentration at 0.4% supersaturation as AOD500nm=0.0027CCN0.4%
0.640 with an R2 of 0.88. 2 

There is about a factor-of-four range of CCN concentrations at a given AOD. The exponent 3 

0.640 on CCN means that a doubling of AOD is associated with nearly a tripling of CCN. In 4 

an even simpler approach, Kaufman et al. (2005) use MODIS AOD as a surrogate for the 5 

concentration of the aerosols that interact with the cloud layer, i.e., ∂logCCN/∂logAOD=1, to 6 

study the aerosol effect on shallow liquid clouds. Koren et al. (2008) employ the same 7 

technique to study aerosol effects on clouds over the Amazon, and Bellouin et al. (2013) to 8 

estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols. 9 

Quaas et al. (2008) and Quaas et al. (2009) evaluate variously modeled aerosol effects in 10 

terms of their relationship with AOD. Their results indicate that global climate models 11 

generally overestimate the cloud albedo effect, though this, along with the effects on cloud 12 

droplet number concentration, liquid water path and other cloud properties, varies with the 13 

location and model. 14 

Another prevalent strategy is to multiply a single-wavelength AOD by the Angstrom 15 

exponent, i.e., -1 times the slope of extinction spectrum in logarithmic scales. Nakajima et al. 16 

(2001) hypothesize that this product, now commonly called aerosol index (AI; not the 17 

TOMS/OMI aerosol index), is approximately proportional to the column aerosol number 18 

concentration. Bréon et al. (2002), Sekiguchi et al. (2003), Quaas et al. (2004) and Penner et 19 

al. (2012) study the relationship of AI with satellite-derived or modeled cloud microphysical 20 

properties. Penner et al. (2011) refer to model-simulated AOD and AI to evaluate the aerosol 21 

effects on cloud droplet number concentration (CDNC), leading to the conclusion that 22 

satellite methods underestimate the indirect climate forcing by aerosols. The assumptions 23 

behind these uses of AI are that the impact of particle size is partly accounted for by the 24 

Angstrom exponent and that the impact of spatio-temporal distribution and particle 25 

hygroscopicity is negligible. Importantly, AI is proportional to AOD for a constant Angstrom 26 

exponent, i.e., ∂logAI/∂logAOD=1. Nakajima et al. (2001) mention that a more accurate 27 

proxy for column aerosol number is the AI raised to the power of 0.869 based on the AVHRR 28 

retrieval algorithm. This statement has been widely ignored by subsequent studies. 29 

Another strategy relies on satellite-retrieved aerosol size distribution. Gassó and Hegg (2003) 30 

compute CCN concentration by three different methods. One of them relies on the MODIS 31 

over-ocean algorithm. The algorithm matches spectral radiance calculated from combinations 32 



of nine pre-set aerosol models to the spectral radiance observed over VNIR wavelengths by 1 

the space-borne sensor. This yields aerosol size distribution, among other products. The 2 

MODIS CCN product is the integral of the small-mode aerosol size distribution from a fixed 3 

radius of 30 nm (Appendix B of Remer et al. (2005), renamed PSML003_Ocean for MODIS 4 

Collection 6 (Levy et al., 2013)). This strategy, similar to the AI, accounts for the impact of 5 

particle size and refractive index only. The derived column-integral CCN concentration is 6 

proportional to the derived AOD. This product remains unvalidated and underutilized. 7 

Spectral fitting has been applied to ship-based columnar remote-sensing measurements as 8 

well (Sayer et al., 2012). 9 

The study by Liu and Li (2014) is unique. Their analysis of five ground-based long-term 10 

measurements yields parameterizations that not only account for the size effect with 11 

Angstrom exponent. They also eliminate the impact of aerosol vertical distribution by 12 

referring to ground-level in situ optical measurements. The strategy should work with passive 13 

satellite observations of column AOD as input, as long as additional measurements or a 14 

transport model estimate the aerosol vertical profile. The impact of hygroscopicity is not 15 

directly accounted for. The impact of horizontal-temporal distribution is obscured by the bin-16 

averaging applied to a large number of CCN data. ∂logCCN/∂logσsp=1.5178 in their 17 

parameterization with the 450 nm scattering coefficient, σsp, for <80% ambient RH and SSA 18 

between 0.85 and 0.95. Jefferson (2010) also parameterizes the CCN concentration with 19 

ground-based optical observations; the use of backscattering fraction distinguishes her study 20 

from those mentioned above and the present study.   21 

We propose a new parameterization between the CCN concentration and light extinction of 22 

dried particles, based on airborne and ground-based observations of aerosols at about one-23 

kilometer horizontal resolutions. We also discuss underlying aerosol processes and satellite-24 

based CCN estimates. This paper does not address advanced remote sensing capabilities such 25 

as angles, polarization and, setting aside a mention of its vertical resolution, lidar (Feingold 26 

and Grund, 1994; Ghan et al., 2006; Müller et al., 2014; Veselovskii et al., 2002). This paper 27 

does not address pre-industrial era estimates either.  28 



2 Methods 1 

2.1 Experiments and Instruments 2 

We use in situ aerosol measurements made aboard the NASA P-3 aircraft during the central 3 

Canada phase of ARCTAS (Jacob et al., 2010) and the California phase of DISCOVER-AQ 4 

from altitudes up to one kilometer, and ground-based long-term observations at several sites 5 

run by the US Department of Energy ARM program and Svalbard (Table 1). In addition, we 6 

use the AOD observed from the P-3 during ARCTAS Canada.  7 

A solid diffuser inlet delivered ambient air to all the airborne in situ aerosol instruments. This 8 

inlet and sample plumbing pass aerosol with dry aerodynamic diameter at least up to 5.0 µm 9 

with better than 50% efficiency (McNaughton et al., 2007). The partial loss of coarse particles 10 

leads to an underestimate of light extinction, but its magnitude should be typically smaller 11 

than 15-25%, an estimate established for the NCAR Community Aerosol Inlet (Shinozuka et 12 

al., 2004) that passes fewer particles than do solid diffuser inlets (Huebert et al., 2004). The 13 

submicron particles that almost always dominate CCN are sampled isokinetically with a near 14 

100% efficiency. The timing of the airborne records used in this study is adjusted by 7-10s, 15 

depending on the instrument and experiment, to account for the transport between the inlet tip 16 

and the instrument. The CCN and extinction coefficient generally see sudden changes at 17 

identical time stamps after this adjustment. At the ground sites other than Svalbard, the 18 

nephelometer and PSAP instruments (see below) were downstream of a set of switched 1.0 19 

µm and 10 µm impactors. This study uses the measurements behind the 10 µm impactor only. 20 

There is no aerosol size cut-off for the Svalbard data. 21 

The light scattering and absorption of dried (RH~20%) particles were measured with TSI 22 

model 3563 nephelometers and Radiance Research particle soot absorption photometers 23 

(PSAP) at all locations. The sum of the scattering and absorption coefficient gives the 24 

extinction coefficient for dried particles. It is adjusted from two of the instrument wavelengths, 25 

450 and 550 nm of the nephelometers and 470 and 530 nm of the PSAPs, to 500 nm assuming 26 

the linear relationship between the logarithm of coefficient and the logarithm of wavelength. 27 

The exception is the Svalbard single-wavelength (525 nm) PSAP, for which an absorption 28 

Angstrom exponent of unity is assumed. The extinction coefficient at 450 and 550 nm is also 29 

calculated, to derive the Angstrom exponent, α, again assuming the linear relationship on the 30 

logarithmic scales.  31 



We estimate 5-10% as the uncertainty in the 500 nm dry extinction coefficient, σ. The 1 

uncertainty is smaller for finer particles (larger Angstrom exponent) due to smaller 2 

uncertainty in the nephelometer’s angular truncation error (Anderson and Ogren, 1998). The 3 

uncertainty is set to 5% at minimum, because up to 7% differences have been reported 4 

between nephelometers (Heintzenberg et al., 2006). The ARM ground-based observations of 5 

extinction above 500 Mm-1 are screened out. We expect that this ceiling is seldom exceeded, 6 

with a possible exception of the dusty Niamey site in Niger. 7 

CCN concentrations were measured using a Droplet Measurement Technologies streamwise 8 

thermal-gradient CCN counter (CCNC) (Lance et al., 2006; Lathem et al., 2013; Roberts and 9 

Nenes, 2005) at all locations. The CCNC consists of a cylindrical flow tube with wetted walls, 10 

on which a linear streamwise temperature gradient is applied. Owing to the greater diffusivity 11 

of water vapor than heat in air, a supersaturation is generated, which is highest at the center 12 

line of the flow tube. Sampled particles were exposed to the supersaturation along the vertical 13 

column. The supersaturation in the CCNC was corrected for the water vapor depletion due to 14 

high particle concentration during ARCTAS after Lathem et al. (2013). Activated particles 15 

were detected by an optical particle counter at the exit of the column. We estimate the 16 

uncertainty to be 10% of the best estimate plus 5 cm-3. We exclude the CCN measurements at 17 

Southern Great Plains between May 20 and October 28, 2007 when the instrument 18 

temperature was not properly controlled. 19 

This study also uses the aerosol size distributions measured with a scanning mobility particle 20 

sizer (SMPS) with a long differential mobility analyzer (TSI 3081 with custom electronics) in 21 

ARCTAS (McNaughton et al., 2011). The SMPS measured particles between 10 and 500 nm 22 

over a 60s period every 85s, for air volumes collected over 20s into a grab sampler. The grab 23 

chamber ensured that every point of each SMPS scan measures the particles from the same 24 

volume of air. 25 

The CCN concentration observed during ARCTAS at the corrected instrument supersaturation 26 

between 0.3 and 0.5% was adjusted to a constant 0.4% using the aerosol size distribution 27 

measured with the SMPS. We first integrate the size distribution from the largest size bin until 28 

the concentration matches the measured CCN concentration (Lathem et al., 2013; Moore et 29 

al., 2011). The critical dry diameter determined this way is then adjusted from instrument 30 

supersaturation to 0.4% based on the Kohler theory to compute the CCN concentration at the 31 



reference supersaturation. The adjusted CCN concentration is typically within 5% of the 1 

measured concentration. We did not make the adjustment for the data from other experiments. 2 

The measured aerosol size distribution provides adequate counting accuracy and temporal 3 

resolution for the supersaturation adjustment. Matching or scaling with coincident 4 

condensation particle counter (CPC) measurements would exclude time periods when the 5 

aerosol number exceeded the CPC’s upper detection limit, and otherwise has little influence 6 

on the adjustment of CCN concentration to a single supersaturation. The 1 Hz CPC counts 7 

indicate that plumes that lasted less than SMPS sample time or took place between the SMPS 8 

samples have negligible impact on the supersaturation adjustment. An assumption that 20% of 9 

the particles in each SMPS size bin are hydrophobic (i.e., external mixing), instead of internal 10 

mixing, also makes a negligible difference in the supersaturation adjustment according to our 11 

simulation.  12 

Many recent studies have shown that the influence of aerosol composition on CCN activity 13 

can be efficiently represented by a single hygroscopicity parameter, κ, which simply 14 

expresses the affinity of a given aerosol particle for water (Petters and Kreidenweis, 2007). κ 15 

is near 0.1 for many organic species (Jimenez et al., 2009; Lathem et al., 2013) and 0.67 for 16 

ammonium sulfate (Petters and Kreidenweis, 2007). Derived κ is 0.03-0.16 for two thirds of 17 

the central Canada data, with a median of 0.08. This is plausible for the high organic content 18 

expected in the fresh biomass burning particles that we observed in central Canada. The 19 

arithmetic mean is 0.18, similar to the observations of biomass burning particles from the DC-20 

8 aircraft in the same experiment (Lathem et al., 2013). The arithmetic mean is greater than 21 

the median and sensitive to a few data points with large values, as the histogram of the 22 

calculated κ values resembles a lognormal distribution rather than a normal one. 23 

In ARCTAS, the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) measured 24 

direct solar beam transmission in narrow wavelength channels by using detectors in a tracking 25 

head mounted externally to the aircraft. It recorded 3s average data every 4s. The AATS-14 26 

provides above-aircraft AOD with a small and well-characterized error (~0.01) at 13 27 

wavelengths between 354 nm and 2139 nm. Shinozuka et al. (2011) describe data acquisition, 28 

screening, calibration, reduction and uncertainty analysis, as well as the vertical profiles, 29 

inter-comparison and fine-mode fraction of the AOD observed in ARCTAS. To compute the 30 

full-column AOD, below-aircraft contributions were estimated with coincident in situ 31 

observations under the assumption that the extinction coefficient for the ambient particles was 32 



constant below the aircraft (at one kilometer or below). Specifically, the scattering coefficient 1 

was adjusted to the ambient humidity at the aircraft altitude, based on the f(RH) humidity 2 

response measured with a pair of nephelometers at ~20% and ~80% RH, before being added 3 

to the absorption coefficient and multiplied by the aircraft altitude. Note that the f(RH) 4 

adjustment imposed a negligible effect on our analysis because the ambient humidity was 5 

often below 50% over central Canada. The below-aircraft contributions thus calculated are 0-6 

20% of the observed above-aircraft AOD in most cases. We assign half of the magnitude of 7 

this compensation, i.e., 0-10% of the above-aircraft AOD, as the best estimate of its 8 

uncertainty. This is combined with the 0.01 uncertainty in the above-aircraft AOD assuming 9 

these two components are independent of each other (calculated as the root of the sum of the 10 

squares), resulting in the uncertainty in the full-column AOD of 0.01-0.02 for most cases. 11 

2.2 Resolution and Regression 12 

McComiskey and Feingold (2012) say, “The ensuing effects of aggregation by averaging and 13 

loss of variance on common calculations of statistics […] are rarely discussed when inference 14 

is made from analyses of ACI at varying scales in the literature.” Cantrell (2008) says, “While 15 

the literature is full of detailed analyses of procedures for fitting straight lines to values with 16 

uncertainties, a surprising number of scientists blindly use the standard least-squares method 17 

[…] that assumes no uncertainties in the x values.” Applying the appropriate regression 18 

method at the relevant resolution is important for the studies of CCN-extinction relationship 19 

where the analysis centers around regression. In this regard our study departs from previous 20 

ones in two ways. 21 

First, this study minimizes data aggregation. Averaging data prior to regression generally 22 

improves correlation, but the results do not represent the variance of original data points. We 23 

do not average data over an entire experiment or CCN bins, because cloud microphysics 24 

occurs in scales much finer than hundreds of kilometers or weeks. We aggregate CCN and 25 

extinction data over 10-11s for the airborne data, 240-300s for the ground-based data. These 26 

time periods roughly correspond to one-kilometer horizontal distance for the typical P-3 27 

ground speed near the surface (~120 m/s) and for the ground-based observations under the ~4 28 

m/s winds. The aggregation is achieved by means of averaging, except for the data from the 29 

airborne nephelometers in which sample air resides for time periods comparable to 10s; we let 30 

a single scattering coefficient recorded in the middle of each time period represent it. The 31 

ARCTAS data are averaged over 11s instead of 10s with every 12th second discarded, to 32 



encompass three AOD measurements instead of two. The data from the ARM ground sites are 1 

delivered as 60s averages. The first 60s CCN measurement after each supersaturation step is 2 

often influenced by the supersaturation instability and is removed. The rest are averaged over 3 

240s. The Svalbard data are averaged over 300s.  4 

Second, this study employs a bivariate regression method, with one over the estimated 5 

measurement uncertainty squared as weights for both x and y. When both x and y have 6 

uncertainties, the simple least-squares method underestimates the magnitude of the slope (see, 7 

for example, Cantrell (2008)). That leads to an underestimate of ∂logCCN/∂logAOD when x 8 

is logAOD and y is logCCN; an overestimate when, as in Andreae (2009) and Liu and Li 9 

(2014), x is logCCN and y is logAOD. Bivariate regression avoids this bias, as it gives the 10 

same slope regardless of the choice of variable for x and y by iteratively minimizing the sum 11 

of the squares of the diagonal distances (York et al., 2004). This feature forces the linear-12 

correlation coefficient, R, to be near unity; we evaluate the goodness of the fit by two other 13 

measures. One is the variance of the slope estimated after Reed (1992) with the number of 14 

independent measurements determined with an autocorrelation analysis after Bretherton et al. 15 

(1999). The other is the root-mean-square (RMS) of the deviation of individual data points.  16 

3 Results 17 

3.1 The relationship of CCN to AOD and in situ dry extinction coefficient 18 

Figure 1a compares the CCN concentration and AOD observed over central Canada during 19 

ARCTAS below one-kilometer altitude. Each grey circle represents the average over 11s in 20 

which our aircraft traveled a little over one-kilometer horizontal distance (see Section 2.2). 21 

The CCN concentration is adjusted to 0.4% supersaturation using the SMPS aerosol size 22 

distribution (Section 2.1). The 500 nm AOD presented here is measured with the upward-23 

viewing AATS-14 and augmented for the below-aircraft contributions using coincident in situ 24 

aerosol extinction measurements. The resulting full-column AOD values are consistent with 25 

the AERONET ground-based observations within 0.02 for low-level fly-over events 26 

(Shinozuka et al., 2011). 27 

The bivariate regression applied to log10CCNSS=0.4% and log10AOD500nm yields a slope of 28 

0.74±0.11, expressed as the best estimate ± the square root of the variance (one sigma). The 29 

RMS of the difference between the individual data points and fit is 0.35 on the log10 basis, 30 

which means that the fit estimates CCN concentrations within a factor of 2.3 (100.35, numbers 31 



do not match due to rounding) of the observed value for about two thirds of the cases. A 1 

similar result is obtained from the standard least-squares regression (thin solid line): a slope of 2 

0.71±0.19 and the deviation within a factor of 2.2. For the standard least-squares fit, the 3 

coefficient of determination (R2) is 0.59. The similarity between the two regression results is 4 

expected for the relatively small measurement errors (see Section 2.1 and 2.2). The results 5 

appear insensitive to the choice of wavelength of the AOD: bivariate regression against the 6 

observed above-aircraft AOD spectra indicates that the RMS fitting error varies only by ±0.01 7 

between 350 and 800 nm with little variation in the slope. 8 

The deviations from the fit arise mainly from aerosol vertical profile and intensive properties. 9 

Of the other factors mentioned in Section 1, measurement errors are much smaller than a 10 

factor of 2.3. So is the impact of water uptake on AOD, owing to the low (mostly <50%) 11 

ambient RH and the low particle hygroscopicity in this environment. Aerosol horizontal-12 

temporal variability is not an issue with the airborne observations where all instruments 13 

operated from a single platform at high temporal resolutions. If we minimize the impact of the 14 

vertical profile, we can focus on studying the impact of the intensive properties.  15 

We remove the impact of the vertical profile by replacing the column integral AOD with the 16 

local extinction coefficient, in a manner similar to Shinozuka (2008) and Liu and Li (2014). 17 

Because the extinction coefficient is measured for dried particles, the impact of the humidity 18 

growth on light extinction is also removed. The slope remains similar, 0.75±0.05 (Figure 1b). 19 

The deviation is reduced from a factor of 2.3 to a factor of 1.7. As a reference, Figure 1b 20 

shows a line that goes through the geometric average of CCN (640 cm-3) and σ (27 Mm-1) with 21 

a slope of unity. It deviates most from the average of the CCN concentrations near the high 22 

and low ends of AOD.  23 

The wide dynamic range of the ARCTAS data is advantageous for the regression analysis. If, 24 

for example, we remove extinction above 30 Mm-1, both the square root of the variance of the 25 

estimated slope and the RMS fitting error amplify, from 0.05 and 1.7 to 0.17 and 2.0, 26 

respectively. x and y values that span narrow ranges should be avoided for the regression 27 

analysis. 28 

The impact of the vertical profile is difficult to parameterize; so is that of the humidity 29 

response of extinction. Our strategy is to set these issues aside and examine the relationship 30 

between the coincident measurements of CCN concentration and extinction coefficient for 31 



dried particles. The following subsection shows this relationship sorted by Angstrom 1 

exponent for ARCTAS and other experiments. 2 

3.2 The CCN-extinction relationship for dried particles and its connection with 3 

Angstrom exponent 4 

The slope and deviation are similar for other locations that cover a broad range of aerosol and 5 

meteorological environments. Figure 2 shows the subset of data from central Canada, 6 

Southern Great Plains, Cape Cod and Black Forest with an extinction Angstrom exponent 7 

between 1.5 and 1.7, and that from Ganges Valley, Graciosa Island, Svalbard and Niamey 8 

with an Angstrom exponent between 0.3 and 0.5. Data from the ground sites are averaged 9 

over 240-300s, which corresponds to about one-kilometer horizontal distance under typical 10 

wind speeds (Section 2.2). The slope is smaller than unity for all cases.  11 

All CCN data shown here are measurements at 0.3-0.5% supersaturation. This range is wide 12 

enough to allow sufficient data for regression analysis. But it results in an isolated group of 13 

data points for a handful of cases, such as ~10% of the Black Forest data. This effect is 14 

evident despite the fact that data points up to one minute after each change in pre-set 15 

supersaturation are excluded. This is because the instrument supersaturation at the ARM 16 

ground sites, once recalculated for the actual instrument temperature, occasionally takes steps 17 

within the range, for example from just above 0.3% to just below 0.5%, rapidly changing the 18 

CCN concentration. The rate of this change varies with supersaturation and location. It is 19 

relatively high near 0.4% for Black Forest where the aerosol was highly variable with 20 

pollution from Stuttgart, organics from agriculture and nearby forest and heavy nitrate 21 

fertilization. Some of the isolated data points may be attributable to irregular instrument 22 

performance.  23 

No adjustment to a single supersaturation value is made, except for the central Canada data. 24 

Adjustment is discouraged by the lack of supporting observations (e.g., size distribution) in a 25 

statistically significant volume. We refrain from scaling the CCN-extinction relationship with 26 

the supersaturation, because the observed relationship varies widely even over narrower 27 

ranges of supersaturation.  28 

We applied the bivariate regression for other subsets of data. Figure 3a and Table 2 show 29 

regression results for the 0.2-wide Angstrom exponent bins where at least 100 data points 30 

exist with at least a factor of 1.5 variability, measured by the geometric standard deviation, in 31 



both the CCN and extinction. For 85% of the bins, the best estimate of slope is between 0.5 1 

and 1.0. The square root of the variance in the estimated slope is typically 0.03-0.2. The 2 

results are somewhat sensitive to the assumption on measurement uncertainty. The 3 

uncertainties assumed here, as detailed in Section 2.1, are 10% of the best estimate plus 5 cm-4 
3 for the CCN, 5-10% for the extinction. Taken together, these considerations make us 5 

estimate that the expression 0.75±0.25 encompasses the one standard deviation range of the 6 

true values of the slope. The fitting error is between a factor of 1.5 and 2.0 for most cases 7 

(Figure 3b and Table 2). The exceptions are the data from Niamey, presumably due to the 8 

frequent presence of coarse dust particles that significantly contribute to extinction but are 9 

scarcely related to CCN number. Figure S1 in the supplementary materials shows that 10 

regression results are similar with 450 nm extinction instead of 500 nm. It also demonstrates 11 

that the standard least-squares method yields similar results whereas bisector and binned 12 

standard least-squares methods lead to significantly poorer fits.  13 

Unlike the slope and deviation, the intercept shows a systematic trend with Angstrom 14 

exponent. To make the comparison among locations and Angstrom exponent bins easier, we 15 

recalculate the intercept for individual pairs of CCN and extinction for a fixed slope of 0.75, 16 

instead of using the bivariate regression results. Small dots in Figure 3c show the intercept for 17 

Graciosa Island as an example. The arithmetic mean of the intercept is indicated with bigger 18 

markers, for this location and others. The intercept increases with increasing Angstrom 19 

exponent. This is qualitatively consistent with the fact that smaller particles are generally 20 

more numerous for a given extinction. This effect is weaker for the data from pristine 21 

Svalbard (light green markers in Figure 3c), for unknown reasons. Since the linear fit is made 22 

on the log10-log10 coordinates, 10intercept is an estimate of the geometric mean of the CCN 23 

concentrations at 1 Mm-1 dry extinction coefficient.  24 

The mean intercept can be approximated as 0.3α+1.3 (dashed line in Figure 3c). Data from 25 

Niamey, Niger are excluded from this approximation for the presumed influence of dust, 26 

which is less prevalent than marine aerosols over the globe under warm and mixed-phase 27 

clouds. The approximation deviates widely from the Svalbard data over high Angstrom 28 

exponent values as well. This approximation completes the expression:  29 

CCNSS~0.4%(cm-3)=100.3α+1.3
σ

0.75                  (Eq. 1) 30 

where σ (Mm-1) is the 500 nm extinction coefficient for dried particles and α, its Angstrom 31 

exponent. The estimated CCN concentration is within a factor of 2.0 of the individual 32 



measurements, excluding Niamey (Figure 3d). The deviations tend to be greater, a factor of 1 

10 for some, for observed CCN concentrations below 100 cm-3. The deviation would be a 2 

factor of 2.7 without the use of Angstrom exponent. 3 

The same analysis for other supersaturations (Figure S2, S3, S4 and S5 of the supplemental 4 

material) yields: 5 

CCNSS~0.2%(cm-3)=100.3α+1.0
σ

0.75                  (Eq. 2) 6 

CCNSS~0.6%(cm-3)=100.3α+1.4
σ

0.75                  (Eq. 3) 7 

The exponent tends to slightly decrease with increasing supersaturation, as expected for the 8 

decreasing overlap between the optically important particles and CCN. But, because this 9 

tendency is dwarfed by the variability with location and Angstrom exponent, we have retained 10 

a slope of 0.75 for the parameterizations above. Note also that the parameterization for ~0.2% 11 

supersaturation is associated with a greater variability and fitting error (a factor of 3.0; Figure 12 

S3d) than for ~0.4% supersaturation. This is because a greater fraction of the observed CCN 13 

concentration is below 100 cm-3 and because variability among the locations is pronounced at 14 

this supersaturation.  15 

4 Discussion 16 

Based on the observed CCN-extinction relationship, we discuss underlying aerosol processes 17 

and satellite-based CCN estimates. 18 

4.1 Indications of underlying aerosol processes 19 

CCN concentration and dry extinction coefficient are each influenced by a host of aerosol 20 

processes, of production, transformation, mixing and removal, in air and clouds. The 21 

logCCN-vs-logσ relationship embodies the combined effect of the processes. Some drive the 22 

slope to less than unity. Some are responsible for the factor of 1.5-2.0 variability. Here we 23 

discuss such processes, especially those common for various locations and Angstrom 24 

exponent values. We present observed aerosol properties as circumstantial evidence for 25 

aerosol processes, noting that direct analysis with model simulations should be undertaken. 26 

Recall that extinction is partly dependent on size and refractive index, not entirely on number. 27 

Two distributions that are similar in the Aitken mode concentrations may have a factor of ten 28 

difference in extinction, if they differ roughly tenfold in the accumulation mode. Spheres up 29 



to 200 nm are more efficient at scattering with higher black carbon content (Figure 15.7 of 1 

Seinfeld and Pandis (2006)). 2 

These phenomena are evident in the aerosol number size distribution observed in ARCTAS 3 

Canada. Figure 4a shows the distribution that is grouped by the concurrent 500 nm dry 4 

extinction coefficient and Angstrom exponent and averaged on the logarithmic scale. The 5 

accumulation mode varies with the extinction; the Aitken mode varies less.  6 

To show the same data in a slightly different way, Figure 4b has the same grouped size 7 

distributions that are divided by the extinction and averaged (solid curves). Greater extinction 8 

is associated with proportionally fewer particles in the typical CCN sizes, one explanation for 9 

∂logCCN/∂logσ<1. Two things might seem counter-intuitive. One is the de-emphasis of the 10 

Aitken mode with extinction up to 300 Mm-1, given that the Angstrom exponent, which is 11 

commonly regarded as a size indicator, is restricted to 1.7-1.9 for this demonstration. The 12 

other is the lower peak height in the accumulation mode for extinction values beyond 300 13 

Mm-1, given that the distributions are normalized by the extinction. Simple Mie calculations 14 

applied to these distributions (dashed curves in Figure 4b) clarify that they are not odd. First, 15 

the particles up to ~100 nm have little influence on extinction. Variations in the Aitken mode 16 

have little influence on the Angstrom exponent in the detailed level, although the exponent 17 

does signal the CCN-extinction relationship to the extent shown in Figure 3c and reduces the 18 

typical deviation from a factor of 2.7 to 2.0. Second, the extinction distribution calculated for 19 

two refractive index values, 1.5-0.01i and 1.6-0.1i, demonstrates that a change in chemical 20 

composition can result in the same extinction with fewer accumulation-mode particles. 21 

The de-emphasis of the Aitken mode may reflect aerosol growth processes. Coagulation, for 22 

example, decreases the number and increases the size. Condensation and in-cloud processing 23 

also make particles scatter more light while hardly increasing their number. Such ubiquitous 24 

processes may well be the primary reason for the similarity in the observed slope among the 25 

locations and Angstrom exponent bins.  26 

The implied differences in refractive index, on the other hand, may reflect emissions and 27 

transformation unique to biomass burning particles. In ARCTAS, extinction values exceeding 28 

300 Mm-1 were observed directly above flaming fires, with the single scattering albedo (SSA) 29 

of 0.94±0.03. Values between 30-300 Mm-1 were observed around both flaming and 30 

smoldering fires, with an SSA of 0.97±0.02. The SSA difference might be a result of 31 



secondary aerosol production and oxidation, of the coatings on soot-containing particles 1 

among others, in addition to the diversity in combustion mechanisms.  2 

Combustion mechanisms and post-emission physicochemical processes may be doubly 3 

effective in lowering the slope from unity, acting not only on refractive index but also on 4 

hygroscopicity. The critical dry diameter (see Section 2.1) tends to be greater, hence the CCN 5 

proportionally fewer, for greater extinction observed in the biomass burning particles (Figure 6 

4a). The implied negative correlation between particle hygroscopicity and extinction might be 7 

attributable to the processes.  8 

Besides the production and transformation, mixing and removal can conceivably influence the 9 

slope, although we do not have observational evidence. Dilution with clean air, for example, 10 

should work to bring the slope to unity, since optically effective particles and CCN are 11 

reduced by the same rate. So should the types of rain wash-out that scavenge particles 12 

regardless of their size and hygroscopicity. Such processes might explain slopes higher than 13 

0.75 in some locations (Figure 3a, Table 2), though this might be caused by a few data points 14 

separate from the rest. Mixing, be it internal or external, of dust particles with hygroscopic 15 

particles can influence the slope, as indicated by the Niamey data (Figure 2 and 3, Table 2). 16 

Generally, fine-tuning of our parameterization for local meteorology and aerosol conditions 17 

should improve its accuracy. 18 

Figure 4 helps explain not only the slope but also the variability in the CCN-extinction 19 

relationship. The shades in Figure 4b indicate the one geometric standard deviation range of 20 

the normalized size distributions, each of which corresponds to unit extinction and an 21 

Angstrom exponent near 1.8. As such, the shades, which encompass roughly ±70% of the 22 

geometric mean at most CCN sizes, represent the number of particles that can be added or 23 

removed without significantly influencing the extinction and its wavelength dependence. The 24 

variation in calculated critical diameter (horizontal bar in Figure 4a), by roughly ±40 nm, 25 

highlights the sensitivity of CCN concentration to both size and hygroscopicity. The 26 

emissions and transformation of the biomass burning particles could be the main driver for the 27 

variability observed over central Canada, not just for the slope. 28 

While our observation over central Canada is influenced by local biomass burning as the 29 

single dominant source, multiple emissions followed by mixing can also diversify the CCN-30 

extinction relationship. The extinction coefficient at Graciosa Island with the Angstrom 31 

exponent between 0.3 and 0.5 should be dominated by coarse marine aerosols, setting aside 32 



occasional influences of dust. Fine pollution particles of continental origin may also be 1 

included in the extinction, but only to a degree that keeps the Angstrom exponent low. The 2 

CCN number, on the other hand, can be dominated by either pollution or marine aerosols. 3 

Specifically, continental outflow influences the site in the summer, whereas high wind speed 4 

increases marine aerosols in the winter (Clarke et al., 1997; Logan et al., 2014; Wood et al., 5 

2014). The seasonal cycle thus contributes to the variability in CCN-extinction relationship 6 

(Figure 5): The average CCN concentration coincident with the extinction of 20±2 Mm-1, for 7 

example, is 426 cm-3 in June, 245 cm-3 in December. Mixing in various time scales may also 8 

explain the high variability in the data from Black Forest and Cape Cod (Figure 2), sites that 9 

sample air masses with a number of different geographic origins. In fact, the location where 10 

data are collected appears to have a large impact on the variability (Figure 3b), in comparison 11 

with the Angstrom exponent which shows no obvious tendency with the RMS deviation. The 12 

deviation is not necessarily higher for smaller Angstrom exponent, as might be expected for 13 

the smaller overlap between optically important particles and CCN. 14 

Any process that influences the particle hygroscopicity can contribute significantly to the 15 

variability around the dry CCN-extinction relationship. In general, knowledge of typical local 16 

aerosol size distribution and chemical composition helps constrain the impact of variation in 17 

hygroscopicity on the CCN concentration (Moore et al., 2012). While local observations and 18 

transport models can also help, these properties, especially the composition, are difficult to 19 

observe from satellite. Despite the negative correlation between the hygroscopicity and 20 

extinction, the CCN-extinction relationship in central Canada does not show a systematic 21 

trend with SSA or f(RH=85%), optically observable indicators of particle composition. Such a 22 

trend, if present, must be obscured by the size and refractive index effects. Particle 23 

hygroscopicity is essentially ignored in the existing CCN parameterizations as well as in ours. 24 

In another location the chemical composition is related to optical properties in a discernible 25 

manner. Shinozuka et al. (2009) find that the wavelength dependence of extinction was anti-26 

correlated with the organic fraction of refractory mass of submicron particles (OMF) as 27 

α=−0.70×OMF+2.0 for Central Mexico’s urban and industrial pollution. Shinozuka et al. 28 

(2009) and Russell et al. (2010)  also show that absorption Angstrom exponent increased with 29 

the OMF, more rapidly for higher SSA, as expected for the interplay between soot, some 30 

organic species and dust. Such observations may assist remote sensing of aerosol chemical 31 



composition and CCN concentration in specific regions, making regional aerosol 1 

characterization an important element of improved satellite retrieval of CCN.  2 

In principle, the discussion above would be less relevant if data were extensively aggregated. 3 

The aerosol physicochemical processes and transport phenomena would be less traceable in 4 

data averaged over, say, 1000 km or a year. Figure 6 shows the arithmetic mean and standard 5 

deviation of the CCN and dry extinction for each of the eight deployments with 6 

supersaturation between 0.3% and 0.5% and with no limit on Angstrom exponent. This figure 7 

lacks the spread of data points that is present in Figure 2 and Table 2. This figure hides the 8 

general trend that the CCN almost triples as the Angstrom exponent is increased from 0.5 to 9 

2.0 in the finer resolution. 10 

In practice, regression results do not change drastically upon aggregating the CCN and dry 11 

extinction. The slope through the deployment averages excluding Niamey is 0.90±0.19 with 12 

the bivariate regression (Section 2.2) when one over the standard deviation squared is used as 13 

weights for both x and y. This largely falls in the 0.75±0.25 range, though the one-sigma (the 14 

square root of the variance) value, 0.19, is greater than the values for the sorted fine-15 

resolution data (Figure 2 and Table 2). Figure 6 also demonstrates that the standard least-16 

squares method is sensitive to the choice of dependent and independent variables, to reiterate 17 

our remark in Section 2.2. ∂logCCN/∂logσ is 0.80 when x is logσ and y is logCCN, 0.94 when 18 

x is logCCN and y is logσ.  19 

The discussion above on aerosol processes, built on observed aerosol properties, remains to 20 

be verified with direct analysis. That probably requires model simulations. The slope between 21 

simulated CCN concentrations and dry extinction coefficient for a given location and 22 

Angstrom exponent should be 0.75±0.25 to compare well with observations. Simulations 23 

without certain aerosol processes, coagulation and condensation for example, can reveal their 24 

impact on the CCN-extinction relationship and permit fine-tuning of their model 25 

representation.  26 

Besides, co-variance of two aerosol properties should complement each of them as a model 27 

constraint. That is because taking the consistency between them should increase the chance 28 

that either property is estimated correctly. Think, as an example, a probabilistic evaluation of 29 

regional aerosol simulations where histograms are compared between simulations and 30 

observations separately for CCN concentration and dry extinction coefficient. The error in the 31 

estimate of each quantity may be obscured by its dynamic range and overlooked. This is less 32 



likely with the CCN/σ0.75 ratio, because the CCN-σ relationship is tighter than is the dynamic 1 

range of either property. The relationship varies by a factor of 1.5-2.0 for most of the 2 

individual non-dusty locations and Angstrom exponent bins (Figure 3b, Table 2), whereas the 3 

dry extinction and CCN vary by a factor of 1.7-2.4 and 1.8-2.7, respectively (numbers given 4 

on the log10 basis in Table 2). Thus, the evaluation of the simulations would be more effective 5 

if the histograms of the ratio are considered in addition to those of each quantity. 6 

4.2 Implications for satellite-based CCN estimates  7 

The relationship of CCN to AOD, rather than to the dry extinction, is relevant to the satellite-8 

based CCN estimates with passive sensors. The relationship is influenced considerably by the 9 

vertical profile of aerosols and their humidity growth. These strongly meteorology-dependent 10 

variables are difficult to parameterize and better left with transport models and direct 11 

observations to determine. Here we argue that, in general, these variables should not make 12 

logCCN-logAOD relationship steeper than the logCCN-logσ. We also consider how the 13 

variability in the CCN-AOD relationship is greater than that of the CCN-σ due to these 14 

variables as well as horizontal-temporal variability and measurement errors. We simulate 15 

CCN-AOD relationship for two scenarios, compare the results with the existing 16 

parameterizations and discuss implications for the study of ACI. 17 

The relationship between boundary layer CCN concentration and column AOD in a given 18 

humidity environment is influenced by aerosol spatio-temporal distribution and intensive 19 

properties, as well as measurement errors (see Section 1). Our analysis of the central Canada 20 

data illustrates a way to isolate these influences from each other. The observed CCN-AOD 21 

relationship in large part reflects the CCN-extinction relationship for dried particles within 22 

boundary layer air masses, as indicated by their resemblance in slope and a minor reduction in 23 

deviation (Section 3.1, compare Figure 1a and 1b). This data set is exceptionally suitable for 24 

demonstrating the resemblance, thanks primarily to the predominance of low-altitude 25 

aerosols, low RH and high organic content of the particles from local forest fires, as well as 26 

the wide dynamic ranges that make the regression robust.  27 

For other environments the vertical profile and the humidity response of light extinction are 28 

harder to determine. But estimates can be made by a transport model (Chin et al., 2002; Heald 29 

et al., 2011; Koffi et al., 2012) or lidar observation with the aid of in situ dry measurements 30 



(Tesche et al., 2014; Ziemba et al., 2013). One can then reduce a satellite observation of AOD 1 

to the dry light extinction, for example by applying the following: 2 

σ = (AOD-AODstr) / H / f(RH)                         (Eq. 4) 3 

where AODstr is the stratospheric AOD and H, the aerosol layer thickness. f(RH) is the 4 

extinction coefficient of the ambient particles divided by that of dried particles, which is 5 

approximated by a scalar in this expression in spite of its altitude dependence. The extinction 6 

and its Angstrom exponent can then be inserted into Equation 1 to yield a CCN concentration 7 

estimate.  8 

This strategy assumes that the CCN-extinction relationship found in our airborne (<1km 9 

altitude) and ground-based measurements holds for the cloud-base altitude. This assumption 10 

may or may not be valid. Ghan et al. (2006) find that the vertical profile of normalized dry 11 

extinction closely follows that of CCN concentration on most of the flights they examine, 12 

particularly within the lowest kilometer above the surface.  13 

When estimating the CCN-AOD relationship, the uncertainties in the vertical profile and the 14 

humidity response needs to be combined with the factor of 2.0 error associated with our CCN-15 

extinction parameterization. Uncertainties also arise from horizontal-temporal variability and 16 

measurement errors for the satellite-based estimates, though these additional factors are 17 

negligible for our airborne and ground-based data.  18 

The presence of a dust layer aloft, for example, complicates the CCN-AOD relationship. The 19 

vertical profile depends on aerosol source and evolution as well as meteorological conditions, 20 

and may exert an uncertainty comparable with, or greater than, a factor of 2.0. The slope is 21 

also influenced and might be systematically decreased from 0.75±0.25, due to widening of the 22 

relative dynamic range, as the dry extinction is replaced with AOD. A systematic increase in 23 

the slope is unlikely. It would imply a negative correlation between the aerosol layer depth 24 

and boundary-layer dry extinction coefficient. To be sure, a meteorology-aerosol connection 25 

is present in some regions. For example, the planetary boundary layer height generally 26 

increases and aerosol loading decreases away from the coast in the subtropical regions. But 27 

such a negative correlation is not known to exist systematically over the globe. Higher 28 

satellite resolution in vertical, horizontal and temporal dimensions, if achieved without 29 

significantly sacrificing AOD retrieval accuracy, will better constrain the relationship. Model 30 

estimates of aerosol layer thickness over wide horizontal and temporal extents will continue 31 

to be useful and might be improved with assimilated satellite data.  32 



The response of light extinction to humidity changes is also difficult to ascertain, especially 1 

from remote sensing. Because the enhanced scattering due to water uptake by the particles can 2 

exceed a factor of 2.0 and varies widely in humid environment (Howell et al., 2006; 3 

Shinozuka et al., 2007; Tesche et al., 2014), its uncertainty might be comparable with or 4 

greater than a factor of 2.0, especially if the ambient humidity is unknown, high, or variable 5 

(Kapustin et al., 2006). In theory, the response of light extinction to humidity changes should 6 

be partly correlated with particle hygroscopicity, at least for aerosols whose chemical 7 

composition varies little with size. If such an association existed in humid environments, 8 

increases in light extinction would tend to be accompanied by lower critical dry diameter for 9 

activation and hence higher CCN concentrations. This would work to reduce the variability in 10 

the CCN per extinction and might help remote sensing of CCN concentration. However, such 11 

association is not evident in the central Canada data.  12 

Like the vertical profile, the humidity response should randomly diversify the slope or, 13 

possibly, systematically decrease it. If the impact of hygroscopicity is greater on the AOD 14 

than on the CCN concentration, as is probably the case for all but hydrophobic particles in dry 15 

conditions, this effect may work to lower the slope when the extinction for dried particles is 16 

replaced with the ambient AOD for humid environment (not evident in the dry central 17 

Canada). A slope increase would imply higher f(RH) (i.e., higher RH, particle hygroscopicity 18 

or both) at lower dry extinction coefficient – possible but uncommon. Thus, while most of our 19 

observations (Section 3) refer to the in situ extinction of dried particles, it is logical to expect 20 

the relationship to the columnar ambient (not dried) AOD to have a slope smaller than unity 21 

as well. 22 

The effects of horizontal-temporal variability are difficult to assess. The variability in the 23 

CCN concentration is partly a consequence of that in aerosol intensive properties such as size 24 

and hygroscopicity. This is accounted for in the factor of 2.0 error in our CCN-to-dry-25 

extinction parameterization. Some of the horizontal-temporal variability in extensive 26 

properties is also accounted for, if the uncertainty in the estimate of vertical profile 27 

encompasses the horizontal-temporal variability of the vertical profile itself. The same is true 28 

for the humidity response of extinction. With the CCN-σ link, vertical profile and humidity 29 

response taken care of, the horizontal-temporal variability that remains to be accounted for is 30 

only of the AOD. More precisely, we should consider the AOD variability between the 31 

satellite and model grid boxes that is not included in the uncertainty estimate for the satellite 32 



AOD products, and enter this into the overall uncertainty in satellite-based CCN estimates. 1 

This way only the impact of the humidity response is double-counted. 2 

The AOD horizontal-temporal variability within satellite grid boxes is negligible in 3 

comparison with other sources of uncertainty associated with AOD-based estimates of CCN. 4 

The AOD seldom varies by a few tens of percent within satellite grid cells (Shinozuka and 5 

Redemann, 2011) or within a time window in which the air travels tens of kilometers. This is 6 

small compared with the factor of 2.0 variability associated with the local dry CCN-extinction 7 

relationship. Note that the AOD presented in Shinozuka and Redemann (2011) is measured 8 

from a single aircraft and averaged over one-kilometer distance. The variability over one-9 

kilometer distance must be generally smaller than that over 1x1 km2 area, and is probably 10 

closer to that over 0.5x0.5 km2 area (see Section 2.6 and Supplement of Shinozuka and 11 

Redemann (2011)). These statistics are meant to encompass two thirds of all cases. There are 12 

cases with higher variability. They include plumes from strong sources nearby and 13 

hydrophilic particles under high and variable humidity. Also, the variability is greater over 14 

longer distances, which matters if the CCN concentration for cloud pixels is to be estimated 15 

from AOD retrieved for clear-sky pixels hundreds of kilometers away.  16 

Besides these aerosol properties, the satellite retrieval uncertainties can also pose a challenge 17 

to AOD-based estimates of the CCN concentration. For example, an AOD retrieval 18 

uncertainty of 30% translates into a 22% uncertainty in the CCN concentration because of the 19 

0.75 exponent. An Angstrom exponent uncertainty of ±0.2 translates into a +15%/-13% 20 

uncertainty ((10(±0.2*0.3)-1)×100%). If these two sources of uncertainties are independent of 21 

each other (which may not be correct), then the retrieval uncertainty alone makes the 22 

estimated CCN uncertain by +26%/-25%. Satellite retrieval uncertainties may be greater, 23 

especially over land with passive sensors (Kahn et al., 2009; Levy et al., 2013; Levy et al., 24 

2010) and for small AOD. An AOD error by 100% and an Angstrom exponent error by 0.5 25 

result in a +80%/-74% uncertainty in the estimated CCN – comparable with our observed 26 

factor of 2.0.  27 

We illustrate in Figure 7a how our CCN-σ parameterization can be translated into the CCN-28 

AOD relationship for given scenarios. Values of the Angstrom exponent, layer depth, 29 

humidity response and AOD retrieval uncertainties are assumed separately for remote marine 30 

aerosols (0.2±0.2, 2±1 km, 3±1, ±0.03±0.05×AOD for AOD between 0.02 and 0.2; blue 31 

dashed curve) and polluted continental ones (2±0.2, 3±1.5 km, 2±0.5, ±0.05±0.15×AOD for 32 



AOD between 0.03 and 0.3; red dashed curve). The slight bend near AOD of 0.01 with both 1 

curves is caused by the assumed stratospheric AOD of 0.01 that is not converted to CCN. This 2 

treatment makes the CCN-AOD slope steeper for small AOD values that many satellite 3 

pixels, especially those in pristine marine conditions, observe. The uncertainties represented 4 

by shades were computed by means of Monte Carlo simulations for the factor of 2.0 5 

variability of our parameterization and the assumed uncertainties indicated above. The overall 6 

uncertainties are a factor of ~3 for AOD500nm <~0.1 and a little over a factor of 2 for the rest.  7 

Experiment averages over hundreds of kilometres and months shown in Figure 1 and Table 2 8 

of Andreae (2009) are marked in our Figure 7a with diamonds. Our simulations come fairly 9 

close to them. In this sense the two studies are mutually consistent. However, there are 10 

important differences. Our curves are less steep. Our results for multiple Angstrom exponent 11 

values do not form a single line. Our simulation here explicitly accounts for the vertical 12 

profile and the humidity effect on extinction. Data aggregation seems to influence regression 13 

in the logCCN-logAOD space, in a manner not possible in the logCCN-logσ space (Section 14 

4.1, Figure 6): Indifference to the humidity effect and vertical profile seems to invite the 15 

logCCN-logAOD slope to appear greater than it actually is in finer scales within aerosol types. 16 

If so, this could mislead satellite-based estimates of ACI. Also, the use of standard least-17 

squares regression may exacerbate the overestimate of the slope when uncertainties associated 18 

with both the CCN and AOD are large (see Section 2.2). The uncertainties in this context 19 

include the effect of the spatio-temporal gap between the two measurements. 20 

AI can work well for fine particles. The dash-dot lines in Figure 7b show that with an 21 

adequate constant of proportionality (say, 3000), the 500 nm AOD multiplied by the 22 

Angstrom exponent can predict the number concentration nearly as well as our measurement-23 

based parameterization does.  24 

However, two characteristics of this product deviate from the reality. First, AI decreases as 25 

rapidly as Angstrom exponent does. At α=0.2, the AI-based CCN estimate is significantly 26 

lower than ours (blue curves in Figure 7b); at α<0, AI is negative. Our parameterization, 27 

derived from log-log plots, always returns a positive CCN concentration as long as the 28 

extinction coefficient is positive. 29 

Second, AI is proportional to the AOD with the Angstrom exponent kept unchanged. 30 

Nakajima et al. (2001) suggested raising the product to the power of 0.869, which subsequent 31 

studies neglected. Doing so would make it a better surrogate for CCN, closer to 0.75, the 32 



value we find through the direct observations. The parameterizations by Gassó and Hegg 1 

(2003) and Liu and Li (2014) also have a slope greater than ours (see Section 1). 2 

The fact that the slope is smaller in our parameterization than any of the existing ones may 3 

have implications for satellite-based CCN estimates and ACI studies. The smaller slope, we 4 

expect, is translated into a smaller CCN variability, at least by a simplistic model where 5 

satellite AOD is directly converted to the CCN using such a parameterization. As a result, 6 

satellite-based estimates of radiative forcing through the interactions between aerosols and 7 

warm clouds may be lowered in magnitude. However, the differences arising from the choice 8 

of CCN-AOD parameterization may correspond to a considerably lower uncertainty in CDNC 9 

in the conditions where the cloud dynamics makes the response of CDNC to CCN sublinear 10 

(Morales Betancourt and Nenes, 2014). 11 

5 Conclusions 12 

Approximating the number concentration of CCN with satellite retrievals of AOD is common. 13 

The existing methods of this approximation have not been critically evaluated with 14 

observations at one-kilometer horizontal resolution. If satellite-based CCN estimates are to 15 

continue to complement purely model-based ones, what CCN-AOD relationship should we 16 

assume and how large is the associated uncertainty? This study has examined airborne and 17 

ground-based observations of aerosols to address these questions, and discussed underlying 18 

aerosol processes.  19 

For a realistic estimate of the CCN concentration at the warm cloud base, we propose starting 20 

with the in situ extinction coefficient for dried particles. That is to take advantage of 21 

increasingly available lidar observations and transport model products in combination with 22 

the columnar ambient AOD spectra from a passive satellite sensor. Determine the CCN 23 

concentration at 1 Mm-1 extinction by 100.3α+1.3 (cm-3) where α is the Angstrom exponent, and 24 

multiply it by σ0.75 for a given dry extinction coefficient σ (Mm-1).  25 

This approximation returns values within a factor of 2.0 of most of our direct measurements 26 

averaged over one-kilometer horizontal distance. This variability is, though large, finite. This 27 

means that a moderate level of connection exists between the CCN number and dry 28 

extinction, justifying the parameterization as an approximation. Further investigations on the 29 

impact of particle hygroscopicity and region-specific tailoring may improve the accuracy of 30 

our parameterization. The uncertainty in the CCN-AOD relationship arises not only from the 31 

uncertainty in the CCN-σ but also from the humidity response of light extinction, the vertical 32 



profile, the horizontal-temporal variability and the AOD measurement error. Depending on 1 

the quality of the estimate of these factors, the uncertainty can be closer to a factor of three.  2 

The slope of the log10CCN-log10σ relationship, 0.75±0.25, is smaller than any existing 3 

parameterization. Aerosol growth processes such as condensation, coagulation and in-cloud 4 

processing generally make particles scatter more light while hardly increasing their number. 5 

Other processes of production, transformation, mixing and removal may play a role too. Our 6 

observations and analysis should help to evaluate their representation by models. 7 

It is logical to expect the logCCN-logAOD relationship for ambient (not dried) aerosols to 8 

have a slope smaller than unity as well. Exceptions may arise from extensive data aggregation 9 

over space, time or aerosol types and, possibly, from special meteorology-aerosol connections 10 

influencing the vertical profile or humidity growth. With the slope smaller than unity, a 11 

doubling of AOD is associated with less than a doubling of CCN. This marks a departure 12 

from existing CCN proxies such as AOD and AI, and can impact estimates of ACI.  13 
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Table 1. Data sets used in this study. 1 

Latitude Longitude Altitude (m) Dates Time Int. (s) D (µm)50%

Central Canada (ARCTAS) 56°±6° N 109°±7° W 50-1000 2008/06-2008/07 11 >5

California, USA (DISCOVER-AQ) 37°±2° N 120°±2° W 50-1000 2013/01-2013/02 10 >5

Southern Great Plains, USA (ARM) 36° 36' 18" N 97° 29' 6" W 320
2006/09-2007/05, 2007/11-2008/07, 

2008/09-2009/08, 2009/11-2011/03
240 10

Cape Cod, USA (ARM) 42° 1' 48" N 70° 2' 56" W 47 2012/07-2012/10, 2013/01-2013/05 240 10

Black Forest, Germany (ARM) 48° 32' 24" N 8° 23' 49" E 511 2007/04-2007/12 240 10

Ganges Valley, India (ARM) 29° 21' 34" N 79° 27' 29" E 1936 2011/06-2012/03 240 10

Graciosa Island, Azores (ARM) 39° 5' 28" N 28° 1' 45" W 15 2009/04-2009/12, 2010/07-2010/12 240 10

Svalbard 78° 54' 0'' N 11°  51' 60'' E 474 2009/01-2009/04, 2012/05-2012/12 300 Not Applied

Niamey, Niger (ARM) 13° 28' 39" N 2° 10' 28" E 205 2005/12-2006/05, 2006/08-2006/12 240 10  2 

D50% refers to the particle size for which the estimated passing efficiency is 50%. 3 

4 



Table 2. The results of bivariate regression analysis for 0.3-0.5% supersaturation.  1 

Ang. Exp. N log10(Ext.) log10(CCN) Slope Intercept RMSe

1.5-1.7 100  1.52±0.47  2.83±0.42  0.77±0.22  1.67±0.08 1.68

1.7-1.9 123  1.66±0.59  2.98±0.48  0.75±0.12  1.75±0.05 1.54

1.9-2.1 106  1.80±0.72  3.13±0.59  0.74±0.13  1.82±0.06 1.70

0.1-0.3 102  1.21±0.39  2.38±0.27  0.54±0.19  1.75±0.08 1.63

0.3-0.5 254  1.24±0.38  2.47±0.31  0.70±0.13  1.62±0.05 1.67

0.5-0.7 605  1.35±0.38  2.66±0.34  0.74±0.09  1.68±0.04 1.73

0.7-0.9 1473  1.42±0.37  2.78±0.31  0.61±0.05  1.93±0.03 1.71

0.9-1.1 3271  1.51±0.38  2.84±0.30  0.55±0.03  2.02±0.02 1.69

1.1-1.3 7141  1.55±0.33  2.90±0.28  0.58±0.03  2.02±0.01 1.66

1.3-1.5 11545  1.56±0.29  2.97±0.27  0.62±0.02  2.03±0.01 1.70

1.5-1.7 8260  1.53±0.28  3.05±0.29  0.77±0.03  1.89±0.01 1.69

1.7-1.9 2687  1.46±0.31  3.07±0.33  0.91±0.05  1.75±0.02 1.66

1.9-2.1 561  1.39±0.37  3.07±0.40  1.02±0.08  1.66±0.04 1.67

0.3-0.5 410  1.54±0.23  2.40±0.29  1.07±0.12  0.77±0.05 1.50

0.5-0.7 649  1.53±0.24  2.53±0.33  0.74±0.09  1.43±0.04 1.95

0.7-0.9 528  1.35±0.22  2.54±0.22  0.81±0.12  1.45±0.05 1.45

0.9-1.1 587  1.25±0.23  2.54±0.25  0.82±0.13  1.53±0.05 1.58

1.1-1.3 505  1.16±0.23  2.61±0.26  0.81±0.14  1.68±0.04 1.61

1.3-1.5 632  1.14±0.23  2.74±0.25  0.85±0.13  1.78±0.04 1.57

1.5-1.7 752  1.17±0.24  2.83±0.24  0.76±0.10  1.95±0.03 1.56

1.7-1.9 973  1.25±0.30  2.90±0.31  0.70±0.07  2.05±0.03 1.80

1.9-2.1 934  1.38±0.30  3.04±0.30  0.70±0.06  2.08±0.02 1.68

2.1-2.3 206  1.20±0.32  2.99±0.26  0.77±0.11  2.07±0.04 1.33

0.9-1.1 127  1.56±0.50  2.63±0.41  0.52±0.10  1.88±0.06 1.91

1.1-1.3 491  1.58±0.46  2.56±0.64  0.68±0.06  1.63±0.04 3.32

1.3-1.5 1522  1.58±0.36  2.79±0.42  0.72±0.04  1.70±0.03 2.06

1.5-1.7 2402  1.60±0.29  2.84±0.46  0.87±0.06  1.51±0.04 2.53

1.7-1.9 611  1.54±0.31  2.87±0.44  0.79±0.10  1.71±0.06 2.42

0.1-0.3 218  2.29±0.21  3.09±0.21  0.83±0.11  1.19±0.07 1.31

0.3-0.5 489  2.38±0.27  3.21±0.28  0.90±0.06  1.06±0.05 1.35

0.5-0.7 1738  2.37±0.25  3.23±0.26  0.96±0.04  0.96±0.03 1.34

0.7-0.9 3691  2.17±0.25  3.13±0.26  0.96±0.02  1.04±0.02 1.30

0.9-1.1 1994  1.88±0.28  2.93±0.33  1.02±0.03  1.03±0.02 1.42

1.1-1.3 778  1.50±0.23  2.55±0.40  1.33±0.09  0.60±0.04 1.74

-0.3--0.1 1496  1.56±0.24  2.27±0.24  0.90±0.03  0.89±0.03 1.50

-0.1-0.1 2031  1.51±0.26  2.46±0.25  0.81±0.02  1.24±0.03 1.52

0.1-0.3 2291  1.43±0.26  2.52±0.25  0.80±0.02  1.38±0.02 1.56

0.3-0.5 1462  1.33±0.26  2.60±0.26  0.87±0.02  1.44±0.02 1.46

0.5-0.7 933  1.25±0.28  2.63±0.27  0.81±0.03  1.62±0.02 1.45

0.7-0.9 597  1.22±0.26  2.69±0.25  0.79±0.04  1.73±0.04 1.52

0.9-1.1 296  1.21±0.31  2.74±0.30  0.76±0.05  1.83±0.05 1.60

-0.3--0.1 144  0.34±0.37  1.59±0.37  0.74±0.60  1.37±0.06 2.27

-0.1-0.1 141  0.47±0.35  1.68±0.35  0.89±0.73  1.27±0.08 2.21

0.1-0.3 207  0.49±0.38  1.71±0.34  0.73±0.26  1.39±0.04 1.97

0.3-0.5 215  0.66±0.55  1.87±0.45  0.63±0.16  1.51±0.03 1.99

0.5-0.7 321  0.56±0.37  1.79±0.35  0.76±0.23  1.40±0.03 1.88

0.7-0.9 407  0.61±0.33  1.84±0.30  0.76±0.23  1.40±0.03 1.78

0.9-1.1 545  0.63±0.37  1.90±0.29  0.80±0.19  1.39±0.03 1.94

1.1-1.3 618  0.68±0.31  1.94±0.32  0.92±0.19  1.33±0.03 1.73

1.3-1.5 733  0.70±0.32  1.99±0.31  0.87±0.17  1.39±0.03 1.70

1.5-1.7 630  0.71±0.33  2.02±0.30  0.71±0.15  1.54±0.02 1.65

1.7-1.9 408  0.65±0.36  2.00±0.34  0.67±0.20  1.59±0.03 1.76

1.9-2.1 284  0.56±0.32  1.95±0.33  0.85±0.32  1.49±0.04 1.82

2.1-2.3 180  0.46±0.28  1.99±0.33  1.44±0.90  1.23±0.09 2.53

2.3-2.5 118  0.30±0.30  1.86±0.38  1.42±0.98  1.37±0.07 2.22

0.1-0.3 231  2.25±0.27  2.37±0.39  0.30±0.09  1.78±0.10 2.49

0.3-0.5 1557  2.20±0.29  2.46±0.50  0.45±0.04  1.61±0.05 3.19

0.5-0.7 1064  2.01±0.29  2.52±0.61  0.76±0.06  1.17±0.06 3.95

0.7-0.9 838  1.87±0.25  2.61±0.54  0.90±0.06  1.08±0.06 3.53

0.9-1.1 570  1.83±0.28  2.73±0.45  1.01±0.06  0.94±0.06 2.30

1.1-1.3 303  1.88±0.32  2.89±0.38  0.95±0.08  1.13±0.08 1.82

1.3-1.5 127  1.96±0.37  3.03±0.38  0.86±0.12  1.36±0.11 1.74

Niamey, Niger, 240s avg.

Central Canada, 11s avg., ≤1 km alt.

Cape Cod, USA, 240s avg.

Black Forest, Germany, 240s avg.

Ganges Valley, India, 240s avg.

Graciosa Island, Azores, 240s avg.

Svalbard, 300s avg.

Southern Great Plains, USA, 240s avg.

 2 

Ang. Exp. Is the Angstrom exponent of the extinction coefficient, N is the number of data 3 

points, the Ext. is the 500 nm extinction coefficient (Mm-1) for dried particles, CCN is the 4 



number of CCN concentration (cm-3). RMSe given here is 10 raised to the root mean square 1 

of the fitting error; an RMSe of 2, for example, means that the deviation of individual data 2 

points is typically within a factor of 2 of the best estimate. The value after the ± symbol 3 

indicates the standard deviation or the square root of the variance. 4 

5 
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Figure 1. (a) CCN concentration and 500 nm AOD measured from the NASA P-3 aircraft 2 

over central Canada in summer 2008 during ARCTAS. Shown here is the subset of data from 3 

the lowest 1 km altitude with the CCN instrument supersaturation between 0.3% and 0.5%. 4 

The CCN concentration is adjusted to 0.4% supersaturation using the coincident 5 

measurements of aerosol size distribution and averaged over 11 seconds. The AOD from the 6 

airborne sunphotometer is augmented for the aerosols below the aircraft using simultaneous in 7 

situ measurements. The bivariate regression (thick solid line) on the 711 data points yields 8 

CCN=1.9×103AOD0.74±0.11, RMSe=2.3. The standard least-squares regression (thin solid line) 9 

yields CCN=2.0×103AOD0.71±0.19, R2=0.59, RMSe=2.2. The expression from Andreae (2009), 10 

AOD=0.0027CCN0.640, is also shown for reference (dash-dot line). (b) CCN concentration and 11 

500 nm light extinction coefficient for dried particles, σ. The bivariate regression (thick solid 12 

line) on the 826 data points yields CCN=55σ0.75±0.05, RMSe=1.7. The standard least-squares 13 

regression (thin solid line, nearly identical to the bivariate fit) yields CCN=53σ0.75±0.09, 14 

R2=0.82, RMSe=1.7. An expression that sets the CCN proportional to the extinction is also 15 

shown for reference (dash-dot line).  16 

17 
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Figure 2. CCN and 500 nm extinction coefficient for dried particles measured over central 3 

Canada and at seven ground sites. The first four panels show the subset of data with the 4 

extinction Angstrom exponent between 1.7 and 1.9, and the last four, between 0.3 and 0.5. 5 

The number of data points is indicated by the color, blue for 1 and red for >20, for each 6 

square whose sides (∆log10x, ∆log10y) are 0.05 long. The thick and thin solid lines represent 7 

the bivarite and standard least-squares linear regression, respectively. The dashed line 8 

represents our parameterization.  9 

10 
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Figure 3. (a) The slope in log10CCN vs. log10σ estimated by the bivariate linear regression for 3 

0.2-wide Angstrom exponent bins. The square root of its variance is indicated by the vertical 4 

bar. (b) The RMS relative fitting error of the bivariate linear regression. (c) (dots) The 5 

intercept estimated for individual pairs of the CCN and extinction, calculated for a fixed slope 6 

of 0.75. This, plotted against the left axis, is identical to log10 of CCN concentration (cm-3) 7 

estimated for 1 Mm-1 dry extinction coefficient at 500 nm (right axis). Only the Graciosa 8 

Island data are shown as an example. (bigger markers) The average and ±one standard 9 

deviation range of the intercept, for the Graciosa Island data (red) and other locations (other 10 

colors). The black dashed line represents our parameterization. (d) CCN concentration at 11 

0.4% supersaturation estimated from our parameterization, compared with the observation at 12 

0.3-0.5% supersaturation at the eight locations. See the legend in (a) for the locations. The 13 

RMS difference calculated for all but Niamey data is a factor of 2.0.  14 

15 

a b 

c d 



     1 

Figure 4. (a) The number size distribution (dN/dlog10D in the logarithmic scale) measured 2 

with an SMPS over central Canada at <1 km altitude during ARCTAS. The subset that 3 

coincides with an Angstrom exponent between 1.7 and 1.9 are shown, grouped by the 500 nm 4 

extinction coefficient for dried particles and averaged. The circle and horizontal bar indicates 5 

the mean and standard deviation of the dry critical diameter for 0.4% supersaturation. (b) The 6 

number and extinction size distributions divided by the extinction coefficient before being 7 

averaged. The unit is cm-3/Mm-1 for the number (solid curves), non-dimensional times 100 for 8 

the extinction (dashed). The shade represents the one standard deviation range (encompassing 9 

the center 68%) of number distribution for each group. The extinction distribution is 10 

calculated for a refractive index of 1.5-0.01i (thick curves) and, for the 300-3000 Mm-1 11 

extinction, 1.6-0.1i (thin). It does not sum to the observed extinction coefficient. 12 

13 
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Figure 5. The Graciosa Island CCN-extinction relationship for the Angstrom exponent 2 

between 0.3-0.5 and supersaturation between 0.3-0.5%, color-coded with the time of the year 3 

in 2009 and 2010. No valid measurements are available between January and mid-April. 4 

5 
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Figure 6. CCN and dry extinction averaged over each deployment. The bivariate regression 2 

(thick solid line) on the data points excluding Niamey, Niger yields CCN=26σ0.90±0.19. The 3 

standard least-squares (thin solid lines) regression yields CCN=35σ0.80 and, when logσ is 4 

chosen as dependent variable, σ=3.8×10-2CCN1.07.  5 
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Figure 7. (a) CCN-AOD relationships simulated from the CCN-extinction parameterization 2 

for two scenarios (detailed in the text). The black dash-dot line represents the regression by 3 

Andreae (2009). It goes through averages over experiments in remote (blue and green 4 

diamonds) and polluted (purple and red) regions. (b) Same simulation results as (a). The 5 

uncertainty ranges are omitted for clarity. They are compared with the product of the 500 nm 6 

AOD, the Angstrom exponent and 3000. 7 
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