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Interactive comment on
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We would like to thank the reviewer for the valuable comments on our article.

First, the authors would like to respond to the reviewer's first comment regarding the
orientation of the paper:

One important reason for the publication in ACP is the framework of the special issue
"HD(CP)2 Observational Prototype Experiment".

As the application and evaluation of the introduced methodology is mainly based on the
datasets generated during that measurement campaign,

we would like to emphasize the high value of the data measured by several research
groups. To our knowledge, there is no comparable dataset existing that provides both the
high spatial density of solar radiation measurements (with high temporal resolution as
well), sky imager and ceilometer.

Moreover, this paper highlights the value of the dataset not only for basic atmospheric
sciences, but also for solar energy related research.

To highlight this aspect already in the introduction of the paper, we added the following
sentences on p.27000 1.10:

"The sky images, the ceilometer based cloud base height measurements as well as the
pyranometer data used in this study, are collected during the

HD(CP)"2 Observational Prototype Experiment (HOPE) in spring 2013. The dataset
provides both a high spatial density of solar radiation measurements as well as the
necessary temporal resolution of pyranometer and ceilometer data as well as sky images.”
In the following, we will respond on the suggestions for minor revisions:

1.

Reviewer Comment (RC): Remove the last paragraph in section 1...

Author Response (AR): The last paragraph of section 1 has been removed.

2. p. 27004, lines 4-5:



RC: explain what is the "grade of saturation".
AR: We added 2 sentences with a more detailed definition of the "grade of saturation".

"We defined the grade of saturation (S in [0, 1]) as the average pixel intensity in the disc
up to an angular distance of 5° to the center of the sunspot. A value of S=1 would
correspond to a completely saturated sun area ( each pixel's intensity | = 255 )."

3. Section 3.4.1:

RC: | think you should explain a little better the transformation you are talking about and
the meaning of Fig. 5.

AR: We modified the last sentences of first paragraph in Section 3.4.1:

"Similar to the cloud shadow projection, each single CMV is transformed to the underlying
metric grid by projecting the image coordinates of the vectors initial and terminal point.
(Sect. 3.1.6). Figure 5 shows an example of the transformation from the circular fisheye
image to the grid. This scene illustrates the rectification of the CMV's which is important for
quality control and averaging to a global CMV."

4.

RC: Why do you use measurement minus estimate (analysis or forecast)? | would say that
usually the definition of MBE is the other way around (y_i minus x_i) so in case of
overestimation, MBE is positive, while MBE is negative in case of underestimation.

AR: We could switch measurements and forecasts but we would say as it is about
definition the results are not affected by it.

5.

RC: Conclusions. You mention that installing several pyranometers is very expensive, this
is relative. [...] installing dozens of non-first class pyranometers may be easily affordable.

AR: We agree, compared to the costs for the solar plant the prize would be small. | guess
the message becomes clearer if we compare several pyranometers to a single camera.
Therefore the sentence is modified to

"As installing a sufficient number of pyranometers which cover the field of view of a sky
imager with a comparable resolution is more expensive than a camera, a camera based
areal irradiance monitoring can be beneficial.”

6.

RC: Too many significant numbers for CBH and CC in table 1:

AR: We agree, a reduction of the significant number makes sense. The table has been

adapted with two significant numbers for each parameter.
We had no deeper investigation in cloud base height distribution yet to give a detailed



explanation why the average height is lower than expected from meteorology. One
explanation could be that cloud type classification always decides for one of the seven
classes. In times, where a mix of cloud classes is present, the algorithm decides for the
class with the highest probability. This can lead to low cloud base heights in a cirrus
dominated cloud scene. The same is valid for altocumulus/cirrocumulus which can be
mixed with stratocumulus/cumulus.

Response on typo and technical corrections:
- We applied all proposed corrections

- p.27015, line 25 changed to "...contributing to RMSE and a positive MBE"

- colors in Fig.12 and 14 ( RMSE vs Lead Time and Accuracy vs Lead Time ) have been
changed aiming at a better discrimination of single overlapping lines.
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T. Schmidt et al.
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Received and published: 15 February 2016

We would like to thank the reviewer for the valuable comments on our article.

First, we would like to respond on the reviewers general comments regarding the
underlying measurements used for the evaluation:

We agree, that underlying pyranometer data ( photodiode based ) has inherent uncertainty
and we do not give a special focus on measurement quality.

We would like to give some arguments for this decision. First, there is a separate paper
(Madhavan et al.) cited in our paper which is focusing on the sensor network.

Details on the pyranometer calibration, quality analysis and the flagging of the
measurements are given. Therefore we decided not to present a separate preliminary
analysis.

As we only used measurements flagged as "perfect” in our analysis we assure to filter out
dramatically bad data ( misaligned sensor stations, dirty pyranometer domes ).

Signal noise will certainly have influence on error metrics, but will be small compared to
the error introduced by the image based analysis and forecasting method itself.
Moreover, since we use RMSE for forecast error evaluation, the influence of small errors
introduced by noisy data is reduced.

Shading of pyranometers by obstacles like trees is reduced as we filtered out times when
sun is lower than 10° elevations.

In order to emphasize the quality check of the data provider and the quality flagging we
modified section 2.2:

"The maintenance as well as cleanliness and tilt control were performed on a weekly
basis.

Based on the maintenance protocol, data is provided with quality flags ("good"”, "okay, but
sometimes spurious”, "bad or ignore completely” or "missing or no observations”).
Madhavan et al. (2015) give a description of the pyranometer

network within the HOPE campaign, details of the hardware, quality flags and an
investigation of measurement uncertainties."

We also had to change "perfect" to "good" on p.27012 1.12, as the naming of flags has
changed.



Regarding the comment on accuracy criteria:

Yes, the term "accuracy" as the metric for the accuracy of a binary classification is
somehow confusing. But "accuracy" is next to "proportion correct (pc)" or "fraction correct
(fc)" a correct term describing the proportion of true forecasts among all forecasts (Metz,
1978). It is a simple metric describing how well the methodology can forecasts one of the
two states ( sunny / cloudy ).

We added a reference on p.27013 1.8 to the paper of Metz which describes/defines the
term accuracy

Metz, Charles E. 1978. ,,Basic Principles of ROC Analysis.“ Seminars in Nuclear Medicine
8 (4): 283-98. doi:10.1016/S0001-2998(78)80014-2.

Regarding the comment on using MAE complementary to RMSE:

We agree, that using MAE complementary to RMSE would have been a possible and also
interesting metric. We decided not to use both metrics in order not to overload the paper.
We decided for RMSE as it is commonly used in solar energy forecasting because large
differences between forecast and observation can lead to urgent problems when aiming at
balancing production and consumption of electricity.

In the following, we will respond on the technical comments:
- p. 26998, lines 1-2:

Reviewer Comment (RC): Clouds are not "always" the source of variability for GHI.
Aerosols, for example, can be also, in some places, dominant sources of variability.

In the site of interest here, it is of course true (but aerosol and water vapor may have
some temporal variability pattern: but maybe not spatial pattern for the spatial scales

of interest here).

Author Response (AR): We did not want to neglect the influence of aerosol and water
vapour variability on GHI variability. In contrast, we wanted to emphasize the important
role of clouds, which is the predominant factor if we focus on the temporal and spatial
scale we are focusing on with sky imagers. In our methodology we account for changes in
the atmospheric turbidity by using near-real time data for the estimation of the non-cloudy
and the cloudy state.

Therefore, we modified the first sentence to:
"Clouds are the dominant source of small-scale variability in surface solar radiation and

uncertainty in its prediction."

- p. 27000, lines 3-5:



RC: Occlusion of sun is only related to the direct and circumsolar part of the GHI

AR: Correct, point forecasts for the occlusion of the sun on the first hand only predict direct
radiation. For an estimation of the diffuse radiation level the cloud patterns in the visible
image can be used for a radiative transfer modelling. Another technique is a machine
learning based model training a set of image features on the measured diffuse radiation.

- p 27002, lines 13-16

RC: Authors should better explain and discuss (briefly) the choice of this particular clear
sky modeling ( compared to other more recent clear sky model )

AR: The used clear sky model in this study is also used in internal operational services for
pv plant energy yield monitoring and evaluated continuously at more than 100 sites in
Germany. See Ineichen et al. (2013) for a recent validation of the model. Moreover, the
usage of a more recent and potentially more accurate clear sky model would not affect key
results and conclusions. In this study, clear sky irradiance is used for persistence modeling
and for deriving the radiation levels from the clear sky index histograms of past
measurements. For persistence modeling, the choice of another clear sky model would
have no significant impact, as the time window ( 25 minutes ) is rather short and the clear
sky trend on these short timescales should be similar for different clear sky models.

As long as the histograms "overcast" and "clear" peaks can be detected, the choice of
another clear sky model would not change the forecast accuracy or the error metrics,
respectively. Moreover, it is used when evaluating accuracy of the binary forecast. Here,
the threshold for the classification is based on the clear sky index. Therefore, the choice of
another clear sky model could lead to a different distribution of binary (sunny and cloudy)
classes. Due to the mentioned arguments for the low impact of the choice of the clear sky
model, we decided not to go into more detail when introducing the used clear sky model.
However, we added one sentence regarding the models performance:

"The model is also used in internal operational services for pv plant energy yield
monitoring and evaluated

continuously at more than 100 sites in Germany within our group. For a recent
independant validation of the model, see Ineichen (2013)"

References:
Ineichen, P.: Long Term Satellite Hourly, Daily and Monthly Global, Beam and Diffuse

Irradiance Validation. Interannual Variability Analysis; IEA Report; University of Geneva:
Geneva, Switzerland, 2013.

- p. 27004, line 7:

RC: Where does the definition of intensity come from?

AR: We used the definition of "luminance" here, which gives each color (red, blue, green)
in the color space a certain weight. In order to make this clear to the reader, we changed

the footnote to

"Pixel intensity/luminance | = 0.299 * Red + 0.5687 * Green + 0.114 * Blue"



- p. 27004, lines 9-14:

RC: The discussion about a,b and the threshold is too brief. "Empirically determined": ok
but what is the criteria? Finally, what are the val-
ues for a, b and this threshold?

AR: We agree with the comment and extended this paragraph with a more detailed
description of the used parameters.

"The values for a=0.1, b=0.0018 and R_{thres}=0.82 that discriminates clouds and sky
were determined empirically on a test dataset of 40 images with different sky conditions.
They were adjusted with the aim to achieve good results for all possible sky conditions,
including in particular thick and dark clouds, semi-transparent cirrus clouds as well as
clear sky."

- Section 3.1.2:
RC: References for this extrinsic/intrinsic calibration would be welcome

AR: The intrinsic calibration ( lens function, Eq. 2 ) is based on Scaramuzza et al. 2006
and 2014 (two references are given in the paragraph). The intrinsic calibration is only
based on camera characteristics and independent from the positioning of the camera itself.
What is called "extrinsic" calibration means the orientation of the camera frame to the 3d
world. The extrinsic parameters depend only on the position of the camera. This
positioning can be described by a 3x3 rotation matrix. As we assumed a horizontally
aligned camera (no rotation in x- and y-axis) only the orientation to hemispheric north ( z-
axis ) has been considered. The rotation of the z-axis has been determined by comparing
calculated and visible sun position on a clear sky day. As the visible sun position cannot be
determined automatically in our case ( other groups used a black pixel in the center of the
sun which is not available for the camera we used here ), we performed a "visual"
comparison on a clear sky day. We think there is nothing to cite here.

- Section 3.1.6:

RC: Author should discuss about the choice of a relatively large value of the spatial
smoothness

AR: The chosen gaussian filter is used to smooth cloud edges, based on binary cloud
masks, leading to sharp gradients or strong flickering in the transition from cloud to sky or
vice-versa.

The chosen filter is a simplification because it is static and does not account for different
optical properties in the transition zone of cloud edges. Here, the chosen filter size lead to
the best correspondence of measured and calculated ramps (see Fig.6 for the smoothing
effect at cloud edges). A comparison of different filter sizes is not given.

Outlook: A more realistic approach would calculate the filter size based on cloud base
height and opening angle of the sun.

We added the reference to Fig.6 section 3.1.6:



"The effect of smoothed cloud edges is illustrated in the timeseries of the forecast example
in Fig.6."

- p. 27008, lines 20-21:

RC: authors should briefly describe a summary of the possible improvements for the
diffuse

AR: If the surface solar irradiance retrieval is based on a binary cloud mask (like in the
given study), global horizontal irradiance calculation can benefit from the knowledge of
diffuse and direct radiation levels. From the definition of direct radiation it is obvious, that
the binary cloud/shadow mask corresponds more to the spatial distribution of direct
irradiance than to global irradiance.

Furthermore, if we assume a much lower variability in diffuse irradiance, spatial and
temporal homogeneous (constant) diffuse irradiance can be summed on direct irradiance
(derived from cloud/shadow mask) to estimate a more accurate global horizontal
irradiance. In contrast to the used approach that learns from measurements of past 30
minutes, a near-real time estimation of both components (based for example on image
features) may reduce analysis and forecast errors. We modified the last sentences to:

"Despite the adaptation to the situation of past 30 minutes, irradiance levels for clear sky
(diffuse + direct irradiance) and cloudy sky (diffuse irradiance only) may deviate from
measured values (see Fig.6). A more realistic retrieval can benefit from the estimation of
direct and diffuse components, e.g. by considering additional image features with machine
learning (Schmidt et al., 2015)."

- p.27010, line 4:
RC: "real changes...": i don't understand the scientific meaninng of this sentence.

AR: Cloud motion vectors (CMVs), derived with optical flow technique, have more
variability in speed and direction than the principal movement of a cloud (layer) would
have.

This is due to the fact, that single CMVs are connected often to cloud edges which not
always point/move in the same direction as the whole cloud. Averaged over all CMV, the
principal movement is approximated much better. As CMVs are renewed from time to time
( here, every 2 minutes ), the global average can be discontinuous. As sudden changes in
cloud motion are less probable, the temporal averaging would reflect the "true" principal
movement more realistically.

We modified the sentence as following:

"Due to recalculation of CMV positions every 2 minutes, discontinuities in the global CMV
may occur. As these do unlikely represent true changes in cloud motion which is rather
inert, the last four global vectors are also averaged in time."

- p.27010, line 6-7:

RC: interesting: can we know a little bit more about this

AR: The given sentence explains the approach best. It is clear, that part of the forecast
error is due to wrong cloud motion estimation. The uncertainty/variability in cloud motion



vectors derived from subsequent images can be used to derive information about forecast
uncertainty ( e.g. ensembles ).
Details on methodology will be published if results are finished.

- p.27012, fig.7:

RC: Where are the 50 selected stations among the 99 possible represented in Fig. 77
AR: The 50 stations have been marked in the figure with a red circle. Moreover, we
modified its caption:

“Left: statistics of available and evaluated forecast instances at all 99 stations in
dependency on the forecast horizon. Right: spatial distribution of available and analysed
forecast instances for a forecast horizon of 10 min. Stations with a red circle represent
stations with more than 70 % of data available."

- p.27014, eq.12:

RC: Ok for this definition but | don't see the relevancy and the use of V inthis paper, except
for the table 1.

AR: The same definition is used for the evaluation of forecast error vs variability in Section
4.3 (or Fig. 13). We reference Eq. 12 on p.27018, .16

- p.27015, 1.18:
RC: do not need this ref to say that RMSE = sqrt(MBE*2 + STDDEV"2)
AC: We do agree.

We removed the reference.

Here, we address the typo errors:

- We changed all typo errors according to reviewers suggestions.

- We modified line colors for Fig. 10 and 12 in order to discriminate better different cloud
classes.

- Figure 1 is referenced in p. 27001, .2 where the data set is introduced.
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Abstract

Clouds are the dominant source of small-scale variability in surface solar radiation and
uncertainty in its prediction. However, the increasing share of solar energy in the world-
wide electric power supply increases the need for accurate solar radiation forecasts.

In this work, we present results of a very short termshertest-term global horizontal irra-
diance (GHI) forecast experiment based on hemispheric sky images. A two month dataset
with images from one sky imager and high resolutive GHI measurements from 99 pyra-
nometers distributed over 10 km by 12 km is used for validation. We developed a multi-step
model and processed GHI forecasts up to 25 min with an update interval of 15s. A cloud
type classification is used to separate the time series in different cloud scenarios.

Overall, the sky imager based forecasts do not outperform the reference persistence
forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on
the predominant cloud conditions. Especially convective type clouds lead to high temporal
and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be
lower than that introduced by a single pyranometer if it is used representatively for the
whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is
much higher for these conditions compared to overcast or clear sky situations causing low
GHI variability which is easier to predict by persistence. In order to generalize the cloud-
induced forecast error, we identify a variability threshold indicating conditions with positive
forecast skill.

1 Introduction

As a result of world-wide growing photovoltaic electricity production, the energy sector is
facing new challenges. One major issue is solar variability (Sayeef et al., [2012), on short
timescales mainly caused by changes in cloud cover. With an increased share of solar
power in the electricity grid, balancing power production and consumption is getting more
and more challenging for power plant and grid operators. Consequently, flexibility options,
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like demand-side management, backup capacities, inverter control, storages and strength-
ening of the grid are in the focus of research. In order to control and manage the flexibility
options the expected solar power production is an important information. Although the large
variety of cloud characteristics (opacity, motion, height, spatial distribution) make these
cloud-induced fluctuations difficult to predict, solar irradiance forecasting techniques have
been successfully developed (a comprehensive overview is given in Inman et al., 2013,
and |Lorenz and Heinemann, 2012). The spectrum comprises numerical weather models
(NWP) (Perez et al., [2013), satellite-based forecasts using cloud motion vectors (Kuhnert
et al., 2013; |Lorenz et al., [2004; Hammer et al., [1999), statistical methods based on ma-
chine learning (Wolff et al., 2013) and time series analysis (Reikard, |[2009) predominantly
developed for intra-day and day ahead forecasts. For very short term forecasts with hori-
zons of up to 30 min, both NWP and satellite image-based models lack spatial and temporal
resolution regarding cloud-induced small-scale variability (Inman et al.| [2013).

Filling this gap of local high resolutive and very short-term forecasts research has been
spent recently on the use of ground-based (whole/all/total) sky imagers. Sky imagers have
been used for years for monitoring cloud cover characteristics (Pfister et al., |2003; [Long
et al., |2006};|Cazorla et al.,[2008) and aerosol properties (Olmo et al., [2008;|Cazorla, [2010).

The development of solar radiation forecast methods based on sky images has been
intensified in recent years (Chu et al., [2015; \West et al., |2014; |Quesada-Ruiz et al., |2014;
Chu et al., 2013; [Fu and Cheng|, 2013; |Yang et al., 2014} |[Bernecker et al., 2014; [Chow
et al., 2011 Marquez and Coimbra, 2013).

By analysing distribution, movement and optical properties of clouds the incoming solar
irradiance can be forecasted. Most of the used cameras are equipped with fisheye lenses
capturing the whole visual sky. Evidently, the possible spatial coverage of irradiance analy-
sis and consequently the temporal forecast horizon are variable and depend on daytime and
accordingly sun position, on cloud distribution (type and altitude) and cloud motion (speed
and direction), respectively. Two types of forecast experiments are reported in recent work.
Point forecasts only predict the occlusion of the sun with clouds and therefore can only pro-
cess forecasts for the place of the camera (e.g. (West et al., [2014). Area forecasts, on the
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other hand, incorporate cloud base height in order to calculate the location of clouds and
shadows on the ground (e.g. Yang et al., 2014).

This work presents results of short-term area forecast experiments. We developed and
applied a multi-step model on a large dataset of sky images and processed forecasts up
to 25 min ahead for 99 locations distributed in the surrounding area. GHI measurements at
these locations are used for evaluating the forecast performance.

The sky images, the ceilometer based cloud base height measurements as well as the
pyranometer data used in this study, are collected during the HD(CP)? Observational Proto-
type Experiment (HOPE) in spring 2013. The dataset provides both a high spatial density of
solar radiation measurements as well as the necessary temporal resolution of pyranometer
and ceilometer data as well as sky images.

This work focuses on the investigation of the performance under different cloud condi-
tions. A cloud classification scheme is used to categorize the dataset in seven different
cloud conditions. This differentiation is helpful in the comparison with reference models like
persistence which are almost perfect for short forecast horizons and low variability in cloud
cover. The spatial distribution of pyranometers is used to identify differences in performance
for locations distant from the camera. This analysis is helpful for investigating the usefulness
of sky imager based irradiance field analysis instead of using several expensive pyranome-
ters. As our cloud detection scheme only provides two binary states (sky/cloud) and no
cloud transmissivity information, the irradiance retrieval for GHI has weaknesses in case of
deviations from this simplification. Therefore, we also evaluate binary forecasts, in order to
identify the contribution to the overall forecast error caused by the irradiance retrieval.

2 Experimental setup and database

The datasets used in this short-term forecast experiment have been collected during the
High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)?)
measurement campaign HOPE in 2013. For this work, data from a network of 99 irradiance
sensors, one ceilometer and one sky imager were used (Fig. [T). The following subsections
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give a short description of the used datasets. Here, measurements from 1 April to 31 May
were used. The measurement site is located in Jilich, Germany. The area is rather flat and
surrounded by two large lignite open-cast minings (Fig. [1).

2.1 Sky imager

A sky imager developed at the GEOMAR Helmholtz Centre for Ocean Research (Kalisch
and Macke, 2008) was used for continuous sky observations. The imager was part of
the LACROS supersite within the HOPE measurement campaign, see [Madhavan et al.
(2015) for the location and details. The digital CCD camera by Canon equipped with a fish-
eye lens by Raynox realized a field of view of 183°. The hemispheric sky images with
2592 pixel x 1744 pixel resolution were sampled at a rate of 15s.

2.2 Irradiance sensor network

A irradiance measurement network with 99 pyranometer stations was set up around Julich,
Germany on an area of 10km x 12km. Each station was equipped with a EKO ML-020VM
photodiode pyranometer. The 10-bit data logging system was synchronized with the GPS
time. The irradiance was measured with 10 Hz resolution and was averaged to 1 Hz. The
maintenance as well as cleanliness and tilt control were performed on a weekly basis.
Based on the maintenance protocol, data is provided with quality flags ("good", "okay, but
sometimes spurious”, "bad or ignore completely” or "missing or no observations®).

Madhavan et al.| (2015) give a description of the pyranometer network within the HOPE
campaign, details of the hardware, quality flags and an investigation of measurement un-
certainties.

2.3 Additional data

Processing sky images for solar irradiance area forecasts need further information about
cloud base height and sun position for ray tracing and following cloud shadow mapping.
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Clear sky irradiance information is necessary for reference cloud-free sky conditions and
irradiance retrieval.

Information about cloud base height is retrieved from a Jenoptik CHM15k-x ceilometer,
that was located next to the sky imager. Ceilometers are recognized by the WMO as the
most accurate, reliable and efficient means of measuring cloud base height from the ground
when compared with alternative equipment (World Meteorological Organization, [2008). One
measurement was done every 20s. As a ceilometer provides only point measurements, the
median of the last 30 measurements was used in order to smooth the signal. Although
multi-layer cloud height information is available, only lower level cloud height was used,
because the used sky imager algorithm does not yet support multilayer clouds. Clear sky
irradiance is estimated with the clear sky model of Dumortier (Fontoynont et al.l (1998)
and turbidity values according to [Bourges| (1992) and [Dumortier (1998). The model is also
used in internal operational services for pv plant energy yield monitoring and evaluated
continuously at more than 100 sites in Germany within our group. For a recent independant
validation of the model, see|Ineichen | (2013).

The solar zenith and azimuth angle are calculated with the solar geometry2 (SG2) algo-
rithm (Blanc and Wald, 2011).

3 Methods

In order to determine and predict the surface patterns of global horizontal irradiance distri-
bution from sky images, several preprocessing steps on the image have to be done. This
section subdivides the processing chain in the image analysis, irradiance analysis and ir-
radiance forecast. Figure [2| gives an overview of the workflow, which is described in more
detail in the following sections. Furthermore, a cloud classification scheme is introduced.
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3.1 Image analysis
3.1.1 Cloud detection

To identify clouds, we apply a binary classification (cloud or sky) of each image pixel (Fig. [2).
As a consequence, we do not account for varieties in cloud optical thickness (from thin
semi-transparent to thick opaque). Here, we use the concept of the Red—Blue-Ratio (RBR),
first developed by Scripps Institution of Oceanography (Johnson et al., (1989, |1991};\Shields
et al.,[1999). RBR is the ratio between the red colour channel and the blue colour channel
of the image. The RBR indicates, if the scattered light comes from a cloud (value close
to 1) or from the blue sky (value < 1). Based on an empirically determined threshold of
RBR =0.82, each pixel is classified as cloudy or non-cloudy.

Cloud detection based on RBR was used in several sky imager based forecast appli-
cations (e.g. (Chow et al., 2011 |Yang et al., 2014} |Urquhart et al., 2014). The RBR is not
homogeneously distributed over the whole field of view for the same sky conditions. RBR
has an angular dependency (Pfister et al., 2003) and the area close to the sun (circumsolar
region) is affected by the bright sun (RBR = 1). Consequently, misclassifications are likely
when one single global threshold is applied to the image. Another source of errors are op-
tically dense clouds which appear quite dark in the center of their base (West et al., 2014).
Here, the RBR is very low and clouds can be misclassified as sky.

To overcome these disadvantages, we correct the RBR with a set of clear sky images
similar to [Chow et al. (2011) and [Shields et al.| (2009). Here, the clear sky library (CSL)
contains RBR images from one clear sky day (4 May 2013) of the measurement period.
The database serves as a reference for clear sky conditions (see Fig. [3| for an example).
The reference image (Fig. [3c) is selected by calculating the angular distance of the current
sun position from the references and choosing the closest one.

A modified RBR (Rmoqg) is given for each pixel at the image position i, j by the following
equation:

Rmod,i,j = Rorig,i,j — ResL,i,j - (@S —b-(I; j —200)). (1)
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It first accounts for the difficult circumsolar area. We defined the grade of saturation (S €
[0,1]) as the average pixel intensity in the disc up to an angular distance of 5 ° to the center
of the sunspot. A value of S = 1 would correspond to a completely saturated sun area (each
pixel's intensity I = 255). Weighted by the grade of saturation .S multiplied with a constant
factor a inthe-disc-up-to-an-angulardistance-of-5>to-the-centerof-the-sunspet , we subtract
the clear sky RBR (Lcgsi) from the original RBR ([orig). Moreover, a correction based on
the pixel intensity IE] multiplied with a second constant factor b and clear sky RBR Rgg, is
applied, which increases RBR in case of dark clouds and decreases RBR in case of bright
clouds (Fig.[3).

The values for a = 0.1, b = 0.0018 and R;p,.s = 0.82 that discriminates clouds and sky
were determined empirically on a test dataset of 40 images with different sky conditions.
They were adjusted with the aim to achieve good results for all possible sky conditions,
including in partlcular thick and dark clouds, semi- transparent cirrus clouds as WeII as
clear sky @ b - ‘

Note that the used CSL mtroduces errors on days where solar zenlth and azimuth an-
gles deviate from the reference day. Moreover, days with different atmospheric conditions
(aerosol load, scattered light) from those of the reference day will lead to erros not quantified
in the RBRRbR corrections (Ghonima et al., 2012).

The proposed approach aims to reduce the mentioned misclassifications in the circum-
solar area and in case of thick and dark clouds.

3.1.2 Camera calibration and image undistortion

In order to project an image pixel from a fisheye lens image in geometric coordinates,
two types of parameters are needed. First, intrinsic parameters describe the geometric
distortion introduced by the optics used to project 2-D image pixel points onto a unit sphere.

"Pixel intensity/luminance I = 0.299 - Red + 0.587 - Green + 0.114 - Blue
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Next, extrinsic parameters describe the transformation from the unit sphere in the real world.
This can be expressed with a rotation matrix accounting for orientation errors.

The intrinsic parameters are determined by a calibration of the fisheye lens following
Scaramuzza|(2014). The method detects straight known lines on photographs of a checker-
board and retrieves the distortion (Scaramuzza et al.,2006). Assuming a radial symmetrical
distortion a 5th degree polynomial function with coefficients & in Eq. is fitted on the de-
tected data points. It assigns each pixel’s distance r from the center of the image to the
corresponding incidence angle 6.

0i; = f(rij)

(2)
=ko+kir;j+ kzriz,j + k’37"2j + kﬂ“ﬁj + k’ST?,j

Extrinsic parameters are estimated by a visual comparison of the reprojected sun position
(azimuth and zenith angle) to image coordinates and their visual appearance in the image.
In this case, we assume a perfect horizontally mounted camera and define a rotation matrix
which rotates the top of the image to geographic north. Equation (2) and the rotation matrix
are used for undistorting the image.

3.1.3 Image masking

Static artificial objects in the field of view are masked out. Furthermore, the field of view
had been limited an incidence angle of 80° in order to reduce perspective errors at large
incidence angles.

3.1.4 Cloud mapping

Determination of the 3-dimensional position of a cloudy pixel with incidence angle 0; ; needs
the clouds’ base height / as a further input. The geometric distance of a single pixel d; ;
from the position of the camera is calculated with

d@j = h~tan(9i,j) (3)
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The clouds’ position is then calculated using the measured cloud base height from the
ceilometer and the pixels incidence 0; ; and azimuth angles ¢; ; retrieved from the camera

calibration (Sect.[3.1.2).
3.1.5 Shadow mapping

With the information about current sun position (azimuth angle ¢sun and zenith angle 0gyn)
and cloud base height h a sun ray tracing is applied to map the cloud layer as a shadow
layer on the ground. Eq. (4) gives the basic formula for calculating the horizontal distance d
of a cloud’s shadow on the ground from the camera.

dx;; = h-tan(6; ;) -sin(¢; ;) + h-tan(sun) - sin(Psun)
dy; j =h-tan(6; ;) - cos(¢; ;) + h - tan(bsun) - cos(psun) (4)

d@j = \/dl‘ij —I—dyzj

A topographic flat surface was assumed. The application of a more realistic topography
could lead to better results, but considering the almost flat surface at the measurement site,
the introduced error will be small related to other error sources.

3.1.6 Gridding

In order to analyse the cloud shadow field at the location of the pyranometer stations, image
pixels are mapped on a regular grid of 20km x 20km with a resolution of 20 m. One has to
consider that in dependency on cloud base height the raw image pixel resolution is higher
than the final grid resolution in the image center and lower in the outer region. In the former
case the central pixel is used while nearest-neighbour interpolation is used for interpolating
in regions where the image resolution is below the grid resolution. Afterwards, a gaussian
filter with 0 = 3 is applied on the gridded binary data to smooth cloud edges. The effect of
smoothed cloud edges is illustrated in the timeseries of the forecast example in Fig. g

10
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3.2 Cloud classification

We apply a cloud classification algorithm in order to classify each image instance in differ-
ent cloud condition categories. This data separation is used for evaluating forecast perfor-
mance under different cloud conditions. A review of existing cloud detection and classifica-
tion methodologies is given by [Tapakis and Charalambides (2013). Here, we modified the
cloud classification scheme introduced by Heinle et al.| (2010). The modified classification
algorithm uses “Support Vector Classification (SVCsVYE)” as it outperforms kNN in our ap-
plication. We also extended the number of features to 16 image-based features and trained
on a dataset of 600 images manually classified into seven categories. The seven categories
are meteorologically justified according to Heinle et al.| (2010):

— Cumulus (Cu)

— Stratocumulus (Sc)strateeumulus—+{se)

— Cirrocumulus (Cc), Altocumulus (Ac)

— Nimbostratus (Ns), Cumulonimbus (Cb)
— Stratus (St)stratus{st, Altostratus (As)
— Cirrostratus (Cs), Cirrus (Ci)

— Clear sky (Clear)

Three of the additional features include image texture properties derived from the gray-
level co-occurrence matrix (GLCM) and defined by (Haralick et al., [1973). The angular
second-moment (AsM) feature is a further measure for homogeneity, Correlation is a mea-
sure of gray-tone linear dependencies and Dissimilarity is a measure that defines the vari-
ation of grey level pairs in an image (Gebejes and Huertas| 2013). Furthermore, the ratio
of the number of saturated pixels (all channels have intensities of 255) to all non-masked
pixels, the average pixel intensity and the average RBRRbR value as possible informative
features are used as input.

11
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The classification was validated by ten-fold cross-validation with an accuracy of 92 %.
Note that only the dominant cloud type according to the classification model is determined.

3.3 Irradiance analysis

The transformation from surface shadow fields to irradiance fields is based on past records

of clear sky indices measured at each pyranometer station. The clear sky index k* is the

ratio of measured global horizontal irradiance GHIneas and a clear sky reference value

GlHIclealr (Eq- -

(é|:|||meas (5)
clear

A typical histogram of measured k* has two peaks for overcast and clear sky conditions.
Here, this information is used for the irradiance retrieval for the two states, shadow and no
shadow (see Fig. [4).

We calculate the histogram for each station for the past 30 min to account for changing
atmospheric conditions. The method takes the global peak below for k* < 0.5 for shadow
state and £* > 0.9 for no shadow. We decided to use 100 bins for 0.2 < k* < 1.4. If no peaks
can be determined (in case of homogeneous irradiance conditions in the past 30 min), de-
fault values of ki, = 0.4 and kj, = 1.0, respectively. have been assigned for the two states.
See Sect.[2.3|for the used clear sky irradiance model. The corresponding GHI can then be
calculated with

GHI == k;:lst . Gch|ear. (6)

k* =

The spatial smoothing (introduced in Sec. of the shadow field leads to smoothed
cloud shadow edges. This could be regarded as more realistic for transitions from non-
shaded to totally shaded conditions. Despite the adaptation to the situation of past 30 min-
utes, irradiance levels for clear sky (diffuse + direct irradiance) and cloudy sky (diffuse irradi-
ance only) may deviate from measured values (see Fig[6). A more realistic retrieval can ben-
efit from the estimation of direct and diffuse components, e.g. by considering additional im-

age features with machine learning (Schmidt et al., 2015).Obviously,-a-better-estimation-of
12
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3.4 Irradiance forecast

3.4.1 Cloud motion

The fundamental information needed for cloud forecasts are cloud movement and cloud
transformation. As the transformation (development and dissolution) of clouds is a very
complex task, our algorithm does not account for that yet. As a consequence, predicted
cloud scenes are the result of a translation of the current analysed cloud scene. Cloud
movement is determined by applying the optical flow algorithm available in OpenCV (Open
source Computer Vision LibraryEb. Optical flow calculations have been used in other sky
imager applications by West et al.[ (2014) and |Wood-Bradley et al.|(2012). The first step is
to determine good features to track in the image (Shi and Tomasil, [1994). These objects —
mostly found on strong gradients like cloud edges — serve as input for the Lucas—Kanade
tracking algorithm (Lucas and Kanade, |1981}; Bouguet, 2001). The algorithm yields cloud
motion vectors (CMV). In this study, new features are determined every 2 min as old features
do change too much or move out of the visible image. The algorithm is applied to the original
grayscale image, where artificial objects are masked out.

Similar to the cloud shadow projection, each single CMV is transformed to the underlying
metric grid by projecting the image coordinates of the vectors initial and terminal point.
(Sect. [3.1.6). Figure [f shows an example of the transformation from the circular fisheye
image to the grid. This scene illustrates the rectification of the CMVs which is important

for quallty control and averaglng to a gIobaI CMVE&GHH@EGM—\HHF&HS%H%GG—EG%G
mra

2http://opencv.org
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To increase the CMV quality, we first mask out the circumsolar area in the feature de-
tection step, as its brightness disturbs the algorithm. Next, we apply a quality control. Initial
CMVs are flagged as invalid, if their speed is lower than 0.2 m s to avoid tracking artificial
objects in the image. If clouds are moving at a speed below that threshold and all CMVs
are flagged as invalid, a persistent cloud mask is assumed. For follow-up vectors, sudden
changes in direction and speed (changes in cloud speed >2ms™1), which can occur if
brightness in the image changes rapidly, the vectors are also sorted out. The final CMVs
are then averaged to one global vector which determines the principal movement of the
cloud scene for the forecast. Due to recalculation of CMV positions every 2 minutes, dis-
continuities in the global CMV may occur. As these do unlikely represent true changes in
cloud motion which is rather inert, the last four global vectors are also averaged in time.in

¥ Fa ) a fa A Or-0O O fa o ) O O )
\/ \/ \/ v

more, each change of the average CMV will affect the forecasted cloud distribution and the
irradiance forecast. An approach that uses the uncertainty in cloud motion for an estimation
of uncertainty irradiance forecasts is in progress.

3.4.2 Solar irradiance prediction

Irradiance forecasts are calculated for each pyranometer station with a horizon of a max-
imum of 1500 s and a resolution of 1s. A forecast run is computed for each image (every
15s). This is done by advecting the “frozen” cloud field with the global CMV (Sect.
and calculating the surface shadow maps (Sect. and irradiance maps (Sect.[3.3). We
considered the varying sun position in the 25 min forecast horizon by computing its position
for each forecast step. Afterwards, the irradiance forecast at each pyranometer station is
retrieved.

As an example, Fig. [fillustrates a forecast run for a pyranometer in the north of the sen-
sor arrangement. The thick coloured line represents the forecast path along the opposite
direction of the global CMV indicating a mean cloud motion from a southern direction. Here,
cloud speed is low enough for processing a full forecast up to 25 min ahead for this loca-
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tion. The binary pattern of the forecast is a result of the measured GHI in the past 30 min
(Sect. [3.3). Although the binary pattern is represented in the forecast time series, slight
smoothing at the cloud edges is pronounced as well.

3.5 Concept of evaluation

In order to evaluate the forecast dataset we focused on two main aspects:

1. How accurate is the sky imager based analysis during different cloud conditions and
with respect to distance from the camera?

2. How accurate are sky imager based forecasts in different cloud conditions especially
compared to persistence?

For answering the first question, we analyse mean bias error and root mean square error
spatial distribution (see Sect. for each cloud class. by sorting the stations by distance
from the camera position we could compare the analysis (forecast lead time =0) error to
the error introduced if a single pyranometer at the location of the camera was representative
of the whole area.

The second question is investigated by evaluating the forecast performance in depen-
dency on the forecast lead time. As a reference forecast we use persistence. Persistence
forecasts account for changing sun angles, but assume no change in cloudiness described
by a constant clear sky index k* respectively:

GHI(to + At) = k*(to) - GHlgear (to + At) (7)

We keep the raw resolution of one second for the persistence definition. As a conse-
quence, persistence forecasts have no initial error, but it increases with time.
To evaluate performance in different cloud conditions the data set is separated in the 7
analysed classes. Forecast error and skill are then calculated for each of the classes (for
definition of error metrics see Sect.[3.5.2).
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During the processing chain several assumptions and simplifications are made which
contribute to final analysis and forecast errors. One error source is the irradiance re-
trieval (Sect. based on binary cloud maps processed before. Particularly, cloud irra-
diance enhancements due to reflections at cloud edges, irradiance reductions due to semi-
transparent clouds and changes in diffuse irradiance levels due to a changing cloud distri-
bution cannot be accurately addressed with the proposed methods. Therefore, we evaluate
the ability of the forecast to distinguish between the two states (sunny and cloudy) by in-
troducing a threshold of £* = 0.7. The time series in Fig. [gillustrate the error introduced by
GHI values deviating from the average.

3.5.1 Data selection

To analyse the performance of our forecasting system, we had to take care about data avail-
ability and quality. The total number of processed forecast runs is 138 912, corresponding to
the number of available images processed for sun elevations greater than 10°. The number
of forecasts used for the evaluation is reduced by non-available measurements or fore-
casts. We decided to use only measurements which were flagged by the data provider as
“good™perfect>. As stations were maintained once a week and quality flags were given for
the whole week, data gaps are most of the time covering a whole week (Madhavan et al.,
2015). As a consequence, a reduced subset of 50 stations with at least 70 % of the max-
imal possible number of measurements available was used when comparing performance
for different stations (Sect. [4.2). Forecast availability for each location is limited by several
factors. The size of the underlying grid, the field of view of the camera (we masked out the
area beyond 80° lens angle of incidence), current cloud base height, cloud speed and di-
rection and the sun position lead to a varying maximum forecast horizon. Figure [7]illustrates
the data availability for the evaluation in dependency on the forecast horizon as well as the
spatial distribution for a forecast horizon of 10 min.
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3.5.2 Error metrics

For measuring the accuracy and performance of the forecast system we used mean bias
error MBE (Eq. [8), root mean square error RMSE (Eq. [9), forecast skill FS (Eq. and
Accuracy ACC (Eq. in this analysis.

MBE is the average deviation of the forecast or analysis y from the measurement x:

n

1
MBE:EEZQrﬂm, (8)

i=1

where subscript ¢ refers to a single forecast or analysis y or measurement x.
By definition, RMSE is given by

n

RMSE = %Ejﬁa—yﬁ? (9)

=1
Forecast Skill FS is given by

I:“VISESkyImager
I:{MSEPersistence '

A positive FS means that the sky imager based forecast outperforms persistence (Eq. [7).

Accuracy ACC is used for measuring the ratio of the number of correctly predicted states
(sunny and cloudy) by all instances (Metz, [1978):

TS+TC
ACC = 11
TS+TC+FS+FC’ (11)

where TS =True sunny, TC =True cloudy, FS =False sunny and FC = False cloudy. For
example, a forecast is true sunny, if measured and predicted k£* are > 0.7. A forecast is
false sunny, if measured k£* > 0.7 and predicted £* < 0.7.

These error metrics are calculated for each station and forecast horizon separately.
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4 Results and discussion
4.1 Cloud type distribution

Table |1] shows the results of the cloud classification. This table gives an overview of the
predominant cloud conditions and their characteristics mainly affecting the surface solar
irradiance and its variability in space and time. The GHI statistics are calculated for a single
station which had the highest availability. Variability V' is defined according to [Marquez and
Coimbral (2012)

1 & RS
V= N;(k*(ti)—k*(ti—At))2: N;(Ak*(ti))z (12)

with the number of images in each class NV and At set to 5 min.

As expected, the convective cloud type classes Cu, Ac/Cc and Sc have the highest vari-
ability. Stratocumulus Sc in contrast to Cu and Ac/Cc has a high cloud coverage and there-
fore causes a lower average clear sky index. St/As cause a low variability close to that
of clear sky. The non-intuitive variability for scenes classified as clear sky can be traced
back to scenes not fully clear but dominantly clear (not shown here). Cb/Ns and Ci/Cs also
cause low variability compared to the first three classes. Cu, Sc, and Ac/Cc occurred in
about 37 % of the time, while low variability classes except for clear sky occurred in 53 % of
the time, 10 % were clear. No big differences can be seen in the cloud motion statistics for
all non-clear situations. An average cloud speed of 10 ms™~! has the effect that a cloud will
move across the domain in about 33 min from east to west or from north to south, respec-
tively. This number illustrates one aspect of the limits to the forecast horizon. For further
evaluation purposes we group the convective type clouds Cu, Sc, Ac/Cc together to a new
category “heterogeneous” clouds, while the cloud types St/As, Ci/Cs and the clear sky sit-
uations build the category “homogeneous” clouds, as they cause rather low variability in
surface solar irradiance.
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4.2 Irradiance analysis accuracy

Irradiance analysis is evaluated in dependence on the distance of the stations from the
camera and according to the different cloud classes.

The spatial distribution of the mean bias error MBE of the GHI analysis (forecast lead time
t = 0) is shown in Fig. [ for Cu and clear sky situations. Here, the MBE is given for each
of the stations of the subset introduced in Sect. The MBE distribution for Cu shows
a negative MBE of about —80 W m~2 for stations close to the camera increasing with dis-
tance to positive values around 70W m~2. A similar overestimation for stations close to
the camera can also be found for Ac/Cc, Sc and Ci/Cs (not shown here). This is probably
explained by the fact that the correction of RBR (Sect. is too strong in the circumso-
lar region (affecting these locations) in the presence of the mentioned clouds. As a result,
clouds in the circumsolar region are maybe too often misclassified as clear sky and surface
irradiance is overestimated in the area around the camera. This phenomenon is not found
for St and Ns/Cb situations dominated by (dark) overcast sky not affected by the correction.
Moreover, the clear sky MBE distribution in Fig. [8|shows, that the correction performs in av-
erage well in clear sky situations as no significant MBE for stations surrounding the camera
is present.

An increasing tendency in MBE with distance from the camera is also found for the afore-
mentioned types Ac/Cc, Sc, Ci/Cs, while during clear sky or overcast stratus clouds (only
clear sky is shown here) it is not present. A similar tendency is identified for RMSE in
Fig. [9] showing the cumulus conditions again. However, even if there is a large (absolute)
MBE for stations close to the camera, no enhanced RMSE is present. This makes clear
that the main contribution to RMSE is the standard deviation of the analysis error {see
Sengupta-etal-{2015)-for-the-decomposition-of-the-RMSE} and not the MBE.

Several possible explanations for these results can be identified. First, the perspective er-
ror increases with distance from the center of the image. As a result, convective clouds with
vertical extent (mostly cumulus), which are interpreted as horizontally flat in our scheme,
are projected incorrectly if they are seen from their side near the edge of the field of view.
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Among other things, this leads to an underestimation of gaps in the cloud layer contributing
to apositive RMSE and a positive MBE. Furthermore, uncertainties in cloud base height
lead to higher errors in the shadow mapping the more distant the clouds are (can be de-
rived from Eq.[4). Moreover, cloud base height was measured at the position of the camera.
Therefore, its representativeness for locations more distant is reduced depending on the
cloud situation. This displacement of shadow patterns contributes mainly to RMSE. As the
temporal and spatial resolution of 1 Hz and 20 m, respectively, is quite high, double penal-
ties in case of small cumulus or broken cloud layers are likely (Gilleland et al., 2009) and
increaseenhance RMSE even more. Furthermore, the pixel resolution is reduced for larger
lens incidence angles. This leads to a reduced spatial resolution for locations distant from
the camera which affects the accuracy of the camera based irradiance analysis.

Moreover, Fig. [9] shows the RMSE introduced, if a single pyranometer is used repre-
sentatively for the whole area. It is assumed that the pyranometer closest to the camera
is the reference sensor and RMSE of its measurements compared to the remaining pyra-
nometers are calculated. As expected, the error increases very fast with distance as the
cross-correlation between the sensor pairs is reduced especially in conditions with high
GHI variability. It can be stated that the “break-even” distance where the sky imager based
irradiance analysis outperforms a single sensor spatial extrapolation for this highly variable
cloud conditions is found at a distance between 1 and 2km from the camera. For other
convective cloud types a distance of 2—3 km for Sc and Ac/Cc and 6 km for Ns/Cb is found.
In case of St/As and Ci/Cs clouds and in clear sky conditions, the analysis error is always
larger due to the high sensor pair correlation in these less variable situations.

4.3 Forecast performance

Figure |5| shows the RMSE of the sky imager forecast and its corresponding persistence
forecasts in dependency on the forecast horizon for the different cloud conditions. Here,
the average RMSE of all evaluated pyranometer stations is shown. As expected, the over-
all forecast error is higher in situations with more variability in cloud cover and therefore
in surface solar irradiance. For cumulus clouds (Cu), the RMSE reaches its maximum of
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almost 250 W m~2 for a forecast horizon of 10 min, while the error is almost constant over
the forecast horizon at 70 W m~2 in clear sky conditions. Forecasts in the presence of other
convective type clouds Sc and Ac/Cc show a similar behaviour with a slightly lower RMSE
than Cu. In average of all stations, it can be stated that sky imager forecasts cannot out-
perform persistence under all cloud conditions. Even if persistence error increases fast with
time, it stays lower than the corresponding deterministic forecast error during the whole fore-
cast horizon. For cumulus clouds, a decrease in RMSE after about 10 min is visible even
for persistence. The reason could be the varying and limited forecast horizon depending on
cloud base height, cloud speed and direction, sun position and the location of each pyra-
nometer itself. The limits of the underlying domain is a fixed constraint. A detailed analysis
(not shown here) revealed that forecast runs with large forecast horizons have lower RMSE
value, probably caused by lower cloud speed causing less GHI variability. This is maximally
expressed in the cumulus cloud class.

From Fig. [5]it can also be seen, that the difference between sky imager forecast RMSE
and persistence RMSE is much more pronounced for the stratiform cloud types St/As and
Ci/Cs. Figure [11] underlines this result as it shows the forecast skill FS for the categories
of “homogeneous” and “heterogeneous” clouds defined in Sect. While the sky imager
based forecasts are able to outperform persistence under heterogeneous conditions at least
for a few stations after about 10 min, the forecast skill under homogeneous conditions is
much worse.

In order to determine the influence of the irradiance retrieval based on the binary
cloud/sky decision on the forecast error also binary forecasts with the accuracy metric
(Eq. are evaluated. It is expected that the forecast performance is higher, if only the
two main states sun and shadow are considered, as GHI forecast errors are introduced into
our algorithm during conditions in which the measured GHI distribution deviates strongly
from our simplified binary model from Sect.

The evaluated accuracy for both sky imager based forecasts and persistence is shown
in Fig. Obviously, the accuracy for stratus (St) and nimbostratus/cumulonimbus (Ns/Cb)
clouds is very high for both forecasts indicating that irradiance is constantly lower than
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k* = 0.7 and that this state is predicted accurately. The clear sky case can also be pre-
dicted with an accuracy of more than 90%. Forecast in times of semi-transparent cir-
rus/cirrostratus (Ci/Cs) clouds have still a low skill indicating that misclassifications in cloud
detection are preceding the irradiance retrieval. Moreover, from our experience we know
that the RBR threshold used for cloud detection is not able to distinguish well between thin
cirrus clouds and the blue sky. Stratocumulus (Sc) also achieves high accuracy larger than
80 % for the whole horizon. In contrast to RMSE, forecast accuracy can outperform persis-
tence from a forecast lead time of 3—4 min on. This indicates that GHI forecast errors for
Sc conditions, which are dominated by high cloud coverage, can be refered to a consider-
able amount to irradiance retrieval errors. For Cu and Ac/Cc, only low improvements can
be stated compared to RMSE for continuous forecast verification. As a consequence, other
error sources like spatial mismatch dominate the error in this case. Besides, this result is of
interest for applications focusing on binary events which is the case for concentrated solar
power (CSP) dealing mainly with variations in direct normal irradiance.

In the former section, we identified a spatial “break-even” distance for GHI analysis for
different cloud classes. Such a “break-even” point can also be identified for an increased
temporal GHI variability. Figure displays the RMSE (based on clear sky index k*) of
a 10 min forecast in dependence on the prevailing variability (Eq. for 10 min k* incre-
ments. Here, no distinction in cloud classes is made. RMSE and variability are calculated
for short moving time windows of 25 min each. The time step between two time windows is
one minute resulting in an overlapping database. The lines in Fig. represent the aver-
age values of each bin. With that definition, persistence forecast errors fall on the diagonal
line of the plot. This analysis summarizes the former investigations of forecast errors un-
der specific cloud conditions. In situations of low GHI variability there is only low forecast
skill which is increased with increased GHI variability. As these situations are much less
frequent (see dash-dotted line in Fig. [13), this skill is not visible in the average error statis-
tics. Therefore, the strength of deterministic sky imager based forecasts for changing cloud
conditions are made visible here. It can be stated, that there is a specific value of 0.3 to 0.4
k* variability in the given case where a sky imager based forecast can have skill against
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persistence. For other locations in the covered area, the results are similar with a slightly
different “break-even” value (not shown here).

5 Conclusions

A short-term GHI forecast experiment based on hemispheric images of the visible sky was
conducted on a large dataset of spatially distributed pyranometers. A processing chain com-
prising cloud detection, cloud motion, cloud and shadow mapping and irradiance retrieval
was proposed and applied to sky images retrieved during April and May 2013. The results
show, that the forecast performance and the benefit of sky imager based forecasts vary
a lot depending on the given cloud conditions. A cloud classification scheme was used to
determine seven different cloud conditions in order to evaluate the performance in more
detail. Even though the overall forecast performance is quite low compared to persistence,
one has to point out that the skill increases in heterogeneous cloud conditions leading to
increased variability in surface solar irradiance.

The evaluation of the GHI analysis shows the potential of sky imagers for areal irradi-
ance monitoring. The study shows that the sky imager retrieval for distances of more than
1-2 km from the camera under cumulus cloud conditions outperforms a single pyranometer
representing the spatial irradiance distribution. This value is increased for stratocumulus
and altocumulus/cirrocumulus to 2-3 km and for nimbostratus/cumulonimbus to 6 km, re-
spectively. As setting up a pyranometer network with a comparable density or resolution
to a sky imager is more expensive than a camerafAs-installing-several-pyranometers-in-the

field-of-view-of-a-sky-imager-is-very-expensive, a camera based areal irradiance monitoring
can be beneficial.

The impact of irradiance retrieval on forecast errors is shown by comparing standard GHI
forecast errors to a binary forecast evaluation. This indicates potential for improvements
by enhancing the irradiance retrieval. We see also potential to improve the model in the
handling of multi-layer clouds (accurate cloud base height and cloud motion) and in a bet-
ter cloud detection (assigning transmissivity to each cloud pixel instead of simple binary
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states). With these improvements of image processing and of forecast methods, forecast
error will be reduced continously in future. Sky imager based analysis and forecast meth-
ods can then contribute to site monitoring and short-term forecasting especially in highly
variable cloud conditions.
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Table 1. Results of cloud type classification. First two rows give the frequency of occurrence and its
share of the total number of analysed images. k* and V represent the corresponding k* statistics
(average, variability) of station 33, which had the highest number of valid measurements during the
period. Average and standard deviation are given for the measured cloud base height CBH, the
analysed hemispheric cloud coverage CC and cloud motion speed CspdWSpd.

Cloud type Cu Sc Ac/Cc Cb/Ns Ci/Cs St/As Clear Sky
Number 24242 17112 9417 13228 19822 40019 15072
Fraction 17.5% 12.3% 6.8% 9.5% 14.3% 28.8% 10.6%
GHI [Wm™2] 478 293 388 131 417 138 503
k* 0.81 0.46 0.75 0.23 0.80 0.24 0.99
\%4 0.34 0.23 0.29 0.14 0.16 0.07 0.10
CBH [m] 2200+1500 16004800 2700+1400 1300+700 34002500 1300+ 800 NaN
CC [%] 55+ 32 95+11 59+31 99+3 64+34 100+1.0 5+8
Cspd [ms™!] 9.6+6.0 11.6£5.5 10.8+£6.6 7.8+5.2 7.1+6.5 7.0+5.7 NaN
Cleud-type Cu Sc Ac/Cc Cb/Ns Ci/Cs St/As Clear Sky
Number 24242 17112 9417 13228 19822 40019 15072
Fraction 17.5% 12.3% 6.8% 9.5% 14.3% 28.8% 10.6 %
GHI [Wm~2] 478 293 388 131 417 138 503
k* 0.81 0.46 0.75 0.23 0.80 0.24 0.99
v 0.34 0.23 0.29 0.14 0.16 0.07 0.10
CBH [m] 2161 +1465 1585+786 2725+1435 1290+719 339742491 1305-+849 NaN
CC [%] 545+323 948+10.7 59.0£305 99.2+25 6424335 999+1.0 53+7.38
Wspd [ms™!] 9.6+6.0 11.6£5.5 10.8 £ 6.6 7.8+5.2 7.1+6.5 7.0+5.7 NaN
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Figure 1. Experimental setup: distribution of pyranometers (yellow), sky imager (red) and ceilometer
(red) at the measurement site. Map section corresponds to the chosen domain size of 20 km x 20 km.
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Figure 2. Sky imager analysis and forecast processing chain used in these analysis.
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Figure 3. Cloud detection. (a) Original image. (b) Pixel intensity. (¢) RBR clear sky reference.
(d) RBR without correction. (e) Absolute RBR correction. (f) RBR with correction. (g) Binary cloud
map without correction. (h) Binary cloud map with correction.

32

Jode J UOISSNOST Jode J UOISSNOST JodR J UOISSNOST
d . . d . . d . .

JodeJ UOISSNoSI(]



shadow no shadow

300

250

200

150

100

Number of occurence

50

82 0.4 0.6 0.8 1.0 1.2 1.4
k*

Figure 4. Histogram of measured clear sky indices k£* of past 30 min from one pyranometer station
in order to determine k* for shadow and no shadow state.
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Figure 5. Example of cloud motion analysis with the optical flow technique. Left: cloud motion vec-
tors (CMV) drawn in the binary cloud image (clouds in white). Right: CMVs transformed to the
corresponding shadow map (shadows in gray) on the regular grid. The number of detected vectors
is reduced for this visualization.
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Figure 6. Forecast example. Upper left: masked raw image. Center left: binary cloud decision map
with CMVs over last 60 s. Right: shadow map on the regular 20 km x 20 km grid. Pyranometer stations
and measurements are given in coloured dots. stations with a black cross were flagged as invalid
for that time and not used for the analysis. The forecast path along the mean cloud direction for one
station is drawn as a thick line. Corresponding time series are shown below.
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data available |

Srevised figure at bottom
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Figure 8. Mean bias error MBE of sky imager analysis for each pyranometer and for cumulus cloud
type (top) and clear sky conditions (bottom).
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Figure 9. Root mean square error (RMSE) of sky imager analysis for each station and for cumulus
cloud type (blue dots). The red triangles mark the RMSE of each station when compared to the
station closest to the camera. This station has no error and therefore is not shown in this figure.
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Figure 11. Average forecast skill of all stations in dependency on forecast horizon. The classified
cloud types are summarized in two groups. The coloured confidence interval illustrates the standard

deviation of the forecast skill of all stations.
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Figure 13. Forecast Error (RMSE) vs. Variability for pyranometer 33 located close to the camera
(solid line). Persistence error (dashed line) is marked on the diagonal. The number of instances
averaged in each bin with size £* = 0.02 (dash-dotted line) is given on the right y axis to illustrate
the robustness.
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