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7. This is also an interesting point. There is recovery in greenness, as reflected in the NDVI, 
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smaller than the error of the measurement itself is highly circumspect and to be confident, is 
ignored as not being meaningful in this analysis. Furthermore, if the absolute change in the 
magnitude of the associated pattern represented in the high variance region is sufficiently 
small, such as major changes in a mostly random manner, then it is likely to be more 
representative of noise than a signal. In both cases, the 5% value chosen here is related to the 
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of these datasets nor in the hotspot measurements of any of the satellites used by FINN and 
GFED.
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not based on changes in LAI/NDVI/EVI.  Yes, over regions where hotspots and burned area are 
correctly representing the whole of the fires, there is a relationship. However, given the errors 
involved with measurement of hotspots, especially due to their transient nature, in this region of 
the world, there is a significant mis-match between the spatial and temporal distribution of the 
land-use change. This is further exacerbated based on the underlying assumptions that go into 
the hotspot measurements, especially when anthropogenic land use change is such a 
prominent factor. In this region of the world, one of the major findings here is that this 
relationship is not the best way to proceed if one is interested to understand the fire emissions.

6. Agreed. This has been moved and re-worded.
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into this in the future, to see what impact it has. It has been recommended not to mix the 
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9. There is definitive seasonality in LAI. The drops associated with the fires are statistically 
significant across the entire dataset in this region. There are other drops which are 
considerably smaller and which are not always statistically significant as well. It is an 
interesting topic for further investigation. Perhaps grouping individual biomes or geographic 
regions will allow this to be more closely investigated, so as to obtain a baseline of what the 
natural variation is, albeit small in comparison for the region under investigation.

10. The range of fire counts, on a monthly basis, is from as low as 0 to as high as 5000 at level 8 
and 600 at level 9. The article has been correspondingly updated.

11. Citations added.



12. There is a lag between the variables. However, the lag is not so obvious when weekly 
averaged, and is not-observable when monthly averaged. This is likely a reason why the 
weekly average product performs well. The fact of the matter is that the data is too sparse on a 
day-to-day basis to obtain reasonable statistics, while on a weekly basis, one can determine 
changes of magnitude and position. It is interesting to see if there are oddly-timed lags, such as 
around El-Nino and other large-scale phenomena, although these have been been observed 
over the regions specifically examined in this work.

13. The fire hot-spot map is similar enough to GFED and FINN, while Cohen (2014) and Cohen 
and Wang (2014) provide additional maps from additional perspectives. The author has access 
to yet another map, but given that it is still under review, it cannot yet be cited.

14. Rubbish burning is an interesting question over this region. While I have not studied it 
specifically, there is a highly variable component. There are communities and regions where it 
is much more prevalent, while there are others where it is completely taboo.

15. Yes, these checks were done, as reflected in the text now.
16. A few references have been included.
17. Agreed, it is an interesting point, worthwhile of future study. Text has been added here to clarify 

this as an important issue, and what small step we have done to start to address this.
18. A very good question, which we can not easily answer here, since a lot of the burning is done 

by people and the regrowth is intentionally in a species different from what was there before. 
However, with a little additional work, this could make a great topic for future study.

19. Additional references have been added here.
20. This has been added.
21. This section has been made into a new numbered section.
22. This section has been combined into the section above.
23. A figure link has been placed here.
24. An additional reference relating to the use of NDVI in this manner has been added.
25. This has been clarified in the text.
26. This is explained in detail in the text. The timing is constant from year to year, and based on the 

calendar date, not the time of any fires that may exist in the surrounding area. This allows for 
proper comparisons across different years and times of the years to be made.

27. Agreed. This has been moved and the appropriate numbers updated.
28. These figures have been combined and updated in the text where they appear.
29. This is a good point. A sentence and additional references have been added. While this model 

still underestimates the measurements, it actually performs much better than most models in 
heavily biomass burning regions, which require a scaling factor of much more than the 
magnitude of this error. This is now made clear.

30. The text has been considerably condensed and additional points and emphasis have both 
been made, as recommended.

31. This figure has been removed and the text re-written.
32. This point has been acknowledged. It can already be seen in December 2013, so that is not 

made clear, and it is mentioned that this would have maximized in February 2014, although it is 
beyond the length of the data specifically used in this analysis.

33. This point has been made very clearly. Thank you. This makes the overall flow and conclusion 
stronger and more precise.

34. The sentence has been re-written.
35. Corrected.
36. The term has been explained in more detail, and the marker has been changed accordingly.
37. The figure order has been updated to reflect the text. Also, additional figures have been 

combined when they make sense to do so.
38. Corrected.
39. Changed.
40. Clarified.
41. Completed.
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43. Tables have been made more self-describing. Others have been re-numbered. While others 
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Abstract. 

 A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, 

precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET 

network over Southeast Asia is performed, leading to a set of robust relationships between land-use 

change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting 

the heavy amounts of anthropogenic influence over land use change and fires in this region of the 

world. First, we find that fires occur annually, but with a considerable amount of variance in their 

onset, duration, and intensity from year to year, and from two separate regions within Southeast 

Asia from each other. This variability is already partially understood from previous works, 

including the impacts of both inter-annually and intra-annually occurring influences such as the 

Monsoon and El-Nino events, but yet there are other as of yet unknown influences that also are 

found to strongly influence the results. Second, we show that a simple regression-model of the land-

cover, fire, and precipitation data can be used to recreate a robust representation of the timing and 

magnitude of measured AOD from multiple measurements sources of this region using either 8-day 

(better for onset and duration) or monthly based (better for magnitude) measurements, but not daily 

measurements. We find that the reconstructed AOD matches the timing and intensity from 

AERONET measurements to within 70% to 90% and the timing and intensity of MISR 

measurements from to within 50% to 95%. This is a unique finding in this part of the world, since 

cloud-covered regions are large, yet the robustness of the model is still robustly is still capable of 

holding over many of these regions, including over regions where otherwise no fires are observed 

and hence no emissions would be expected to source contributeion to AOD would otherwise be 

thought to occur. Third, we determine that while Southeast Asia is a source region of such intense 

smoke emissions, that portions of it are it is also impacted by transport of smoke transported from 

other regions as well. There are regions in Northern Southeast Asia which have two annual AOD 

peaks, one during the local fire season, and the second smaller peak corresponding to a combination 



of some local smoke sources as well as transport of aerosols from fires in Southern Southeast Asia, 

and possibly even from anthropogenic sources in South Asia. Conversely, we show that Southern 

Southeast Asia is affected exclusively by its own local fire sources during its own local fire season. 

Overall, this study highlights the importance of taking into account a simultaneous use of land-use, 

fire, and precipitation for understanding the impacts of fires on the atmospheric loading and 

distribution of aerosols in Southeast Asia over both space and time. Furthermore, it highlights that 

there are significant advantages using 8-day and monthly average values (instead of daily data), in 

order to better quantify the magnitude and timing of Southeast Asia fires. 



1 Introduction 

 Southeast Asia has been experiencing major haze events over the past three to five decades, 

due to a combination of increased urbanization (Cohen and Wang, 2014; Cohen and Prinn, 2011) 

and large-scale conversion of forests by fire (Cohen, 2014; van der Werf et al., 2008; Taylor, 2010; 

Dennis, 2005). The underlying connections and mechanisms relating the sources and strength of 

fire-based emissions and observed intra-annual, inter-annual, and inter-decadal variations of fire 

events, with meteorology, land-use change, and anthropogenic driving factors are not well 

understood (van der Werf et al., 2006; Giglio et al., 2006; Hansen et al., 2008; Field et al., 2009). 

Moreover, recent studies have shown that the impacts these events have on the atmospheric loading 

of aerosols and the larger climate are becoming greater in both absolute terms and frequency 

(Langmann et al., 2009; Nakajima et al., 1999; Podgorny et al., 2003; Rosenfeld, 1999). Some of 

the heaviest events, which previously in the literature were only associated only with strong El-

Nino induced drying events, are now being found to occur in connection with other, less extreme 

impacts on precipitation and even surface moisture, occurring at various scales including but not 

limited to the Indian Ocean Dipole, the Madden-Julian Oscillation, the shifting of the Inter-Tropical 

Conversion Zone, mountain induced waves, the land-sea breeze and localized convection (Ffuller 

and Murphy, 2006; Wooster et al., 2012; Natalia Hasler and Avissar, 2009; Reid et al., 2013). The 

fact that so many factors are capable of influencing these large-scale events is likely to make 

prediction much more challenging, as is seen by the fact that since 2000, there were extreme events, 

of varying intensity, length, and duration, occurring in 2002, 2004, 2006, 2009, 2013, and 2014 in 

Southern Southeast Asia, the region covering Indonesia, Malaysia, Singapore, and Brunei, and 

every year except 2003 in Northern Southeast Asia, the region covering Thailand, Myanmar, 

Cambodia, Vietnam, and Laos (Neale and Slingo, 2003; Chang et al., 2005; Aldrian et al., 2007; 

Cohen, 2014; Wooster et al., 2012). To date, other than (Cohen, 2014), there have been no other 

studies that have looked at Southeast Asian fires both robustly and holistically, to the extent of being 



able to reproduce both the extreme and low levels of aerosols at both the monthly and the decadal 

scale. Furthermore, other than (Cohen, 2014; Cohen and Wang, 2014) there are no other works that 

have been able to satisfactorily estimate the emissions of aerosols over this region of the world, 

from the fundamentals and over the entire time period, without scaling or other statistical 

enhancement techniques, to match with atmospheric column measurements, such as aerosol optical 

depth (AOD) and absorbing aerosol optical depth (AAOD). 

 Knowledge of the spatial, temporal, and magnitude of the emissions and atmospheric 

loadings is essential for our improved understanding of the environmental impacts of the fires. 

Emissions of aerosols and gases from these fires, include significant sources of black carbon (BC), 

organic carbon (OC), and ozone, and therefore contribute greatly towards impacting human health 

(Afroz et al., 2003), atmospheric radiative forcing (Wang, 2007; Jacobson, 2001; Ming et al., 2010; 

Ramanathan and Carmichael, 2008; Cohen et al., 2011), and cloud and precipitation properties 

(Huang et al., 2006; Tao et al., 2012; Wang, 2013). Furthermore, given the general circulation of the 

Earth, and the lack of precipitation during the dry season in the tropics, coupled with intense 

localized convection, a large portion of the emitted pollutants will spread widely in space and time, 

entering into the global-scale circulation patterns (Wang, 2007). Therefore, emissions from these 

regions during these times of the year may have a significant impact on people and the environment 

thousands of kilometers away from their source. 

 AOD can be used to quantify the emissions from the fires, since it is the non-dimensional 

vertical integral of the atmospheric extinction (the sum of scattering and absorbance) of solar 

radiation due to aerosols. AOD is useful since it can be measured by a combination of land-based 

and space-borne instruments (Holben et al., 1998; Petrenko et al., 2012; Dubovik et al., 2000). The 

extinction is in turn a function of the vertical aerosol mass and size distributions as well as 

chemical, physical, and optical properties. These values in turn are a function of the emissions and 

gasses from fires and other various anthropogenic sources, in-situ processing, washout from 



precipitation, and atmospheric transport. Hence, the emissions of primary BC and OC from these 

fires, coupled with other secondary species, has a functional relationship with the change in the 

AOD, which otherwise would not have occurred over these fire regions and downwind, at these 

specific times, if the fires were not present. 

 This paper uses these relationships and goes one step further, to make the link between 

measurements of land-use change and fires directly with the atmospheric column measurements, 

since forwith fires, the intermediary step between the two with emissions being the by-product in 

the middle. This is because rapid conversion of forests, agricultural lands, and associated waste 

products by burning is one of the primary sources of aerosols throughout Southeast Asia 

(Langmann et al., 2009; Miettinen et al., 2013). However, little is known about the exact spatial and 

temporal distribution of these fires (Fu et al., 2012; Chen et al., 2016; Zhou et al., 2016). 

Furthermore, the inter-annual and intra-annual variability of biomass burning and its associated 

underlying mechanisms are also not well understood or constrained by measurements, leading to the 

current poor understanding of fires impact on the local and global aerosol climatology (van der Werf 

et al., 2006). Furthermore, Southeastern Asia is often covered with clouds, which further 

complicates detecting both fire and the pollution that comes from it (Miettinen et al., 2013; Giglio et 

al., 2006; Remer et al., 2013). A few studies have looked at this and give estimates that the 

emissions are underestimated, up to a factor of 4 times (Giglio et al., 2003, 2006; Petrenko et al., 

2012; Cohen, 2014; Cohen and Wang, 2014). 

 Given that large-scale fires lead to abrupt and definitive changes in the vegetative properties, 

we employ a set of measures of land surface properties which have a long time-record, such as LAI 

(Leaf Area Index), NDVI (Normalized Difference Vegetation Index), and the number of 1km by 

1km pixels with a measured fire (FireCountFire Count). While we know that some changes may be 

masked, obscured, or otherwise missing, any observed abrupt changes in these variables or the 

land’s properties itself must be linked at a minimum with any observed changes in the AOD itself. 



Moreover, since the onset and the offset on the Asian Monsoon controls the start and end of the fire 

seasons by rapidly changing from relatively dry to intensely wet and visa versa (Hansen et al., 

2008), large scale changes in the monthly-scale precipitation is a proxy for the ability of the fires to 

occur, as well as washout of aerosols. Therefore, precipitation is also intimately linked with 

measured AOD over Southeastern Asia. This is even more important given that there are only very 

few studies that have been able to quantify emissions over this region successfully, over the decadal 

scale, without resorting to statistical scaling, in relation to measured AOD and AAOD. Furthermore, 

the few emissions datasets that have been made are not capable of working at a a higher frequency 

than monthly. Additionally, they have not been directly linked to the changes in the land surface 

properties that should be driving them (Cohen and Wang, 2014; Cohen, 2014). One of the most 

important findings we make is to carefully examine the validity of looking at the data on a daily, 

versus weekly, versus monthly basis. Although most of the published literature looking at these 

interactions leans towards using high frequency daily data (or higher frequency data still, where 

available), we determine and validate that using weekly or monthly average data leads to a far better 

ability to accurate reproduce the measured values, explain why that is the case, and then quantify 

some of the impacts and limitations of this result. 

2  Data and Methods 

 Several remotely sensed and surface measurements of the surface land properties (LAI and 

NDVI), the number of active fires (Fire Count), aerosol (AOD), and precipitation (rainfall) are used 

in this study. These are used in conjunction with advanced analytical procedures to determine the 

regions which contribute the most to the variance of the impact of fires on the atmosphere loading 

of aerosols as observed by the AOD. This analysis, in addition to its own results, leads to the 

production of a simple statistical multi-year constrained model, which is shown to be capable of 

reproducing the AOD as a function of the land use, fire, and precipitation measurements, even in 



additional years, and even as tested against measurements of AOD from different sources. All of the 

details of the measurements used, the procedures and methods employed, and the statistical and 

analytical techniques employed are detailed below. 

2.1  Geography 

The domain of interest for this study is Southeast Asia, which we define here as the region 

spreading from 90°E to 130°E in longitude, and from 14°S to 23°N in latitude (see Figure 31). The 

subregion defined as Northern Southeast Asia is defined by a mostly large continental land masses 

and a single Wet Season each year, and consists of Thailand, Myanmar, Cambodia, Laos, Vietnam, 

and parts of Southern Greater China. The subregion defined as Southern Southeast Asia is defined 

by a mixture of land and water and has two Wet Seasons each year, and consists of Malaysia, 

Indonesia, Brunei, and Singapore. Maps of the fires in January 2013 and September 2013 

respectively are given in Appendices C1 and C2. 

2.2  Measured Data 

 For the basic remotely sensed measurements used in the analysis, model construction, and 

results, we use remotely sensed variables from the MODIS instrument on both the TERRA and 

AQUA satellites. Measurements of AOD (Remer et al., 2005Levy et al., 2013) are from Collection 

6, Level 2 product, swath-by-swath at 0.55 micron, and consist of both over land and over ocean, 

cloud-cleared pixels, measured daily with a spatial resolution of 10km by 10km at nadir. Each 

swath of only quality controlled pixels of AOD data, from January 1, 2001 through December 31, 

2013, has been interpolated onto a consistent and standardized 0.1° by 0.1° square grid. 

 It has been shown that there is an unslightly biased uncertainty in the measurement of AOD 

of -0.02-0.10*AOD +0.04+0.1*AOD05*AOD over the ocean and +/- 0.05+0.15*AOD over the 

land (RemerLevy et al., 2013; Sayer et al., 2012). However, over this region, the magnitude of the 



“noisy floor” is small compared to the linear term, given that the AOD in polluted regions goes as 

high as 1.5 to 2.0. And while this linear term seem to not be too small, it is actually quite small 

compared to the difference between the peaks and the troughs as obtained by the variance 

maximizing technique. Additionally,  However, as shown by (Cohen and Wang, 2014) and others, 

this error is sufficiently small as to not impact the end results, especially when compared with the 

uncertainties in the current best-generation of models and the dynamics of the atmosphere itself. In 

these cases, the models tend to be lucky to obtain measurements within a 20% to 30% range of the 

measurements, and often perform more poorly than this (e.g. Cohen and Prinn, 2011; Cohen and 

Wang 2014). AOD is a measure of the vertical sum of the extinction of sunlight (scattering plus 

absorption)  through the atmosphere  due to aerosol particles, and  therefore is a  function of the 

atmospheric loading of aerosols, washout from precipitation, and the vertical, size, and optical 

properties of the aerosols. Hence, there is a physical relationship between measured changes in 

AOD and the emissions and subsequent in-situ atmospheric processing of aerosols. It has been 

shown that strong spatial and temporal variability in AOD measurements over this part of the world 

are due to biomass burning from this region of the world, while large measurements of AOD which 

mostly only co-vary only with precipitation (washout) are more consistent with urban emissions 

(Cohen, 2014; Cohen and Wang, 2014). 

 To estimate the land-surface and fire responses we also use the measured values of LAI, 

NDVI, and FireCountFire Count from MODIS (Nightingale et al., 2008; Yang et al., 2006; Huete et 

al., 1999; Giglio et al., 2003). Measurements of LAI and FireCountFire Count (Collection 5.1, 

Level 2 product) are made on an 8-day average basis at 1km by 1km horizontal resolution. While 

for NDVI the measurements are on a 16-day average basis at 1km by 1km horizontal resolution. 

Each product is then aggregated onto the same consistent and standardized 0.1° by 0.1° square grid 

used for the AOD. All measurements only use data which has been quality assured to be cloud free. 

However, in this region, there are some optically thin clouds that will not be picked up, and this 



may significantly bias the measurements of FireCountFire Count, which are inherently based on IR 

measurements, but should not be as impacting on LAI and NDVI, which both depend mostly on 

measurements in the visible bands. 

 LAI is chosen since it represents the amount of leaf material in an ecosystem and hence is 

useful both for identifying if there was a sudden change in the amount of vegetation available and 

its condition (Asner et al., 2003), such as expected after leaves are consumed in a fire. It is 

geometrically defined as the total one-sided area of photosynthetic tissue per unit ground surface 

area. LAI values range from 0 for bare ground, to the range of 1 to 4 for grassland and crops, to the 

range of 5 to 9 for plantations, and as high as 10 for dense conifer forests. One of the large 

drawbacks of using LAI in this region of the world is that it is hard to analyze the variance in the 

LAI over areas that are used for non-forest agriculture. This is because the LAI is considerably 

lower than the tropical primary and secondary forests. Hence, after a burning event, the absolute 

magnitude of the LAI and hence the amount of variance is lower. Yet, this is the more robust land 

surface variable, given that it uses many of the wavebands from MODIS. For this reason, the 

variance in the LAI is most helpful in determining deforestation from fire, particularly in regions 

which are not found to have hotspots. 

 FireCountFire Count determines how many of the pixels within the area have an active fire. 

It is based on a two factors, first if there is a sufficient amount of infrared emissions to determine 

that there is an absolute detection of a fire of sufficient strength. The second factor is whether the 

detected surface temperature is sufficiently variable as compared to the surrounding pixels. Given 

the complexity involved with using infrared and visible streams for the fire count, as well as the 

possibility of thin clouds obstructing this measurement, we only use quality assured FireCountFire 

Count values, those with a value corresponding to 7 or more. In this study, it is found that the 

number of Fire Count can vary from 0 to more than 5000 (with a corresponding value of 8) or more 

than 600 (with a corresponding value of 9) on a monthly basis. 



 NDVI is also chosen since it represents a measure of the health of the vegetation. NDVI is 

mathematically calculated from the visible (VIS) and near-infrared light reflected(NIR) by the 

vegetation as follows: ! . Healthy vegetation absorbs most of the visible light that 

hits it, and reflects a large portion of the near-infrared light. On the other hand, unhealthy or 

sparsely healthy vegetation, such as after being burned, reflects more visible light and less near-

infrared light. Given this formula, a value close to zero (-0.1 to 0.1) implies that there the land is 

barren with respect to living and green vegetation, whereas values close to +1.0 correspond to the 

highest density of healthy green leaves. NDVI is an ideal way to search for the ratio of the 

magnitude of the variance to the absolute mean. This is because the variance in the change in the 

health is actually proportionate to the initial value. In this case, while the overall variance is not too 

much throughout the region, the ratio is considerably high in regions which undergo rapid change 

such as from burning. However, such changes are not very useful for looking at small changes over 

large periods of time, and more are useful at looking at changes occurring over short periods of 

time. This is one way to overcome the issue of regeneration, either due to natural regrowth or due to 

anthropogenic planting. 

 Furthermore, since the onset of the monsoon brings sufficiently large amounts of 

precipitation that it usually leads to the end of the fire season (Cohen, 2014; Natalia Hasler and 

Avissar, 2009), knowledge of the rainfall rate is important. For this, we use TRMM measurements 

of precipitation, as generated by the 3B42 algorithm. This produces daily average precipitation 

measurements at 0.25° by 0.25° spatial resolution over the areas of interest for this work. 

 To validate the results, we also use two additional measurement platforms for AOD from 

AERONET and MISR. From AERONET (Holben et al., 1998) we either use available AOD at 0.55 

microns or interpolate the surrounding wavelength-specific measurements to 0.55 microns, at 9 

different stations (see Figure 3) located in the region of interest. We use all individual Level 2.0 data 

NDVI = NIR −VIS
NIR +VIS



points, cloud screened and validated, and then averaged to form a daily value, where a sufficient 

amount of data is available. At the four stations where there is insufficient data, we use individual 

Level 1.5 data points. However, before forming the daily average value in the case of Level 1.5 

data, we only retain the AOD measurements when the corresponding Angstrom Exponent is larger 

than 0.2, giving us reassurance that the product is relatively cloud-free. This has been tested by 

varying the sensitivity from 0.1 to 0.4 (the minimum physically acceptable value must be positive) 

and there is little change in the end result. Although AERONET is the most precise measurement 

platform for AOD, it is limited in spatial coverage. Therefore we also use measurements from 

MISR (Diner et al., 1998; Kahn et al., 2010Holben et al., 1998) of AOD at 0.55 microns, with a 

monthly temporal resolution and a 0.5° by 0.5° spatial resolution. The reason for choosing MISR is 

that it has a smaller error with respect to AERONET over this region of the world than any other 

satellite platform, (Petrenko and Ichoku, 2013) which allows us to provide spatially distributed 

validation. Although MISR has a more narrow swath-width than MODIS, in this region of the 

world, there are actually more data points that are retrieved at the AERONET stations and that the 

error is lower in comparison to the AERONET Measurements. This is partially due to the fact that it 

is able to cloud process and clear more efficiently than MODIS due to the This is in part due to a 

combination of the more narrow swath width, as well as its ability to approximate the spherical 

fraction. Additionally, the fact that MISR is able to measure AOD levels greater than 2.0 allows it to 

actually obtain more pixels on a monthly basis over this region than MODIS. However, Tthe major 

downside is that only at a monthly average or lower frequency is available, with the monthly dataset 

having from 4 to 8 data points per measurement. It is therefore effective over this region at 

obtaining a spatial distribution upon which to extend the more precise AERONET results. However, 

this helps quite a bit with the cloud clearing statistics. Combining these together allows the use of 

the higher quality AERONET data as an anchor, where it is available, to evaluate any errors in the 

magnitude between the model and the measurements, even away from the source, so long as it is 



still in the same geographical region (as described below). It also provides a means for investigating 

how error propagation between various different measurement sources can be quantified. 

 All of the data used has been taken from from January 2001 through December 2013. In the 

case of remotely sensed data, it was first interpolated (in the case of AOD) or aggregated (in the 

case of FireCountFire Count, NDVI, and EVI) onto a 0.1° by 0.1° square grid, using only quality 

assured data. These gridded, data sets, were then aggregated or interpolated respectively to the 

temporal resolution used, either 1-day, 8-day, or monthly average temporal resolution, to make them 

consistent. AERONET measurements have also been taken using whatever data was available over 

the same respective 1-day, 8-day, and monthly periods, and have been considered to be 

representative of the entire corresponding 0.1° by 0.1° box in which they are located. One of the 

significant advances of using this approach is the ability to analyze how the results are improved by 

using data with different temporal variability. 

2.3  Variance Maximizing Technique 

 Aerosol emissions and resulting changes in AOD in the Southeastern Asia region mainly 

comes from two types of sources: urban/anthropogenic and fires. Emissions of aerosols from urban/

anthropogenic include those from cities, transportation, and industrial processes, which generally 

include temporally and geographically regular combustion of coal, oil, and natural gas throughout 

the year. On the other hand, emissions of aerosols from fires, which include clearing of forests, 

agriculture, peat, and rubbish, are more highly irregular over space and time, preferentially 

occurring under certain economic conditions as well as during periods of dryness, due to either 

changes in irrigation or under the influence of various meteorological/climatological conditions 

(Cohen, 2014). As the ultimate goal of this study is to develop an understanding and constraint on 

the absolute source of aerosol emissions, and since fire is the most uncertain contribution in this 

region, therefore the analytical technique must target the large amount of variance in the measured 



fields of the AOD. In specific, tThose regions which both contribute the most to the variance of the 

AOD field as well as correspond to a large annual amount of of AOD on an absolute basis, are the 

regions which which are most likely fires. A simple check of the geography has been performed to 

eliminate any false positives that are known to be urban or industrial regions, of which there are at 

least 3 in the regions under study: in Vietnam, Indonesia, and Malaysia. However, it is possible that 

rapidly developing industrial uses of the land, such as new large mill-towns in Indonesia (as 

witnessed by the author), were not fully identified. Further, observed land-use changes were 

considered to be reasonable if they corresponded to should correspondreasonable changes in the 

values of , and the NDVI and LAI .are used for this purpose. 

 To achieve these goals, we first employ the Empirical Orthogonal Functions/Principal 

Component Analysis technique (EOF/PCA) on the 8-day average AOD product. This is one of the 

beautiful things about using the EOF approach: patterns in the variance of the data search for the set 

of the relative maxima. Therefore, since the process searches for the highest and lowest values and 

gradients in space and time, any unbiased error in the measurements, will not significantly impact 

the result. Furthermore, the 8-day average product was chosen, so that it could take full advantage 

of the higher frequency of the MODIS data, when compared with the MISR data. Additionally, the 

lifetime of the aerosol plume is roughly on order of this period of time, given the low amount of 

precipitation and the high amount of aerosols lofted into the atmosphere due to the heat from the 

fires, making source/sink and overall statistical properties robust (Cohen, 2014; Lin et al., 2009; Lin 

et al., 2014). 

 The specific EOF/PCA analysis decomposes the 8-day AOD data F into subcomponents. 

Each subcomponent is orthogonal to the whole, and can be ordered based on the overall 

contribution to the fractional amount of the overall variability (Bjornsson and Venegas, 1997). This 

is done by decomposing the measurements into independent (orthogonal) spatial/geographic modes 

Si and their associated temporal/time modes Ti, as explained in EQUATIONS 1-5, where aij are 



the individual measurements (i is the marker indicating the ordered number in latitude/longitude, 

and j is the individual marker indicating the marker in time), and ci and yi which are the 

corresponding decomposed values of the spatial and temporal maps accordingly. 

!          (1) 

!           (2) 

!            (3) 

!            (4) 

!          (5) 

2.4 Regression-Fit Model Connecting Land Use Change to AOD 

 Along with the analysis, we also employ a simple multi-variable linear regression model to 

predict AOD from measured land-use and meteorological variables. This approach is adapted 

because of the physical nature of the relationship between these variables. Fires lead to a direct drop 

in LAI in currently growing vegetation through the combustion process. In the case of agriculture 

which has already been harvested, the LAI would have previously dropped, while the dried products 

are left to burn. Similarly if there is a change in the vegetation/agricultural state after the fire, this 

should show up by a restored LAI, although at a different magnitude. NDVI would similarly be 
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impacted, as the chlorophyll is combusted along with the plant material that is associated with it. 

Furthermore, the hypothesized loss of efficiency of the land surface associated with the fires would 

show up as a lower-frequency change in the NDVI. Due to these reasons, there may be a lag 

expected between the occurrence of the fire and the change in the land-use variable. However, given 

the rapid rate of regrowth over this region, and the high degree of cloud-cover, it is found that day-

to-day passes or information are not very reliable. It is uncertain how much lag would be expected 

in weekly-averaged or two-weekly averaged products. Although our results have determined that in 

fact the relationship which is based on no lag produces the best fit. Hence, one of the objectives is 

to quantify the impacts of different averaging kernels applied to the measurements. 

 There is also evidence that in regions where dryness is an issue, which it certainly is during 

the extremes of the dry season throughout Southeast Asia, that NDVI recovers slower than LAI. 

This would certainly be the case in regions in which peat is being drained or has recently been 

drained, such as the Southern Southeast Asia Region, or in regions where there is little to no 

irrigation, such as the Northern Southeast Asian Region (Hope et al, 2007; ; Morawitz et al., 2006; 

Cuevas et al., 2008). The clear indication here is that the rate of greenness regrowth, as observed by 

the change in the NDVI may not relate to the canopy and soil moisture regrowth, which is more 

related to the LAI due to the additional bands in the NIR. However, in regions in the topics that are 

either managed or are fed by the arrival of the monsoon, this is not expected to be a significant 

issue, and hence a possible reason why little lag is actually observed. 

 During the dry season, based on how dry it is, will impact the amount, intensity, and 

duration of the fires as a whole. In practice, years with wetter dry season or a drier dry season 

should have a reduction in the intensity of the fires as well as their geographic spread, although it 

will not necessarily lead to them being altogether suppressed. This relationship is slightly more 

complex, since there are cases where anthropogenic water due to irrigation, burning occurring on 

very wet peat, or fast-moving thunderstorms, can make the ground quite wet, but still continue to 



burn, thereby leading to an increase in emitted aerosol, and hence AOD, due to a switch of the type 

of fire from flaming to smoldering (Field et al., 2009; Saatchi et al., 2013). However, these cases are 

over and beyond the approach taken here, and are still not yet fully understood. It is thought that 

surface wetness is critical for this switch, although in theory this is partially a function of the LAI, 

NDVI, and precipitation, and hence could be approximated to first order using the approach 

employed here, with the physical variable itself at least being partially captured (Fisher et al., 2009; 

Phillips et al., 2010; Wohl et al., 2012). Another advantage is that low-temperature fires, which may 

otherwise go undetected, can still be represented, since they still impact changes in terms of AOD, 

LAI, and NDVI. 

 To ensure that the impact of fires is physically as expected on AOD, in which an increase in 

fire should lead to an increase in emissions and hence AOD, we employ two different regression 

equations. Both equations use LAI, NDVI and Precipitation as predictive variables R2 (Equation 

7), while only one R1 (Equation 6) also uses FireCountFire Count. The regression coefficients αi, 

βi, γi, and δi are computed by minimizing the root-mean-square errors of the equations 

EQUATIONS 6,7. Using these constrained values, the AOD can be approximated during different 

seasons or over different areas, such as those which are cloud-covered and hence do not show 

measurements. These reconstructed values are generated and specifically compared against AOD 

values from other measurement platforms, specifically MISR and AERONET. 

!     (6) 

!       (7) 

 Since the nature of the land-use change, the amount of precipitation, the state of native 

vegetation, and the strengths and timing of the AOD signal are different over the two regions S1 and 

S2, we compute the fitting for AOD over reach region separately. This helps us better quantify and 

understand the functional relationships between these variables under the different land use types, 

AODMODIS ,R1 =α1 *LAI + β1 *NDVI + γ 1 *RAIN +δ1 *FireCount

AODMODIS ,R2 =α 2 *LAI + β2 *NDVI + γ 2 *RAIN



land-use management practices, and climatologies, when the fires actually do occur. This is 

especially important in Southern Southeast Asia, where there is stronger year-to-year variability, the 

issue of cloud-cover is much more pronounced close to the equator, there are only very few ground 

station measurement sites, and vastly different sets of anthropogenic land use policies in different 

regions, and different magnitudes of fire emissions. 

 To test separately only the fire-occurring seasons, we define fire activity periods over each 

region as the days during which which T1  and T2  respectively are above a certain threshold 

τNorth  and τSouth. Different thresholds for T1 and T2 are tested, based on the percentile P of the 

time series beneath the point τ  if the time series were to be regrouped and sorted. We hence use the 

points P={0.90,0.835,0.75}. Since this method is testing for the extreme values in the AOD 

variance, or when the fires are occurring, this method proves to be methodologically suitable, as it is 

further providing a constraint on the more extreme conditions, and when the pattern is most 

significant. The values chosen are not arbitrary, as they are based on the statistical robustness of the 

magnitude of the fields Si*Ti. However, the point of the sensitivity analysis is to quantify at what 

point the errors in the analytical technique are no longer able to statistically retrieve the maximum 

contributions to the variance of signal, as compared to just picking up the variance induced by the 

unbiased errors in the measurements themselves. 

3. Results 

3.1 Decadal-Scale Analysis of Remotely Sensed Measurements of AOD and Land Surface 

Properties 

 The subsequent analysis performed using the variance maximizing analytical technique only 

retains those modes Si,Ti that explain at least 5% of the total variability. This is to ensure that any 

signal found is larger than the uncertainty in the measurements themselves, and hence should be 

physically relevant. Specifically, since the MODIS AOD uncertainty is 5%, therefore we need at 



least 5% of the variance for a mode to represent something useful (Bjornsson and Venegas, 1997). 

Using this constraint, there are two modes i={1,2} that explain the variability in the 8-day AOD 

measurements (see Figure 23). 38% of the variability in the AOD field maps to region i = 1 as 

shown in Figure 2a, and which we will hence refer to as Northern Southeast Asia. 13% of the 

variability in the AOD field maps to region i=2 as shown in Figure 2b, which we will hence refer to 

as Southern Southeast Asia. The next largest mode contributes less than 5% to the total variance in 

the AOD field, and therefore is indistinguishable from other sources of variability and error, such as 

non-linear effects of El-Nino, planetary dynamical events such as the MJO, regional dynamical 

events, small-scale perturbations, short-term anthropogenic events, un-accounted for variations in 

cloud-cover, bias in the data, new urbanization around the edges of the growing megacities, and 

such. 

 The physical relevance of these mathematical modes is established by correlating the 

computed measured average AOD over the respective regions Si , as a time series, with the 

respective Principal Component Ti. The modes are found to be highly correlated with both the AOD 

over Northern Southeast Asia (R2=0.86, p<0.01) and the AOD over Southern Southeast Asia 

(R2=0.86, p<0.01), as shown in Figures 2c and 2d. 

 Over Northern Southeast Asia there is a partially bi-annual peak, with some years having a 

single peak and others have two peaks. The major peak, which is the more pronounced or sole peak, 

occurs every year in the measured AOD averaged over T1 during the latter part of the local dry 

season (from mid-February to late-April). Looking at the average value of the time series of the 

AOD measurements over S1, it is found that the AOD peaks at the same time as T1 peaks, and that 

the average AOD ranges from 0.46 to 0.86, depending on the year. The smaller peak occurs in 

August and September as shown in T1 in most of the years (but not in 2008, 2010, and 2011). 

Similarly, the average of the measured AOD over the region S1 during the same months and years 

has a corresponding peak ranging from 0.40 to 0.63 during the years when the second peak occurs. 



The only disagreement between T1 and the measured time series of averaged AOD over S1 occurs 

during 2003, which has already been noted previously by (Cohen, 2014), although none of the 

variables used in this study can explain why. 

 Over Southern Southeast Asia, there is a one-to-one agreement between the peaks in T2 and 

the peaks in the averaged measurements of AOD over S2, with the peaks occurring in 6 years 

(2001, 2002, 2004, 2006, 2009, and 2012) and not occurring in the other 7 years. The measured 

peak in the average AOD ranges from 0.5 to 1.2, indicating that when these events occur, their 

impact on the aerosol loading is larger than in Northern Southeast Asia. The timing of the peaks is 

also wider and less well constrained than in Northern Southeast Asia, corresponding to most of the 

entire dry season, from early-August to the end of October. Furthermore, there is no observed 

second or smaller peak. 

 However, the issue of cloud cover leading to missed positives is observed in Southern 

Southeast Asia. While this method was able to pick up the high haze and pollution years of 2002, 

2004, the El-Nino in 2006, and 2009, two additional high haze and pollution years of 2010 and 

2013 were not captured. As already shown in (Cohen, 2014), which was capable of capturing 2010 

and 2013, the likely cause is cloud cover. We have confirmed that the MODIS cloud cover is in fact 

the culprit, with there being fewer than 10% of pixels containing measurements of AOD over the 

regions given by S2. In fact, the only time during these years that the results are found for these 

years is in Si where i is greater than 2, and thus are under the threshold used for statistical 

robustness. This reconfirms the afore mentioned results that MISR is in fact better at dealing with 

cloudiness over this region. 

 Careful consideration of T1 (see Figure 2c) shows that it is considerably more noisy than T2 

(see Figure 2c), and there are three explanations for this. First is because part because the emissions 

from the region are more complex. In addition to the fires, there are large urban sources from three 

megacities: Bangkok, Ho Chi Minh City, Hanoi, as well as many highly populated and inhabited 



areas outside of these cities throughout the countryside. The emissions from these cities is 

consistent throughout the year, and therefore the high frequency noise in these emissions, such as 

day/night differences, weekday/weekend differences, etc. tends to make the signal slightly more 

noisy. Secondly is that the fires in this region are due to combination of a few factors, which occur 

on different scales and have various different size holdings in each case, meaning that small 

differences in timing, intensity, and duration are to be expected from when the people decide to 

burn and how long they decide to burn for (Taylor, 2010). There is agricultural/straw burning in 

Thailand, subsistence burning in Cambodia, forest clearing in Myanmar and Laos, and urban and 

agricultural expansion in Vietnam, with some of these agricultural regions, especially related to rice, 

have 2 crops a year, and hence the possibility of being burned more than once (Dennis, 2005; 

Tipayarom and Oanh, 2007). Thirdly, the dry season here tends to be extremely dry, without even 

occasional rainstorms. Therefore, any emitted particles tend to have a very long lifetime. Hence, the 

impact of secondary chemistry is important. This chemistry tends to be very sensitive to the 

emissions ratios, to clouds, and to any non-linearly emitted secondary species from urban areas as 

the plums proceeds downwind. On the other hand, in Southern Southeast Asia, the population is 

also large, but in many of the places in Indonesia and Malaysia that are source regions, the cities are 

large and well contained, while the countryside is still relatively empty. Secondly, in this region, the 

major cause of burning is the clearing of primary forests, and much of this is done by a smaller 

number of large-land holders, further reducing the variability. This is especially so on a year-to-year 

basis, during some years which there is relatively little burning at all. Finally, even during the dry 

season, there is still a considerable amount of small scale convective precipitation and day/night 

sea/land breezes and rain. Hence, the lifetime of the particles and secondary precursors tends to be 

slightly shorter, and the impacts of non-linear secondary processing is also reduced. Hence, the fact 

that Southern Southeast Asia often has an even higher average AOD, means that the emissions must 



be considerably larger in terms of magnitude from year to year, although not necessarily more 

variable within each year, as also found in (Cohen, 2014). 

 These results are clearly consistent with the time-averaged values of the land-use 

measurements of LAI and NDVI when averaged over regions S1 and S2 respectively (Figure 2). 

Over S1, we can clearly see that much of the region either has an average LAI which is far too low 

to correspond to native of secondary forest, implying that the land is now agriculture. In other cases, 

there is still a high average LAI value with a corresponding reduction in NDVI, implying that 

primary forest is being deforested in exchange for some type of commercial agricultural tree crop, 

such as palm oil, rubber, or wood for paper. However, the region over which this second category is 

occurring is smaller in size than the first region with the simultaneous decrease in both LAI and 

NDVI (Huete et al., 2002; Myneni et al., 2002, 2007). On the other hand, over the region S2 we find 

that the LAI is still generally quite high throughout the region of interest, while the average NDVI 

is falling at an even faster rate than the drop over the smaller region in S1 in which a similar type of 

condition is occurring. This is completely consistent with the known large-scale deforestation 

occurring throughout Indonesia and Malaysia where mostly primary forest is burned and replaced 

with large-scale agricultural tree-based crops (Dennis, 2005; Phillips et al., 2010; Taylor, 2010; 

Wooster et al., 2012; Field et al., 2009). 

 A spatial mapping of the climatological mean and standard deviations of LAI and NDVI 

over Southeastern Asia are displayed in Figure 31. First, it is observed that the LAI is smaller in 

average over Northern Southeast Asia (LAI=2.3) then over Southern Southeast Asia (LAI=3.5). 

Similarly for NDVI, the average value over Northern Southeast Asia is (NDVI=0.61) while it over 

Southern Southeast Asia it is (NDVI=0.70). This is consistent with the knowledge that in Northern 

Southeast Asia, the land has been more altered from its base tropical rainforest state (Natalia Hasler 

and Avissar, 2009; Taylor, 2010). In fact, there is a considerable amount of rice and other agriculture 

which has completely replaced trees with crops. Also, the pace of forest clearing is quite rapid in 



those regions which still retain a considerable amount of native forest. The only considerably 

widespread regions of native forests are left only in Laos and and at the frontier regions near the 

intersection of Laos, Thailand, and Myanmar. 

3.12 Influence of Measured Fires 

 To look at the impacts of measured fires, we fit the relationships between LAI, NDVI, 

Precipitation and AOD in two cases, both with and without the inclusion of the FireCountFire 

Count variable using REG1 and REG2. This is done separately over both the Northern and Southern 

regions with the corresponding different thresholds. A comparison of the time series of the region 

averaged AOD from each EOF region, the 4 model predicted AOD values, and the measured 

averaged AOD is made. The average statistical error and average statistical correlation (coefficient 

of determination, R2) between the datasets and the regression-fit model predicted AOD used to 

determine which threshold τ is ultimately used for the purpose of determining the best fit 

coefficients for αi, βi, γi, and δi. The resulting statistics are displayed in Table 1. 

 As expected, including the FireCountFire Count variable significantly increases the 

performance of the algorithm in terms of correlations: on average the correlation increases from 

70% to 79% in the Northern region, and from 66% to 75% in the Southern region. However, there is 

no improvement in the mean error between the reconstructed data and the original measured AOD. 

This means that the existence ofif there is a hotspot measurement available, it will improve the 

ability to predict the spatial and temporal distribution of the fires, but provides no help in terms of 

estimating the  fire offers an improvement in determining the spatial and temporal timing of the 

fires, but does not help to estimate the intensity of the AOD or hence the emissions. This is 

physically consistent, since the actual emissions should be a more complex function of the type of 

burning, the material burned, and the conditions under it was burned, not just the existence of a fire. 

Additionally, this is consistent because the FireCountFire Count product only quantifies the 



likelihood of a fire occurring within the given pixel, but provides no information on the intensity of 

the fire. Furthermore, the results of the fitting of the regression coefficient associated to 

FireCountFire Count (Figure 4) show that the coefficient is strongly positive over the regions where 

fire are the most important and AOD variability the strongest (regions within the dots). Thus, the 

results are found to be consistent with what is understood, that FireCountFire Count is a reasonable 

predictor of emissions of aerosols from fires, but that this factor is only useful as a predictor of the 

effect, not as a means of understanding the magnitude of the effect. 

 The best fit regression coefficients associated with NDVI make more physical sense in the 

case where the FireCountFire Count predictor is used REG1 (Figure A2a) than in the case where it 

is not REG2 (Figure A2b). In all cases, the timing is based on the 8-day period in the year, from day 

1 to 8 being the first data point, from day 9 to 16 being the second data point, etc. In this way, multi-

year variances in the climatology can be rigorously analyzed. In general a negative coefficient is 

found, which implies that regions will lose NDVI as a result of an increase in AOD, which is 

consistent with the health of the land decreasing during a fire. A similar gain is also found in terms 

of the best fit coefficients for LAI in the regions which are not rice dominant (rice has a 

significantly low LAI so that the signal to noise ratio from the satellite product is too low to 

produce a statistically significant result over these regions). The regression coefficients are thus 

consistent and for this reason, we only refer to REG1 from this point forward. 

 Making comparisons between the regression constructed AOD and the measured 

AODMODIS over Northern Southeast Asia leads to the determination that in average, using τNorth 

= P75(PC1) as the threshold of fire activity leads to the best results, as shown in Table 1. This leads 

to the reasonable conclusion that in order to represent the AOD during the fire season well, there 

must be greater access to data, while to represent the AOD during the non-burning or low-burning 

seasons, that less data is required. This is consistent with the variability being considerably larger 

during the burning season in both space and time over the region of interest. 



 On the other hand, for Southern Southeast Asia, using a very small value of τSouth = 

P12.5(PC2) gives the best statistics. This means that using less data improves the fit during the fire 

season as compared to the use of more data which better constrains the fit over the whole year. This 

is not intuitive and is only consistent with the case that either (a) the data is more likely to be of low 

quality during the burning season (i.e. the data is corrupted by clouds), or that there is a 

considerable amount of data missing during the burning season (which is also possible due to the 

widespread distribution of clouds over much of both Borneo and Sumatra). This view is also 

consistent with the year-to-year and decadal scale of variability, wherein some years will have little 

to no fire, and hence data is required over a considerably longer period of time, including both high- 

and low-fire years in order to properly reproduce the observed patterns. For the remaining of this 

analysis, we only consider (1) that the reconstructed data set of AOD over the Northern region has 

been computed by using τNorth = P75(PC1) as fire threshold, and (2) that the reconstructed data set 

of AOD over the Southern region has been computed by using τSouth = P12.5(PC2) as fire 

threshold. These two data sets will be referred as AODNorth,REC and AODSouth,REC. 

3.23 Comparing AERONET measurements over Northern Southeast Asia 

 Seven stations from AERONET are situated within the Northern region (Chiang Mai, Pimai, 

Bac Giang, Nghia Do, Vientiane, Mukdahan, and Ubon Ratchathani) and four stations are located 

inside the Southern region (Jambi, Kuching, Palangkaraya, and Singapore). The location of those 

stations is displayed in Figure 3 and  complementary information is available in Table D2. Of these 

stations, three are urban sites located downwind from burning regions: Singapore, Bac Giang and 

Nghia Do, while the remaining sites are located directly in or adjacent to burning areas. 

 Figures 5 and 6 displays the temporal series of the AERONET AOD (black curve) and 

regression-fit modeled AOD (blue curve) at the seven stations situated within the Northern region. 

Table 4 displays the statistics of the goodness of fit between the measured AOD and the 



reconstructed AOD respectively, AODMODIS and AODNorth, in terms of reproducing the 

AERONET measured AOD signal. These statistics are computed over both the entire time series 

that the respective AERONET station is measuring (Table 4) and well as only during high pollution 

episodes.  

 The first general observation is that all AERONET stations in Northern Southeast Asia have 

an annual peak in their AOD which occurs during the fire season, with this peak occurring from 

February through April each year. Additionally, each station has a smaller second peak over many 

of the years, but not annually, occurring sometime in August or September. 

 There are At the two remote stations, which are in regions which are neither urban nor in the 

process of urbanizing: Pimai (Figure 5c) and Ubon Ratchathani (Figure 5d), . At both stations, AOD 

reaches its maximum value of over 0.5 during the fire season, while generally the values are 

considerably clean throughout the rest of the year, as shown in Figures 5c and 5d. At these stations, 

the high AOD events occur every year in February to April and a except for  second local maximum 

occurs from September to October in roughly half of the years: 2001 to 2006, and 2009, with the a 

second local maximum of AOD peak being of around 0.46 in September and October. At Pimai, the 

AERONET data shows high pollution during the fire season every year from 2003 to 2008. The 

model captures all these events correctly in terms of duration, with the onset and end times slightly 

off, leading to a correlation of 43%, with an intensity mean error of. However, the intensity (mean 

error of -0.12) (see Table 4). At Ubon Ratchathani, the AERONET data shows high pollution events 

during the fire season of the years 2010 to 2012. The model captures all these events in terms of 

duration (correlation of 80%) but also underestimates its the intensity by a slightly larger (mean 

error of -0.22) (see Table 4). A large peak of high AOD can been seen on the AERONET data at 

Ubon Ratchathani in September 2012 corresponding to a high-pollution event also observed in 

Singapore (see Figure 7d) . This peak, which has a maximum AOD value of 0.6, is captured by the 

model. During the common years of data between AERONET and AODNorth (2008 to 2013), we 



can see thatcalculate that the model captures the fire season and the pollution that is generated by it 

well, both in terms of duration (correlation is 64%) and less well , but not in terms of intensity 

(mean error of -0.26) (see Table 4). Although the error in the intensity is not insignificant, it is still 

significantly better than most other errors from model studies over heavily biomass burning 

influenced areas of the world, the mean error is still quite good, since most admit to requiring a 

scaling factor from 1.7 to as much as 5 (e.g.: Wu et al., 2011; Cohen and Wang, 2014; Hodnebrog et 

al., 2014). 

 There are three stations which are situated at medium-sized urban sites which are also 

adjacent to or directly upwind from fire burning regions: Chiang Mai, (Figure 56ea), Mukdahan 

(Figure 5f6b), and Vientiane (Figure 6c5g). All It is shown that there is a strong annual peak during 

the fire season from February to April at these stations. At Chiang Mai and Mukdahan, which are 

both nearer to the the up-wind regions where the agricultural fires occur, the maximum value for of 

AOD is around 0.5, while it is around 0.6 at Vientiane, which is located near the downwind edge of 

further downwind and hence able to undergo additional secondary processingthe agricultural 

burning regions. Figures 5e6a, 5f6b, and 5g6c also show smaller peaks during other parts of the 

year: from September to October for the years 2001 to 2006 at Chiang Mai, with a maximum AOD 

value of 0.4; from July/August and to October/November (depending on the years) for the years 

2001 to 2007, 2009, and 2010 at Mukdahan, with a maximum AOD value of 0.44; and from 

September to October for the years 2001 to 2007, and 2009 at Vientiane, with a maximum AOD 

value of 0.59. The nature of these secondary peaks are not annual in occurrence, and an explanation 

will be explored in more detail later on. At Mukdahan, the AERONET data demonstrates the fire 

season peak for every year the data exists: 2004, 2006, 2007, 2008, and 2009. The regression-fit 

model reproduces the high pollution every year (R2=0.69), while also reproducing the intensity 

correctly in 2007 and 2009. While there is only very sparse AERONET data at Vientiane, the 



regression-fit model reproduces the signal well (R2=0.64 and RMS=-0.07) (see Table 4). Finally, 

the model also captures the high pollution events measured in March, April, and September 2012. 

 As expected, there is a considerable amount of variability at stations which are in or near 

large urban areas (Megacities), due to the combination of both the fire signal as well as local 

emissions and in-situ secondary processing. In particular, the signals at the two stations near to the 

rapidly growing urban megacity of Hanoi:, the capital of Vietnam, Bac Giang (Figure 5a) and Nghia 

Do (Figure 5b) are very similar. These stations have a much higher annual average AOD than the 

other stations in the region, with the daily average value as well as long-term mean measured AOD 

being frequently in the polluted range (AOD larger than 0.4), while the and the annual high AOD 

peak havings a yearly maximum of at least 0.9 at both of these stations (see Table 3). Figures 5a and 

5b also show smaller AOD peaks (maximum value of around 0.7) during other parts of the year 

(from July through November depending on the year). During the fire seasons in 2004 and 2007 at 

Bac Giang, the timing of the high pollution events are well-captured by the regression-fit model, in 

terms of onset, duration, and end time, although the model intensity is underestimated. 

 In 2006, the Southern Southeast Asian fire season produced an extensive and massive 

amount of emissions T2 due to extremely dry and warm conditions brought on by the El-Nino 

conditions. Various models and measurements have shown that the fires from these emissions have 

spread from S2 throughout the Indian and Pacific Oceans (Podgorny et al., 2003). However, we 

have also found that the signal is clearly present at all of the stations located in S1, in terms 

AERONET measurements as well as regression-fit models. At Chiang Mai, Mukdahan, and Pimai 

both the intensity of the 2006 season as well as its onset, duration, and conclusion are all well 

reproduced in both the AERONET measurements and the regression-fit model. Even at the urban 

megacities Bac Giang and Nghia Do the AERONET measurements also display a high pollution 

peak (AOD=1.2) around September 2006, while the regression models at both of these stations 

capture the measured onset, duration, and ending of this event. The only issue is that the magnitude 



of the regression-fit model AOD underestimates the measured value by as much as 33% at Bac 

Giang. Unfortunately the other AERONET stations do not have measurements available during this 

event. 

 Given the intimate connection between fires and the ensuing rapid changes of the land 

surface which occur at the same time, we now explore how theas expected, LAI and NDVI have 

changed at the same locations as the AERONET stations. First, they show a correspondingly higher 

value in both of these variables during the second, localized peak, than at the major annual peak, 

with a maximum value of around 0.9 at these stations (see Table 3). Figures 5a and 5b also show 

smaller AOD peaks (maximum value of around 0.7) during other parts of the year (July through 

November depending on the year), see Tables D2 and 3. This is indicative that the second peak, 

which does not occur year- to-year, may not be attributed to large-scale local burning, unless either 

the local fires are much less extensive, and thus do not lead to significant change in the land surface, 

but happen to just be upwind of these measurement stations in these given years, or that the local 

fires are much more polluting per unit of land use change, and hence still contribute to the AOD to 

some extent. The other possible explanations are that the pollution during these times is actually 

transported from other place, or are intensified due to some sort of secondary processing. However, 

it is also found that these changes in the year-to-year LAI and NDVI values do not vary in a one-to-

one manner with T2, which has some covariance during the big fire years of 2002, 2004, 2006, and 

2009, but not during other years in which the peak occurs, such as 2001, 2003, 2005, and 2007. 

 Hence, we are able to conclude that theOverall, we find that the annual peak in AOD as 

measured at these AERONET stations throughout S1  has an annual peak which is clearly due to 

fires, and that this is true for both urban, partially urban, and remote sites. Further, during these fire 

events, the dominant source contributing to the peak in AOD is from the burning itself, even in the 

urban areas where it may be one of two dominant sources. Additionally, there is a second peak 

found at these stations, which is both smaller in magnitude, and only occurs in certain years. This 



secondary peak is very likely not due to local burning, and instead it is shown that a significant 

number of these years co-vary with analyzed large-scale fires from region S2, indicative of long-

range transport. However, since there are a few years during which this is also not the case, it is 

possible that other sources of long-range transport or secondary production of aerosols, such as 

from South Asia, could also contribute. 

3.34 Comparing AERONET measurements over Southern Southeast Asia 

 In Southern Southeast Asia, S2, the majority of the emissions come from a small number of 

well-defined major urban centers, transport lines through the waterways, and wide-spread sources 

from fires, with much of the region still continuing primary forest or dense secondary forest. As a 

consequence, the major source of the variation in the AOD is a combination of the emissions from 

fires and precipitation (as it is the major source of the aerosols removal from the atmosphere). This 

is demonstrated in Figure 67, demonstrating a smoother and less variable set of measurements 

during the wet season than at sites over Northern Southeast Asia, 5 and 6. Consequently, the 

AERONET site in Singapore, the sole large urban area in S2, is very different from the other 

stations of this subregion. 

 Unlike in Northern Southeast Asia, in general, the AOD signal in Southern Southeast Asia 

tends to only peak once a year (except for in 2009 and 2014, which are special cases to be discussed 

later that had 2 peaks due to primary fire emissions). This primary peak, as shown in T2 always 

occurs during the local fire season from August through October/November, without any additional 

second peak occurring during a non-burning period, as in T1. Effectively, this implies that 

emissions from S1 are not contributing to the variance in the measured AOD over S2 and that long-

range transport from Northern Southeast Asia is not efficient in contributing to the high peaks in 

AOD found over S2. 

 Additionally, Southern Southeast Asia has an important source of uncertainty and bias in the 



measurements over the region. Specifically, the impact of intense cloud cover is also determined to 

be very important, in terms of being able to capture all of the known large-scale fire based events. 

We observe that in a few special cases where known large-scale pollution events have occurred over 

S2 as measured both on the ground and by MISR measurements of AOD (Cohen, 2014), that 

MODIS was not able to successfully capture the events (for example: June 2013). A careful 

examination of the cloud cover fields and FireCountFire Count measurements show that this is 

clearly the case, at least for June 2013; the region S2 was almost completely masked by clouds 

(over 80% of all pixels) in the day-to-day tracks, with more than 90% of pixels in the 8-day average 

fields over this period of time being masked. 

 The  AERONET  station  in  Singapore,  is  located  in  a  highly  urban  environment,  with  

sizable sources of aerosol emissions related to shipping, a high energy using population, and 

refineries. It is clear that there are no wild-fires occurring within Singapore. At the Singapore 

station, we observe an annual signal except for every year, although during the years 2008 and 

2010, the signal is less intense than in the other measured years. There is a considerable amount of 

variation in the magnitude, the onset, and the duration of the peak, as well as a considerable amount 

of noise. However, the maximum measured AOD here on an 8-day average basis, ranges from a low 

year of 0.55 to a high year of 0.81 in 2006. Even though the fires were quite distant, it is clearly 

observed that then most intense event in 2006 is readily captured here, further supporting that even 

in an urban environment, Singapore offers a reasonable downwind signal site for observing the 

impacts of the fires. 

 On the other hand, the other AERONET stations in this region, including in Kuching, Jambi, 

and Palangkaraya, are situated in remote and mostly heavily jungle/forested regions of Borneo and 

Sumatra islands (see Table D 2). These sites are all located close-by to where the fire sources 

originate, in the jungles and forests of Borneo and Sumatra. The AERONET station in Jambi, 

situated on Sumatra Island, has an annual signal of high AOD occurring once a year, every year, 



except in 2010 (where there were no corresponding measurements during the peak season) as given 

by Figure 10). However, the magnitude, onset, and duration of these high pollution events is highly 

variable from year to year. The AOD maximum value ranges from a low of 0.67 (in 2007) to a high 

of 1.49 (in 2006) (see Table 5). The AERONET station in Kuching, is situated Northern Borneo, in 

Malaysia, also  has an annual peak signal in AOD every year that measurements are available (there 

were no measurements during the corresponding peak times in 2008, 2010, and 2013). The 

magnitude, start, and duration of this peak is again highly variable from year to year, with the 

maximum in measured AOD ranging from a low of 0.68 in 2007 to a maximum of 1.36 in 2006. At 

Palangkaraya, which is situated in Western Borneo in Indonesia, there is also a single high peak 

occurring every year, except for 2010 (which again did not have any measurements) during the high 

fire season). Similar to the other stations, the intensity, onset, and duration of the high AOD signal 

was very variable from year to year. 

 The regressive-fit model based on the MODIS measurements at each of the remote sites in 

Southern Southeast Asia: Jambi, Kuching, and Palangkaraya, is capable of reproducing the major 

heavily polluted years as found in the measurements, such 2002 (max AOD of 1.24 in Jambi, 1.0 in 

Kuching, and 1.94 in Palangkaraya), 2004 (max AOD of 0.99 in Jambi, 0.85 in Kuching, and 1.18 

in Palangkaraya), 2006 (max AOD of 1.49 in Jambi, 1.4 in Kuching, and 1.98 in Palangkaraya), 

and 2009 (max AOD of 0.95 in Jambi, 0.87 in Kuching, and 1.02 in Palangkaraya). At Jambi and 

Palangkaraya, the regressive-fit model reproduces the high AOD event of late 2012 well, with a 

better correlation with the AERONET measurements (R2=76% at Jambi and R2=74% at 

Palangkaraya) than MODIS AOD at the same grid point (R2=51% at Jambi and R2=71% at 

Palangkaraya), as given in Table 6, although the intensity in these years is slightly low. On the other 

hand, the regressive-fit model reproduces the AOD well in terms of intensity, onset, and duration at 

Kuching (RMS error of 0.13, R2=66%) (see Table 6). However, the regressive-fit model is still 

basically constrained by the cloud cover issue. It is for this reason that the know high values of 



aerosols in the atmosphere over Singapore in June of 2013 (as based on surface measurements and 

personal observation) is not captured in AERONET measurements, MODIS measurements, or the 

regressive-fit model. In addition to June 2013, we also find that MODIS AOD and the regressive fit 

model are both not capable of capturing the 2010 fire season peak either. However, the issues of 

cloud cover seem to be less important in other years, and we find the onset, duration, and intensity 

are all well matched between the regressive-fit model and AERONET measurements at Singapore 

during the fire seasons of the years 2007, 2008, 2009, 2011, and 2012 (see Table 6 for statistics). 

3.45 Comparisons versus measurements from the MISR satellite 

 MISR satellite measurements of AOD are at lower spatial and temporal resolution than 

MODIS and AERONET measurements, and thus to use them as a basis for comparison, the values 

from MODIS and AERONET will be averaged to a monthly-basis as well as at 0.5°x0.5°. Over 

Northern Southeast Asia, the time series of the regression-fit model AOD compares very well with 

the time series of the average MISR AOD over the same region (R2=0.77 over all of S1, and 

R2=0.85 over the region of highest variability). While there is some underestimation of the absolute 

AOD as compared to the MISR measurements, that underestimation is always less than 0.1, and 

therefore is not far from the order of magnitude of the error in the measurements themselves. One of 

the important reasons why the agreement is so good is that this region is generally cloud-free during 

the dry season when the fires occur, and hence there is a quite large and representatively similar 

sampling size between MODIS, MISR, and AERONET during the fire periods in this region. This 

establishes that indeed the MODIS based regression-fit model matches well against MISR, and is 

able to reproduce the variability and magnitude of the AOD over Northern Southeast Asia (Figure 

7). 

 Not surprisingly, when fitting the results of the MODIS regression-fit model using 8-day 

average data, the overall fits are less good when comparing against MISR. Part of the issue is the 



additional variability, but more importantly is the lack of sufficient data due to cloud coverage. 

Specifically, over the region S1, the correlation rises from R2=0.66 to R2=0.81 when increasing 

from 8-day to monthly averaging. Similarly, the comparison between the AERONET data and 

MISR AOD also increases from R2=0.59 to R2=0.79 when comparing 8-day averages and monthly 

averages respectively. Overall, the regression-fit model is able to reproduce the variation of AOD at 

all the stations in Northern Southeast Asia, both in terms of duration and intensity concerning high 

pollution events (see Figures B3 and B4). 

 As expected, the spatial comparison between MISR and the regression-fit model over 

Southern Southeast Asia is less good. The first thing to note is that the spatial extent of the region 

from MODIS, given with the relatively level of high certainty by S2, is considerably smaller than a 

similar spatial distribution of the smoke extent over this same region, when analyzed in the same 

way using data from MISR measurements (Cohen, 2014). This is explained in part due to the larger 

cloud-covered fraction in the MODIS measurements when compared with MISR, as well as the 

shorter averaging period with the MODIS measurements, leading to a situation where there is 

insufficient information at each averaging time step over much of the region. It is found that the 

RMS error between MISR and the regression-fit model ranges from a minor and relatively 

insignificant (as compared to the measurement errors) model overestimate of 0.1 in AOD, to a 

substantial and significant model underestimate in the AOD of up to 0.5. This regression-fit model 

underestimates as compared to MISR measurements is significantly larger than the AERONET and 

MISR disagreement over this region, which is less than 0.3 (Cohen, 2014; Shi et al., 2011) and 

further, this error occurs especially and exclusively during the intense fire-burning years. On the 

other hand, the overall temporal correlation between the regression-fit model and the time-average 

AOD from MISR is R2=0.72 over all and is as high as R2=0.79 over the region of highest AOD 

variability. This means that the inter-annual and intra-annual variation is relatively captured by the 

MODIS measurements and the resulting regression-fit model. 



4. Conclusions 

 An in-depth analysis of multiple measurements from MODIS, MISR, TRMM, and 

AERONET measurements has been performed over a 13-year period over Southeast Asia. Using 

MODIS AOD, the spatial and temporal patterns of the contribution of fires to the atmospheric 

loading of aerosols was established. Two distinct regions, with vastly different properties were 

observed: one in Northern Southeast Asia, which had a strong annual signal with some inter-annual 

variability, and another in Southern Southeast Asia, which had a strong signal with inter-annual and 

intra-annual variability. Northern Southeast Asia shows an annual high AOD during the fire season 

(varying roughly from February through April), with a smaller nearly annual peak occurring during 

the exact timing when Southern Southeast Asia has its fire season. Southern Southeast Asia is 

affected every year by their own fires (from roughly August through October), without any 

observed secondary peak except for during two exceptionally dry years during the second very short 

dry season in February 2009 and the very end of 2013 (which would up maximizing in February 

2014, although it is beyond the end of the data analyzed in this paper). The representation in terms 

of the timing of the fires of Northern Southeast Asia was consistently good in terms of start time, 

length of the burning season, cessation of the burning, when compared against AERONET and 

MISR measurements. The representation in terms of timing over Southern Southeast Asia was not 

as good, but still quite acceptable when compared against AERONET and MISR measurements, 

with the duration of the fire season well captured in strong fire years, and the strongest part of the 

fire season captured in low fire years. 

 Bringing in different simultaneous measurements of land-surface variables, fires, 

precipitation, and column aerosol measurements, allows us to confirm that these patterns exist and 

are consistent with land-use burning. Given the difference in the timing and durations of the major 

monsoon seasons over these regions, the results are consistent. From this point, a simple regression-



fit model was established to predict the AOD from measurements of land-use change variables, 

fires, and precipitation, which should be the basis upon which fires start in the environment. These 

simple regression-fit models (based on MODIS and TRMM) reproduced the onset, duration, and 

magnitude of the measured AOD from other measured sources (MISR and AERONET) well over 

Northern Southeast Asia. The results of this regression-fit model demonstrate the ability to predict 

the AOD as observed by AERONET and MISR, using only measurements of land-use change 

variables and fires from MODIS, and precipitation from TRMM, measurements of some of the 

important and fundamental underlying factors controlling the fires. 

 These simple regression-fit models reproduced the onset, duration, cessation, and even the 

magnitude of the measured AOD from AERONET and MISR very well in Northern Southeast Asia. 

These simple regression-fit models also reproduced the onset, duration, and cessation, of the 

measured AOD from AERONET and MISR well well in Southern Southeast Asia, especially during 

the more intense burning years. The main issue in Southern Southeast Asia, however, was that the 

magnitude over this region was strongly underestimated. These results still underestimate the 

column loading, but by a magnitude of 30% or less, which is far better than the typical scaling 

factors applied of 1.7 (70%) or more, and consistent with the results in Cohen and Wang (2014) and 

Cohen (2014) which show that there is an underestimate in both the overall magnitude as well as in 

the fire magnitude, and that correcting for the former leads to an underestimate in the latter of 20% 

to 30%, The result is not only larger in magnitude than the GFED emissions products, but include 

regions which are considered to have zero emissions in the GFED data set, a worrying conclusion, 

since a value of 0 cannot be scaled up by a scaling factor. Some reasons for this include emissions 

sources which are more variable in space and time, such as the clearing of primary forests, peat 

burning, and rapid development; and other limiting reasons such as increased cloud cover reducing 

the number of available measurements over large portions of this region by a significant amount. 

Further, the inter-seasonal periods in Southern Southeast Asia tend to be both more rainy and more 



cloud-covered than in Northern Southeast Asia, due to large scale convection and other regional 

disturbances like the MJO and the IOD. 

 There is a strong and consistent change in the land use variables occurring during the local 

fire season over both Northern and Southern Southeast Asia, although these relationships, as 

expected, are different over the two regions due to different types of land-use change. The 

relationships between burning of primary forests, grasslands or crops, and peat should all be 

different. Additionally, there is an important secondary use for these relationships, determining 

whether the observed smoke is locally produced of transported from far upwind. For example, it is 

clearly noted that the land-use changes are much smaller during the second non-annually occurring 

peak in Northern Southeast Asia, implying that while there may be some contribution from local 

sources, that there is also a large amount of smoke which is transported from other regions. This 

comes from the idea that if the land itself did not change very much, then the emissions of smoke 

produced must have been considerably lower. The timing of this smaller peak matches the timing of 

the fire occurrence over Southern Southeast Asia with a very high level of correlation. Additionally, 

it also cannot be ruled out that the smoke could be urban pollution from South Asia. On the other 

hand, there is no evidence that any of the smoke in Southern Southeast Asia originates from any 

region other than its own sources. 

 Further, we explored the added value of using higher temporal resolution data, which is 

usually thought to add improved value. Due to the large amount of cloudiness encountered, there 

was a much reduced number of measurements available over Southern Southeast Asia during the 

fire season using 1-day average values as compared to 8-day average values, leading to less 

statistical relevance. In the end, it was not possible to have a reasonable reproduction of the 

measured AERONET and MISR values of the onset, duration, and ending of the fires using 1-day 

average MODIS and TRMM data as compared to when using 8-day average MODIS and TRMM 

measurements to develop the regression-fit relationships. Even with the 8-day average data and the 



associated regression-fit relationships, the magnitude of AOD during Southern Southeast Asia’s?s 

fire season is significantly too low, although in Northern Southeast Asia, it is low but not more than 

the magnitude of the uncertainty of the input measurements themselves. The correlation between 

the regression-fit model AOD and AERONET stations over the entire decadal time period, using 8-

day average MODIS data, ranges from R2=0.42 to R2=0.75. While monthly-average data from 

MODIS does not provide as fine resolution for the duration, onset, and end times of the fires, it 

provides the best match in terms of the magnitude of the AOD measurements from AERONET and 

MISR. However, when using MODIS data on a monthly average basis, the regression-fit model 

AOD gives a better performance with the correlation coefficient between AOD and AERONET 

stations ranging from R2=0.70 to R2=0.90. Furthermore, the correlation over the regions of interest 

S1 and S2 between the regression-fit model and MISR measurements of AOD ranges from R2=0.57 

to R2=0.81. This is due partially to less under-representation of very high short-term peaks, as well 

as additional data points being available in the MODIS fire and land use products at longer average 

time durations. This is a counter-intuitive result, with many in the community stressing the added 

value of higher frequency measurements, but one which is consistent with the fact that such space-

born measurements are severely limited by clouds over this region of the world during the fire 

season. MISR has shown to represent the magnitude of the AOD well, with the measurements from 

monthly-average MISR measurements and monthly-average AERONET measurements being 

basically the same. Therefore, the ability of the regression-fit model to capture the monthly-average 

AOD from both MISR and AERONET, in terms of both the inter-annual and intra-annual variability 

in the fire seasons, is significant, and shows that indeed the changes in the land surface and the 

impacts of precipitation are what are driving the atmospheric loading of AOD and hence the impact 

of the fires over this region on the decadal scale. Further, as it is widely known, peat can burn and 

smolder for am extended period of time after any measured fire has gone away, and therefore, by 

extending the average value for the fire, it allows for a better matching with the total emissions, 



which will continue to often be produced for weeks after any visible flame or surface heat is 

observed. Thusly, one of the important findings is to examine the most ideal temporal resolution at 

which to use the data, whether it be daily, weekly, or monthly. While most of the published 

literature leans towards using high frequency daily data (or individual swath-by-swath data, where 

available), we determine and validate that using weekly or monthly average data leads to a better 

ability to accurate reproduce the measured values, explain why that is the case, and then quantify 

some of the impacts and limitations of this result. 

 This study highlights the importance of taking into account land-use variable and 

precipitation for estimating AOD correctly both in time and magnitude, even if magnitude remains 

hard to capture on a 8-day basis. One significant bias in the magnitude of the results must be due to 

problems of the relationships over the region being not properly captured, such as the different 

anthropogenic driving forces of the land-clearing being significantly different over the two regions. 

A second significant bias in the magnitude is due to the fact that there is a significantly more cloud 

cover over the two regions during their local burning seasons(Giglio et al., 2003). These results 

support the efficacy of the approach introduced here: that it is appropriate to use measured changes 

in the land, precipitation, and active fires from MODIS and TRMM to reproduce a working model 

of the atmospheric aerosol loading. Furthermore, other than (Cohen, 2014; Cohen and Wang, 2014) 

there are no other works that have been able to satisfactorily estimate the loadings of or AOD 

associated with emissions aerosols over this region of the world, without using some type of 

scaling. This method is able to reproduce the magnitudes by introducing physical parameterizations 

of scaling, and doing so based on a more fundamental driver-based approach. This allows us to 

improve our understanding of the relationships, both in terms of how they vary over space and time, 

on one hand, and in terms of physical drivers, on the other. 
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Table 1. Average error and correlation between AOD at 0.55 microns from MODIS and 
reconstructed AOD with different thresholds : τ = P90(PC), τ = P87.5(PC), τ = P83.5(PC), and τ = 
P75(PC) on the Northern and Southern regions, obtained by using REG1 and REG2. 

Stations AODMODIS AODNorth AODSouth

Err/Corr (%) Err/Corr (%)

Chiang Mai All (218/598) -0.1/83 -0.1/75

Bac Giang All (154/598) -0.03/74 -0.06/42

Mukdahan All (238/598) -0.01/79 -0.01/69

Nghia Do All (79/598) -0.12/74 -0.14/42

Pimai All (120/598) 0.0/77 -0.01/57

Ubon Ratchathani All (99/598) -0.01/88 -0.02/61

Vientiane All (36/598) -0.08/83 -0.07/64

Chiang Mai Fire (62/151) -0.26/91 -0.26/64

Bac Giang Fire (46/151) -0.07/75 -0.24/33

Mukdahan Fire (74/151) -0.08/86 -0.15/49

Nghia Do Fire (15/151) -0.08/75 -0.5/62

Pimai Fire (45/151) -0.03/75 -0.12/43

Ubon Ratchathani Fire (23/151) -0.07/88 -0.22/80

Vientiane Fire (8/151) -0.14/93 -0.33/92

Jambi All (64/598) -0.12/51 -0.26/76

Kuching All (91/598) 0.06/75 0.13/66

Palangkaraya All (65/598) -0.11/71 -0.11/74

Singapore All (279/598) -0.02/29 0.01/44

Jambi Fire (6/74) -0.51/80* -0.54/71*

Kuching Fire (10/74) -0.28/80 -0.03/-9*

Palangkaraya Fire (6/74) -0.5/85 -0.45/31*

Singapore Fire (24/74) -0.23/-21* -0.09/8*



Table 2. Complementary information on AERONET stations: geographical location, data 
availability, average (µ) and standard deviation (σ) values for AOD, LAI, and NDVI from MODIS, 
and environment description. 
Table 2. Statistics over the respective Northern and Southern regions compared to the AERONET 
stations. Overlapped periods between the reconstructed AOD AODNorth/South  and AERONET are 
stated in parenthesis. Fire denotes data analyzed only during the fire season, while All denotes the 
entire data set. 

∗ not statistically significant at the p = 0.05 level.  

Region t = P90(PC) t = P87:5(PC) t  = P83:5(PC) t  = P75(PC)

Err/Corr(%) Err/Corr(%) Err/Corr(%) Err/Corr(%)

North (w/ Fire Count) -0.02/76 -0.02/78 -0.02/80 -0.01/83

North (w/o Fire Count) -0.02/69 -0.02/70 -0.02/71 -0.02/71

South (w Fire Count) -0.01/77 -0.01/78 -0.01/75 0.01/69

South (w/o Fire Count) -0.01/71 -0.01/70 -0.01/66 -0.01/57



Table 3. Average values of maximum AOD and average LAI and NDVI during the two annual 
AOD peaks over the Northern region for the 2001-2013 period. 

Stations Maximum AOD Average LAI Average NDVI

1st Peak (2nd Peak) 1st Peak (2nd Peak) 1st Peak (2nd Peak)

Bac Giang 0.89/0.74 0.44/1.1 0.37/0.58

Chiang Mai 0.5/0.4 2.3/2.97 0.56/0.7

Mukdahan 0.53/0.44 0.96/1.62 0.45/0.67

Nghia Do 0.9/0.71 0.87/1.45 0.39/0.54

Pimai 0.5/0.46 0.54/1.22 0.42/0.61

Ubon Ratchani 0.51/0.46 1.09/1.14 0.48/0.55

Vientiane 0.62/0.59 2.13/2.39 0.52/0.63

Jambi 0.98 2.92 0.68

Kuching 0.66 4.16 0.75

Palangkaraya 1.05 3.72 0.68

Singapore 0.87 1.71 0.4



Table 4. Statistics over the Northern region compared to the AERONET stations. Overlapped 
periods between the reconstructed AOD AODNorth  and AERONET are stated in parenthesis. Fire 
denotes data analyzed only during the fire season, while All denotes the entire data set. 



Table 5. Average values of maximum AOD and average LAI and NDVI during the annual AOD 
peak over the Southern region for the 2001-2013 period. 



Table 6. Statistics over the Southern region compared to the AERONET stations. Overlapped 
periods between AODSouth and AERONET are stated in parenthesis. Fire denotes data analyzed 
only during the fire season, while All denotes the entire data set. 

  

∗ not statistically significant at the p = 0.05 level. 



Table 7. Error and correlation between the reconstructed AOD versus AERONET and MISR on a 
monthly basis over the Northern region for the whole 2001-2013 period. Overlapped periods 
between AODSouth  and AERONET, on one hand, and between AODNorth and MISR on the other 
hand, are stated in parenthesis. 

  



Table 8. Error and correlation between the reconstructed AOD versus AERONET and MISR on a 
monthly basis over the Northern region for the whole 2001-2013 period. Overlapped periods 
between AODSouth  and AERONET, on one hand, and between AODSouth and MISR on the other 
hand, are stated in parenthesis. 

  

∗ not statistically significant at the p = 0.05 level. 



Figure 1. Domain with the two EOF regions highlighted and the location of the AERONET 
stations. Climatological values of LAI (first column) and NDVI (second column) for the 2001-2013 
period. Average values are displayed on the first line, while the standard deviation is displayed on 
the second line. 



Figure 2. First line: EOF1 (38.2% of variance) (a) and EOF2 (13.3% of variance) (b) of the AOD 
(2001-2013). Regions of highest AOD variability are delineated by black dots. Second line: PC1 
(cutoff 0.006, PC on the left hand axis, AOD on the right hand axis) (c) (red curve) and their 
associated AOD (green curve) averaged on the region. Third line: PC2 , (cutoff 0.01, PC on the left 
hand axis, AOD on the right hand axis) (d) (red curve) and their associated AOD (green curve) 
averaged on the region. 

(a) EOF1 (b) EOF2

(c) PC1 (cutoff=0.006)

(d) PC2 (cutoff=0.01)



Figure 3. Climatological values of LAI (first column) and NDVI (second column) for the 
2001-2013 period. Average values are displayed on the first line, while the standard deviation is 
displayed on the second line.Domain with the two EOF regions highlighted and the location of the 
AERONET stations. 

(a) LAI (mean) (b) NDVI (mean)

(c) LAI (standard deviation) (d) NDVI (standard deviation)



Figure 4. Regression Coefficients(δ1) associated to FireCountFire Count for REG1. Regions of 
highest AOD variability from the EOF analysis are delineated by black dots. 



Figure 5. Temporal series of 8-day AERONET AOD (black) and AODNorth (blue) at Bac Giang 
(a1), Nghia Do (b1), Pimai (c1), and Ubon Ratchathani (d1), Chiang Mai (a2), Mukdahan (b2), and 
Vientiane (c2) (2001-2013). All x-axes are the time coordinate from Jan 2001 through Dec 2013. 
All y-axes are the AOD. 

(a) Bac Giang

(b) Nghia Do

(c) Pimai

(d) Ubon Ratchathani



 

(a) Chiang Mai

(b) Mukdahan

(c) Vientiane



Figure 6. Temporal series of 8-day AERONET AOD (black) and AODNorth (blue) at Chiang Mai 
(a), Mukdahan (b), and Vientiane (c) (2001-2013). 



Figure 67. Temporal series of 8-day AERONET AOD (black) and AODSouth (blue) at Jambi (a), 
Kuching (b), Palangkaraya (c), and Singapore (d) (2001-2013). 

(a) Jambi

(b) Kuching

(c) Palangkaraya

(d) Singapore



Figure 78. Basic statistics between MISR and AODNorth (a,b) and AODSouth (a,b) on a monthly 
basis (2001-2013). Regions of highest AOD variability from the EOF analysis are delineated by 
black dots. Within the Northern Regionse dots, the mean correlation is 84.8% and the average is , 
while it is 77.3% in average (the mean errors isare 0.06 in both cases), while in the Southern Region 
the mean correlation is 79.2% and the average is 72.4%(mean error is 0.08).. The mean errors are 
given on the left hand side, while the correlations are given on the right hand side. 

(a) Mean error (b) Correlation

(a) Mean error (b) Correlation



Figure 9. Basic statistics between MISR and AODSouth on a monthly basis (2001-2013). Regions 
of highest AOD variability from the EOF analysis are delineated by black dots. Within these dots, 
the mean correlation is 79.2%, while it is 72.4% in average (the mean errors are 0.08 in both cases). 



Appendix A:  Regression coefficients for REG1 and REG2 associated with LAI and NDVI 
Figure A1. Regression coefficients associated to LAI for REG1 (a) and REG2 (b). 

(a) ↵1 with Reg1 (b) ↵1 with Reg2



Figure A2. Regression coefficients associated to NDVI for REG1 (a) and REG2 (b). 

(a) �1 with Reg1 (b) �1 with Reg2



Appendix B:  Results at the AERONET stations on a monthly basis 
Figure B1. Temporal series of AERONET AOD (black), AODNorth (blue), and AOD from MISR 
(red) at four stations of the Northern region (2001-2013). 

(a) Bac Giang

(b) Chiang Mai

(c) Mukdahan

(d) Nghia Do



Figure B2. Temporal series of AERONET AOD (black), AODNorth (blue), and AOD from MISR 
(red) at three stations of the Northern region (2001-2013). 

(a) Pimai

(b) Ubon Ratchathani

(c) Vientiane



Figure B3. Temporal series of AERONET AOD (black), AODNorth (blue), and AOD from MISR 
(red) at two stations of the Southern region (2001-2013). 

(a) Jambi

(b) Kuching

(c) Palangkaraya

(d) Singapore



Appendix C:  Geospatial locations of fires. 
Figure C1. Geospatial aggregate of all fires in January 2013 over Northern Southeast Asia and 
Southern Southeast Asia respectively. 
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Figure C2. Geospatial aggregate of all fires in September 2013 over Northern Southeast Asia and 
Southern Southeast Asia respectively. 
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Appendix D: Table D. Complementary information on AERONET stations: geographical location, 
data availability, average (µ) and standard deviation (σ) values for AOD, LAI, and NDVI from 
MODIS, and environment description. 

Stations Availability AOD LAI NDVI Other information

Bac Giang, VN 
(North)

2003-2009 m=0.57, r=0.28 m=0.68, r=0.43 m=0.45, 
r=0.15

Rural, surrounded by 
crops and industrial parks

Chiang Mai, TH 
(North)

2006-2013 m=0.29, r=0.17 m=2.19, r=0.77 m=0.61, r=0.07 Urban, surrounded by 
agricultural fields

Mukdahan, TH (North) 2003-2009 m=0.32, r=0.16 m=1.13, r=0.37 m=0.55, r=0.09 Rural, surrounded by 
agricultural fields

Nghia Do, VN (North) 2010-2013 m=0.57, r=0.29 m=0.92, r=0.59 m=0.42, r=0.15 Urban

Pimai, TH (North) 2003-2007 m=0.33, r=0.17 m=0.72, r=0.27 m=0.49, r=0.1 Rural, surrounded by 
agricultural fields

Ubon Ratchathani, Th 
(North)

2009-2012 m=0.33, r=0.17 m=1.03, r=0.33 m=0.52, r=0.07 Semi-urban, surrounded by 
agricultural fields

Vientiane, LA (North) 2011-2012 m=0.35, r=0.21 m=2.03, r=0.45 m=0.55, r=0.08 Semi-urban, surrounded by 
agricultural fields

Jambi, ID (South) 2012-2013 m=0.36, r=0.31 m=2.72, r=1.48 m=0.66, r=0.11 Rural, surrounded by jungle

Kuching, MY (South) 2011-2013 m=0.31, r=0.32 m=3.75, r=1.65 m=0.7, r=0.1 Rural, surrounded by jungle

Palangkaraya, ID 
(South)

2012-2013 m=0.3, r=0.37 m=3.21, r=1.43 m=0.69, r=0.11 Rural, surrounded by jungle

Singapore, SG 
(South)

2006-2013 m=0.34, r=0.25 m=2.38, r=1.29 m=0.42, r=0.06 Urban



Appendix E: Table E. Error and correlation between the reconstructed AOD versus AERONET 
and MISR on a monthly basis over the Northern region for the whole 2001-2013 period. 
Overlapped periods between AODNorth, AODSouth, and AERONET, on one hand, and between 
AODNorth, AODSouth, and MISR on the other hand, are stated in parenthesis. 

∗ not statistically significant at the p = 0.05 level. 

Stations AERONET MISR

Err/Corr(%) Err/Corr(%)

Chiang Mai (65/156) – (129/156) -0.09/82 0.02/77

Bac Giang (49/156) – (127/156) -0.03/73 0.1/72

Mukdahan (72/156) – (135/156) 0.0/78 0.04/79

Nghia Do (28/156) – (133/156) -0.12/83 0.07/71

Pimai (41/156) – (145/156) 0.02/70 0.03/66

Ubon Ratchathani (32/156) – (136/156) 0.0/90 0.05/74

Vientiane (15/156) – (127/156) -0.01/76 0.02/81

Jambi (18/156) – (79/156) -0.14/57 0.06/69

Kuching (25/156) – (114/156) -0.06/71 0.1/64

Palangkaraya (18/156) – (102/156) -0.11/73 0.04/79

Singapore (78/156) – (122/156) -0.11/-2* 0.04/57


