doi:10.5194/acpd-15-2679-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Secondary Organic Aerosol (SOA) formation from the β-pinene $+\mathbf{N O}_{3}$ system: effect of humidity and peroxy radical fate

C. M. Boyd et al.

Correspondence to: N. L. Ng (ng@chbe.gatech.edu)

Formaldehyde needed for dry " $\mathbf{R O}_{\mathbf{2}} \mathbf{+} \mathbf{H O}_{\mathbf{2}}$ dominant" Experiments

Formaldehyde is added to the chamber in order to enhance the $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ chemistry. Without formaldehyde injection, simulation results based on the Master Chemical Mechanism (Equations are given at the end of Supplement) show that $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ would be the dominant fate. However, once sufficient formaldehyde is added to the chamber experiments, we determine that the $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ pathway is substantially greater than the $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ pathway.

To determine the concentration of formaldehyde needed to favor the $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ channel significantly over the $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ channel, a comparison of relative reaction rates is required. Specifically, in order to favor a branching ratio of $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ to $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ by 95% (19:1), it is necessary that

$$
\begin{align*}
& k_{\mathrm{RO}_{2}+\mathrm{HO}_{2}}\left[\mathrm{HO}_{2}\right]\left[\mathrm{RO}_{2}\right]=19 k_{R O_{2}+R O_{2}}\left[\mathrm{RO}_{2}\right]\left[\mathrm{RO}_{2}\right] \tag{SR1}\\
& k_{R O_{2}+\mathrm{HO}_{2}}\left[\mathrm{HO}_{2}\right]=19 k_{R O_{2}+\mathrm{RO}_{2}}\left[\mathrm{RO}_{2}\right] \tag{SR2}\\
& k_{R O_{2}+\mathrm{HO}_{2}} \frac{d\left[\mathrm{HO}_{2}\right]}{d t}=19 k_{R O_{2}+R O_{2}} \frac{d\left[\mathrm{RO} O_{2}\right]}{d t} \tag{SR3}
\end{align*}
$$

Rates of production for each radical can then be used as a surrogate for the approximate concentrations as the radicals are expected to be consumed immediately upon production. The rates of production are:

$$
\begin{align*}
& \frac{d\left[\mathrm{HO}_{2}\right]}{d t}=k_{\mathrm{HCHO}+\mathrm{NO}_{3}}[\mathrm{HCHO}]\left[\mathrm{NO}_{3}\right] \tag{SR4}\\
& \frac{d\left[\mathrm{RO}_{2}\right]}{d t}=k_{\beta p \mathrm{in}+\mathrm{NO}_{3}}[\beta \mathrm{pin}]\left[\mathrm{NO}_{3}\right] \tag{SR5}
\end{align*}
$$

Thus equation SR3 becomes:

$$
\begin{align*}
& k_{\mathrm{RO}_{2}+\mathrm{HO}_{2}} k_{\mathrm{HCHO}+\mathrm{NO}_{3}}[\mathrm{HCHO}]\left[\mathrm{NO}_{3}\right]= \tag{SR6}\\
& 19 k_{\mathrm{RO}_{2}+\mathrm{RO}_{2}} k_{\beta \text { pin }+\mathrm{NO}_{3}}[\beta \mathrm{pin}]\left[\mathrm{NO}_{3}\right] \\
& k_{\mathrm{RO}_{2}+\mathrm{HO}_{2}} k_{\mathrm{HCHO}+\mathrm{NO}_{3}}[\mathrm{HCHO}]=19 k_{\mathrm{RO}_{2}+\mathrm{RO}_{2}} k_{\beta \text { pin }+\mathrm{NO}_{3}}[\beta \mathrm{pin}] \tag{SR7}
\end{align*}
$$

Therefore, the ratio of formaldehyde to β-pinene should be $\left(\mathrm{k}_{\mathrm{RO} 2+\mathrm{RO} 2}=9.2 \mathrm{E}-14 \mathrm{~cm}^{3}\right.$ molecules $^{-1}$ $\mathrm{s}^{-1} ; \mathrm{k}_{\beta \mathrm{pin}+\mathrm{NO} 3}=2.5 \mathrm{E}-12 \mathrm{~cm}^{3}$ molecules $^{-1} \mathrm{~s}^{-1} ; \mathrm{k}_{\mathrm{RO} 2+\mathrm{HO} 2}=9.2 \mathrm{E}-14 \mathrm{~cm}^{3}$ molecules $^{-1} \mathrm{~s}^{-1} ; \mathrm{k}_{\mathrm{HCHO}+\mathrm{NO} 3}=$ $5.5 \mathrm{E}-16 \mathrm{~cm}^{3}$ molecules s^{-1}, all rate constants are from MCM v3.2 (Saunders et al., 2003)):

$$
\begin{equation*}
\frac{[\mathrm{HCHO}]}{[\beta \text { pin }]}=\frac{19 k_{\mathrm{RO}_{2}+\mathrm{RO}_{2}} k_{\text {Rpin }+\mathrm{NO}}^{3}}{} k_{\mathrm{RO}_{2}+\mathrm{HO}_{2} k_{\mathrm{HCHO}+\mathrm{NO}}^{3}} \quad 350 \tag{SR8}
\end{equation*}
$$

Results from Filter Sample Analysis

The UHPLC-MS total ion chromatogram for a typical " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" experiment under dry conditions is displayed in Fig. S4, which also represents the features observed in all other experiments under dry and humid conditions. Excluding the solvent peak at $\sim 0.2 \mathrm{~min}$ and discarding the presence of any relevant species in the controls, the chromatogram in Fig. S4 reveals peaks with retention times of $3.26,3.28,6.19,6.27,7.03$, and 7.08 min . These peaks are displayed in the extracted ion chromatograms (EIC) for species with $m / z 489,244,473,489,505$ and 522.

The collisional induced dissociation (CID) of the peak at $\sim 3.26 \mathrm{~min}$ is displayed in Fig. S 5 for the interval 30-70 V. Clearly, two anions with $\mathrm{m} / \mathrm{z} 244$ and 489 are observed at 3.26 min under low fragmentation voltage (30 and 40 V). The prominent peak $\mathrm{m} / \mathrm{z} 290$ is mainly due the presence of an adduct of the parent peak with formic acid: $[\mathrm{M}-\mathrm{H}]+\mathrm{HCOOH}=244+46=290$. Support for the previous observation is also based on the appearance of the adduct $[\mathrm{M}-\mathrm{H}]+$ $\mathrm{CH}_{3} \mathrm{COOH}=244+60=304$ in the presence of acetic acid, instead of formic acid, in the mobile phase. The ion observed at $\mathrm{m} / \mathrm{z} 197$ becomes more intense at higher fragmentation voltage before starting to break apart above 60 V . The parent peak $\mathrm{m} / \mathrm{z} 244$ must undergo the concerted loss of nitrous acid, HNO_{2}, to produce $m / z 197$. The loss of HNO_{2} explains the change from an even to an odd mass, which may be facilitated by intramolecular hydrogen transfer from the hydroxyl group to the leaving $-\mathrm{NO}_{2}$ moiety, leaving a carboxylate group as a rearranged fragment. The confirmation of the presence of a -COOH group in the neutral molecule with molecular mass 245 amu arises from the decarboxylative loss of 44 amu from the fragment ion $\mathrm{m} / \mathrm{z} 197$ that generates a new fragment at $m / z 153$.

The MS peak at $m / z 489$ in Fig. S5 does not show the formation of either a formic acid or an acetic acid adduct. In addition, the lack of a constant ratio for the ion count of species at $\mathrm{m} / \mathrm{z} 244$ and 489 in all experiments suggests that different formation pathways result in both products. The careful analysis of the data presented showing the formation of formate or acetate adducts for the species at $m / z 244$, and its excellent ionization at very low fragmentation voltage suggest that the co-eluting species at $m / z 489$ should be a carboxylic acid molecule in the mechanistic scheme (Fig. S6) to be presented below.

The chromatographic peak eluting at 6.19 min in Fig. S4 displayed as an EIC for $\mathrm{m} / \mathrm{z} 505$ with broad features corresponds to a species with molecular weight (MW) of 506 amu . Given the nitrogen rule, this species with even MW must contain an even number of nitrogen atoms. The combination of two β-pinene molecules, which have incorporated nitrate radicals, provides a starting mass of 396 amu for this species. The mass difference $(506-396) \mathrm{amu}=110 \mathrm{amu}$ eliminates the possibility of including a third β-pinene molecule or two more nitrate radicals in this product. Therefore, a general formula of $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{13}$ is assigned to this species. The ring and double bond equivalency (RDB) defines the number of unsaturated bonds in the compound:

$$
\begin{equation*}
R D B=1+\frac{\sum_{i}^{i_{\max }} N_{i}\left(V_{i}-2\right)}{2} \tag{SR17}
\end{equation*}
$$

where $i_{\max }$ is the total number of different elements in the molecular formula, N_{i} is the number of atoms of element i, and V_{i} is the valence of atom I (Pavia et al., 2008). For $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{13}, \mathrm{RDB}=$ 7 from limiting the calculated formulas that make sense chemically, a $-\mathrm{C}=\mathrm{O}$ group should be included in the structures of the mechanism forming species with this MW. Similarly, the EIC for $\mathrm{m} / \mathrm{z} 522$ shows a broad peak that could correspond to a less polar isomer species eluting at 6.27 min . A molecular structure with two β-pinene units and an odd number of nitrogen atoms is assigned to be $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{13}(\mathrm{MW}=523 \mathrm{amu})$ with $\mathrm{RDB}=6$ in the mechanism presented below.

Remarkably, a second species with $m / z 489$ elutes at 7.09 min in the EIC of Fig. S4, which possesses a carbonyl group absorbing with $\lambda_{\max }=275 \mathrm{~nm}$ in the UV-visible spectrum. This molecule elutes later in the chromatogram, in the region of species with lower polarity -without a - COOH group- because it corresponds to a less polar structural isomer than that eluting at 3.26
min. The most likely general formula for this species is $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{12}(\mathrm{MW}=490)$ with RDB $=7$, shown as the non-carboxylic acid structure in the mechanism introduced in the next section. A slightly lighter species with $\mathrm{m} / \mathrm{z} 473(\mathrm{MW}=474 \mathrm{amu})$ and retention time of 7.03 min also contains a carbonyl group in the UV-visible spectrum. The even molecular weight of this molecule indicates a species with an even number of nitrogen atoms. The similar retention times between both species ($\mathrm{m} / \mathrm{z} 474$ and 490) and the mass difference of only 16 amu suggests a common molecular structure that differs by one oxygen atom. The molecular formula $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{11}(\mathrm{MW}=474 \mathrm{amu})$ is represented by the proposed structures displayed in Fig. S6.

Figure S6 shows the further oxidation of some of the products shown in Fig. 8 of the main text. Panel A of Fig. S6 shows the hydroxycarbonyl nitrate product with MW = 229 amu can be further oxidized to the peroxy radical \mathbf{V} by hydrogen abstraction from C_{4} (R27) and subsequent reaction with oxygen (R28). Hydrogen abstraction from the dihydroxycarbonyl nitrate generated from \mathbf{V} by R29 occurs preferentially on a $-\mathrm{CH}_{3}$ group (C_{9} or C_{10}) by R30, proceeding through an alkyl radical with true trigonal pyramidal geometry, an unfavorable intermediate for $\mathrm{C}_{5}, \mathrm{C}_{7}$, and C_{8} due to the geometric constrains imposed by the cyclobutane ring (Vereecken and Peeters, 2012). Less likely is the abstraction occurring at C_{4}, due to both the hindrance created by the alcohol substituent and the slight strain from the adjacent butane ring. Addition of O_{2} is also included in R30 (Atkinson and Arey, 2003), resulting in a peroxy radical W. Reaction R31 for $\mathbf{W}+\mathbf{L}^{\prime}$ produces an alcohol ($\mathrm{R}^{31} \mathrm{OH}$) which can undergo a second H -abstraction by step 1 of R 32 at the same carbon, $\mathrm{C}_{10} . \mathrm{C}_{10}$ is slightly more electropositive than C_{9} due to the hydroxyl substituent, and abstraction of the only H remaining at the more hindered C_{4} of W is less likely to occur than at C_{10}. Step 2 of R32 shows the formation of a peroxy radical \mathbf{Y} through combination with molecular oxygen (Atkinson and Arey, 2003). Panel B shows the oxidation of the hydroxynitrate acid product, $\mathrm{R}^{20} \mathrm{COOH}$, through hydrogen abstraction and reaction with molecular oxygen in R33 to peroxy radical X. Panel C shows in reaction R34 how a second nitrate radical can add to the newly generated double bond of the hydroxynitrate product of R7 (Fig. 8, main text). The nitrate radical adds to the less substituted C_{7}, leaving a relatively stable tertiary alkyl radical on C_{2}, which combines with O_{2} via reaction R 35 to form a peroxy radical \mathbf{Z}.

Figure $\mathbf{S 7}$ shows how intermediates presented in Fig. 8 of the main text, \mathbf{S}, \mathbf{T}, and \mathbf{U} combine with radicals $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ presented in Fig. S6 to produce the heavier MW products observed in aerosol filter extracts by UHPLC-MS via $\mathrm{RO}_{2}+\mathrm{RO}_{2}$ reactions. It is noted that each product in Fig. S7 may be formed from the combination of other intermediates not explicitly drawn in Fig. 8 in the main text and Fig. S6. These findings are in agreement with previous work showing the formation of organic peroxides during the oxidation of terpenes (Ng et al., 2008; Venkatachari and Hopke, 2008; Docherty et al., 2005). Figure S7 shows that the major heavy MW species in the UHPLC chromatogram of Fig. S4 can be generated from the same early oxidation intermediates \mathbf{S}, \mathbf{T}, and \mathbf{U}, implying the possible existence of more than one isomer for each mass. The later observation is consistent with the EIC in Fig. S4 showing broad peaks in the UHPLC-MS for $m / z 505,522$, and the later 489, and a clear shoulder for $m / z 473$.

Model Calculations for " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" Experiments

To ensure that the reaction conditions are favorable for the $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ reaction, a simple chemical model is developed using the Master Chemical Mechanism (MCM v3.2) as a basis (Saunders et al., 2003). Reactions and their rate constants are shown in Table S1. The RO_{2} fate in a typical " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" experiment (Experiment 5 in Table 1 of the main text) is shown in Fig. S9.

References

Atkinson, R., and Arey, J.: Gas-phase Tropospheric Chemistry of Biogenic Volatile Organic Compounds: A Review, Atmos. Environ., 37, 197-219, 2003.

Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of Organic Peroxides to Secondary Aerosol Formed from Reactions of Monoterpenes with O_{3}, Environ. Sci. Technol, 39, 4049-4059, 2005.

Neuman, J. A., Nowak, J. B., Huey, L. G., Burkholder, J. B., Dibb, J. E., Holloway, J. S., Liao, J., Peischl, J., Roberts, J. M., Ryerson, T. B., Scheuer, E., Stark, H., Stickel, R. E., Tanner, D. J., and Weinheimer, A.: Bromine measurements in ozone depleted air over the Arctic Ocean, Atmos. Chem. Phys., 10, 6503-6514, 10.5194/acp-10-6503-2010, 2010.

Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., and Flagan, R. C.: Secondary Organic Aerosol (SOA) Formation from Reaction of Isoprene with Nitrate Radicals (NO_{3}), Atmos. Chem. Phys., 8, 41174140, 2008.

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic Aerosol Yields, Environ. Sci. Technol., 30, 2580-2585, 10.1021/es850943+, 1996.

Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J.: Introduction to spectroscopy, Cengage Learning, 2008.

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., andWine, P. H.: Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation Number 17, Jet Propulsion Laboratory, 2011.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of nonaromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161-180, 2003.

Venkatachari, P., and Hopke, P. K.: Characterization of Products formed in the Reaction of Ozone with α-pinene: Case for Organic Peroxides, J. Environ. Monitor., 10, 966-974, 2008.

Vereecken, L., and Peeters, J.: A Theoretical Study of the OH-initiated Gas-phase Oxidation Mechanism of b-pinene $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right)$: First Generation Products, Phys. Chem. Chem. Phys., 14, 3802-3815, 10.1039/C2CP23711C, 2012.

Table S1: List of reactions and their rate constants for the β-pinene $+\mathrm{NO}_{3}$ system. Reactions are adapted from MCMv3.2 (Saunders et al., 2003) ${ }^{\text {a }}$.

Reaction:	Rate Constant:
$\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$	$3.2 \cdot 10^{-17} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-16}$
$\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$	$6.7 \cdot 10^{-12} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-16}$
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}_{3}$	$2.2 \cdot 10^{-1} \mathrm{~s}^{-1 \mathrm{~b}}$
$\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{HO}_{2}+\mathrm{O}_{2}$	$7.3 \cdot 10^{-14} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-16}$
$\mathrm{OH}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$	$1.1 \cdot 10^{-10} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1 \mathrm{~b}}$
$\mathrm{HO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+2 \mathrm{O}_{2}$	$1.9 \cdot 10^{-15} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-16}$
$\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$	$1.4 \cdot 10^{-12} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-16}$
$\mathrm{NO}+\mathrm{HO}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{OH}$	$8.1 \cdot 10^{-12} \mathrm{cc}_{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1 \mathrm{~b}}$
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{NO}_{2}$	$1.9 \cdot 10^{-14} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-16}$
$\mathrm{NO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2}$	$2.6 \cdot 10^{-11} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1 \mathrm{~b}}$
$\mathrm{HCHO}+\mathrm{NO}_{3} \rightarrow \mathrm{HNO} 3+\mathrm{CO}+\mathrm{HO}_{2}$	$5.5 \cdot 10^{-16} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
β-pinene $+\mathrm{NO}_{3}+\mathrm{O}_{2} \rightarrow$ NBPINAO2	$0.8 \cdot 2.51 \cdot 10^{-12}$ cc molecules ${ }^{-1} \mathrm{~s}^{-1}$
β-pinene $+\mathrm{NO}_{3}+\mathrm{O}_{2} \rightarrow$ NBPINBO2	$0.2 \cdot 2.51 \cdot 10^{-17} \mathrm{cc}$ molecules ${ }^{-1} \mathrm{~s}^{-1}$
β-pinene $+\mathrm{O}_{3}+\mathrm{O}_{2} \rightarrow$ NOPINONE +CH 200 F	$0.4 \cdot 1.5 \cdot 10^{-17} \mathrm{cc}_{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
β-pinene $+\mathrm{O}_{3}+\mathrm{O}_{2} \rightarrow$ NOPINOOA +HCHO	$0.6 \cdot 1.5 \cdot 10^{-17} \mathrm{cc}_{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{HO}_{2} \rightarrow$ NBPINAOOH	$2.09 \cdot 10^{-11} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{NO} \rightarrow$ NBPINAO	$9.04 \cdot 10^{-12} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{NO}_{3} \rightarrow$ NBPINAO	$2.3 \cdot 10^{-12}$ cc molecules ${ }^{-1} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{RO}_{2} \rightarrow$ NBPINAO	$0.7 \cdot 9.2 \cdot 10^{-14} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
NBPINAO \rightarrow NOPINONE $+\mathrm{HCHO}+\mathrm{NO}_{2}$	$10^{6} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{RO}_{2} \rightarrow$ BPINBNO3	$0.3 \cdot 9.2 \cdot 10^{-14} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1}$
NBPINBO2 $+\mathrm{HO}_{2} \rightarrow \mathrm{NBPINBOOH}$	$2.09 \cdot 10^{-11} \mathrm{cc} \mathrm{molecules}^{-1} \mathrm{~s}^{-1}$
NBPINBO2 + NO \rightarrow NBPINBO	$9.04 \cdot 10^{-12} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
NBPINBO2 $+\mathrm{NO}_{3} \rightarrow$ NBPINBO	$2.3 \cdot 10^{-12} \mathrm{cc}$ molecules ${ }^{-1} \mathrm{~s}^{-1}$
NBPINBO2 $+\mathrm{RO}_{2} \rightarrow$ NBPINBO	$0.6 \cdot 2 \cdot 10^{-12} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
NBPINAO \rightarrow NOPINONE $+\mathrm{HCHO}+\mathrm{NO}_{2}$	$7 \cdot 10^{3} \mathrm{~s}^{-1}$
NBPINAO2 $+\mathrm{RO}_{2} \rightarrow$ BPINANO3	$0.2 \cdot 2 \cdot 10^{-12} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$

NBPINAO2 + $\mathrm{RO}_{2} \rightarrow \mathrm{NC} 91 \mathrm{CHO}$	$0.6 \cdot 2 \cdot 10^{-12}$ cc molecules ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CHO}+\mathrm{NO}_{3} \rightarrow \mathrm{NC} 91 \mathrm{CO} 3$	$2.32 \cdot 10^{-14} \mathrm{cc}$ molecules ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{HO}_{2} \rightarrow \mathrm{NC} 91 \mathrm{CO} 3 \mathrm{H}$	$0.56 \cdot 1.39 \cdot 10^{-11}$ cc molecules $^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{HO}_{2} \rightarrow \mathrm{NOPINONE}+\mathrm{NO} 3+\mathrm{OH}+\mathrm{HCHO}$	$0.44 \cdot 1.39 \cdot 10^{-11} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{NO} \rightarrow \mathrm{NOPINONE}+\mathrm{HCHO}+2 \mathrm{NO}_{2}$	$1.98 \cdot 10^{-11} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{NO}_{2} \rightarrow \mathrm{NC} 91 \mathrm{PAN}$	$9.4 \cdot 10^{-12} \mathrm{cc}$ molecules ${ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{PAN} \rightarrow \mathrm{NC} 91 \mathrm{CO} 3+\mathrm{NO}_{2}$	$3.0 \cdot 10^{-4} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{NO}_{3} \rightarrow \mathrm{NOPINONE}+\mathrm{HCHO}+2 \mathrm{NO}_{2}$	$4.0 \cdot 10^{-12} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{NC} 91 \mathrm{CO} 3+\mathrm{RO}_{2} \rightarrow \mathrm{NOPINONE}+\mathrm{HCHO}+\mathrm{NO}_{2}$	$10^{-11} \mathrm{cc} \mathrm{molecules}^{-1} \mathrm{~s}^{-1}$
CH2OOFA \rightarrow CH2OO	$0.37 \cdot 10^{6} \mathrm{~s}^{-1}$
CH2OOFA \rightarrow CO	$0.5 \cdot 10^{6} \mathrm{~s}^{-1}$
CH2OOFA $\rightarrow \mathrm{HO}_{2}+\mathrm{CO}+\mathrm{OH}$	$0.13 \cdot 10^{6} \mathrm{~s}^{-1}$
$\mathrm{CH} 2 \mathrm{OO}+\mathrm{CO} \rightarrow \mathrm{HCHO}$	$1.2 \cdot 10^{-15} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1}$
$\mathrm{CH} 2 \mathrm{OO}+\mathrm{NO} \rightarrow \mathrm{HCHO}$	$1.0 \cdot 10^{-14} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{CH} 2 \mathrm{OO}+\mathrm{NO}_{2} \rightarrow \mathrm{HCHO}$	$1.0 \cdot 10^{-15} \mathrm{cc}$ molecules $^{-1} \mathrm{~s}^{-1}$
$\mathrm{CH} 2 \mathrm{OO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCHO}$	$6.0 \cdot 10^{-18} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$
$\mathrm{CH} 2 \mathrm{OO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOOH}$	$1.0 \cdot 10^{-17} \mathrm{cc}^{\text {molecules }}{ }^{-1} \mathrm{~s}^{-1}$

${ }^{\text {a }}$ Unless otherwise noted, all reaction rates are from MCM v. 3.2
${ }^{\mathrm{b}}$ Reaction rates are from Sander et al. (2011) and the references therein

Figure S1: Chemical Ionization Mass Spectrometry (CIMS) spectra for a typical " $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ dominant" experiment under dry conditions showing the major gas-phase compounds from the β pinene $+\mathrm{NO}_{3}$ reaction. The measured species are proposed to be organic nitrates due to their odd molecular weights. The specific molecular formulas for the ions shown are inferred from the chemical mechanism (Fig. 8, main text).

Figure S2: CIMS time series for $m / z 358$ for the β-pinene $+\mathrm{NO}_{3}$ reaction at all conditions. m / z 358 corresponds to a molecule-iodide adduct where the molecule has a molecular weight of 231 amu. The signal is normalized to the instrument sensitivity to Br_{2} to account for any sensitivity changes in the CIMS (Neuman et al., 2010). The species at $m / z 358$ is proposed to be either from a hydroperoxide (ROOH) or a dihydroxynitrate. It is significantly higher in experiments where $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ is the dominant reaction pathway. Gaps in the data are from periodic measurements of the CIMS background. It is noted that the data shown above have not been corrected for CIMS background.

Figure S3: The yields for the experiments using $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$ seed (circles) reported alongside the yields for the experiments using $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ seed (red curve) in " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" experiments. As seen in this figure, results from the experiments with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$ seed are in agreement with the yield curve generated by the two-product model (Odum et al., 1996) for experiments conducted in the presence of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ seed.

Figure S4: Total (bottom panel and left axis) and extracted (top panel and right axis) ion chromatogram (EIC) for eluting peaks at $m / z 244,489,505,522$, and 473, and 489 in the UHPLC-MS chromatogram of a " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" experiment under dry conditions, in the presence of 0.1 mM HCOOH (fragmentor voltage $=50 \mathrm{v}$). The box shows the EIC for $\mathrm{m} / \mathrm{z} 244$ using $0.4 \mathrm{mM} \mathrm{CH}_{3} \mathrm{COOH}$ instead of HCOOH (fragmentor voltage $=30 \mathrm{v}$).

Figure S5: Collisional induced dissociation mass spectra of chromatographic peak in Fig. S4 at $3.27 \pm 0.03 \mathrm{~min}$ between 30 and 70 V .

Figure S6: Proposed pathways for the further oxidation of products proposed in Fig. 8 of the main text. Named radicals are proposed to react to form the higher molecular weight species in Fig. S7.

Figure S7: Proposed pathways for the production of organic peroxides from radicals \mathbf{S}, \mathbf{T}, and \mathbf{U} (Fig. 8, main text) by reaction with radicals $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}$, and \mathbf{Z} (Fig. S6, Supplement).

Figure S8: The yields for nucleation experiments for all conditions are reported alongside the yields for experiments with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ seed. The yields from the nucleation and seeded experiments in the " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ dominant" experiments are in agreement with each other while the " $\mathrm{RO}_{2}+\mathrm{HO}_{2}$ dominant" experiments are significantly lower than under seeded conditions. The y-axis error bars represent uncertainty in yield calculated by an 8% uncertainty in chamber volume, 5% uncertainty in hydrocarbon injection, and one standard deviation of the aerosol volume measured by SMPS at peak growth.

Figure S9: The RO_{2} branching ratio for a typical " $\mathrm{RO}_{2}+\mathrm{NO}_{3}$ " dominant experiment (Experiment 5 in Table 1 of the main text). The branching ratio is determined from the reactions in the Master Chemical Mechanism (MCM v 3.2). The plot shows the cumulative amount of products formed from each possible fate of RO_{2} radicals.

