
Reply	to	reviewer	#1		1	
	2	
The	authors	would	like	to	thank	the	reviewer	for	the	positive	evaluation	of	the	3	
manuscript,	the	careful	reading	and	the	useful	comments	and	suggestions.	4	
	5	
The	following	are	our	point-to-point	responses	to	the	reviewer’s	comments.	6	
Reviewer’s	comments	are	in	italic	type.	7	
	8	
However,	my	main	criticism	on	the	manuscript	is	that	the	authors	present	diurnally	9	
averaged	aerosol	DRE	based	on	instantaneous	measurements	only,	and	argue	that	this	10	
is	better	than	previous	studies	that	presented	instantaneous	DRE,	with	the	argument	11	
that	diurnally	averaged	vales	are	easier	to	compare.	However,	the	assumptions	made	12	
by	the	authors	in	order	to	derive	diurnally	averaged	aerosol	DRE,	introduce	large	13	
uncertainties	in	the	presented	results	which	are	not	evaluated.	Instead	of	a	diurnally	14	
averaged	DRE,	the	authors	in	fact	derive	an	instantaneous	DRE,	convolved	with	the	15	
diurnally	varying	solar	radiation.	In	the	error	analysis,	all	or	most	uncertainties	in	the	16	
retrieval	are	evaluated,	but	the	uncertainties	of	keeping	the	AOD,	COD	and	cloud	17	
fraction	constant	over	the	day	are	not,	which	will	have	a	much	larger	effects	on	the	18	
diurnally	averaged	aerosol	DRE	than	aerosol	microphysical	property	assumption	or	19	
retrieval	uncertainties.	Therefore,	the	manuscript	should	clearly	state	that	the	20	
retrieved	parameter	is	in	fact	instantaneous	ACA	DRE	for	cloud	scenes	only,	while	the	21	
presented	results	are	an	estimation	of	the	global,	diurnally	averaged,	ACA	DRE	using	22	
the	very	simple	assumption	that	all	cloud	and	aerosol	parameters	are	kept	constant	23	
throughout	the	day.	The	argument	that	it	makes	the	quantity	more	easily	comparable	24	
is	not	convincing,	since	an	instantaneous	DRE	multiplied	by	cloud	fraction	and	25	
diurnally	averaged	solar	irradiance	will	give	similar	results,	at	least	with	the	same	26	
large	uncertainties.	27	
	28	
Reply:	We	completely	agree	(and	we	pointed	it	out	clearly	in	the	manuscript)	that	29	
ignoring	the	cloud	diurnal	cycle	induces	substantial	uncertainty	in	our	DRE	30	
computation.	In	fact	the	leading	author	is	among	the	first	to	elucidate	this	31	
uncertainty	in	a	theoretical	study	[Min	and	Zhang,	2014].		32	
	33	
However,	accounting	for	the	cloud	diurnal	cycle	is	very	challenging	and	something	34	
we	do	not	have	the	capability	to	do	at	present.	The	main	problem	is	the	lack	of	35	
observations.	Polar-orbiting	satellite	like	MODIS	only	provides	observations	once	a	36	
day	in	most	part	of	the	globe.	Geostationary	satellites	provide	continuous	37	
observation	only	in	certain	regions.	Simply	put	there	are	no	satellite	datasets	that	38	
provide	high-frequency	(e.g.,	hourly)	cloud	property	retrievals	(at	least	cloud	39	
fraction,	cloud	phase,	cloud	top	height,	cloud	optical	thickness	and	cloud	effective	40	
radius)	on	global	scales.		41	
	42	



The	cloud	diurnal	cycle	is	hard	to	get	even	at	regional	scales.	As	we	pointed	out	at	43	
the	end	of	the	manuscript,	the	SEVIRI	(Spinning	Enhanced	Visible	and	Infrared	44	
Imager)	on	board	of	the	European	satellite	MSG	(Meteosat	Second	45	
Generation	spacecraft),	provides	diurnal	observation	in	the	SE	and	TNE	Atlantic	46	
region.	But	we	checked	the	operational	SEVIRI	data	product	from	eumetsat	47	
(http://navigator.eumetsat.int/discovery/Start/DirectSearch/DetailResult.do?f(r0)48	
=EO:EUM:CM:MSG:CLAAS_V001),	and	it	only	provides	monthly	mean	cloud	diurnal	49	
observations.	We	are	not	sure	how	useful	this	dataset	is	for	DRE	computations,	50	
because	of	the	day-to-day	variations	of	both	clouds	and	aerosols.	The	MODIS	science	51	
team	led	by	Dr.	Steven	Platnick	and	Kerry	Meyer,	are	collaborating	with	European	52	
team	to	develop	a	MODIS-like	diurnal	cloud	property	retrieval	data	set	from	SEVIRI,	53	
but	this	is	not	available	yet.		When	this	dataset	becomes	available,	we	plan	to	use	it	54	
in	conjunction	with	CALIOP	or	a	new	MODIS	[Meyer	et	al.,	2015]	ACA	retrievals	to	55	
derive	the	“true”	diurnally	averaged	DRE	for	ACA.	But	this	is	still	at	the	research	56	
stage	and	will	require	substantial	additional	effort,	so	it	has	to	be	left	as	future	work.			57	
		58	
	59	
My	main	concerns	are	with	section	4.1:	60	
eq	1:	the	1/24	normalisation	factor	seems	strange.	It	is	probably	based	on	some	61	
integration	over	time	in	steps	of	one	hour,	but	this	is	nowhere	explained.	Furthermore,	62	
only	integration	over	solar	irradiance	remain,	which	is	likely	available	in	higher	63	
resolution	than	once	per	hour.	64	
	65	
Reply:	Thanks	for	bringing	this	up.	In	this	study	we	compute	the	instantaneous	DRE	66	
every	hour	during	the	daytime	and	obtain	the	diurnal	mean	DRE	from	the	hourly	67	
instantaneous	values.	The	normalization	factor	1/24	is	applied	to	obtain	the	diurnal	68	
mean	from	the	integration	of	hourly	DRE.			We	added	this	explanations	in	the	69	
revision	after	both	Eq.	(2)	and	Eq.	(4)	to	clarify	the	meaning	of	normalization	factor	70	
and	we	also	point	out	that	“it	needs	to	be	changed	accordingly	if	the	instantaneous	71	
DREs	are	computed	at	a	different	frequency”.			72	
	73	
Going	from	eq2.	to	eq3.	the	authors	remove	cloud	fraction	from	the	integral,	keeping	74	
it	constant	over	the	day.	This	step	is	understandable,	but	introduces	such	large	un- 75	
certainties	that	one	cannot	suggest	the	quantity	is	still	a	diurnally	averaged	DRE,	as	76	
argued	above.	Even	the	authors	themselves	in	section	3.1	remark	that	clouds	have	a	77	
strong	diurnal	cycle.	Not	only	the	frequency	of	occurrence	of	ACA	is	strongly	affected	78	
by	this,	but	more	importantly	the	aerosol	DRE	itself,	since	it	so	strongly	depends	on	the	79	
brightness	of	the	background.	80	
	81	
Reply:	Please	see	our	comments	above.		82	
	83	
Eq.	5:	the	first	term	can	be	removed.	It	makes	no	sense	to	denote	terms	of	zero.	84	
Describing	what	has	not	been	considered	is	enough.	85	
	86	



Reply:	we	removed	the	first	term	and	pointed	out	after	the	equation	that	“An	87	
important	implicit	assumption	in	Eq.	(5)	is	that	when	CALIOP	cannot	detect	an	88	
aerosol	layer,	the	DRE	is	essentially	zero.”		89	
	90	
Section	6	Also,	it	should	be	mentioned	that	the	presented	uncertainties	are	only	valid	91	
for	the	instantaneous	DRE,	not	the	presented	numbers	of	diurnally	averaged	aerosol	92	
DRE.	If	the	latter	is	presented,	the	uncertainty	should	include	an	estimate	of	the	93	
diurnal	variation	of	cloud	fraction,	COT	and	AOT	at	a	global	scale,	and	it’s	impact	on	94	
the	diurnally	averaged	DRE.	This	is	currently	missing.	95	
	96	
Reply:	Good	point,	we	clarify	this	in	the	revised	manuscript	at	the	end	of	the	section	97	
6.3	“Summary	of	uncertainty	study”.		98	
	99	
Textual	issues:	In	the	abstract	a	mention	of	which	eight	years	are	presented	might	be	100	
helpful.	101	
	102	
Reply:	Good	point.	We	added	the	information	(2007~2014)	in	the	revised	abstract.		103	
	104	
Page	26370.	It	seems	that	four	primary	ACA	regions	should	be	defined	in	Fig	1,	but	105	
these	are	missing.	106	
	107	
Reply:	We	have	added	the	ACA	active	regions	in	Fig.	2	108	
	109	
Section	4.3	"observed"	cloud	reflectances	are	not	inferred,	but	’reflectances	(from	a	110	
contaminated	cloud	scene)	are	observed’,	from	which	biased	COT	are	retrieved.		111	
	112	
Reply:	Yes,	correct.	It	is	simply	the	observation.	We	revised	this	part	to	make	it	113	
clear.		114	
	115	
"the	above	COT	correction	process	is	dependent	on	the	radiative	properties	of	the	116	
ACA."	->	The	bias	is	dependent	on	the	radiative	properties	of	the	ACA,	and	the	117	
correction	process	is	dependent	on	the	assumed	aerosol	model.	118	
	119	
Reply:	We	revised	the	text	following	your	suggestion.	Thanks.	120	
 121	

Reply	to	reviewer	#2	122	
	123	
The	authors	would	like	to	thank	the	reviewer	for	the	positive	evaluation	of	the	124	
manuscript,	the	careful	reading	and	the	useful	comments	and	suggestions.	125	
	126	
The	following	are	our	point-to-point	responses	to	the	reviewer’s	comments.	127	
Reviewer’s	comments	are	in	italic	type	128	
	129	



As	the	authors	themselves	point	out,	even	in	their	conclusions,	the	necessary	130	
assumption	that	aerosols	and	clouds	do	not	have	diurnal	variations	may	introduce	131	
significant	biases.	Would	it	not	be	possible	to	assess	the	importance	of	this	e.g.	using	132	
the	PDFs	used	for	Equation	10	as	input	to	a	simple	Monte-Carlo	scheme?	If	so	(and	if	I	133	
have	understood	their	methods	for	calculating	DRF	correctly),	this	should	not	be	much	134	
more	work	than	the	two	other,	very	useful	sensitivity	studies	already	presented.	135	
	136	
Reply:	The	other	reviewer	also	had	the	same	question.	We	completely	agree	(and	137	
we	pointed	it	out	clearly	in	the	manuscript)	that	the	ignorance	of	cloud	diurnal	cycle	138	
could	induce	large	uncertainty.	In	fact	the	leading	author	is	among	the	first	to	139	
elucidate	this	uncertainty	in	a	theoretical	study	[Min	and	Zhang,	2014].		140	
	141	
However,	accounting	for	the	cloud	diurnal	cycle	uncertainty	is	very	challenging	and	142	
frankly	we	do	not	have	the	capability	to	do	it	yet.	One	problem	is	the	lack	of	143	
observation	to	constrain	the	suggested	PDF.	Polar-orbiting	satellite	like	MODIS	only	144	
provides	observations	once	a	day	in	most	part	of	the	globe.	Geostationary	satellites	145	
provide	continuous	observation	only	in	certain	regions.	We	are	not	aware	of	any	146	
dataset	that	provides	high-frequency	(e.g.,	hourly)	cloud	property	retrievals	(at	least	147	
cloud	fraction,	cloud	phase,	cloud	top	height,	cloud	optical	thickness	and	cloud	148	
effective	radius)	on	a	global	scale.		149	
	150	
Even	regional	cloud	diurnal	cycle	is	hard	to	get.	As	we	pointed	out	at	the	end	of	the	151	
manuscript,	the	SEVIRI	(Spinning	Enhanced	Visible	and	Infrared	Imager)	on	board	152	
of	the	European	satellite	MSG	(Meteosat	Second	Generation	spacecraft),	provides	153	
diurnal	observation	in	the	SE	and	TNE	Atlantic	region.	But	we	checked	the	154	
operational	SEVIRI	data	product	from	Eumetsat	155	
(http://navigator.eumetsat.int/discovery/Start/DirectSearch/DetailResult.do?f(r0)156	
=EO:EUM:CM:MSG:CLAAS_V001),	and	it	only	provides	monthly	mean	cloud	diurnal	157	
observations.	We	are	not	sure	how	useful	this	dataset	is	for	the	DRE	computation,	158	
because	of	the	day-to-day	variations	of	both	clouds	and	aerosols.	The	MODIS	science	159	
team	led	by	Dr.	Steven	Platnick	and	Kerry	Meyer,	are	collaborating	with	European	160	
team	to	develop	a	MODIS-like	diurnal	cloud	property	retrieval	data	set	from	SEVIRI.		161	
	162	
We	plan	to	use	this	newly	developed	SEVIRI	data	set	in	combination	with	CALIOP	or	163	
a	new	MODIS	[Meyer	et	al.,	2015]	ACA	retrievals	to	derive	the	“true”	diurnally	164	
averaged	DRE	for	ACA.	But	this	is	still	an	on-going	research	that	needs	substantial	165	
efforts.	We	have	to	leave	it	as	“future	work”	in	this	study.			166	
	167	
	168	
Also:	In	the	present	analysis,	little	use	is	made	of	the	altitude	of	the	aerosol	layer.	169	
For	absorbing	aerosols,	the	radiative	efficiency	is	expected	to	increase	with	altitude,	170	
which	may	be	a	significant	part	of	regional	DRF	variations	for	smoke	aerosol	if	there	171	
are	difference	in	mean	altitude	of	the	aerosol	layer.	Is	this	possible	to	diagnose	from	172	
the	present	dataset?	173	
	174	



Reply:	First	of	all,	we	actually	use	the	altitude	of	the	aerosol	layer	in	our	DRE	175	
computation.	As	shown	in	the	Figure	1	below	(Figure	1	of	[Zhang	et	al.,	2014]),	we	176	
use	the	CALIOP	aerosol	layer	altitude	information	to	figure	out	the	fraction	of	cloud	177	
below	the	aerosol	layer	using	the	joint	histogram	of	cloud	optical	thickness	vs.	cloud	178	
top	pressure	in	MODIS	level-3	product.	For	details,	please	see	[Zhang	et	al.,	2014].	179	
	180	
Moreover,	in	the	SE	Atlantic	region,	the	altitude	of	the	above-cloud	smoke	layer	181	
varies	only	about	1km	from	coast	region	to	open	ocean	as	shown	in	Figure	2	below,	182	
which	has	negligible	impact	on	SW	radiative	transfer	simulation	according	to	our	183	
sensitivity	study.			184	
	185	

	186	
Figure	1	A	schematic	example	to	illustrate	how	CALIOP	aerosol	layer	height	information	is	used	in	our	187	
method	to	determine	the	population	of	liquid-phase	clouds	below	the	aerosol	layer	in	the	MODIS	COD–188	
CTP	joint	histogram.		(Figure	1	from	[Zhang	et	al.,	2014])	189	

	190	

	191	

	192	
Figure	2	Meridionally	averaged	smoke	aerosol	subtype	top	and	bottom	heights	(solid	and	dotted	lines,	193	
respectively),	and	low/stratus	cloud	top	height	(dashed	line)	and	cloud	fraction	(gray	line),	calculated	194	
from	6	years	of	August	and	September	CALIOP	daytime	observations	(2006–2011).	Data	are	located	195	
between	6	N	and	30	S.		(Figure	5	from	[Meyer	et	al.,	2013])	196	

	197	
Minor	comments:	198	
	199	



Throughout	the	manuscript,	and	especially	in	the	figure	captions,	key	terms	such	as	200	
“global	mean”	or	“annual	mean”	are	often	missing.	The	meaning	is	clear	from	the	201	
context,	but	not	always	if	one	just	looks	up	a	figure.	202	
	203	
Reply:	We	added	more	specific	terms	in	the	figure	captions.		204	
	205	
The	region	boxes	are	not	drawn	on	Figure	1.	206	
	207	
Reply:	We	added	the	ACA	active	regions	in	both	Figure	1	and	Figure	2.	208	
	209	
P2636	l	12-17:	If	CALIOP	proves	AOT	of	ACA,	what	do	the	regional	research	algorithms	210	
provide	in	addition?	The	sentences	seem	to	contradict	each	other.	211	
	212	
Reply:	Indeed,	these	sentences	are	confusing	and	actually	not	very	relevant	to	this	213	
study.	So	we	simply	removed	them	from	the	revised	manuscript.		214	
	215	
P26361	l	24:	?	should	be	‘s	(Earth’s)	216	
	217	
Reply:	Yes	and	we	corrected	it.		218	
	 	219	
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 2 

Abstract:  21 

In this paper, we studied the frequency of occurrence and shortwave direct radiative 22 

effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years 23 

(2007~2014) of collocated CALIOP and MODIS observations. Similar to previous work, 24 

we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where 25 

ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to 26 

CALIOP classification, originating from biomass burning over African Savanna; Tropical 27 

Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust 28 

from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are 29 

mostly transported smoke and polluted dusts from Asian. From radiative transfer 30 

simulations based on CALIOP-MODIS observations and a set of the preselected aerosol 31 

optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be 32 

positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., 33 

cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative 34 

regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE 35 

of 0.015 W/m2 (range of −0.03 to 0.06 W/m2) at TOA. The DREs at surface and within 36 

atmosphere are −0.15 W/m2 (range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (range of 37 

0.11 to 0.24 W/m2), respectively. The regional and seasonal mean DREs are much 38 

stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean 39 

cloudy-sky DRE is about 0.7 W/m2 (range of 0.2 to 1.2 W/m2) at TOA. All our DRE 40 

computations are publicly available†. The uncertainty in our DRE computations is mainly 41 

                                                
†https://drive.google.com/folderview?id=0B6gKx4dgNY0GMVYzcEd0bkZmRmc&usp=
sharing 



 3 

cause by the uncertainties in the aerosol optical properties, in particular aerosol 42 

absorption, the uncertainties in the CALIOP operational aerosol optical thickness 43 

retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and 44 

remotely sensed measurements of ACA from future field campaigns and satellite 45 

missions, and improved lidar retrieval algorithm, in particular vertical feature masking, 46 

would help reduce the uncertainty.  47 

 48 
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 4 

1. Introduction	50 

Although most tropospheric aerosols are emitted into the atmospheric boundary 51 

layer, they can be convectively lifted above low-level clouds, or in some cases are 52 

emitted at altitudes higher than the boundary layer and are subsequently transported over 53 

low-level cloud decks. In fact, above-cloud aerosols (ACA) have been observed in 54 

several regions of the globe (Devasthale and Thomas, 2011; Winker et al., 2013). ACA is 55 

an important component of the climate system because its interactions (scattering and 56 

absorption) with shortwave (SW) solar radiation (so-called direct radiative effect) could 57 

differ substantially from that of clear-sky aerosols or below cloud aerosols, particularly 58 

for absorbing particles. In this study we focus only on the SW direct radiative effect 59 

(DRE), which for clarity we will refer to as DRE for short. The DRE of aerosols at the 60 

top of the atmosphere (TOA) is strongly dependent on the underlying surface. Over dark 61 

surfaces the scattering effect of aerosols is generally dominant, leading to a negative DRE 62 

(i.e., cooling) at TOA. In contrast, when aerosols reside above clouds, aerosol absorption 63 

of solar radiation can be significantly enhanced by cloud reflection, which can offset or 64 

even exceed the scattering effect of the aerosol (depending on the aerosol radiative 65 

properties) and can yield a less negative or even positive (i.e., warming) DRE at TOA 66 

(Abel et al., 2005; Chand et al., 2009; Keil and Haywood, 2003; Meyer et al., 2013; 67 

Zhang et al., 2014). The larger the cloud reflection, the more likely the positive DRE will 68 

occur. Thus, an accurate quantification of ACA DRE is needed to improve the 69 

understanding of aerosol effects on the radiative energy balance and climate. In the past 70 

decade, the DRE of aerosols in clear-sky conditions has been well studied and relatively 71 

well constrained by satellite and in situ data (Yu et al., 2006). However, because 72 
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traditional aerosol remote sensing techniques, in particular those using passive sensors, 73 

are limited only to clear-sky conditions, the DRE of ACA had been largely unexplored 74 

until recently. Moreover, model simulations of ACA DRE show extremely large 75 

disparities (Schulz et al., 2006). 76 

Recent advances in active and passive remote sensing techniques have filled this 77 

data gap and have provided an excellent opportunity for studying the DRE of ACA (Yu 78 

and Zhang, 2013). The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 79 

onboard NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 80 

(CALIPSO) satellite was launched in 2006 as part of NASA’s A-Train satellite 81 

constellation (Stephens et al., 2002; Winker et al., 2007). As an active lidar with 82 

depolarization and two wavelengths, CALIOP is able to measure the vertical distribution 83 

of aerosol backscatter, extinction, particle depolarization ratio, and color ratio for clear-84 

sky aerosols, ACA, and aerosol below thin high-level clouds. These measurements, 85 

combined with cloud observations from CALIOP itself and other A-train instruments 86 

have provided a revolutionary global view of the vertical distribution of aerosols and 87 

clouds (e.g., Winker et al., 2013). In addition to vertical feature masking, CALIOP also 88 

provides operational retrievals of a variety of aerosol properties, such as aerosol type 89 

classification, aerosol layer height, aerosol optical thickness (AOT), and aerosol 90 

extinction profile, for both clear-sky aerosols and ACA.  91 

Although CALIOP is the first to provide quantitative measurements of ACA on 92 

an operational basis, its narrow along-track sampling leaves large spatial gaps in the 93 

observations. In recent years, several attempts have been made to detect ACAs and 94 

retrieve their properties from passive imagers with much better spatial sampling than 95 

Zhibo Zhang � 12/16/2015 8:43 AM
Deleted: Some research algorithms have also 96 
been developed to retrieve ACA AOT from 97 
CALIOP observations, which have been 98 
demonstrated on a regional basis (Chand et al., 99 
2008; Hu et al., 2007b; Liu et al., 2015). 100 
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CALIOP. Waquet et al. (2009) developed a method based on multi-angular polarization 101 

measurements from the Polarization and Directionality of the Earth  Reflectances 102 

(POLDER) to retrieve above-cloud aerosol optical thickness (AOT) (Waquet et al., 103 

2013a). Torres et al. (2012) developed an algorithm of simultaneously retrieving ACA 104 

properties for smoke and cloud optical thickness (COT) from ultraviolet (UV) aerosol 105 

index (AI) derived from the Ozone Mapping Instrument (OMI). Jethva et al. (2013) 106 

retrieved simultaneously the above-cloud AOT and COT from the spectral dependence of 107 

visible and near-infrared cloud reflectance as observed by the Moderate Resolution 108 

Imaging Spectroradiometer (MODIS). Similarly, Meyer et al. (2015) developed a 109 

multispectral optimal inversion technique to retrieve ACA AOT, COT, and cloud 110 

effective particle radius (CER) from MODIS. A review of the emerging satellite-based 111 

ACA observations can be found in (Yu and Zhang, 2013). These emerging techniques 112 

based on passive sensors will provide insights into ACA and their radiative effects over 113 

much broader regions in the future. At present, however, they are primarily at the 114 

research level and no operational data are yet available.  115 

The ACA DRE can be calculated with radiative transfer models using the 116 

retrieved ACA AOT, COT, and preselected aerosol optical properties. This approach is 117 

referred to as the forward calculation method. Chand et al. (2009) aggregated CALIOP 118 

above-cloud AOT retrievals (Chand et al., 2008) and Terra MODIS cloud products to 119 

monthly means at 5ºx5º grids and calculated the radiative effects of transported smoke 120 

above the low-level stratocumulus deck in the SE Atlantic. This spatial-temporal 121 

aggregation of the satellite data obscures the potential influence of cloud and aerosol sub-122 

grid variability on the DRE, which could lead to significant uncertainty (Min and Zhang, 123 
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2014). The use of operational MODIS COT could also bias the DRE low (less positive or 124 

more negative) because of the low bias of MODIS COT induced by overlying light-125 

absorbing aerosols (Coddington et al., 2010; Haywood et al., 2004). In Meyer et al. 126 

(2013), the MODIS COT bias due to ACA contamination was corrected using collocated 127 

CALIOP above-cloud AOT observations, and the unbiased MODIS cloud properties and 128 

CALIOP above-cloud AOT were used to calculate pixel-level cloudy sky ACA DRE. 129 

Such rigorous collocation has an obvious advantage as it takes into account the spatial-130 

temporal variability of clouds and aerosols. However, it is computationally expensive and 131 

requires large amounts of pixel-level data. Recently, Zhang et al. (2014) developed a 132 

novel statistical method of computing ACA DRE based on the fact that ACA AOT and 133 

COT are generally randomly overlapped. This method greatly improves the ACA DRE 134 

computation efficiency while maintaining the same level of accuracy as the pixel-level 135 

computations. The high efficiency of this method enables us to compute 8 years of ACA 136 

DRE over global oceans in this study.   137 

In the forward calculation approach discussed above, the DRE depends on the 138 

selection of aerosol optical properties, in particular the single scattering albedo. 139 

Alternatively, other approaches allow for bypassing the aerosol optical property 140 

assumption. For example, Peters et al. (2011), Wilcox (2012), and more recently (Feng 141 

and Christopher, 2015) estimated the DRE of ACA through regression of multiple 142 

satellite data sets from the A-Train, including OMI UV AI, CERES (Clouds and 143 

the Earth's Radiant Energy System), and AMSER-E (Advanced Microwave Scanning 144 

Radiometer for EOS). de Graaf et al. (2012) developed a method that takes advantage of 145 

the wide spectral coverage of the space-borne Scanning Imaging Absorption 146 
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Spectrometer for Atmospheric Chartography (SCIAMACHY). They first inferred cloud 147 

parameters (e.g., COT and CER) from the SCIAMACHY observations in the short-wave 148 

infrared region (i.e., 1.2 µm and 1.6 µm) where the impact of ACA on cloud reflectance 149 

is generally minimal. Then, they estimate the DRE from the difference between the 150 

SCIAMACHY observed cloud reflectance spectrum (i.e., polluted) and that of a 151 

computed (i.e., clean) spectrum derived from the inferred cloud parameters. These studies 152 

thus minimized the impact of aerosol retrieval uncertainty in the DRE estimate. On the 153 

other hand, these studies only provided estimates of the instantaneous DRE of ACA at 154 

the satellite crossing time and only at TOA, which is often not adequate for climate 155 

studies and model evaluations. DRE at surface and within the atmosphere are required to 156 

assess the full impact of aerosols on climate, and models often report diurnally averaged 157 

DRE. 158 

Although the abovementioned studies have shed important light on the radiative 159 

effects of ACA on the climate system, several aspects of ACA remain unexplored. First, 160 

there is a lack of a global and multiyear perspective since almost all previous studies have 161 

focused on the SE Atlantic Ocean and over a limited time period. Second, most studies 162 

have only reported instantaneous DRE at TOA, which is not adequate for climate studies 163 

and model evaluations. In addition, the impact of retrieval uncertainties in satellite 164 

products (e.g., CALIOP aerosol and MODIS cloud products) on computed DRE has not 165 

been sufficiently assessed.   166 

The objective of this study is to derive estimates of the diurnally averaged DRE of 167 

ACA over global oceans from collocated CALIOP and MODIS observations over 8 years 168 

(2007-2014). This is the first observation-based study (as far as we are aware) that 169 
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provides a global and multiyear perspective of the DRE of ACA. In addition to the DRE 170 

at TOA, we also calculate the DRE of ACA at the surface and within the atmosphere. The 171 

diurnal variation of solar radiation is fully accounted for in this study, making our results 172 

more directly comparable to the model reports of the diurnally averaged DRE, though it 173 

is important to note that the diurnal variation of the underlying cloud properties are not 174 

considered. Moreover, we carried out a series of sensitivity tests to estimate the impact of 175 

the uncertainties associated with aerosol scattering properties and satellite retrieval bias 176 

on the DRE results. The rest of this paper is organized as follows: Section 2 describes the 177 

satellite products used to derived the global distribution of ACA; Section 3 discusses the 178 

global distribution and seasonal variability of ACA; Section 4 briefly overviews the 179 

method used to derive the DRE of ACA; and Section 5 details the results. The major 180 

uncertainties in DRE computation are assessed in Section 6. The main findings and 181 

conclusions are summarized in Section 7. 182 

 183 

2. Satellite	Data		184 

In this study, we use the CALIOP Version 3 level-2 aerosol and cloud layer products 185 

to derive the statistics of ACA properties and the MODIS Collection 6 (C6) level-3 daily 186 

gridded cloud product for cloud property statistics. This section provides a brief overview 187 

of these products, including the potential biases and uncertainties.  188 

2.1. 	CALIOP	189 

The CALIOP Version 3 level-2 aerosol and cloud layer products (Winker et al., 2009), 190 

at a nominal 5 km horizontal resolution (product names “CAL_LID_L2_05kmALay” and 191 
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“CAL_LID_L2_05kmCLay”), are used to first identify ACA pixels, and then to derive 192 

aerosol layer properties, including aerosol type, AOT, and layer top and bottom height. 193 

The CALIOP level-2 retrieval algorithm detects aerosol and cloud layers, and records 194 

their top and bottom heights and layer integrated properties using a “feature finder” 195 

algorithm and cloud-aerosol discrimination (CAD) algorithm (Liu et al., 2009). The 196 

detected aerosol layers are further classified into six sub-types (i.e., polluted continental, 197 

biomass burning, desert dust, polluted dust, clean continental and marine) (Omar et al., 198 

2009) and the detected cloud layers are assigned different thermodynamic phases (Hu et 199 

al., 2007a) based on the observed backscatter, color ratio and depolarization ratio. The 200 

extinction of an aerosol or cloud layer is derived from the attenuated backscatter profile 201 

using a priori lidar ratios, pre-selected based on aerosol sub-type and cloud phase (Young 202 

and Vaughan, 2008). In the case where clear air is available both above and below a layer, 203 

a constrained retrieval is performed to derive the lidar ratio as well as the extinction and 204 

backscatter coefficient for the layer. 205 

The CALIOP lidar is known to have several inherent limitations. First, it has very 206 

limited spatial sampling, providing observations only along its ground track. Thus 207 

computing the DRE of ACA over a given latitude-longitude grid box necessarily requires 208 

assuming that the aerosol property statistics retrieved by CALIOP along its track 209 

represent the statistics over the whole grid box. Moreover, the limited spatial sampling 210 

also inhibits the use of CALIOP to study the variations of ACA and its DRE at small 211 

temporal (e.g., inter-annual variability) or spatial scales (e.g., smoke or dust outbreak 212 

event). Another limitation of CALIOP is that its daytime aerosol retrievals generally have 213 

larger uncertainty in comparison with nighttime retrievals caused by strong background 214 
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solar noise (Hunt et al., 2009). Some recent studies have noted significant differences 215 

between daytime and nighttime CALIOP aerosol property retrievals, in particular the 216 

AOT retrievals, which is partly caused by the solar background noise issue (Meyer et al., 217 

2013; Winker et al., 2013). The impact of daytime vs. nighttime CALIOP aerosol 218 

retrieval differences on the DRE of ACA is investigated in the uncertainty analysis 219 

detailed in section 6. 220 

In addition to the sampling limitations, several recent studies have found that 221 

CALIOP daytime AOT retrievals for ACA, in particular above-cloud smoke, are 222 

significantly smaller compared to collocated results from other techniques (Jethva et al., 223 

2014; Torres et al., 2013; Waquet et al., 2013b) and results retrieved from the CALIOP 224 

level 1 data using an opaque water cloud (OWC) constrained technique (Liu et al., 2015). 225 

The cause for the bias is complex and multiple sources can contribute to the AOT 226 

retrieval uncertainties (Liu et al., 2015), but the main issue is the failure of the current 227 

CALIOP retrieval algorithm to detect the full physical thickness of dense smoke layers. 228 

Smoke aerosol generally has a large attenuation at 532 nm that is 2-3 times larger than 229 

that at 1064 nm. The current CALIOP algorithms detect features based solely on the 532 230 

nm data. Strong attenuation in dense smoke layers can make the detection of the true base 231 

of dense smoke layers very difficult. (This may be improved largely if the feature 232 

detection is performed at both 532 nm and 1064 nm.) As a result, the current CALIOP 233 

feature detection algorithm often fails to detect the full extent of dense aerosol layers, 234 

leading to low biases in retrieved AOT (Jethva et al., 2014; Liu et al., 2015; Torres et al., 235 

2013). This underestimation of AOT apparently can have significant impact on the DRE 236 

computation. We have developed a simple method to estimate the upper limit of this 237 
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impact, which is detailed in section 6. 238 

2.2. MODIS	239 

In this study, we use the Collection 6 (C6) level-3 gridded daily Atmosphere product 240 

from Aqua-MODIS (product name MYD08_D3) for the statistics of cloud properties and 241 

other parameters, such as solar zenith angle, needed for ACA DRE computations. The 242 

MYD08_D3 product contains gridded scalar statistics and histograms computed from the 243 

level-2 (i.e., pixel-level) MODIS products. As summarized in (Platnick et al., 2003), the 244 

operational level-2 MODIS cloud product provides cloud masking (Ackerman et al., 245 

1998), cloud top height retrieval based on CO2 slicing or the infrared window method 246 

(Menzel et al., 1983), cloud top thermodynamic phase determination (Baum et al., 2012; 247 

Marchant et al., 2015; Menzel et al., 2006), and cloud optical and microphysical property 248 

retrieval based on the bi-spectral solar reflectance method (Nakajima and King, 1990). 249 

Level-3 aggregations include a variety of scalar statistical information (mean, standard 250 

deviation, max/min occurrences) and histograms (marginal and joint) (Hubanks et al., 251 

2008). A particularly useful level-3 cloud product for this study is the daily joint 252 

histogram of COT vs. cloud top pressure (CTP), derived using daily counts of successful 253 

daytime level-2 pixel retrievals that fall into each joint COT-CTP bin. Eleven COT bins, 254 

ranging from 0 to 100, and 13 CTP bins, ranging from 200 to 1000 mb, comprise the 255 

histogram. As discussed below, the COT-CTP joint histogram allows for identification of 256 

the portion of the cloud population that lays beneath the aerosol layer found by CALIOP, 257 

as well as the corresponding COT probability distribution needed for DRE estimation. In 258 

addition to the COT-CTP joint histogram, we also use the gridded mean solar and sensor 259 

zenith angles for calculating instantaneous DRE and correcting the COT bias due to the 260 
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presence of ACA.  261 

A major issue with MODIS data for ACA DRE computation is the potential COT 262 

retrieval bias in the presence of significant overlying ACA. As noted in several previous 263 

studies, an overlying layer of light-absorbing aerosol, e.g., smoke, makes the scene 264 

appear darker than the otherwise clean cloud. This cloud-darkening effect often leads to a 265 

significant underestimate of MODIS COT for scenes with smoke overlying clouds (e.g., 266 

Coddington et al., 2010; Haywood et al., 2004; Meyer et al., 2013). A fast COT 267 

correction scheme has previously been developed (Zhang et al., 2014) to account for the 268 

COT retrieval bias due to ACA, which is briefly overviewed in section 4.3. 269 

 270 

3. Global	distribution	of	ACA	271 

The present study is limited to ocean scenes only. This decision was made for a 272 

number of reasons. First, ACA occurs much more frequently over ocean than over land 273 

(see Figure 3 of (Devasthale and Thomas, 2011)). Second, the contrast between ACA 274 

DRE and clear-sky aerosol DRE is generally larger over ocean than over land because the 275 

contrast between the ocean surface and cloud is larger than the contrast between the land 276 

surface and cloud. Finally, the large spatial and spectral variability of land surface 277 

reflectance makes the radiative transfer computation much more complicated than that 278 

over the ocean. For these reasons, we limit our analysis only to global oceans and leave 279 

the DRE of ACA over land for future study.  280 
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3.1. ACA	identification	and	classification	281 

The following criteria are used to identify ACA columns within the CALIOP 5km 282 

layer products: (1) the CALIOP 5km cloud layer product identifies at least one layer of 283 

liquid phase cloud in the profile; (2) the CALIOP 5km aerosol layer product identifies at 284 

least one layer of aerosol in the profile; (3) the “Layer_Base_Altitude” of the lowest 285 

aerosol layer is higher than the “Layer_Top_Altitude” of the highest cloud layer. The last 286 

criterion excludes some complicated scenarios, such as aerosol layers in between low and 287 

high level clouds, while retaining the majority of ACA cases. Following the best practice 288 

advice of the CALIOP science team (Winker et al., 2013), we used various data quality 289 

assurance metrics and flags to screen out low-confidence aerosol layers. Specifically, we 290 

only accept ACA layers having: (i) Cloud Aerosol Discrimination score values for the 291 

identified aerosol layer between −20 to −100; (ii) Extinction QC values of 0 or 1; and (iii) 292 

Feature Optical Depth Uncertainty smaller than 99.9. Any columns that do not satisfy the 293 

above criteria were classified as either clear sky if no cloud is found in the column or 294 

“clean” cloud if one or more cloud layers are present.   295 

After ACA identification, we further classify the ACA layer into the six aerosol 296 

sub-types (i.e., Clean Marine, Dust, Polluted Continental, Clean Continental, Polluted 297 

Dust and Smoke) provided by the CALIOP product (Omar et al., 2009). The 298 

classification is needed later to select the aerosol optical properties to be used in the DRE 299 

computation. It should be noted that the CALIOP operational algorithm often identifies 300 

different sub-types for vertically adjacent aerosol layers (Meyer et al., 2013). Recent 301 

studies indicate that this is a misclassification issue in the current CALIOP operational 302 

algorithm (Liu et al., 2015; Meyer et al., 2013). Uncertainty in aerosol classification by 303 
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CALIOP operational algorithms is also highlighted in comparisons to airborne High 304 

Spectral Resolution Lidar (HSRL) observations, which retrieve directly the aerosol lidar 305 

ratio (Burton et al., 2013).  These observations suggest highest uncertainty in aerosol 306 

typing for smoke and polluted dust cases.  Aerosol type misclassification where CALIOP 307 

operational algorithms identify polluted dust is also highlighted in a recent study in which 308 

aerosol transport model fields are used to directly simulate the CALIOP aerosol typing 309 

and compared to native aerosol fields within the model (Nowottnick et al., 2015). In this 310 

study, we associate all ACA layers in a single profile with only one sub-type, namely the 311 

sub-type of the layer with the largest AOT. This classification scheme reduces the 312 

complication caused by aerosol misclassification in radiative transfer simulations.     313 

3.2. Occurrence	Frequency	of	ACA	314 

After the identification of ACA cases in CALIOP data, we first investigate the 315 

geographical and seasonal variations of the occurrence frequency of ACA over global 316 

oceans. It should be noted that clouds can have a strong diurnal cycle, thus the occurrence 317 

frequency of ACA might also have a significant diurnal cycle. Unfortunately, because 318 

CALIOP is in a sun-synchronous polar orbit, it can provide only two snapshots of this 319 

diurnal cycle over most of the globe (except for polar regions), one during daytime (i.e., 320 

ascending local equatorial crossing time 1:30PM) and the other during nighttime (i.e., 321 

descending local equatorial crossing time 1:30AM). Here we define the ACA occurrence 322 

frequency ( fACA ) in a latitude-longitude box as the ratio of ACA columns to total cloudy 323 

columns sampled by CALIOP: 324 
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fACA t*( ) = fACA,i

i=1

6

∑ t*( ) =
N ACA,i

Ncloudyi=1

6

∑ ,  (1) 325 

where t*  signifies that the fACA is observed at the CALIOP crossing time;   
fACA,i  is the 326 

fraction of cloudy columns covered by the ith type of aerosol, 
 
Ncloudy  is the total number 327 

of cloudy columns sampled by CALIOP within the grid, and   
N ACA,i  is the number of 328 

ACA columns that have been identified as the ith type of aerosol by CALIOP. This is 329 

different from the definition in (Devasthale and Thomas, 2011), in which the occurrence 330 

frequency is defined as the ratio of ACA columns to the total number of CALIOP 331 

observations. As such, the two definitions differ by a factor of fc , the total cloud fraction. 332 

We define the occurrence frequency in this way because the fACA  provides information 333 

additional to and independent of the total cloud fraction fc  that can help, for example, 334 

modelers understand whether an inadequate simulation of ACA is due to cloud and/or 335 

aerosol simulation. On the other hand, one has to couple our fACA  together with fc to 336 

depict a complete picture. 337 

Figure 1 and 2 show the seasonal variation of total cloud fraction fc and fACA, 338 

respectively, over global ocean derived from daytime CALIOP observations. There are 339 

several ACA frequency “hotspots” that can be clearly seen in Figure 2, from which four 340 

primary ACA regions can be defined (see Table 1). The types of ACA in each region 341 

according to the CALIOP aerosol classification product are shown in Figure 3.    342 

1) SE Atlantic Ocean: This region is perhaps the most prominent ACA region 343 

during the boreal summer (JJA) and fall (SON) seasons (Figure 2c and d). The ACA over 344 
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the SE Atlantic primarily originates from the seasonal burning activities throughout the 345 

African Savanna (Eck et al., 2013; Ichoku et al., 2003; Myhre et al., 2003). Prevailing 346 

easterly winds in the free troposphere during this season often transport the biomass 347 

burning aerosols to the west, off the continent and over the ocean (Matichuk et al., 2007; 348 

Swap et al., 1996), where extensive marine boundary layer clouds persist for most of the 349 

year leading to a near-persistent seasonal smoke layer above the stratocumulus deck. As 350 

shown in Figure 3a, the ACAs in this region are primarily a mix of smoke and polluted 351 

dust. 352 

2) Tropical Northeastern (TNE) Atlantic: During boreal spring (MAM) and 353 

summer (JJA) (Figure 2b and c), the dry and dust-laden Saharan Air Layer overlies the 354 

cooler, more-humid and cloudy tropical Atlantic Ocean. Not surprisingly, dust is the 355 

dominant type of ACA in this region as shown in Figure 3b.  356 

3) Arabian Sea: During the Asian monsoon season (JJA), the cloud fraction 357 

increases to more than 90%, setting the stage for ACA from the transported dust aerosols 358 

from the surrounding deserts.  359 

4) Northwestern (NW) Pacific Ocean: During the springtime, the industrial 360 

pollution and dust aerosols from Asia carried by the jet stream can travel thousands of 361 

miles to the NW Pacific Ocean where cloud fraction is high throughout the year. ACA in 362 

this region is a mixture of smoke, dust and polluted dust. 363 
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4. Methodology	for	computing	ACA	DRE	364 

After the identification of ACAs, we use the method described in (Zhang et al., 2014) 365 

to calculate shortwave ACA DRE by using MODIS observations of clouds. This section 366 

provides a brief review the key features of this method. 367 

4.1. Definitions	of	DRE	368 

For a given latitude-longitude grid box, the grid-mean diurnally averaged shortwave 369 

all-sky aerosol radiative effect DREall−sky  is given by: 370 

 

DREall−sky = 1
24

1− fc t( )⎡⎣ ⎤⎦ DREclear−sky τ a t( ),θ0 t( )⎡⎣ ⎤⎦ dt
tsunrise

tsunset

∫

+ 1
24

fc t( ) DREcloudy−sky τ c t( ),τ a t( ),θ0 t( )⎡⎣ ⎤⎦ dt
tsunrise

tsunset

∫
,  (2) 371 

where the upper bar “ ” indicates the diurnal average and the angle bracket  “ ” 372 

indicates spatial average over the grid box; fc t( )  is the instantaneous cloud fraction, and  373 

DREclear−sky t( )  and DREcloudy−sky t( )  are the hourly instantaneous DRE averaged over 374 

the clear-sky and cloudy-sky region of the grid, respectively. Note that in this study we 375 

compute the instantaneous DREs every hour during daytime to capture the diurnally 376 

variation of solar radiation. This is why the normalization factor is 1/24 in Eq. (2) and it 377 

needs to be changed accordingly if the instantaneous DREs are computed at a different 378 

frequency.   For shortwave DRE, the integration range is from local sunrise hour tsunrise  to 379 

local sunset hour tsunset , because the DRE during nighttime is zero. Note that the 380 

instantaneous DREclear−sky t( )  is mainly dependent on AOT τ a t( )  and solar zenith angle 381 
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θ0 t( ) . In addition to τ a  and θ0 , DREcloudy−sky t( )  is also dependent on the COT τ c t( ) . 383 

As pointed out in (Min and Zhang, 2014), in addition to θ0 t( ) , fc t( ) , τ a t( ) , and τ c t( )  384 

can also have a significant diurnal cycle that influences the diurnal average. However, the 385 

orbit of CALIOP only allows it to provide a single snapshot of the diurnal cycle during 386 

daytime (another during night time). Because of this limitation, we omit the diurnal 387 

variation of fc t( ) , τ a t( ) and τ c t( ) , and only use the value at the daytime CALIOP 388 

crossing time t* . Nevertheless, we still consider the diurnal variation of solar flux 389 

associated by the change of θ0 t( ) . In such an approximation, we can rewrite the 390 

DREall−sky  as follows: 391 

 DREall−sky ≈ 1− fc t
*( )⎡⎣ ⎤⎦ DRE*clear−sky + fc t

*( ) DRE*cloudy−sky , (3) 392 

where the t*  corresponds to the daytime CALIOP crossing time (usually 1:30PM local 393 

time), DRE*clear−sky  and DRE*cloudy−sky  are approximate clear-sky and cloudy-sky 394 

aerosol DRE. In particular, DRE*cloudy−sky  can be integrated from the hourly 395 

instantaneous DRE as: 396 

 DRE*cloudy−sky = 1
24

DREcloudy−sky τ c t
*( ),τ a t*( ),θ0 t( )⎡⎣ ⎤⎦ dt

tsunrise

tsunset

∫ , (4) 397 

where the normalization factor 1/24 is to obtain diurnal mean from hourly computations. 398 

Theoretically, cloudy-sky aerosol DRE should include the contributions from aerosols in 399 

all conditions, e.g., above, below or in-between clouds. However, it is difficult to 400 

measure aerosol properties below clouds from space-borne instruments. Here we simply 401 

assume cloudy-sky aerosol DRE is mainly attributed to ACAs. This is a reasonable 402 

Unknown
Field Code Changed

Zhibo Zhang � 12/15/2015 7:17 AM
Deleted: is given 403 

Zhibo Zhang � 12/15/2015 7:18 AM
Deleted: by404 

Zhibo Zhang � 12/15/2015 7:08 AM
Deleted: .405 
Unknown
Field Code Changed



 20 

assumption for TOA DRE, but might introduce large uncertainties to surface and 406 

atmospheric DRE. The uncertainty caused by this assumption will be left for future study. 407 

Based on this assumption, we can rewrite Eq. (4) as  408 

 
DRE*cloudy−sky = fACA t*( ) DRE*ACA

= fACA t*( ) 124 DREACA τ c t
*( ),τ a t*( ),θ0 t( )⎡⎣ ⎤⎦ dt

tsunrise

tsunset

∫
,  (5) 409 

where fACA t*( )  is the occurrence frequency of ACA observed at the CALIOP crossing 410 

time defined in Eq. (1). An important implicit assumption in Eq. (5) is that when 411 

CALIOP cannot detect an aerosol layer, the DRE is essentially zero. Using Eq. (5) we 412 

can derive the DRE at TOA DRE*cloudy−sky TOA
 and at the surface DRE*cloudy−sky surface

. 413 

The DRE within the atmosphere DRE*cloudy−sky atm
is calculated as follows: 414 

 DRE*cloudy−sky atm
= DRE*cloudy−sky TOA

− DRE*cloudy−sky surface
.  (6) 415 

 Here, it is necessary to point out that what is often reported in previous studies is 416 

the instantaneous DRE observed at the CALIOP (or other satellite such as 417 

SCIAMACHY) crossing time and averaged over only ACA pixels, namely, 418 

DREACA τ c t
*( ),τ a t*( ),θ t*( )#

$
%
& . This quantity has obvious limitations (e.g., diurnal 419 

variation is ignored) and can be misleading if not accompanied by fACA , because different 420 

instruments or algorithms might have different sensitivities or even definitions of ACA 421 

(e.g., OMI AI index vs. CALIOP backscatter). In our view, the diurnally averaged, grid-422 

mean, cloudy-sky DRE, DRE*cloudy−sky , is more suitable for inter-comparison, and also 423 
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more relevant for climate study and modeling evaluation, on which we shall focus in this 428 

study.   429 

4.2. Computation	of	instantaneous	DRE	430 

It is clear from Eq. (5), once the instantaneous DREACA τ c t
*( ),τ a t*( ),θ t( )#

$
%
&  is 431 

known one can easily derive DRE*cloudy−sky  from the integral. In this section, we explain 432 

how the instantaneous DRE is computed from the CALIOP and MODIS products. 433 

Hereafter we drop the time dependence for simplicity. As mentioned in Section 2.1, the 434 

CALIOP operational algorithm classifies aerosol layers into 6 sub-types. Therefore, we 435 

can rewrite DREcloudy−sky  as: 436 

 DREcloudy−sky = fi DREACA i
i=1

6

∑ ,  (7) 437 

where  
DREACA i

 is the DRE of the ith type of CALIOP aerosol (e.g., dust, smoke, etc., 438 

see Figure 3) and fi is the frequency of detection of the ith type of aerosol. To compute the 439 

DREACA i
, one could collocate the level-2 CALIOP and MODIS data and compute the 440 

DRE pixel-by-pixel as follows: 441 

 DREACA i
=
1
Ni

DREACA τ a, j ,τ c, j( )
j=1

Ni

∑ ,  (8) 442 

where τ a, j  and τ c, j  are the ACA and cloud optical thicknesses of the jth pixel, 443 

respectively. Mathematically, Eq. (8) is equivalent to the following double integral:   444 

 
  

DREACA i
= DREACA(τ a ,τ c )Pi(τ a ,τ c )dτ a0

∞

∫$%&
'
()
dτ c0

∞

∫ ,  (9) 445 
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where   Pi(τ a ,τ c )  is the joint probability density function (PDF) of the above-cloud AOT 446 

of the ith CALIOP aerosol type and below-aerosol COT. Deriving DRE from Eq. (9) or 447 

(8) requires large amounts of level-2 CALIOP and MODIS data and pixel-by-pixel 448 

collocation and radiative transfer simulations. It is thus too computationally expensive 449 

and cumbersome for multiyear global studies. 450 

As shown in (Zhang et al., 2014), because the AOT of ACA is generally uncorrelated 451 

with the COT below, Eq. (9) can be simplified by assuming   Pi(τ a ,τ c ) = Pi(τ a )P(τ c )  as: 452 

 
  

DREACA i
= DREACA(τ a ,τ c )Pi(τ a )dτ a0

∞

∫$%&
'
()
P(τ c )dτ c0

∞

∫ ,  (10) 453 

where   P(τ c )  and  Pi(τ a )  are the PDF of below-aerosol COT and above-cloud AOT (ith 454 

CALIOP aerosol type), respectively. The advantage of Eq. (10) is that it allows   P(τ c )  455 

and   Pi(τ a ) to be derived separately, thus tedious pixel-level collocation and pixel-by-456 

pixel radiative transfer computations can be avoided. Following (Zhang et al., 2014), we 457 

derive   Pi(τ a )  from the CALIOP level-2 aerosol layer product and   P(τ c )  from the joint 458 

histogram of cloud optical thickness and cloud top pressure (COT-CTP joint histogram) 459 

in the MODIS daily level-3 product. In order to speed up the calculations, we use pre-460 

computed aerosol type-specific look-up tables (LUTs) instead of online radiative transfer 461 

computation when deriving the 
 

DREACA i
. The DRE LUTs are computed using the 462 

RRTM-SW model (Clough et al., 2005; Iacono et al., 2008). For details about the 463 

computation of DRE LUTs readers are referred to (Zhang et al., 2014).  464 
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4.3. COT	retrieval	correction	for	DRE	computation	465 

When a cloudy pixel is contaminated by overlying light-absorbing aerosols the 466 

MODIS COT retrieval is generally biased low (Coddington et al., 2010; e.g., Haywood et 467 

al., 2004). This COT retrieval bias needs to be accounted for in radiative transfer 468 

computation to avoid biased DRE (Meyer et al., 2013). A simple and fast correction 469 

scheme has been developed (Zhang et al., 2014) to account for the COT retrieval bias due 470 

to ACA in our DRE computation. First, we derive a MODIS LUT for “contaminated” 471 

clouds, which is essentially same as the operational MODIS LUT except that we put a 472 

layer of ACA on top of the cloud in the radiative transfer simulations to account for the 473 

impact of ACA on cloud reflectance. Then, we project the observed cloud reflectance that 474 

is contaminated by ACA onto the “contaminated” LUT to determine the corrected COT. 475 

This process is essentially to shift the potentially biased MODIS   P(τ c )  to a new 476 

“unbiased” PDF   P '(τ c )  that is actually used in the DRE computation. It should be noted 477 

that because different aerosol types can have different impacts on the MODIS COT 478 

retrievals, the COT bias is dependent on the radiative properties of the ACA, and the 479 

correction process is therefore dependent on the assumed aerosol model. Hereafter, all 480 

DRE computations are based on the “unbiased” COT unless otherwise stated. 481 

It is important to keep in mind that this COT correction scheme is only designed to 482 

account for the ACA-induced biases in the grid-level COT statistics. As shown in (Zhang 483 

et al., 2014), the DRE computations based on this simple scheme agree very well with 484 

results based on more rigorous pixel-level corrections. However, this statistical scheme is 485 

not intended for deriving the unbiased COT at pixel level. Interested readers can refer to 486 
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(Meyer et al., 2015) for a novel method to simultaneously retrieve the AOT of ACA and 498 

the unbiased COT and CER of the underlying cloud at the pixel level.    499 

4.4. Aerosol	optical	properties		500 

As shown in Figure 3, CALIOP-observed ACAs in the four ACA regions are 501 

primarily dust, smoke, and polluted dust aerosols. Given the AOT and underlying surface 502 

brightness, the DRE of aerosols is mainly determined by their optical properties, in 503 

particular single-scattering albedo. Therefore, the aerosol optical model assumption has a 504 

significant impact on the DRE results. In the control run shown in section 5, we choose to 505 

build our aerosol optical property models to be as consistent as possible to the models 506 

used in the operational CALIOP retrieval algorithm (Omar et al., 2009), with 507 

specifications given below.  508 

1) Smoke: In the control run, we use the model described in (Omar et al., 2009) for 509 

smoke aerosols to be consistent with the CALIOP operational retrieval 510 

algorithm (referred to hereafter as “CALIOP smoke”). Figure 4a shows the 511 

optical properties of CALIOP smoke calculated using Mie code (Wiscombe, 512 

1980), including extinction efficiency (Qe), single-scattering albedo (ω) and 513 

asymmetry factor (g) for the fourteen RRTM SW bands. In the calculation, we 514 

assumed a bimodal lognormal size distribution and a single refractive index of 515 

1.517+0.023i for all wavelengths (Omar et al., 2009). The band-averaged 516 

single-scattering albedo of CALIOP smoke is about 0.85 in the visible spectral 517 

region.  518 
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2) Dust: In the control run, the bulk scattering properties of dust aerosols shown in 519 

Figure 4c are calculated using the bimodal lognormal size distributions in 520 

(Omar et al., 2009) to be consistent with the operational CALIOP retrievals. 521 

For DRE computation, the refractive index over the whole solar spectrum is 522 

needed. However, in (Omar et al., 2009), the refractive index of dust is given 523 

only for the two wavelengths of CALIOP, i.e., 532nm and 1064nm. 524 

Alternatively, we use the dust spectral refractive index data reported in 525 

(Colarco et al., 2014) to combine with the size distributions in (Omar et al., 526 

2009) to derive the optical properties of dust. (Colarco et al., 2014) evaluated 527 

the sensitivity of dust transport simulations in NASA’s GEOS-5 climate model 528 

to dust particle shape and spectral refractive indices. Two sets of dust refractive 529 

indices are tested. One is a merger of remote sensing-based estimates of dust 530 

refractive indices in the shortwave (Colarco et al., 2002; Kim et al., 2011) with 531 

the (Shettle and Fenn, 1979) values in the longwave. Following (Colarco et al., 532 

2014) we refer to this model hereafter as “OBS dust.” The other one is based 533 

on the dust spectral refractive index provided in the OPAC database (OPAC 534 

(Hess et al., 1998)) (Colarco et al., 2014) (hereafter referred to as the “OPAC 535 

dust model”). The OPAC dust refractive index has been used for dust optical 536 

properties in previous studies by Perlwitz et al. (2001) and Colarco et al. (2010). 537 

In (Colarco et al., 2014), OBS  dust model is found to yield better dust clear-538 

sky radiative forcing simulations in comparison with satellite observation. 539 

Therefore, we choose to use the OBS dust model in the control run. The OPAC 540 

dust model is more absorptive than the OBS model, which will be used in the 541 
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uncertainty study to test the sensitivity of the DRE of above-cloud dust to its 542 

optical properties, in particular absorption.   543 

3) Polluted dust: In the control run, we use the model described in (Omar et al., 544 

2009) to compute the scattering properties, shown Figure 4e, of polluted dust 545 

aerosols identified by CALIOP. In the calculation, we assumed a bimodal 546 

lognormal size distribution and a single refractive index of 1.54+0.0019i for all 547 

wavelengths. 548 

In order to estimate the sensitivity of DRE of ACAs to their optical properties, we carried 549 

out a series of sensitivity studies using different aerosol optical models. The results from 550 

these sensitivity studies are discussed in section 6.1.  551 

5. Shortwave	Cloudy-sky	DREs	due	to	ACA	552 

5.1. Global	and	Seasonal	Climatology		553 

  Figure 5 shows the seasonal mean diurnally averaged shortwave cloudy-sky DRE 554 

at TOA ( DRE*cloudy−sky TOA
) derived from 8 years of MODIS and CALIOP data using the 555 

method described in the previous section. The computation uses the baseline optical 556 

models (i.e., “CALIOP smoke” and “OBS dust”) described above. The regional and 557 

seasonal mean values are shown in Table 2. It is not surprising that the regions with 558 

significant cloudy-sky DRE coincide with the regions of high ACA occurrence frequency 559 

(Figure 2). Similar to previous studies, we found the cloudy-sky DRE in the SE Atlantic 560 

Ocean to be positive during the boreal summer (JJA) and fall (SON) seasons when the 561 

ACA is most active (Figure 3a). The annual mean cloudy-sky DRE at TOA in this region 562 
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is 0.21 W/m2 (Table 2) and the seasonal mean is as large as 0.44 W/m2 during SON. The 563 

TOA DRE is negative in the TNE Atlantic Ocean (annual mean −0.78 W/m2) and 564 

Arabian Sea (annual mean −0.54 W/m2), where ACA is predominantly dust (Figure 3b 565 

and c). This result suggests that the above cloud dust tends to have a cooling effect on the 566 

climate, similar to its clear-sky counterpart. The cloudy-sky DRE at TOA in the NW 567 

Pacific region is mostly positive and quite small (annual mean 0.04 W/m2), and is only 568 

noticeable in the boreal spring season (MAM) along the coast of China (Figure 5b). Note 569 

that these numbers are not directly comparable to many previous studies (e.g., de Graaf et 570 

al., 2014; Feng and Christopher, 2015; Meyer et al., 2013), however, because the 571 

previous results are either instantaneous DRE that do not consider the diurnal variation of 572 

solar radiation, or are DRE averaged over only ACA pixels without accounting for the 573 

near zero DRE from “clean” clouds (i.e., not the true cloudy-sky DRE). When averaged 574 

over the global oceans, the positive DRE in the SE Atlantic is largely cancelled out by the 575 

negative DRE of dust in the North Atlantic and Arabian Sea, leading to an overall TOA 576 

DRE of about −0.02 W/m2.  Because most previous studies are focused on the SE 577 

Atlantic region, we cannot find other studies for which to compare our global DRE 578 

results. But we note that most AeroCom model simulations of global cloudy-sky aerosol 579 

DRE reported in (Schulz et al., 2006) fall in the range of −0.10 ~ 0.05 W/m2 (See their 580 

Table 5), although we understand our study is fundamentally different from (Schulz et al., 581 

2006).  582 

Despite the large difference in TOA DRE, the DRE of ACA at the surface  583 

( DRE*cloudy−sky surface
) is always negative (Figure 6) and the DRE of ACA within 584 
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atmosphere ( DRE*cloudy−sky atm
) is always positive (Figure 7), both as expected, in all of 585 

the active ACA regions. The annual mean cloudy-sky DREs at surface and within 586 

atmosphere averaged over global oceans are −0.13 and 0.11 W/m2, respectively (Table 2).  587 

The 8-year time series of monthly mean cloudy-sky DRE at TOA due to the three 588 

most prevalent ACA types classified by CALIOP—smoke, polluted dust and dust—are 589 

shown in Figure 8. As expected, the smoke ACA has a positive DRE with the peak value 590 

usually in September when the smoke is most active in the SE Atlantic region. The DRE 591 

of polluted dust ACA is generally positive, often with two peaks in the annual cycle—a 592 

larger one in boreal fall corresponding to the ACA active period in the SE Atlantic, and a 593 

smaller one usually in early boreal spring corresponding to the ACA active period in the 594 

NW Pacific. Together, the smoke and polluted dust have a combined annual mean DRE 595 

of about 0.03 W/m2 at TOA (see Table 3). Considering that the operational CALIOP 596 

retrievals often underestimate the AOT of ACA, the real DRE might be significantly 597 

larger. In fact, in the sensitivity test discussed in section 6, the annual mean cloudy-sky 598 

TOA DRE from smoke and polluted dust can be up to about 0.06 W/m2, which is 599 

comparable to the radiative forcing from light absorbing aerosols on snow and ice (IPCC 600 

AR5). The dust ACA has a strong negative TOA DRE with a peak magnitude usually in 601 

July corresponding to the heaviest dust period in the North Atlantic region (Figure 3b). 602 

On the basis of these global ocean time series, we did not observe significant inter-annual 603 

variability.   604 
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5.2. Regional	analysis	605 

5.2.1. SE	Atlantic	Ocean	606 

As seen in Figure 3, the ACAs in the SE Atlantic region occur mostly during the 607 

dry season of the African Savanna (e.g. June to October) with peak frequency around 608 

August and September. According to CALIOP, the ACAs in this region consist mostly of 609 

smoke and polluted dust (Figure 3a) that have significant absorption effects as shown in 610 

Figure 4. Figure 9 provides an in-depth explanation of why the ACAs in this region 611 

generate a strong warming effect at TOA, as well as an insight into our method used for 612 

computing the DRE of ACA described in Section 4. The color contour in Figure 9 613 

corresponds to the diurnally averaged DRE at TOA as a function of the AOT of ACA and 614 

the COT of the underlying cloud, i.e., the   DREACA(τ a ,τ c )  term in Eq. (9). The general 615 

patterns for smoke and polluted dust are quite similar, i.e., DRE is generally positive and 616 

increases with both AOT and COT. On the other hand, polluted dust has a smaller DRE 617 

than smoke for a given AOT and COT combination. As described in Section 4, the 618 

  DREACA(τ a ,τ c )  is pre-computed off-line and is stored in a LUT to accelerate the 619 

computation. To obtain the spatially averaged DRE,  
DREACA , we integrate 620 

  DREACA(τ a ,τ c )  with respect to the joint PDF of AOT and COT (i.e., the line contours in 621 

Figure 9) that is derived from the CALIOP and MODIS observations as described in 622 

Section 4. As seen in Figure 9a, during JJA the PDF of AOT has a peak slightly larger 623 

than 0.1 at 532nm. The COT PDF has two peaks, one around 3 and the other around 10. 624 

Compared to smoke, polluted dust in Figure 9b has a smaller AOT with the PDF peaking 625 
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at AOT slightly smaller than 0.1. The smaller AOT and weaker absorption together lead 626 

to a smaller DRE of polluted dust compared to smoke, as seen in Figure 8.  627 

Figure 10 tells a similar story as Figure 9, but from a different perspective. Here, 628 

we plotted the grid-mean DRE of ACA at TOA as a function grid-mean AOT of ACA 629 

based on observations from the SE Atlantic region. To show the importance of COT in 630 

modulating the ACA DRE we classify the data into three grid-mean COT bins, as 631 

indicated by the colors in the figure. In addition to the expected increase of DRE with 632 

AOT, we also notice that the slope of the DRE with respect to AOT, i.e., the DRE 633 

efficiency, generally increases with increasing grid-mean COT. The DRE efficiency for 634 

smoke is 17.9, 22.6 and 28.6 W/m2/AOT for COT less than 4, COT between 4 and 8, and 635 

COT greater than 8, respectively. The corresponding DRE efficiency for polluted dust is 636 

much smaller, yielding 6.7, 13.6, and 16.6 W/m2/AOT, respectively. This result is not 637 

surprising given the   DREACA(τ a ,τ c )  pattern in Figure 9 and has also been noted in 638 

several pervious studies (Meyer et al., 2013; Yu et al., 2010; Zhang et al., 2014). 639 

Nevertheless, it highlights the importance of cloud optical thickness (i.e., brightness) in 640 

determining the DRE efficiency of ACA. 641 

Finally, Figure 11 summarizes the multiyear seasonal meant ACA and cloud 642 

properties, as well as the DRE of ACA, in the SE Atlantic region during JJA. The 643 

seasonal mean total AOT of ACA at 532nm (Figure 11a), including all types of aerosols, 644 

is mainly between 0.1 to 0.2, with largest values found over the coastal region and 645 

reducing gradually toward the open sea presumably as a result of dry and/or wet 646 

deposition of smoke. The pattern of COT in Figure 11b is more homogeneous (mostly 647 

between 6~8) except for a region of large values (around 10) along latitude 10° S. Given 648 
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the strong dependence of DRE on AOT in Figure 9 and Figure 10, it is not surprising to 649 

see that the seasonal mean cloudy sky DRE of ACA in the SE Atlantic region (Figure 650 

11c) largely resembles the pattern of AOT (Figure 11a). In contrast, the DRE efficiency 651 

in Figure 11d aligns more with the COT pattern in Figure 11b, as one would expect given 652 

the results in Figure 10. 653 

5.2.2. TNE	Atlantic	Ocean	and	Arabian	Sea		654 

As discussed in Section 5.1, the TNE Atlantic Ocean and Arabian Sea are another 655 

two regions with high occurrence frequency of ACA (Figure 2). As shown in Figure 3, 656 

dust aerosols are the dominant type of ACA in both regions with a general cooling effect 657 

at TOA (Figure 5). An analysis similar to Figure 9 and Figure 10 but for the dust aerosols 658 

in the TNE Atlantic region and Arabian Sea is shown in Figure 12. A comparison of 659 

Figure 12a with Figure 9 reveals several important differences between the dust ACA-660 

dominated region and the SE Atlantic smoke region. The color map in Figure 12a reveals 661 

that above cloud dust with the optical properties in Figure 4c in general has a cooling 662 

effect at TOA for COT smaller than about 7. When the cloud becomes optically thicker, 663 

the DRE of above cloud dust at TOA switches sign to a warming effect. The line contour 664 

in Figure 12a reveals that most of the clouds found in the TNE Atlantic region during JJA 665 

have a COT smaller than 10. As a result, the grid-mean DRE of ACA at TOA in this 666 

region is mostly negative as seen in both Figure 12b and previously in Figure 5. It is 667 

interesting to note that the PDF of the AOT of above cloud dust has a peak value around 668 

0.3 in Figure 12a, which is larger than both the smoke and polluted dust in the SE 669 

Atlantic. This result reiterates the fact reported in many previous studies, that the sign of 670 

aerosol DRE at TOA is primarily determined by aerosol absorption, in particular with 671 
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respect to the underlying surface, rather than aerosol loading. Similar to Figure 10, we 672 

found in Figure 12b that the grid-mean DRE in the TNE Atlantic region has a strong 673 

dependence on AOT, i.e., the magnitude of the negative DRE increases with increasing 674 

AOT. However, we found little dependence of grid-mean ACA DRE on grid-mean COT 675 

in Figure 12b in contrast to the case of smoke or polluted dust in Figure 10. This result 676 

indicates that the grid-mean COT is not very revealing about the DRE of above-cloud 677 

dust. The overall DRE efficiency of above-cloud dust in this region based on grid-level 678 

statistics is −29.3 W/m2/AOT. The analysis for Arabian Sea in Figure 12c and d turns out 679 

to be very similar to the TNE Atlantic region. The overall DRE efficiency of above-cloud 680 

dust in the Arabian Sea region is −28.4 W/m2/AOT. This result implies that the 681 

difference in the cloud-sky DRE between the TNE Atlantic and Arabian Sea is mainly 682 

caused by the difference in ACA occurrence frequency fACA  rather than aerosol or cloud 683 

property difference. For example, the JJA seasonal mean TOA DRE is −2.39 W/m2 in 684 

TNE Atlantic vs. −0.97 W/m2 in the Arabian Sea. This difference is mainly caused by the 685 

fact that the TNE Atlantic has a higher fACA  around 0.4 than Arabian Sea around 0.15 686 

(Figure 3).   687 

5.2.3. NW	Pacific	Ocean	688 

The ACA in the NW Pacific Ocean has a small positive DRE at TOA, with a 689 

regional annual mean of only 0.04 W/m2 (Table 2). The positive DRE is primarily due to 690 

smoke and polluted dust aerosols (see Figure 3 and Figure 13). Note that CALIOP 691 

observes significantly more ACA in the NW Pacific region during nighttime (See Figure 692 

2 in the supplementary material) than it does during daytime (Figure 2). If this difference 693 

is due to CALIOP instrument issues (i.e., low signal-to-noise-ratio during daytime), it is 694 
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then likely that the TOA DRE in Table 2 for the NW Pacific region is substantially 695 

underestimated. In section 6, we estimated the impact of daytime vs. nighttime CALIOP 696 

aerosol retrieval differences on ACA DRE. Indeed, we found that the TOA DRE in the 697 

NW Pacific Ocean region significantly increases if nighttime CALIOP retrievals are used 698 

in DRE computations (regional annual mean increased up to 0.3 W/m2). Finally, we note 699 

in Table 2 that the peak value of seasonal mean TOA DRE in the North Pacific occurs in 700 

the boreal summer (JJA) when the ACA occurrence frequency is low rather than in the 701 

spring or winter when there is a larger ACA occurrence frequency. This suggests a 702 

stronger role of solar insolation than ACA occurrence frequency.  703 

6. Uncertainty	Analysis	704 

In this section, we assess the impact of two major uncertainties on the DRE 705 

computation, one associated with the aerosol optical properties and the other associated 706 

with the CALIOP AOT retrieval.  707 

6.1. Uncertainty	in	aerosol	optical	properties	708 

As indicated in Figure 8, smoke and dust are the two most important types of ACA in 709 

terms of DRE. The DRE results in Section 5 are based on the control run, in which smoke 710 

and dust aerosols are represented by the CALIOP smoke model in Figure 4a and OBS 711 

dust model in Figure 4c. The primary rationale for using the CALIOP smoke model in the 712 

control run is that it is consistent with the operational CALIOP retrieval algorithm. As 713 

shown in Figure 4a, the CALIOP smoke model has a single scattering albedo ω around 714 

0.85 in the visible region, which is close to the mean value of ω measured during the 715 

SAFARI 2000 (Southern African Regional Science Initiative) field campaign (see Figure 716 
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1 in Leahy et al., 2007). However, it should be noted that most measurements made 717 

during the SAFARI 2000 field campaign took place in the southern African continent 718 

close to the source of biomass burning aerosols and upstream of the SE Atlantic ACA 719 

region. Previous studies have found that the absorption of carbonaceous smoke particles 720 

tends to decrease due to the aging effect and mixing with other less absorptive aerosols 721 

(Liousse et al., 1993). In order to estimate the impact of aerosol model uncertainty on 722 

DRE, we replaced the CALIOP smoke model in our sensitivity tests with the less 723 

absorbing aged plume model reported in (Haywood et al., 2003) (referred to as the 724 

“Haywood smoke model”). This model is derived from air-borne in situ measurements of 725 

aged smoke plumes advected off the coast of Namibia and Angola during the SAFARI 726 

2000 campaign. In this model, in situ measured aerosol size distributions are fitted using 727 

a summation of three lognormal distributions with two fine modes composed of aged 728 

biomass smoke and the third coarse mode composed of mineral dust. The single 729 

scattering properties of the Haywood smoke model are shown in Figure 4b. Compared to 730 

the CALIOP smoke model, the Haywood smoke model is significantly less absorptive, 731 

with a single scattering albedo ω of about 0.90 in the visible region (vs. ω~0.85 for the 732 

CALIOP smoke model). 733 

To estimate the sensitivity of DRE to dust scattering properties, we developed a new 734 

dust scattering model based on the same size distribution as the OBS model but a 735 

different spectral refractive index provided in the OPAC database (Hess et al., 1998) 736 

(referred to as the “OPAC dust model”). The OPAC dust refractive index has been used 737 

for dust optical properties in previous studies by Perlwitz et al. (2001) and Colarco et al. 738 

(2010). The single scattering properties of the OPAC dust model are shown in Figure 4d. 739 
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With a ω~0.9 in the visible region, OPAC dust is significantly more absorptive than the 740 

OBS dust model (ω~0.95 in visible) used in the control run. It should be clarified here 741 

that the new models do not necessarily provide a better (or worse) representation of the 742 

optical properties of ACA, but their differences from the models used in the control run, 743 

especially in terms of aerosol absorption, provide an opportunity to investigate the 744 

sensitivity of ACA DRE to the optical properties of ACA.  745 

The results from the sensitivity tests are shown in Figure 14. The annual mean 746 

cloudy-sky TOA DRE and DRE efficiency from the control run are shown in Figure 14a 747 

and b. In the first sensitivity test, we replaced the CALIOP smoke model with the 748 

Haywood smoke model, but kept the OBS dust model. Note that the combination of 749 

Haywood smoke and OBS dust are the least absorptive among all possible combinations. 750 

As expected the less absorbing Haywood smoke model leads to a significant reduction of 751 

positive DRE in the SE Atlantic Ocean (Figure 14c). The annual and seasonal mean of 752 

cloudy-sky DRE in this region reduces by a factor of 2 from 0.21 to 0.10 W/m2. In 753 

addition, the DRE efficiency in Figure 14d is also seen to reduce significantly from a 754 

regional mean of 9.35 W/m2/AOT to 3.88 W/m2/AOT. In the second sensitivity test, we 755 

replaced the OBS dust model with the OPAC dust model, but kept the CALIOP smoke 756 

model unchanged. Note that the combination of CALIOP smoke and OPAC dust are the 757 

most absorptive among all possible combinations. The use of the more absorptive OPAC 758 

model reduces the scattering effect of above-cloud dust, which has the most significant 759 

impact on the TNE Atlantic region as expected (Figure 14e), reducing the strength of 760 

regional annual mean TOA DRE from −0.78 to −0.31 W/m2. The regional mean DRE 761 

efficiency in the region reduces from about −24.2 W/m2/AOT to −9.5 W/m2/AOT. 762 
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6.2. Uncertainty	in	CALIOP	AOT	retrieval				763 

As mentioned in Section 2.1, several previous studies (Jethva et al., 2014; Torres et 764 

al., 2013; Waquet et al., 2013b) found that the current operational CALIOP 532nm 765 

retrieval algorithm, based on the inversion of the attenuated backscatter profile, often 766 

significantly underestimates the AOT, especially for smoke aerosols and during the 767 

daytime. This is mainly because the strong attenuation of the upper part of an aerosol 768 

layer, plus the small backscatter of aerosol particles, makes the attenuated backscatter 769 

signal from the lower part of the layer too low to be detected, which leads to an 770 

underestimation of the physical thickness and thereby AOT of the aerosol layer. This 771 

issue is more severe for smoke aerosols than dust, due to the small backscatter of smoke 772 

aerosols (Liu et al., 2015). A case study of above-cloud smoke by (Jethva et al., 2014) 773 

showed that the AOT retrievals from other remote sensing techniques are substantially 774 

larger (up to a factor of 5) than the operational CALIOP 532nm retrieval as a result of the 775 

abovementioned issue. A recent study by (Liu et al., 2015) estimated that the operational 776 

CALIOP nighttime AOT retrieval for smoke aerosol over opaque clouds is 777 

underestimated by about 39%.  Because of the strong dependence of DRE on AOT, the 778 

underestimation of smoke AOT by the operational CALIOP retrieval algorithm would 779 

have substantially biased the DRE estimates discussed in Section 5, an effect that was 780 

shown previously in (Meyer et al., 2013). A robust quantification of this impact requires 781 

either the development and implementation of a new CALIOP retrieval algorithm or the 782 

use of an alternate independent data set of multiple year global ACA AOT retrievals, 783 

both of which are beyond the scope of this study. Here we attempt to estimate the upper 784 

bound of DRE bias due to the underestimate of AOT. 785 
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We note that although the CALIOP operational algorithm often misses the real 786 

bottom of an ACA layer, most of the time it can detect the top of the cloud beneath. This 787 

is because the strong backscatter of cloud droplets makes the attenuated backscatter 788 

signal strong enough for the CALIOP feature mask to detect despite the strong 789 

attenuation of the overlying ACA layer. Here we assume that the entire layer between the 790 

top of the ACA layer (HACA−top ) and the cloud top (Hcloud−top ) is occupied by aerosols, and 791 

we obtain the AOT for this entire layer by scaling the CALIOP AOT retrieval for ACA as 792 

follows: 793 

 τ 'ACA =
HACA−top −Hcloud−top

HACA−top −H
*
ACA−bottom

τ ACA  , (11) 794 

where H *
ACA−bottom  is the CALIOP retrieved apparent aerosol layer bottom height that is 795 

likely biased high. Because the true bottom of the aerosol layer is likely somewhere 796 

between the retrieved bottom and cloud top, the scaled AOT τ 'ACA  is therefore an 797 

estimate of the upper limit of the ACA AOT. A comparison of the operational AOT 798 

retrievals and the scaled AOT based on Eq. (11) derived from one year of CALIOP data 799 

over global ocean is shown in Figure 15. The scaling process systematically shifts the 800 

PDFs of AOT to larger values as expected. Globally averaged, the operational CALIOP 801 

532nm AOT for above-cloud smoke (with a mean value of 0.24) is about 43% smaller 802 

than the scaled results (mean value about 0.42). This result is encouragingly close to (and 803 

larger than) the estimate by Liu et al. (2015) (i.e., 39% underestimation), which seems to 804 

suggest that the bottom of the above-cloud smoke layer is much closer to cloud top than 805 

the daytime CALIOP observation. The scaling has a similar impact on polluted dust. In 806 

contrast, the impact on dust aerosols is smaller. The global mean AOT of above-cloud 807 

Unknown
Field Code Changed
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dust from the operational CALIOP product (mean AOT around 0.31) is about 30% 808 

smaller than the scaled result (mean AOT around 0.43). This is also close to the number 809 

reported in (Liu et al., 2015) (i.e., 26% underestimation). 810 

 In the sensitivity test shown Figure 16, we replaced the operational CALIOP 811 

532nm retrieval τ ACA  with the scaled τ 'ACA  in the DRE computation. In comparison with 812 

the DRE from the control run in Figure 14a, c, and e, the most prominent change is the 813 

significant increase of positive TOA DRE in the SE Atlantic region, where ACAs are 814 

mostly smoke and polluted dust. For example, assuming the CALIOP smoke model, the 815 

regional annual mean TOA DRE increases from about 0.2 W/m2 if using the operational 816 

AOT to more than 0.6 W/m2 using the scaled AOT (see Table 4). Globally averaged, the 817 

annual mean TOA DRE induced by above-cloud smoke increases from about 0.013 818 

W/m2 to 0.035 W/m2 (see Table 3). Interestingly, the impact on DRE efficiency of AOT 819 

scaling is not as strong as the impact on DRE, suggesting that the DRE is generally linear 820 

with AOT as also found in previous studies (Meyer et al., 2013; Zhang et al., 2014).   821 

 In addition to the abovementioned issue, strong background solar noise is another 822 

source of uncertainty in the daytime CALIOP aerosol products (Hunt et al., 2009; Liu et 823 

al., 2015). To estimate the impact of this uncertainty on our DRE results, we performed 824 

another sensitivity test, in which we replaced the daytime CALIOP ACA retrievals, 825 

including AOT and aerosol classification, with the nighttime retrievals in our DRE 826 

computations. The results are presented in the supplementary material. In summary, we 827 

found that CALIOP generally detects more and thicker above-cloud smoke in the 828 

nighttime than in the daytime, which has also been noted in previous studies (Meyer et 829 

al., 2013). We also noted that CALIOP generally detects less and thinner above-cloud 830 
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dust in the nighttime than in the daytime. As a result of increased smoke and decreased 831 

dust, the annual mean global ocean DRE at TOA are shifted to more positive values, 832 

ranging from 0.0 to 0.06 W/m2 (See Table S1 in supplementary material), compared with 833 

the daytime results in Table 4 (−0.03 ~ 0.04 W/m2). We must emphasize that caution 834 

must be taken when interpreting the results from this test. Although solar noise certainly 835 

has an important role, other factors, in particular the natural aerosol diurnal cycle, could 836 

also cause differences between daytime and nighttime CALIOP aerosol retrievals. Future 837 

studies and independent data are needed to better understand these differences. 838 

6.3. Summary	of	uncertainty	study	839 

Finally, combining the results from the control run (Table 3) and sensitivity tests 840 

(Table 4 and Table S2), we estimate that the annual mean diurnally average TOA DRE 841 

due to ACA over global ocean is about 0.015 W/m2 with a range of −0.03 to 0.06 W/m2. 842 

The lower bound (−0.03 W/m2) is based on the combination of the least absorbing 843 

aerosol combination, i.e., Haywood smoke and OBS dust model, and operational (un-844 

scaled) daytime AOT. The upper bound (0.06 W/m2) is based on the combination of the 845 

most absorbing aerosol models, i.e., CALIOP smoke and OPAC dust model, and scaled 846 

nighttime AOT. The DREs at surface and within the atmosphere are −0.15 W/m2 (with a 847 

range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (with a range of 0.11 to 0.24 W/m2), 848 

respectively. It should be noted that the rather small TOA DRE when averaged over 849 

global ocean is partly because of the cancellation of positive (in SE Atlantic and NW 850 

Pacific) and negative (TNE Atlantic and Arabian See) regional DREs. The regional and 851 

seasonal mean DREs, as shown in Table 5 and Table S3, could be much stronger. For 852 

example, in the SE Atlantic region the JJA seasonal mean cloudy-sky DRE is about 0.7 853 
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W/m2 (with a range of 0.2 to 1.2 W/m2) at TOA (Table 5 and Table S3). From a different 854 

perspective, the results in Table 3 and Table S1 suggest that the light-absorbing ACAs, 855 

i.e., smoke and polluted dust, induce an annual mean TOA DRE of about 0.04 W/m2 856 

(with a range of about 0.015 ~ 0.065 W/m2), which is largely cancelled by the negative 857 

DRE due to above-cloud dust (annual mean of about −0.024 W/m2 with a range between 858 

−0.004 to −0.044 W/m2). 859 

Overall, we found significant uncertainties in our DRE computation. Even the sign of 860 

global ocean mean cloud-sky TOA DRE is uncertain. This is partly because, as analyzed 861 

above, the positive DREs in regions dominated by light-absorbing ACAs (i.e., SE 862 

Atlantic and NW Pacific) are largely cancelled by the negative DREs in the regions 863 

dominated by above-cloud dust (i.e., TNE Atlantic and Arabian Sea). In addition, there 864 

are also substantial uncertainties in regional DREs caused by uncertainties in aerosol 865 

optical properties, in particular aerosol absorption, and uncertainties in the CALIOP 866 

operational aerosol retrieval products. Reducing these uncertainties requires improved 867 

knowledge of the optical properties of ACAs, in particular single-scattering albedo, on 868 

regional scales, and at the same time more accurate ACA property retrievals, in particular 869 

AOT. New measurements from upcoming field campaigns, for example NASA’s 870 

ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), will help 871 

improve our knowledge of the ACA properties in SE Atlantic region. In addition, the 872 

emerging remote sensing techniques summarized in (Yu and Zhang, 2013) will provide 873 

independent ACA retrievals to compare and validate the results from this study and 874 

improve our understanding of the DRE of ACA. Finally, as pointed out earlier, we have 875 

ignored the cloud diurnal cycle in the DRE computation, as well as the uncertainty 876 
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analysis in this section. The impact of cloud diurnal cycle on DRE computations will be 877 

investigated in future work along with updated uncertainty analysis.   878 

7. Summary	and	Discussion	879 

In this study, we used 8 years (2007-2014) of CALIOP ACA and MODIS cloud 880 

observations to derive the shortwave DRE of ACA over global oceans. The main findings 881 

are summarized below: 882 

1) Similar to previous studies, we found high occurrence frequency of ACA in 883 

several regions of the globe (see Figure 2), including i) the SE Atlantic where 884 

marine boundary layer clouds are persistently covered by smoke and polluted 885 

dust aerosols originating from biomass burning activities in the African 886 

Savanna; ii) the TNE Atlantic region where ACAs are predominately blown 887 

dust from Sahara; iii) the Arabian Sea region where dust aerosols from 888 

surrounding deserts overlap with clouds associated with the Asian monsoon; 889 

and iv) the North Pacific region where transported pollution from Asia is often 890 

found above clouds in boreal winter and early spring (see Figure 3).     891 

2) In regions where ACAs are dominated by smoke and polluted dust (e.g., SE 892 

Atlantic and North Pacific), the cloudy-sky DRE at TOA due to ACA is 893 

generally positive, while in regions dominated by dust aerosols (e.g., TNE 894 

Atlantic and Arabian Sea) the DRE at TOA is generally negative (see Figure 895 

5). After averaging over global oceans, the light-absorptive ACAs, i.e., smoke 896 

and polluted dust, yield a TOA DRE of about 0.04 W/m2 (range of about 897 

0.015 ~ 0.065 W/m2). In contrast, above-cloud dusts yield an annual mean of 898 
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about −0.024 W/m2 (range of −0.004 to −0.044 W/m2) (see Table 3). The 899 

cancellation of positive and negative DREs results in a rather small global-900 

ocean averaged annual mean cloudy-sky TOA DRE of about 0.015 W/m2 with 901 

a range of −0.03 to 0.06 W/m2. The global-ocean averaged annual mean 902 

cloudy-sky DREs at the surface and within the atmosphere are about −0.15 903 

W/m2 (range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (range of 0.11 to 0.24 904 

W/m2), respectively. 905 

3) We estimated the impacts on our DRE computation of two major sources of 906 

uncertainty, one associated with assumed aerosol optical properties and the 907 

other with potential CALIOP AOT retrieval biases. As expected, we found the 908 

DRE of ACA is highly sensitive to the aerosol absorption. The use of a less 909 

absorptive smoke model can reduce the positive TOA DRE in the SE Atlantic 910 

region by a factor of 2 (see Figure 14 and Table 3). The impact of potential 911 

low biases in the CALIOP AOT retrieval due to the high bias in the detected 912 

aerosol layer bottom is even stronger. The scaling has a stronger impact on the 913 

AOT of smoke than dust (see Figure 15), leading to a less negative or even 914 

positive global annual mean DRE. The combination of AOT scaling and using 915 

more absorptive aerosol optical models can lead to a global-ocean averaged 916 

annual mean TOA DRE of about 0.04 W/m2 (see Table 4), and up to 0.06 917 

W/m2 if nighttime CALIOP aerosol retrievals are used.  918 

To our best knowledge, this is the first study to provide an observational-based global 919 

and multiyear perspective on the DRE of ACA. Our results can be used for evaluating 920 
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and improving model simulations of cloudy-sky DRE of aerosols that currently have 921 

large diversity (Schulz et al., 2006).  922 

 There are several limitations to this study that could be improved in future work. 923 

First, as we mentioned in section 4, although we consider the diurnal solar variation we 924 

ignored the diurnal variation of cloud and aerosol in our DRE computation. This is 925 

because the A-Train observes most regions of the globe only once during the daytime. 926 

This is not enough, especially in regions where clouds and/or aerosols have a strong 927 

diurnal cycle. For example, as shown in (Min and Zhang, 2014) the cloud fraction in the 928 

SE Atlantic region varies substantially from the maximum value of about 80% in the 929 

early morning to about 60% in the late afternoon. Cloud liquid water path and cloud 930 

optical thickness have a similar diurnal cycle (Wood et al., 2002). Approximating such a 931 

strong diurnal cycle using only the snapshot from the afternoon A-train crossing is likely 932 

to cause significant errors in DRE computation (Min and Zhang, 2014). In this regard, 933 

geostationary observations from, for instance, the SEVIRI (Spinning Enhanced Visible 934 

and InfraRed Imager) onboard MSG (MeteoSat Second Generation) (Schmetz et al., 935 

2002), can be used to assess the impact of cloud diurnal cycle on ACA DRE computation. 936 

One of our future work will be using the diurnal cloud observations from SEVIRI and 937 

ACA observations from CALIOP or other satellite instruments to study the impact of 938 

cloud diurnal cycle on all-sky aerosol forcing in the SE Atlantic region. Second, we used 939 

only the aerosol retrievals from CALIOP in DRE computation. As aforementioned, 940 

recent studies have found significant biases and uncertainties in the operational CALIOP 941 

aerosol product (Jethva et al., 2014; Liu et al., 2015; Meyer et al., 2013). We have tried to 942 

estimate the impact of CALIOP retrieval uncertainties on our DRE computations. 943 
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Nevertheless, future study is needed to better understand the uncertainties in our results. 944 

The emerging ACA property retrievals from the passive satellite sensors would provide 945 

independent datasets for such studies (Jethva et al., 2013; Meyer et al., 2015; Torres et 946 

al., 2012; Waquet et al., 2009). Finally, our current knowledge on the microphysical and 947 

optical properties of ACAs is still very limited due to the lack of measurements in 948 

comparison with clear-sky aerosols (e.g., no measurement from AERONET). New 949 

measurements from upcoming field campaigns, for example NASA’s ORACLES 950 

(ObseRvations of Aerosols above CLouds and their intEractionS), and emerging satellite 951 

remote sensing techniques will help improve our DRE computations in the future.   952 

953 
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Tables: 1214 

Table 1 Geo-locations of four active ACA regions. 1215 

Region Latitude and longitude region  

Southeastern 
Atlantic 

30°S~10°N; 20°W~20°E 

Tropical 
Northeastern 

Atlantic 

10°N~30°N; 45°W~18°W 

Arabian Sea 0°~30°N; 40°E~80°E 

Northwestern 
Pacific 

40°N~55°N; 145°E~180°E 

 1216 

1217 
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 1218 

Table 2 The seasonal and annual mean of diurnally averaged cloudy-sky DREs due to 1219 
ACA at TOA (numbers on the top in each cell), surface (numbers in the middle) and 1220 
within atmosphere (numbers on bottom). The unit is W/m2. 1221 

Region DRE DJF MAM JJA SON Annual 

SE Atlantic 
Ocean 

DRETOA 

DRESFC 

DREATM 

−0.02 

−0.21 

0.19 

−0.04 

−0.15 

0.11 

0.41 

−0.56 

0.98 

0.44 

−0.49 

0.93 

0.21 

−0.34 

0.56 

TNE Atlantic 
Ocean 

DRETOA 

DRESFC 

DREATM 

−0.05 

−0.21 

0.16 

−0.57 

−1.45 

0.88 

−2.39 

−5.99 

3.60 

−0.20 

−0.48 

0.28 

−0.78 

−1.99 

1.21 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.02 

−0.16 

0.14 

−0.44 

−1.11 

0.67 

−0.97 

−2.44 

1.47 

−0.25 

−0.73 

0.48 

−0.54 

−1.41 

0.88 

NWPacific 
Ocean 

DRETOA 

DRESFC 

DREATM 

0.01 

−0.03 

0.04 

0.05 

−0.07 

0.12 

0.08 

−0.07 

0.15 

0.01 

−0.01 

0.03 

0.04 

−0.05 

0.09 

Global Ocean DRETOA 

DRESFC 

DREATM 

0.00 

−0.04 

0.04 

−0.02 

−0.11 

0.09 

−0.06 

−0.27 

0.20 

0.01 

−0.07 

0.08 

−0.02 

−0.13 

0.11 
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1223 
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 1224 

Table 3 The global annual mean of diurnally averaged cloudy-sky DREs at TOA induced 1225 
by different types of ACA according to CALIOP observations. The numbers in the 1226 
parentheses are results based on the scaled AOT (See section 6.2 for details). The unit is 1227 
W/m2. 1228 

Type  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

Smoke DRETOA 

DRESFC 

DREATM 

0.013 (0.035) 

−0.011 (−0.025) 

0.023 (0.060) 

0.005 (0.018) 

−0.021 (−0.052) 

0.026 (0.070) 

0.013 (0.035) 

−0.011 (−0.025) 

0.023 (0.060) 

Dust DRETOA 

DRESFC 

DREATM 

−0.036 (−0.044) 

−0.088 (−0.116) 

0.051 (0.071) 

−0.036 (−0.044) 

−0.088 (−0.116) 

0.051 (0.071) 

−0.014 (−0.014) 

−0.106 (−0.141) 

0.092 (0.127) 

Polluted Dust DRETOA 

DRESFC 

DREATM 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

 1229 

1230 
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 1231 

Table 4 The regional and annual mean of diurnally averaged cloudy-sky DREs at TOA 1232 
based on different combinations of aerosol optical models. The numbers in the 1233 
parentheses are results based on the scaled AOT (See section 6.2 for details). The unit is 1234 
W/m2. 1235 

Region  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

SE Atlantic DRETOA 

DRESFC 

DREATM 

0.21 (0.67) 

−0.34 (−0.73) 

0.56 (1.37) 

0.10 (0.38) 

−0.50 (−1.13) 

0.59 (1.51) 

0.23 (0.68) 

−0.36 (−0.76) 

0.60 (1.44) 

TNE Atlantic DRETOA 

DRESFC 

DREATM 

−0.78 (−1.00) 

−1.99 (−2.68) 

1.22 (1.69) 

−0.78 (−0.99) 

−1.99 (−2.67) 

1.21 (1.70) 

−0.31 (−0.34) 

−2.40 (−3.22) 

2.09 (2.88) 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.54 (−0.59) 

−1.41 (−1.59) 

0.88 (1.00) 

−0.54 (−0.59) 

−1.42 (−1.60) 

0.88 (1.00) 

−0.25 (−0.27) 

−1.67 (−1.88) 

1.42 (1.62) 

NW Pacific DRETOA 

DRESFC 

DREATM 

0.04 (0.12) 

−0.05 (−0.12) 

0.09 (0.24) 

0.04 (0.10) 

−0.06 (−0.16) 

0.1 (0.26) 

0.05 (0.14) 

−0.05 (−0.13) 

0.10 (0.27) 

Global Ocean DRETOA 

DRESFC 

DREATM 

−0.02 (0.00) 

−0.13 (−0.18) 

0.11 (0.18) 

−0.03 (−0.01) 

−0.14 (−0.21) 

0.11 (0.20) 

0.00 (0.04) 

−0.14 (−0.20) 

0.14  (0.24) 

 1236 

 1237 

 1238 

 1239 

 1240 
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Table 5 Same as Table 4, except for JJA seasonal mean.  1241 

Region  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

SE Atlantic DRETOA 

DRESFC 

DREATM 

0.41 (1.12) 

−0.56 (1.20) 

0.98 (2.32) 

0.21 (0.67) 

−0.85 (−1.89) 

1.06 (2.57) 

0.44 (1.17) 

−0.58 (−1.22) 

1.01 (2.40) 

TNE Atlantic DRETOA 

DRESFC 

DREATM 

−2.39 (−3.05) 

−5.99 (−8.10) 

3.60 (5.04) 

−2.39 (−3.06) 

−5.99 (−8.10) 

3.60 (5.04) 

−0.91 (−1.03) 

−7.26 (−9.80) 

6.35 (8.77) 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.97 (−1.06) 

−2.44 (−2.76) 

1.47 (1.70) 

−0.97 (−1.07) 

−2.44 (−2.76) 

1.47 (1.70) 

−0.46 (−0.49) 

−2.92 (−3.30) 

2.46 (2.81) 

NW Pacific DRETOA 

DRESFC 

DREATM 

0.08 (0.22) 

−0.07 (−0.20) 

0.15 (0.41) 

0.06 (0.19) 

−0.10 (−0.27) 

0.16 (0.46) 

0.09 (0.24) 

−0.08 (−0.20) 

0.17 (0.44) 

Global Ocean DRETOA 

DRESFC 

DREATM 

−0.06 (−0.04) 

−0.27 (−0.38) 

0.20 (0.34) 

−0.08 (−0.06) 

−0.28 (−0.42) 

0.21 (0.36) 

0.00 (0.03) 

−0.31 (−0.44) 

0.31 (0.47) 

 1242 

 1243 

1244 
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Figures: 1245 

 1246 

 1247 

Figure 1 Multiyear seasonal mean total cloud fraction in a) DJF, b) MAM, c) JJA and d) 1248 
SON derived from 8 years of daytime CALIOP observations.    1249 

1250 
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 1252 

Figure 2 Multiyear seasonal mean occurrence frequency of ACA ( fACA ) in a) DJF, b) 1253 
MAM, c) JJA and d) SON derived from 8 years of daytime CALIOP observations. The 1254 
red boxes indicate the 4 regions with high ACA occurrence frequency. See also Table 1 1255 
for the exact geolocation.  1256 

1257 

Zhibo Zhang � 12/16/2015 4:55 PM

Deleted: 1258 



 60 

 1259 

 1260 

Figure 3 8-year averaged monthly mean daytime occurrence frequency of aerosol types 1261 
observed by CALIOP for the a) Southeast Atlantic region, b) North tropical Atlantic 1262 
region, c) Arabian Sea, and d) Northwestern Pacific.   1263 
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 1266 

 1267 

Figure 4 Single scattering properties, including extinction efficiency (Qe), single-1268 
scattering albedo (ω ), and asymmetry factor (g) for a) CALIOP smoke, b) Haywood 1269 
smoke, c) OBS dust, d) OPAC dust, and e) CALIOP polluted dust.  1270 

1271 



 62 

 1272 

 1273 

Figure 5: 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE at TOA, 1274 
using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in the 1275 
computation is from the CALIOP operational product without any adjustment.   1276 

 1277 

1278 
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 1279 

 1280 

Figure 6 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE at surface, 1281 
using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in the 1282 
computation is from the CALIOP operational product without any adjustment.   1283 

 1284 

 1285 
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 1287 

 1288 

Figure 7 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE within the 1289 
atmosphere, using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in 1290 
the computation is from the CALIOP operational product without any adjustment.   1291 

1292 
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 1293 

Figure 8 Time series of monthly mean diurnally averaged shortwave cloudy-sky DRE at 1294 
TOA from 2007 to 2014. The horizontal bars on the y-axis mark the 8-year annual mean 1295 
values. 1296 
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 1301 

 1302 

Figure 9 Diurnally averaged TOA above-cloud aerosol DRE as a function of COT and 1303 
 above-cloud AOT for the CALIOP smoke (a) and polluted dust (b) models. Also plotted 1304 
for each aerosol model are the joint PDFs of above-cloud AOT and underlying COT (line 1305 
contours); PDFs are obtained from the entire 8-year JJA record for the SE Atlantic region. 1306 
Here, the solar zenith angle is assumed to be 24° and CER  is assumed to be 12.5 µm.   1307 

 1308 

1309 
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 1310 

 1311 

Figure 10 Dependence of grid-mean diurnally averaged DRE at TOA on grid-mean ACA 1312 
AOT for a) smoke and b) polluted dust in the SE Atlantic Ocean from 8 years of 1313 
CALIOP observations. The colors correspond to grid-mean underlying COT. 1314 
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 1317 

 1318 

Figure 11 The 8-year seasonal mean (JJA) a) AOT of ACA, b) underlying COT, c) 1319 
cloudy-sky diurnally averaged DRE at TOA (Wm-2), and d) TOA DRE efficiency (Wm-1320 
2AOT-1) in the SE Atlantic region.      1321 
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 1325 

 1326 

Figure 12: Same as Figure 9 and Figure 10 but for the dust aerosols in the TNE Atlantic 1327 

region (a and b) and Arabian Sea (c and d).  1328 

1329 
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 1330 

 1331 

 1332 

Figure 13 Same as Figure 9 but for the a) smoke, b) polluted dust and c) dust aerosols in 1333 
the Northwest Pacific Ocean. 1334 

1335 
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 1336 

 1337 

Figure 14 Annual mean cloudy-sky a) DRE at TOA and b) DRE efficiency due to ACA 1338 

computed using the control run aerosol models; c) and d) are the same as a) and b), 1339 

except that the CALIOP smoke model has been replaced by the Haywood smoke model; 1340 

e) and f) are the same as a) and b), except that the OBS dust model has been replaced by 1341 

the OPAC dust model. 1342 

 1343 

 1344 

 1345 



 72 

 1346 

Figure 15 Comparison of the probability density function of above-cloud smoke AOT 1347 
between the operational CALIOP retrieval (solid) and scaled result based on Eq. (11) 1348 
(dashed). The comparison is based on one year (2008) of CALIOP data.   1349 
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 1350 

Figure 16 Same as Figure 14, except that the scaled AOT based on Eq. (11) is used in the 1351 
computations for smoke aerosols.  1352 

 1353 
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