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Abstract:  21 

In this paper, we studied the frequency of occurrence and shortwave direct radiative 22 

effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years 23 

(2007~2014) of collocated CALIOP and MODIS observations. Similar to previous work, 24 

we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where 25 

ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to 26 

CALIOP classification, originating from biomass burning over African Savanna; Tropical 27 

Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust 28 

from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are 29 

mostly transported smoke and polluted dusts from Asian. From radiative transfer 30 

simulations based on CALIOP-MODIS observations and a set of the preselected aerosol 31 

optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be 32 

positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., 33 

cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative 34 

regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE 35 

of 0.015 W/m2 (range of −0.03 to 0.06 W/m2) at TOA. The DREs at surface and within 36 

atmosphere are −0.15 W/m2 (range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (range of 37 

0.11 to 0.24 W/m2), respectively. The regional and seasonal mean DREs are much 38 

stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean 39 

cloudy-sky DRE is about 0.7 W/m2 (range of 0.2 to 1.2 W/m2) at TOA. All our DRE 40 

computations are publicly available†. The uncertainty in our DRE computations is mainly 41 

                                                
†https://drive.google.com/folderview?id=0B6gKx4dgNY0GMVYzcEd0bkZmRmc&usp=
sharing 
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cause by the uncertainties in the aerosol optical properties, in particular aerosol 42 

absorption, the uncertainties in the CALIOP operational aerosol optical thickness 43 

retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and 44 

remotely sensed measurements of ACA from future field campaigns and satellite 45 

missions, and improved lidar retrieval algorithm, in particular vertical feature masking, 46 

would help reduce the uncertainty.  47 

 48 
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1. Introduction	49 

Although most tropospheric aerosols are emitted into the atmospheric boundary 50 

layer, they can be convectively lifted above low-level clouds, or in some cases are 51 

emitted at altitudes higher than the boundary layer and are subsequently transported over 52 

low-level cloud decks. In fact, above-cloud aerosols (ACA) have been observed in 53 

several regions of the globe (Devasthale and Thomas, 2011; Winker et al., 2013). ACA is 54 

an important component of the climate system because its interactions (scattering and 55 

absorption) with shortwave (SW) solar radiation (so-called direct radiative effect) could 56 

differ substantially from that of clear-sky aerosols or below cloud aerosols, particularly 57 

for absorbing particles. In this study we focus only on the SW direct radiative effect 58 

(DRE), which for clarity we will refer to as DRE for short. The DRE of aerosols at the 59 

top of the atmosphere (TOA) is strongly dependent on the underlying surface. Over dark 60 

surfaces the scattering effect of aerosols is generally dominant, leading to a negative DRE 61 

(i.e., cooling) at TOA. In contrast, when aerosols reside above clouds, aerosol absorption 62 

of solar radiation can be significantly enhanced by cloud reflection, which can offset or 63 

even exceed the scattering effect of the aerosol (depending on the aerosol radiative 64 

properties) and can yield a less negative or even positive (i.e., warming) DRE at TOA 65 

(Abel et al., 2005; Chand et al., 2009; Keil and Haywood, 2003; Meyer et al., 2013; 66 

Zhang et al., 2014). The larger the cloud reflection, the more likely the positive DRE will 67 

occur. Thus, an accurate quantification of ACA DRE is needed to improve the 68 

understanding of aerosol effects on the radiative energy balance and climate. In the past 69 

decade, the DRE of aerosols in clear-sky conditions has been well studied and relatively 70 

well constrained by satellite and in situ data (Yu et al., 2006). However, because 71 
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traditional aerosol remote sensing techniques, in particular those using passive sensors, 72 

are limited only to clear-sky conditions, the DRE of ACA had been largely unexplored 73 

until recently. Moreover, model simulations of ACA DRE show extremely large 74 

disparities (Schulz et al., 2006). 75 

Recent advances in active and passive remote sensing techniques have filled this 76 

data gap and have provided an excellent opportunity for studying the DRE of ACA (Yu 77 

and Zhang, 2013). The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 78 

onboard NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 79 

(CALIPSO) satellite was launched in 2006 as part of NASA’s A-Train satellite 80 

constellation (Stephens et al., 2002; Winker et al., 2007). As an active lidar with 81 

depolarization and two wavelengths, CALIOP is able to measure the vertical distribution 82 

of aerosol backscatter, extinction, particle depolarization ratio, and color ratio for clear-83 

sky aerosols, ACA, and aerosol below thin high-level clouds. These measurements, 84 

combined with cloud observations from CALIOP itself and other A-train instruments 85 

have provided a revolutionary global view of the vertical distribution of aerosols and 86 

clouds (e.g., Winker et al., 2013). In addition to vertical feature masking, CALIOP also 87 

provides operational retrievals of a variety of aerosol properties, such as aerosol type 88 

classification, aerosol layer height, aerosol optical thickness (AOT), and aerosol 89 

extinction profile, for both clear-sky aerosols and ACA.  90 

Although CALIOP is the first to provide quantitative measurements of ACA on 91 

an operational basis, its narrow along-track sampling leaves large spatial gaps in the 92 

observations. In recent years, several attempts have been made to detect ACAs and 93 

retrieve their properties from passive imagers with much better spatial sampling than 94 
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CALIOP. Waquet et al. (2009) developed a method based on multi-angular polarization 95 

measurements from the Polarization and Directionality of the Earth  Reflectances 96 

(POLDER) to retrieve above-cloud aerosol optical thickness (AOT) (Waquet et al., 97 

2013a). Torres et al. (2012) developed an algorithm of simultaneously retrieving ACA 98 

properties for smoke and cloud optical thickness (COT) from ultraviolet (UV) aerosol 99 

index (AI) derived from the Ozone Mapping Instrument (OMI). Jethva et al. (2013) 100 

retrieved simultaneously the above-cloud AOT and COT from the spectral dependence of 101 

visible and near-infrared cloud reflectance as observed by the Moderate Resolution 102 

Imaging Spectroradiometer (MODIS). Similarly, Meyer et al. (2015) developed a 103 

multispectral optimal inversion technique to retrieve ACA AOT, COT, and cloud 104 

effective particle radius (CER) from MODIS. A review of the emerging satellite-based 105 

ACA observations can be found in (Yu and Zhang, 2013). These emerging techniques 106 

based on passive sensors will provide insights into ACA and their radiative effects over 107 

much broader regions in the future. At present, however, they are primarily at the 108 

research level and no operational data are yet available.  109 

The ACA DRE can be calculated with radiative transfer models using the 110 

retrieved ACA AOT, COT, and preselected aerosol optical properties. This approach is 111 

referred to as the forward calculation method. Chand et al. (2009) aggregated CALIOP 112 

above-cloud AOT retrievals (Chand et al., 2008) and Terra MODIS cloud products to 113 

monthly means at 5ºx5º grids and calculated the radiative effects of transported smoke 114 

above the low-level stratocumulus deck in the SE Atlantic. This spatial-temporal 115 

aggregation of the satellite data obscures the potential influence of cloud and aerosol sub-116 

grid variability on the DRE, which could lead to significant uncertainty (Min and Zhang, 117 
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2014). The use of operational MODIS COT could also bias the DRE low (less positive or 118 

more negative) because of the low bias of MODIS COT induced by overlying light-119 

absorbing aerosols (Coddington et al., 2010; Haywood et al., 2004). In Meyer et al. 120 

(2013), the MODIS COT bias due to ACA contamination was corrected using collocated 121 

CALIOP above-cloud AOT observations, and the unbiased MODIS cloud properties and 122 

CALIOP above-cloud AOT were used to calculate pixel-level cloudy sky ACA DRE. 123 

Such rigorous collocation has an obvious advantage as it takes into account the spatial-124 

temporal variability of clouds and aerosols. However, it is computationally expensive and 125 

requires large amounts of pixel-level data. Recently, Zhang et al. (2014) developed a 126 

novel statistical method of computing ACA DRE based on the fact that ACA AOT and 127 

COT are generally randomly overlapped. This method greatly improves the ACA DRE 128 

computation efficiency while maintaining the same level of accuracy as the pixel-level 129 

computations. The high efficiency of this method enables us to compute 8 years of ACA 130 

DRE over global oceans in this study.   131 

In the forward calculation approach discussed above, the DRE depends on the 132 

selection of aerosol optical properties, in particular the single scattering albedo. 133 

Alternatively, other approaches allow for bypassing the aerosol optical property 134 

assumption. For example, Peters et al. (2011), Wilcox (2012), and more recently (Feng 135 

and Christopher, 2015) estimated the DRE of ACA through regression of multiple 136 

satellite data sets from the A-Train, including OMI UV AI, CERES (Clouds and 137 

the Earth's Radiant Energy System), and AMSER-E (Advanced Microwave Scanning 138 

Radiometer for EOS). de Graaf et al. (2012) developed a method that takes advantage of 139 

the wide spectral coverage of the space-borne Scanning Imaging Absorption 140 
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Spectrometer for Atmospheric Chartography (SCIAMACHY). They first inferred cloud 141 

parameters (e.g., COT and CER) from the SCIAMACHY observations in the short-wave 142 

infrared region (i.e., 1.2 µm and 1.6 µm) where the impact of ACA on cloud reflectance 143 

is generally minimal. Then, they estimate the DRE from the difference between the 144 

SCIAMACHY observed cloud reflectance spectrum (i.e., polluted) and that of a 145 

computed (i.e., clean) spectrum derived from the inferred cloud parameters. These studies 146 

thus minimized the impact of aerosol retrieval uncertainty in the DRE estimate. On the 147 

other hand, these studies only provided estimates of the instantaneous DRE of ACA at 148 

the satellite crossing time and only at TOA, which is often not adequate for climate 149 

studies and model evaluations. DRE at surface and within the atmosphere are required to 150 

assess the full impact of aerosols on climate, and models often report diurnally averaged 151 

DRE. 152 

Although the abovementioned studies have shed important light on the radiative 153 

effects of ACA on the climate system, several aspects of ACA remain unexplored. First, 154 

there is a lack of a global and multiyear perspective since almost all previous studies have 155 

focused on the SE Atlantic Ocean and over a limited time period. Second, most studies 156 

have only reported instantaneous DRE at TOA, which is not adequate for climate studies 157 

and model evaluations. In addition, the impact of retrieval uncertainties in satellite 158 

products (e.g., CALIOP aerosol and MODIS cloud products) on computed DRE has not 159 

been sufficiently assessed.   160 

The objective of this study is to derive estimates of the diurnally averaged DRE of 161 

ACA over global oceans from collocated CALIOP and MODIS observations over 8 years 162 

(2007-2014). This is the first observation-based study (as far as we are aware) that 163 
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provides a global and multiyear perspective of the DRE of ACA. In addition to the DRE 164 

at TOA, we also calculate the DRE of ACA at the surface and within the atmosphere. The 165 

diurnal variation of solar radiation is fully accounted for in this study, making our results 166 

more directly comparable to the model reports of the diurnally averaged DRE, though it 167 

is important to note that the diurnal variation of the underlying cloud properties are not 168 

considered. Moreover, we carried out a series of sensitivity tests to estimate the impact of 169 

the uncertainties associated with aerosol scattering properties and satellite retrieval bias 170 

on the DRE results. The rest of this paper is organized as follows: Section 2 describes the 171 

satellite products used to derived the global distribution of ACA; Section 3 discusses the 172 

global distribution and seasonal variability of ACA; Section 4 briefly overviews the 173 

method used to derive the DRE of ACA; and Section 5 details the results. The major 174 

uncertainties in DRE computation are assessed in Section 6. The main findings and 175 

conclusions are summarized in Section 7. 176 

 177 

2. Satellite	Data		178 

In this study, we use the CALIOP Version 3 level-2 aerosol and cloud layer products 179 

to derive the statistics of ACA properties and the MODIS Collection 6 (C6) level-3 daily 180 

gridded cloud product for cloud property statistics. This section provides a brief overview 181 

of these products, including the potential biases and uncertainties.  182 

2.1. 	CALIOP	183 

The CALIOP Version 3 level-2 aerosol and cloud layer products (Winker et al., 2009), 184 

at a nominal 5 km horizontal resolution (product names “CAL_LID_L2_05kmALay” and 185 
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“CAL_LID_L2_05kmCLay”), are used to first identify ACA pixels, and then to derive 186 

aerosol layer properties, including aerosol type, AOT, and layer top and bottom height. 187 

The CALIOP level-2 retrieval algorithm detects aerosol and cloud layers, and records 188 

their top and bottom heights and layer integrated properties using a “feature finder” 189 

algorithm and cloud-aerosol discrimination (CAD) algorithm (Liu et al., 2009). The 190 

detected aerosol layers are further classified into six sub-types (i.e., polluted continental, 191 

biomass burning, desert dust, polluted dust, clean continental and marine) (Omar et al., 192 

2009) and the detected cloud layers are assigned different thermodynamic phases (Hu et 193 

al., 2007a) based on the observed backscatter, color ratio and depolarization ratio. The 194 

extinction of an aerosol or cloud layer is derived from the attenuated backscatter profile 195 

using a priori lidar ratios, pre-selected based on aerosol sub-type and cloud phase (Young 196 

and Vaughan, 2008). In the case where clear air is available both above and below a layer, 197 

a constrained retrieval is performed to derive the lidar ratio as well as the extinction and 198 

backscatter coefficient for the layer. 199 

The CALIOP lidar is known to have several inherent limitations. First, it has very 200 

limited spatial sampling, providing observations only along its ground track. Thus 201 

computing the DRE of ACA over a given latitude-longitude grid box necessarily requires 202 

assuming that the aerosol property statistics retrieved by CALIOP along its track 203 

represent the statistics over the whole grid box. Moreover, the limited spatial sampling 204 

also inhibits the use of CALIOP to study the variations of ACA and its DRE at small 205 

temporal (e.g., inter-annual variability) or spatial scales (e.g., smoke or dust outbreak 206 

event). Another limitation of CALIOP is that its daytime aerosol retrievals generally have 207 

larger uncertainty in comparison with nighttime retrievals caused by strong background 208 
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solar noise (Hunt et al., 2009). Some recent studies have noted significant differences 209 

between daytime and nighttime CALIOP aerosol property retrievals, in particular the 210 

AOT retrievals, which is partly caused by the solar background noise issue (Meyer et al., 211 

2013; Winker et al., 2013). The impact of daytime vs. nighttime CALIOP aerosol 212 

retrieval differences on the DRE of ACA is investigated in the uncertainty analysis 213 

detailed in section 6. 214 

In addition to the sampling limitations, several recent studies have found that 215 

CALIOP daytime AOT retrievals for ACA, in particular above-cloud smoke, are 216 

significantly smaller compared to collocated results from other techniques (Jethva et al., 217 

2014; Torres et al., 2013; Waquet et al., 2013b) and results retrieved from the CALIOP 218 

level 1 data using an opaque water cloud (OWC) constrained technique (Liu et al., 2015). 219 

The cause for the bias is complex and multiple sources can contribute to the AOT 220 

retrieval uncertainties (Liu et al., 2015), but the main issue is the failure of the current 221 

CALIOP retrieval algorithm to detect the full physical thickness of dense smoke layers. 222 

Smoke aerosol generally has a large attenuation at 532 nm that is 2-3 times larger than 223 

that at 1064 nm. The current CALIOP algorithms detect features based solely on the 532 224 

nm data. Strong attenuation in dense smoke layers can make the detection of the true base 225 

of dense smoke layers very difficult. (This may be improved largely if the feature 226 

detection is performed at both 532 nm and 1064 nm.) As a result, the current CALIOP 227 

feature detection algorithm often fails to detect the full extent of dense aerosol layers, 228 

leading to low biases in retrieved AOT (Jethva et al., 2014; Liu et al., 2015; Torres et al., 229 

2013). This underestimation of AOT apparently can have significant impact on the DRE 230 

computation. We have developed a simple method to estimate the upper limit of this 231 
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impact, which is detailed in section 6. 232 

2.2. MODIS	233 

In this study, we use the Collection 6 (C6) level-3 gridded daily Atmosphere product 234 

from Aqua-MODIS (product name MYD08_D3) for the statistics of cloud properties and 235 

other parameters, such as solar zenith angle, needed for ACA DRE computations. The 236 

MYD08_D3 product contains gridded scalar statistics and histograms computed from the 237 

level-2 (i.e., pixel-level) MODIS products. As summarized in (Platnick et al., 2003), the 238 

operational level-2 MODIS cloud product provides cloud masking (Ackerman et al., 239 

1998), cloud top height retrieval based on CO2 slicing or the infrared window method 240 

(Menzel et al., 1983), cloud top thermodynamic phase determination (Baum et al., 2012; 241 

Marchant et al., 2015; Menzel et al., 2006), and cloud optical and microphysical property 242 

retrieval based on the bi-spectral solar reflectance method (Nakajima and King, 1990). 243 

Level-3 aggregations include a variety of scalar statistical information (mean, standard 244 

deviation, max/min occurrences) and histograms (marginal and joint) (Hubanks et al., 245 

2008). A particularly useful level-3 cloud product for this study is the daily joint 246 

histogram of COT vs. cloud top pressure (CTP), derived using daily counts of successful 247 

daytime level-2 pixel retrievals that fall into each joint COT-CTP bin. Eleven COT bins, 248 

ranging from 0 to 100, and 13 CTP bins, ranging from 200 to 1000 mb, comprise the 249 

histogram. As discussed below, the COT-CTP joint histogram allows for identification of 250 

the portion of the cloud population that lays beneath the aerosol layer found by CALIOP, 251 

as well as the corresponding COT probability distribution needed for DRE estimation. In 252 

addition to the COT-CTP joint histogram, we also use the gridded mean solar and sensor 253 

zenith angles for calculating instantaneous DRE and correcting the COT bias due to the 254 
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presence of ACA.  255 

A major issue with MODIS data for ACA DRE computation is the potential COT 256 

retrieval bias in the presence of significant overlying ACA. As noted in several previous 257 

studies, an overlying layer of light-absorbing aerosol, e.g., smoke, makes the scene 258 

appear darker than the otherwise clean cloud. This cloud-darkening effect often leads to a 259 

significant underestimate of MODIS COT for scenes with smoke overlying clouds (e.g., 260 

Coddington et al., 2010; Haywood et al., 2004; Meyer et al., 2013). A fast COT 261 

correction scheme has previously been developed (Zhang et al., 2014) to account for the 262 

COT retrieval bias due to ACA, which is briefly overviewed in section 4.3. 263 

 264 

3. Global	distribution	of	ACA	265 

The present study is limited to ocean scenes only. This decision was made for a 266 

number of reasons. First, ACA occurs much more frequently over ocean than over land 267 

(see Figure 3 of (Devasthale and Thomas, 2011)). Second, the contrast between ACA 268 

DRE and clear-sky aerosol DRE is generally larger over ocean than over land because the 269 

contrast between the ocean surface and cloud is larger than the contrast between the land 270 

surface and cloud. Finally, the large spatial and spectral variability of land surface 271 

reflectance makes the radiative transfer computation much more complicated than that 272 

over the ocean. For these reasons, we limit our analysis only to global oceans and leave 273 

the DRE of ACA over land for future study.  274 
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3.1. ACA	identification	and	classification	275 

The following criteria are used to identify ACA columns within the CALIOP 5km 276 

layer products: (1) the CALIOP 5km cloud layer product identifies at least one layer of 277 

liquid phase cloud in the profile; (2) the CALIOP 5km aerosol layer product identifies at 278 

least one layer of aerosol in the profile; (3) the “Layer_Base_Altitude” of the lowest 279 

aerosol layer is higher than the “Layer_Top_Altitude” of the highest cloud layer. The last 280 

criterion excludes some complicated scenarios, such as aerosol layers in between low and 281 

high level clouds, while retaining the majority of ACA cases. Following the best practice 282 

advice of the CALIOP science team (Winker et al., 2013), we used various data quality 283 

assurance metrics and flags to screen out low-confidence aerosol layers. Specifically, we 284 

only accept ACA layers having: (i) Cloud Aerosol Discrimination score values for the 285 

identified aerosol layer between −20 to −100; (ii) Extinction QC values of 0 or 1; and (iii) 286 

Feature Optical Depth Uncertainty smaller than 99.9. Any columns that do not satisfy the 287 

above criteria were classified as either clear sky if no cloud is found in the column or 288 

“clean” cloud if one or more cloud layers are present.   289 

After ACA identification, we further classify the ACA layer into the six aerosol 290 

sub-types (i.e., Clean Marine, Dust, Polluted Continental, Clean Continental, Polluted 291 

Dust and Smoke) provided by the CALIOP product (Omar et al., 2009). The 292 

classification is needed later to select the aerosol optical properties to be used in the DRE 293 

computation. It should be noted that the CALIOP operational algorithm often identifies 294 

different sub-types for vertically adjacent aerosol layers (Meyer et al., 2013). Recent 295 

studies indicate that this is a misclassification issue in the current CALIOP operational 296 

algorithm (Liu et al., 2015; Meyer et al., 2013). Uncertainty in aerosol classification by 297 
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CALIOP operational algorithms is also highlighted in comparisons to airborne High 298 

Spectral Resolution Lidar (HSRL) observations, which retrieve directly the aerosol lidar 299 

ratio (Burton et al., 2013).  These observations suggest highest uncertainty in aerosol 300 

typing for smoke and polluted dust cases.  Aerosol type misclassification where CALIOP 301 

operational algorithms identify polluted dust is also highlighted in a recent study in which 302 

aerosol transport model fields are used to directly simulate the CALIOP aerosol typing 303 

and compared to native aerosol fields within the model (Nowottnick et al., 2015). In this 304 

study, we associate all ACA layers in a single profile with only one sub-type, namely the 305 

sub-type of the layer with the largest AOT. This classification scheme reduces the 306 

complication caused by aerosol misclassification in radiative transfer simulations.     307 

3.2. Occurrence	Frequency	of	ACA	308 

After the identification of ACA cases in CALIOP data, we first investigate the 309 

geographical and seasonal variations of the occurrence frequency of ACA over global 310 

oceans. It should be noted that clouds can have a strong diurnal cycle, thus the occurrence 311 

frequency of ACA might also have a significant diurnal cycle. Unfortunately, because 312 

CALIOP is in a sun-synchronous polar orbit, it can provide only two snapshots of this 313 

diurnal cycle over most of the globe (except for polar regions), one during daytime (i.e., 314 

ascending local equatorial crossing time 1:30PM) and the other during nighttime (i.e., 315 

descending local equatorial crossing time 1:30AM). Here we define the ACA occurrence 316 

frequency ( fACA ) in a latitude-longitude box as the ratio of ACA columns to total cloudy 317 

columns sampled by CALIOP: 318 
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fACA t*( ) = fACA,i

i=1

6

∑ t*( ) =
N ACA,i

Ncloudyi=1

6

∑ ,  (1) 319 

where t*  signifies that the fACA is observed at the CALIOP crossing time;   
fACA,i  is the 320 

fraction of cloudy columns covered by the ith type of aerosol, 
 
Ncloudy  is the total number 321 

of cloudy columns sampled by CALIOP within the grid, and   
N ACA,i  is the number of 322 

ACA columns that have been identified as the ith type of aerosol by CALIOP. This is 323 

different from the definition in (Devasthale and Thomas, 2011), in which the occurrence 324 

frequency is defined as the ratio of ACA columns to the total number of CALIOP 325 

observations. As such, the two definitions differ by a factor of fc , the total cloud fraction. 326 

We define the occurrence frequency in this way because the fACA  provides information 327 

additional to and independent of the total cloud fraction fc  that can help, for example, 328 

modelers understand whether an inadequate simulation of ACA is due to cloud and/or 329 

aerosol simulation. On the other hand, one has to couple our fACA  together with fc to 330 

depict a complete picture. 331 

Figure 1 and 2 show the seasonal variation of total cloud fraction fc and fACA, 332 

respectively, over global ocean derived from daytime CALIOP observations. There are 333 

several ACA frequency “hotspots” that can be clearly seen in Figure 2, from which four 334 

primary ACA regions can be defined (see Table 1). The types of ACA in each region 335 

according to the CALIOP aerosol classification product are shown in Figure 3.    336 

1) SE Atlantic Ocean: This region is perhaps the most prominent ACA region 337 

during the boreal summer (JJA) and fall (SON) seasons (Figure 2c and d). The ACA over 338 
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the SE Atlantic primarily originates from the seasonal burning activities throughout the 339 

African Savanna (Eck et al., 2013; Ichoku et al., 2003; Myhre et al., 2003). Prevailing 340 

easterly winds in the free troposphere during this season often transport the biomass 341 

burning aerosols to the west, off the continent and over the ocean (Matichuk et al., 2007; 342 

Swap et al., 1996), where extensive marine boundary layer clouds persist for most of the 343 

year leading to a near-persistent seasonal smoke layer above the stratocumulus deck. As 344 

shown in Figure 3a, the ACAs in this region are primarily a mix of smoke and polluted 345 

dust. 346 

2) Tropical Northeastern (TNE) Atlantic: During boreal spring (MAM) and 347 

summer (JJA) (Figure 2b and c), the dry and dust-laden Saharan Air Layer overlies the 348 

cooler, more-humid and cloudy tropical Atlantic Ocean. Not surprisingly, dust is the 349 

dominant type of ACA in this region as shown in Figure 3b.  350 

3) Arabian Sea: During the Asian monsoon season (JJA), the cloud fraction 351 

increases to more than 90%, setting the stage for ACA from the transported dust aerosols 352 

from the surrounding deserts.  353 

4) Northwestern (NW) Pacific Ocean: During the springtime, the industrial 354 

pollution and dust aerosols from Asia carried by the jet stream can travel thousands of 355 

miles to the NW Pacific Ocean where cloud fraction is high throughout the year. ACA in 356 

this region is a mixture of smoke, dust and polluted dust. 357 
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4. Methodology	for	computing	ACA	DRE	358 

After the identification of ACAs, we use the method described in (Zhang et al., 2014) 359 

to calculate shortwave ACA DRE by using MODIS observations of clouds. This section 360 

provides a brief review the key features of this method. 361 

4.1. Definitions	of	DRE	362 

For a given latitude-longitude grid box, the grid-mean diurnally averaged shortwave 363 

all-sky aerosol radiative effect DREall−sky  is given by: 364 

 

DREall−sky = 1
24

1− fc t( )⎡⎣ ⎤⎦ DREclear−sky τ a t( ),θ0 t( )⎡⎣ ⎤⎦ dt
tsunrise

tsunset

∫

+ 1
24

fc t( ) DREcloudy−sky τ c t( ),τ a t( ),θ0 t( )⎡⎣ ⎤⎦ dt
tsunrise

tsunset

∫
,  (2) 365 

where the upper bar “ ” indicates the diurnal average and the angle bracket  “ ” 366 

indicates spatial average over the grid box; fc t( )  is the instantaneous cloud fraction, and  367 

DREclear−sky t( )  and DREcloudy−sky t( )  are the hourly instantaneous DRE averaged over 368 

the clear-sky and cloudy-sky region of the grid, respectively. Note that in this study we 369 

compute the instantaneous DREs every hour during daytime to capture the diurnally 370 

variation of solar radiation. This is why the normalization factor is 1/24 in Eq. (2) and it 371 

needs to be changed accordingly if the instantaneous DREs are computed at a different 372 

frequency.   For shortwave DRE, the integration range is from local sunrise hour tsunrise  to 373 

local sunset hour tsunset , because the DRE during nighttime is zero. Note that the 374 

instantaneous DREclear−sky t( )  is mainly dependent on AOT τ a t( )  and solar zenith angle 375 
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θ0 t( ) . In addition to τ a  and θ0 , DREcloudy−sky t( )  is also dependent on the COT τ c t( ) . 376 

As pointed out in (Min and Zhang, 2014), in addition to θ0 t( ) , fc t( ) , τ a t( ) , and τ c t( )  377 

can also have a significant diurnal cycle that influences the diurnal average. However, the 378 

orbit of CALIOP only allows it to provide a single snapshot of the diurnal cycle during 379 

daytime (another during night time). Because of this limitation, we omit the diurnal 380 

variation of fc t( ) , τ a t( ) and τ c t( ) , and only use the value at the daytime CALIOP 381 

crossing time t* . Nevertheless, we still consider the diurnal variation of solar flux 382 

associated by the change of θ0 t( ) . In such an approximation, we can rewrite the 383 

DREall−sky  as follows: 384 

 DREall−sky ≈ 1− fc t
*( )⎡⎣ ⎤⎦ DRE*clear−sky + fc t

*( ) DRE*cloudy−sky , (3) 385 

where the t*  corresponds to the daytime CALIOP crossing time (usually 1:30PM local 386 

time), DRE*clear−sky  and DRE*cloudy−sky  are approximate clear-sky and cloudy-sky 387 

aerosol DRE. In particular, DRE*cloudy−sky  can be integrated from the hourly 388 

instantaneous DRE as: 389 

 DRE*cloudy−sky = 1
24

DREcloudy−sky τ c t
*( ),τ a t*( ),θ0 t( )⎡⎣ ⎤⎦ dt

tsunrise

tsunset

∫ , (4) 390 

where the normalization factor 1/24 is to obtain diurnal mean from hourly computations. 391 

Theoretically, cloudy-sky aerosol DRE should include the contributions from aerosols in 392 

all conditions, e.g., above, below or in-between clouds. However, it is difficult to 393 

measure aerosol properties below clouds from space-borne instruments. Here we simply 394 

assume cloudy-sky aerosol DRE is mainly attributed to ACAs. This is a reasonable 395 
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assumption for TOA DRE, but might introduce large uncertainties to surface and 396 

atmospheric DRE. The uncertainty caused by this assumption will be left for future study. 397 

Based on this assumption, we can rewrite Eq. (4) as  398 

 
DRE*cloudy−sky = fACA t*( ) DRE*ACA

= fACA t*( ) 124 DREACA τ c t
*( ),τ a t*( ),θ0 t( )⎡⎣ ⎤⎦ dt

tsunrise

tsunset

∫
,  (5) 399 

where fACA t*( )  is the occurrence frequency of ACA observed at the CALIOP crossing 400 

time defined in Eq. (1). An important implicit assumption in Eq. (5) is that when 401 

CALIOP cannot detect an aerosol layer, the DRE is essentially zero. Using Eq. (5) we 402 

can derive the DRE at TOA DRE*cloudy−sky TOA
 and at the surface DRE*cloudy−sky surface

. 403 

The DRE within the atmosphere DRE*cloudy−sky atm
is calculated as follows: 404 

 DRE*cloudy−sky atm
= DRE*cloudy−sky TOA

− DRE*cloudy−sky surface
.  (6) 405 

 Here, it is necessary to point out that what is often reported in previous studies is 406 

the instantaneous DRE observed at the CALIOP (or other satellite such as 407 

SCIAMACHY) crossing time and averaged over only ACA pixels, namely, 408 

DREACA τ c t
*( ),τ a t*( ),θ t*( )#

$
%
& . This quantity has obvious limitations (e.g., diurnal 409 

variation is ignored) and can be misleading if not accompanied by fACA , because different 410 

instruments or algorithms might have different sensitivities or even definitions of ACA 411 

(e.g., OMI AI index vs. CALIOP backscatter). In our view, the diurnally averaged, grid-412 

mean, cloudy-sky DRE, DRE*cloudy−sky , is more suitable for inter-comparison, and also 413 
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more relevant for climate study and modeling evaluation, on which we shall focus in this 414 

study.   415 

4.2. Computation	of	instantaneous	DRE	416 

It is clear from Eq. (5), once the instantaneous DREACA τ c t
*( ),τ a t*( ),θ t( )#

$
%
&  is 417 

known one can easily derive DRE*cloudy−sky  from the integral. In this section, we explain 418 

how the instantaneous DRE is computed from the CALIOP and MODIS products. 419 

Hereafter we drop the time dependence for simplicity. As mentioned in Section 2.1, the 420 

CALIOP operational algorithm classifies aerosol layers into 6 sub-types. Therefore, we 421 

can rewrite DREcloudy−sky  as: 422 

 DREcloudy−sky = fi DREACA i
i=1

6

∑ ,  (7) 423 

where  
DREACA i

 is the DRE of the ith type of CALIOP aerosol (e.g., dust, smoke, etc., 424 

see Figure 3) and fi is the frequency of detection of the ith type of aerosol. To compute the 425 

DREACA i
, one could collocate the level-2 CALIOP and MODIS data and compute the 426 

DRE pixel-by-pixel as follows: 427 

 DREACA i
=
1
Ni

DREACA τ a, j ,τ c, j( )
j=1

Ni

∑ ,  (8) 428 

where τ a, j  and τ c, j  are the ACA and cloud optical thicknesses of the jth pixel, 429 

respectively. Mathematically, Eq. (8) is equivalent to the following double integral:   430 

 
  

DREACA i
= DREACA(τ a ,τ c )Pi(τ a ,τ c )dτ a0

∞

∫$%&
'
()
dτ c0

∞

∫ ,  (9) 431 
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where   Pi(τ a ,τ c )  is the joint probability density function (PDF) of the above-cloud AOT 432 

of the ith CALIOP aerosol type and below-aerosol COT. Deriving DRE from Eq. (9) or 433 

(8) requires large amounts of level-2 CALIOP and MODIS data and pixel-by-pixel 434 

collocation and radiative transfer simulations. It is thus too computationally expensive 435 

and cumbersome for multiyear global studies. 436 

As shown in (Zhang et al., 2014), because the AOT of ACA is generally uncorrelated 437 

with the COT below, Eq. (9) can be simplified by assuming   Pi(τ a ,τ c ) = Pi(τ a )P(τ c )  as: 438 

 
  

DREACA i
= DREACA(τ a ,τ c )Pi(τ a )dτ a0

∞

∫$%&
'
()
P(τ c )dτ c0

∞

∫ ,  (10) 439 

where   P(τ c )  and  Pi(τ a )  are the PDF of below-aerosol COT and above-cloud AOT (ith 440 

CALIOP aerosol type), respectively. The advantage of Eq. (10) is that it allows   P(τ c )  441 

and   Pi(τ a ) to be derived separately, thus tedious pixel-level collocation and pixel-by-442 

pixel radiative transfer computations can be avoided. Following (Zhang et al., 2014), we 443 

derive   Pi(τ a )  from the CALIOP level-2 aerosol layer product and   P(τ c )  from the joint 444 

histogram of cloud optical thickness and cloud top pressure (COT-CTP joint histogram) 445 

in the MODIS daily level-3 product. In order to speed up the calculations, we use pre-446 

computed aerosol type-specific look-up tables (LUTs) instead of online radiative transfer 447 

computation when deriving the 
 

DREACA i
. The DRE LUTs are computed using the 448 

RRTM-SW model (Clough et al., 2005; Iacono et al., 2008). For details about the 449 

computation of DRE LUTs readers are referred to (Zhang et al., 2014).  450 
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4.3. COT	retrieval	correction	for	DRE	computation	451 

When a cloudy pixel is contaminated by overlying light-absorbing aerosols the 452 

MODIS COT retrieval is generally biased low (Coddington et al., 2010; e.g., Haywood et 453 

al., 2004). This COT retrieval bias needs to be accounted for in radiative transfer 454 

computation to avoid biased DRE (Meyer et al., 2013). A simple and fast correction 455 

scheme has been developed (Zhang et al., 2014) to account for the COT retrieval bias due 456 

to ACA in our DRE computation. First, we derive a MODIS LUT for “contaminated” 457 

clouds, which is essentially same as the operational MODIS LUT except that we put a 458 

layer of ACA on top of the cloud in the radiative transfer simulations to account for the 459 

impact of ACA on cloud reflectance. Then, we project the observed cloud reflectance that 460 

is contaminated by ACA onto the “contaminated” LUT to determine the corrected COT. 461 

This process is essentially to shift the potentially biased MODIS   P(τ c )  to a new 462 

“unbiased” PDF   P '(τ c )  that is actually used in the DRE computation. It should be noted 463 

that because different aerosol types can have different impacts on the MODIS COT 464 

retrievals, the COT bias is dependent on the radiative properties of the ACA, and the 465 

correction process is therefore dependent on the assumed aerosol model. Hereafter, all 466 

DRE computations are based on the “unbiased” COT unless otherwise stated. 467 

It is important to keep in mind that this COT correction scheme is only designed to 468 

account for the ACA-induced biases in the grid-level COT statistics. As shown in (Zhang 469 

et al., 2014), the DRE computations based on this simple scheme agree very well with 470 

results based on more rigorous pixel-level corrections. However, this statistical scheme is 471 

not intended for deriving the unbiased COT at pixel level. Interested readers can refer to 472 
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(Meyer et al., 2015) for a novel method to simultaneously retrieve the AOT of ACA and 473 

the unbiased COT and CER of the underlying cloud at the pixel level.    474 

4.4. Aerosol	optical	properties		475 

As shown in Figure 3, CALIOP-observed ACAs in the four ACA regions are 476 

primarily dust, smoke, and polluted dust aerosols. Given the AOT and underlying surface 477 

brightness, the DRE of aerosols is mainly determined by their optical properties, in 478 

particular single-scattering albedo. Therefore, the aerosol optical model assumption has a 479 

significant impact on the DRE results. In the control run shown in section 5, we choose to 480 

build our aerosol optical property models to be as consistent as possible to the models 481 

used in the operational CALIOP retrieval algorithm (Omar et al., 2009), with 482 

specifications given below.  483 

1) Smoke: In the control run, we use the model described in (Omar et al., 2009) for 484 

smoke aerosols to be consistent with the CALIOP operational retrieval 485 

algorithm (referred to hereafter as “CALIOP smoke”). Figure 4a shows the 486 

optical properties of CALIOP smoke calculated using Mie code (Wiscombe, 487 

1980), including extinction efficiency (Qe), single-scattering albedo (ω) and 488 

asymmetry factor (g) for the fourteen RRTM SW bands. In the calculation, we 489 

assumed a bimodal lognormal size distribution and a single refractive index of 490 

1.517+0.023i for all wavelengths (Omar et al., 2009). The band-averaged 491 

single-scattering albedo of CALIOP smoke is about 0.85 in the visible spectral 492 

region.  493 
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2) Dust: In the control run, the bulk scattering properties of dust aerosols shown in 494 

Figure 4c are calculated using the bimodal lognormal size distributions in 495 

(Omar et al., 2009) to be consistent with the operational CALIOP retrievals. 496 

For DRE computation, the refractive index over the whole solar spectrum is 497 

needed. However, in (Omar et al., 2009), the refractive index of dust is given 498 

only for the two wavelengths of CALIOP, i.e., 532nm and 1064nm. 499 

Alternatively, we use the dust spectral refractive index data reported in 500 

(Colarco et al., 2014) to combine with the size distributions in (Omar et al., 501 

2009) to derive the optical properties of dust. (Colarco et al., 2014) evaluated 502 

the sensitivity of dust transport simulations in NASA’s GEOS-5 climate model 503 

to dust particle shape and spectral refractive indices. Two sets of dust refractive 504 

indices are tested. One is a merger of remote sensing-based estimates of dust 505 

refractive indices in the shortwave (Colarco et al., 2002; Kim et al., 2011) with 506 

the (Shettle and Fenn, 1979) values in the longwave. Following (Colarco et al., 507 

2014) we refer to this model hereafter as “OBS dust.” The other one is based 508 

on the dust spectral refractive index provided in the OPAC database (OPAC 509 

(Hess et al., 1998)) (Colarco et al., 2014) (hereafter referred to as the “OPAC 510 

dust model”). The OPAC dust refractive index has been used for dust optical 511 

properties in previous studies by Perlwitz et al. (2001) and Colarco et al. (2010). 512 

In (Colarco et al., 2014), OBS  dust model is found to yield better dust clear-513 

sky radiative forcing simulations in comparison with satellite observation. 514 

Therefore, we choose to use the OBS dust model in the control run. The OPAC 515 

dust model is more absorptive than the OBS model, which will be used in the 516 
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uncertainty study to test the sensitivity of the DRE of above-cloud dust to its 517 

optical properties, in particular absorption.   518 

3) Polluted dust: In the control run, we use the model described in (Omar et al., 519 

2009) to compute the scattering properties, shown Figure 4e, of polluted dust 520 

aerosols identified by CALIOP. In the calculation, we assumed a bimodal 521 

lognormal size distribution and a single refractive index of 1.54+0.0019i for all 522 

wavelengths. 523 

In order to estimate the sensitivity of DRE of ACAs to their optical properties, we carried 524 

out a series of sensitivity studies using different aerosol optical models. The results from 525 

these sensitivity studies are discussed in section 6.1.  526 

5. Shortwave	Cloudy-sky	DREs	due	to	ACA	527 

5.1. Global	and	Seasonal	Climatology		528 

  Figure 5 shows the seasonal mean diurnally averaged shortwave cloudy-sky DRE 529 

at TOA ( DRE*cloudy−sky TOA
) derived from 8 years of MODIS and CALIOP data using the 530 

method described in the previous section. The computation uses the baseline optical 531 

models (i.e., “CALIOP smoke” and “OBS dust”) described above. The regional and 532 

seasonal mean values are shown in Table 2. It is not surprising that the regions with 533 

significant cloudy-sky DRE coincide with the regions of high ACA occurrence frequency 534 

(Figure 2). Similar to previous studies, we found the cloudy-sky DRE in the SE Atlantic 535 

Ocean to be positive during the boreal summer (JJA) and fall (SON) seasons when the 536 

ACA is most active (Figure 3a). The annual mean cloudy-sky DRE at TOA in this region 537 
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is 0.21 W/m2 (Table 2) and the seasonal mean is as large as 0.44 W/m2 during SON. The 538 

TOA DRE is negative in the TNE Atlantic Ocean (annual mean −0.78 W/m2) and 539 

Arabian Sea (annual mean −0.54 W/m2), where ACA is predominantly dust (Figure 3b 540 

and c). This result suggests that the above cloud dust tends to have a cooling effect on the 541 

climate, similar to its clear-sky counterpart. The cloudy-sky DRE at TOA in the NW 542 

Pacific region is mostly positive and quite small (annual mean 0.04 W/m2), and is only 543 

noticeable in the boreal spring season (MAM) along the coast of China (Figure 5b). Note 544 

that these numbers are not directly comparable to many previous studies (e.g., de Graaf et 545 

al., 2014; Feng and Christopher, 2015; Meyer et al., 2013), however, because the 546 

previous results are either instantaneous DRE that do not consider the diurnal variation of 547 

solar radiation, or are DRE averaged over only ACA pixels without accounting for the 548 

near zero DRE from “clean” clouds (i.e., not the true cloudy-sky DRE). When averaged 549 

over the global oceans, the positive DRE in the SE Atlantic is largely cancelled out by the 550 

negative DRE of dust in the North Atlantic and Arabian Sea, leading to an overall TOA 551 

DRE of about −0.02 W/m2.  Because most previous studies are focused on the SE 552 

Atlantic region, we cannot find other studies for which to compare our global DRE 553 

results. But we note that most AeroCom model simulations of global cloudy-sky aerosol 554 

DRE reported in (Schulz et al., 2006) fall in the range of −0.10 ~ 0.05 W/m2 (See their 555 

Table 5), although we understand our study is fundamentally different from (Schulz et al., 556 

2006).  557 

Despite the large difference in TOA DRE, the DRE of ACA at the surface  558 

( DRE*cloudy−sky surface
) is always negative (Figure 6) and the DRE of ACA within 559 
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atmosphere ( DRE*cloudy−sky atm
) is always positive (Figure 7), both as expected, in all of 560 

the active ACA regions. The annual mean cloudy-sky DREs at surface and within 561 

atmosphere averaged over global oceans are −0.13 and 0.11 W/m2, respectively (Table 2).  562 

The 8-year time series of monthly mean cloudy-sky DRE at TOA due to the three 563 

most prevalent ACA types classified by CALIOP—smoke, polluted dust and dust—are 564 

shown in Figure 8. As expected, the smoke ACA has a positive DRE with the peak value 565 

usually in September when the smoke is most active in the SE Atlantic region. The DRE 566 

of polluted dust ACA is generally positive, often with two peaks in the annual cycle—a 567 

larger one in boreal fall corresponding to the ACA active period in the SE Atlantic, and a 568 

smaller one usually in early boreal spring corresponding to the ACA active period in the 569 

NW Pacific. Together, the smoke and polluted dust have a combined annual mean DRE 570 

of about 0.03 W/m2 at TOA (see Table 3). Considering that the operational CALIOP 571 

retrievals often underestimate the AOT of ACA, the real DRE might be significantly 572 

larger. In fact, in the sensitivity test discussed in section 6, the annual mean cloudy-sky 573 

TOA DRE from smoke and polluted dust can be up to about 0.06 W/m2, which is 574 

comparable to the radiative forcing from light absorbing aerosols on snow and ice (IPCC 575 

AR5). The dust ACA has a strong negative TOA DRE with a peak magnitude usually in 576 

July corresponding to the heaviest dust period in the North Atlantic region (Figure 3b). 577 

On the basis of these global ocean time series, we did not observe significant inter-annual 578 

variability.   579 
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5.2. Regional	analysis	580 

5.2.1. SE	Atlantic	Ocean	581 

As seen in Figure 3, the ACAs in the SE Atlantic region occur mostly during the 582 

dry season of the African Savanna (e.g. June to October) with peak frequency around 583 

August and September. According to CALIOP, the ACAs in this region consist mostly of 584 

smoke and polluted dust (Figure 3a) that have significant absorption effects as shown in 585 

Figure 4. Figure 9 provides an in-depth explanation of why the ACAs in this region 586 

generate a strong warming effect at TOA, as well as an insight into our method used for 587 

computing the DRE of ACA described in Section 4. The color contour in Figure 9 588 

corresponds to the diurnally averaged DRE at TOA as a function of the AOT of ACA and 589 

the COT of the underlying cloud, i.e., the   DREACA(τ a ,τ c )  term in Eq. (9). The general 590 

patterns for smoke and polluted dust are quite similar, i.e., DRE is generally positive and 591 

increases with both AOT and COT. On the other hand, polluted dust has a smaller DRE 592 

than smoke for a given AOT and COT combination. As described in Section 4, the 593 

  DREACA(τ a ,τ c )  is pre-computed off-line and is stored in a LUT to accelerate the 594 

computation. To obtain the spatially averaged DRE,  
DREACA , we integrate 595 

  DREACA(τ a ,τ c )  with respect to the joint PDF of AOT and COT (i.e., the line contours in 596 

Figure 9) that is derived from the CALIOP and MODIS observations as described in 597 

Section 4. As seen in Figure 9a, during JJA the PDF of AOT has a peak slightly larger 598 

than 0.1 at 532nm. The COT PDF has two peaks, one around 3 and the other around 10. 599 

Compared to smoke, polluted dust in Figure 9b has a smaller AOT with the PDF peaking 600 
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at AOT slightly smaller than 0.1. The smaller AOT and weaker absorption together lead 601 

to a smaller DRE of polluted dust compared to smoke, as seen in Figure 8.  602 

Figure 10 tells a similar story as Figure 9, but from a different perspective. Here, 603 

we plotted the grid-mean DRE of ACA at TOA as a function grid-mean AOT of ACA 604 

based on observations from the SE Atlantic region. To show the importance of COT in 605 

modulating the ACA DRE we classify the data into three grid-mean COT bins, as 606 

indicated by the colors in the figure. In addition to the expected increase of DRE with 607 

AOT, we also notice that the slope of the DRE with respect to AOT, i.e., the DRE 608 

efficiency, generally increases with increasing grid-mean COT. The DRE efficiency for 609 

smoke is 17.9, 22.6 and 28.6 W/m2/AOT for COT less than 4, COT between 4 and 8, and 610 

COT greater than 8, respectively. The corresponding DRE efficiency for polluted dust is 611 

much smaller, yielding 6.7, 13.6, and 16.6 W/m2/AOT, respectively. This result is not 612 

surprising given the   DREACA(τ a ,τ c )  pattern in Figure 9 and has also been noted in 613 

several pervious studies (Meyer et al., 2013; Yu et al., 2010; Zhang et al., 2014). 614 

Nevertheless, it highlights the importance of cloud optical thickness (i.e., brightness) in 615 

determining the DRE efficiency of ACA. 616 

Finally, Figure 11 summarizes the multiyear seasonal meant ACA and cloud 617 

properties, as well as the DRE of ACA, in the SE Atlantic region during JJA. The 618 

seasonal mean total AOT of ACA at 532nm (Figure 11a), including all types of aerosols, 619 

is mainly between 0.1 to 0.2, with largest values found over the coastal region and 620 

reducing gradually toward the open sea presumably as a result of dry and/or wet 621 

deposition of smoke. The pattern of COT in Figure 11b is more homogeneous (mostly 622 

between 6~8) except for a region of large values (around 10) along latitude 10° S. Given 623 
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the strong dependence of DRE on AOT in Figure 9 and Figure 10, it is not surprising to 624 

see that the seasonal mean cloudy sky DRE of ACA in the SE Atlantic region (Figure 625 

11c) largely resembles the pattern of AOT (Figure 11a). In contrast, the DRE efficiency 626 

in Figure 11d aligns more with the COT pattern in Figure 11b, as one would expect given 627 

the results in Figure 10. 628 

5.2.2. TNE	Atlantic	Ocean	and	Arabian	Sea		629 

As discussed in Section 5.1, the TNE Atlantic Ocean and Arabian Sea are another 630 

two regions with high occurrence frequency of ACA (Figure 2). As shown in Figure 3, 631 

dust aerosols are the dominant type of ACA in both regions with a general cooling effect 632 

at TOA (Figure 5). An analysis similar to Figure 9 and Figure 10 but for the dust aerosols 633 

in the TNE Atlantic region and Arabian Sea is shown in Figure 12. A comparison of 634 

Figure 12a with Figure 9 reveals several important differences between the dust ACA-635 

dominated region and the SE Atlantic smoke region. The color map in Figure 12a reveals 636 

that above cloud dust with the optical properties in Figure 4c in general has a cooling 637 

effect at TOA for COT smaller than about 7. When the cloud becomes optically thicker, 638 

the DRE of above cloud dust at TOA switches sign to a warming effect. The line contour 639 

in Figure 12a reveals that most of the clouds found in the TNE Atlantic region during JJA 640 

have a COT smaller than 10. As a result, the grid-mean DRE of ACA at TOA in this 641 

region is mostly negative as seen in both Figure 12b and previously in Figure 5. It is 642 

interesting to note that the PDF of the AOT of above cloud dust has a peak value around 643 

0.3 in Figure 12a, which is larger than both the smoke and polluted dust in the SE 644 

Atlantic. This result reiterates the fact reported in many previous studies, that the sign of 645 

aerosol DRE at TOA is primarily determined by aerosol absorption, in particular with 646 
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respect to the underlying surface, rather than aerosol loading. Similar to Figure 10, we 647 

found in Figure 12b that the grid-mean DRE in the TNE Atlantic region has a strong 648 

dependence on AOT, i.e., the magnitude of the negative DRE increases with increasing 649 

AOT. However, we found little dependence of grid-mean ACA DRE on grid-mean COT 650 

in Figure 12b in contrast to the case of smoke or polluted dust in Figure 10. This result 651 

indicates that the grid-mean COT is not very revealing about the DRE of above-cloud 652 

dust. The overall DRE efficiency of above-cloud dust in this region based on grid-level 653 

statistics is −29.3 W/m2/AOT. The analysis for Arabian Sea in Figure 12c and d turns out 654 

to be very similar to the TNE Atlantic region. The overall DRE efficiency of above-cloud 655 

dust in the Arabian Sea region is −28.4 W/m2/AOT. This result implies that the 656 

difference in the cloud-sky DRE between the TNE Atlantic and Arabian Sea is mainly 657 

caused by the difference in ACA occurrence frequency fACA  rather than aerosol or cloud 658 

property difference. For example, the JJA seasonal mean TOA DRE is −2.39 W/m2 in 659 

TNE Atlantic vs. −0.97 W/m2 in the Arabian Sea. This difference is mainly caused by the 660 

fact that the TNE Atlantic has a higher fACA  around 0.4 than Arabian Sea around 0.15 661 

(Figure 3).   662 

5.2.3. NW	Pacific	Ocean	663 

The ACA in the NW Pacific Ocean has a small positive DRE at TOA, with a 664 

regional annual mean of only 0.04 W/m2 (Table 2). The positive DRE is primarily due to 665 

smoke and polluted dust aerosols (see Figure 3 and Figure 13). Note that CALIOP 666 

observes significantly more ACA in the NW Pacific region during nighttime (See Figure 667 

2 in the supplementary material) than it does during daytime (Figure 2). If this difference 668 

is due to CALIOP instrument issues (i.e., low signal-to-noise-ratio during daytime), it is 669 
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then likely that the TOA DRE in Table 2 for the NW Pacific region is substantially 670 

underestimated. In section 6, we estimated the impact of daytime vs. nighttime CALIOP 671 

aerosol retrieval differences on ACA DRE. Indeed, we found that the TOA DRE in the 672 

NW Pacific Ocean region significantly increases if nighttime CALIOP retrievals are used 673 

in DRE computations (regional annual mean increased up to 0.3 W/m2). Finally, we note 674 

in Table 2 that the peak value of seasonal mean TOA DRE in the North Pacific occurs in 675 

the boreal summer (JJA) when the ACA occurrence frequency is low rather than in the 676 

spring or winter when there is a larger ACA occurrence frequency. This suggests a 677 

stronger role of solar insolation than ACA occurrence frequency.  678 

6. Uncertainty	Analysis	679 

In this section, we assess the impact of two major uncertainties on the DRE 680 

computation, one associated with the aerosol optical properties and the other associated 681 

with the CALIOP AOT retrieval.  682 

6.1. Uncertainty	in	aerosol	optical	properties	683 

As indicated in Figure 8, smoke and dust are the two most important types of ACA in 684 

terms of DRE. The DRE results in Section 5 are based on the control run, in which smoke 685 

and dust aerosols are represented by the CALIOP smoke model in Figure 4a and OBS 686 

dust model in Figure 4c. The primary rationale for using the CALIOP smoke model in the 687 

control run is that it is consistent with the operational CALIOP retrieval algorithm. As 688 

shown in Figure 4a, the CALIOP smoke model has a single scattering albedo ω around 689 

0.85 in the visible region, which is close to the mean value of ω measured during the 690 

SAFARI 2000 (Southern African Regional Science Initiative) field campaign (see Figure 691 
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1 in Leahy et al., 2007). However, it should be noted that most measurements made 692 

during the SAFARI 2000 field campaign took place in the southern African continent 693 

close to the source of biomass burning aerosols and upstream of the SE Atlantic ACA 694 

region. Previous studies have found that the absorption of carbonaceous smoke particles 695 

tends to decrease due to the aging effect and mixing with other less absorptive aerosols 696 

(Liousse et al., 1993). In order to estimate the impact of aerosol model uncertainty on 697 

DRE, we replaced the CALIOP smoke model in our sensitivity tests with the less 698 

absorbing aged plume model reported in (Haywood et al., 2003) (referred to as the 699 

“Haywood smoke model”). This model is derived from air-borne in situ measurements of 700 

aged smoke plumes advected off the coast of Namibia and Angola during the SAFARI 701 

2000 campaign. In this model, in situ measured aerosol size distributions are fitted using 702 

a summation of three lognormal distributions with two fine modes composed of aged 703 

biomass smoke and the third coarse mode composed of mineral dust. The single 704 

scattering properties of the Haywood smoke model are shown in Figure 4b. Compared to 705 

the CALIOP smoke model, the Haywood smoke model is significantly less absorptive, 706 

with a single scattering albedo ω of about 0.90 in the visible region (vs. ω~0.85 for the 707 

CALIOP smoke model). 708 

To estimate the sensitivity of DRE to dust scattering properties, we developed a new 709 

dust scattering model based on the same size distribution as the OBS model but a 710 

different spectral refractive index provided in the OPAC database (Hess et al., 1998) 711 

(referred to as the “OPAC dust model”). The OPAC dust refractive index has been used 712 

for dust optical properties in previous studies by Perlwitz et al. (2001) and Colarco et al. 713 

(2010). The single scattering properties of the OPAC dust model are shown in Figure 4d. 714 
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With a ω~0.9 in the visible region, OPAC dust is significantly more absorptive than the 715 

OBS dust model (ω~0.95 in visible) used in the control run. It should be clarified here 716 

that the new models do not necessarily provide a better (or worse) representation of the 717 

optical properties of ACA, but their differences from the models used in the control run, 718 

especially in terms of aerosol absorption, provide an opportunity to investigate the 719 

sensitivity of ACA DRE to the optical properties of ACA.  720 

The results from the sensitivity tests are shown in Figure 14. The annual mean 721 

cloudy-sky TOA DRE and DRE efficiency from the control run are shown in Figure 14a 722 

and b. In the first sensitivity test, we replaced the CALIOP smoke model with the 723 

Haywood smoke model, but kept the OBS dust model. Note that the combination of 724 

Haywood smoke and OBS dust are the least absorptive among all possible combinations. 725 

As expected the less absorbing Haywood smoke model leads to a significant reduction of 726 

positive DRE in the SE Atlantic Ocean (Figure 14c). The annual and seasonal mean of 727 

cloudy-sky DRE in this region reduces by a factor of 2 from 0.21 to 0.10 W/m2. In 728 

addition, the DRE efficiency in Figure 14d is also seen to reduce significantly from a 729 

regional mean of 9.35 W/m2/AOT to 3.88 W/m2/AOT. In the second sensitivity test, we 730 

replaced the OBS dust model with the OPAC dust model, but kept the CALIOP smoke 731 

model unchanged. Note that the combination of CALIOP smoke and OPAC dust are the 732 

most absorptive among all possible combinations. The use of the more absorptive OPAC 733 

model reduces the scattering effect of above-cloud dust, which has the most significant 734 

impact on the TNE Atlantic region as expected (Figure 14e), reducing the strength of 735 

regional annual mean TOA DRE from −0.78 to −0.31 W/m2. The regional mean DRE 736 

efficiency in the region reduces from about −24.2 W/m2/AOT to −9.5 W/m2/AOT. 737 
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6.2. Uncertainty	in	CALIOP	AOT	retrieval				738 

As mentioned in Section 2.1, several previous studies (Jethva et al., 2014; Torres et 739 

al., 2013; Waquet et al., 2013b) found that the current operational CALIOP 532nm 740 

retrieval algorithm, based on the inversion of the attenuated backscatter profile, often 741 

significantly underestimates the AOT, especially for smoke aerosols and during the 742 

daytime. This is mainly because the strong attenuation of the upper part of an aerosol 743 

layer, plus the small backscatter of aerosol particles, makes the attenuated backscatter 744 

signal from the lower part of the layer too low to be detected, which leads to an 745 

underestimation of the physical thickness and thereby AOT of the aerosol layer. This 746 

issue is more severe for smoke aerosols than dust, due to the small backscatter of smoke 747 

aerosols (Liu et al., 2015). A case study of above-cloud smoke by (Jethva et al., 2014) 748 

showed that the AOT retrievals from other remote sensing techniques are substantially 749 

larger (up to a factor of 5) than the operational CALIOP 532nm retrieval as a result of the 750 

abovementioned issue. A recent study by (Liu et al., 2015) estimated that the operational 751 

CALIOP nighttime AOT retrieval for smoke aerosol over opaque clouds is 752 

underestimated by about 39%.  Because of the strong dependence of DRE on AOT, the 753 

underestimation of smoke AOT by the operational CALIOP retrieval algorithm would 754 

have substantially biased the DRE estimates discussed in Section 5, an effect that was 755 

shown previously in (Meyer et al., 2013). A robust quantification of this impact requires 756 

either the development and implementation of a new CALIOP retrieval algorithm or the 757 

use of an alternate independent data set of multiple year global ACA AOT retrievals, 758 

both of which are beyond the scope of this study. Here we attempt to estimate the upper 759 

bound of DRE bias due to the underestimate of AOT. 760 
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We note that although the CALIOP operational algorithm often misses the real 761 

bottom of an ACA layer, most of the time it can detect the top of the cloud beneath. This 762 

is because the strong backscatter of cloud droplets makes the attenuated backscatter 763 

signal strong enough for the CALIOP feature mask to detect despite the strong 764 

attenuation of the overlying ACA layer. Here we assume that the entire layer between the 765 

top of the ACA layer (HACA−top ) and the cloud top (Hcloud−top ) is occupied by aerosols, and 766 

we obtain the AOT for this entire layer by scaling the CALIOP AOT retrieval for ACA as 767 

follows: 768 

 τ 'ACA =
HACA−top −Hcloud−top

HACA−top −H
*
ACA−bottom

τ ACA  , (11) 769 

where H *
ACA−bottom  is the CALIOP retrieved apparent aerosol layer bottom height that is 770 

likely biased high. Because the true bottom of the aerosol layer is likely somewhere 771 

between the retrieved bottom and cloud top, the scaled AOT τ 'ACA  is therefore an 772 

estimate of the upper limit of the ACA AOT. A comparison of the operational AOT 773 

retrievals and the scaled AOT based on Eq. (11) derived from one year of CALIOP data 774 

over global ocean is shown in Figure 15. The scaling process systematically shifts the 775 

PDFs of AOT to larger values as expected. Globally averaged, the operational CALIOP 776 

532nm AOT for above-cloud smoke (with a mean value of 0.24) is about 43% smaller 777 

than the scaled results (mean value about 0.42). This result is encouragingly close to (and 778 

larger than) the estimate by Liu et al. (2015) (i.e., 39% underestimation), which seems to 779 

suggest that the bottom of the above-cloud smoke layer is much closer to cloud top than 780 

the daytime CALIOP observation. The scaling has a similar impact on polluted dust. In 781 

contrast, the impact on dust aerosols is smaller. The global mean AOT of above-cloud 782 
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dust from the operational CALIOP product (mean AOT around 0.31) is about 30% 783 

smaller than the scaled result (mean AOT around 0.43). This is also close to the number 784 

reported in (Liu et al., 2015) (i.e., 26% underestimation). 785 

 In the sensitivity test shown Figure 16, we replaced the operational CALIOP 786 

532nm retrieval τ ACA  with the scaled τ 'ACA  in the DRE computation. In comparison with 787 

the DRE from the control run in Figure 14a, c, and e, the most prominent change is the 788 

significant increase of positive TOA DRE in the SE Atlantic region, where ACAs are 789 

mostly smoke and polluted dust. For example, assuming the CALIOP smoke model, the 790 

regional annual mean TOA DRE increases from about 0.2 W/m2 if using the operational 791 

AOT to more than 0.6 W/m2 using the scaled AOT (see Table 4). Globally averaged, the 792 

annual mean TOA DRE induced by above-cloud smoke increases from about 0.013 793 

W/m2 to 0.035 W/m2 (see Table 3). Interestingly, the impact on DRE efficiency of AOT 794 

scaling is not as strong as the impact on DRE, suggesting that the DRE is generally linear 795 

with AOT as also found in previous studies (Meyer et al., 2013; Zhang et al., 2014).   796 

 In addition to the abovementioned issue, strong background solar noise is another 797 

source of uncertainty in the daytime CALIOP aerosol products (Hunt et al., 2009; Liu et 798 

al., 2015). To estimate the impact of this uncertainty on our DRE results, we performed 799 

another sensitivity test, in which we replaced the daytime CALIOP ACA retrievals, 800 

including AOT and aerosol classification, with the nighttime retrievals in our DRE 801 

computations. The results are presented in the supplementary material. In summary, we 802 

found that CALIOP generally detects more and thicker above-cloud smoke in the 803 

nighttime than in the daytime, which has also been noted in previous studies (Meyer et 804 

al., 2013). We also noted that CALIOP generally detects less and thinner above-cloud 805 
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dust in the nighttime than in the daytime. As a result of increased smoke and decreased 806 

dust, the annual mean global ocean DRE at TOA are shifted to more positive values, 807 

ranging from 0.0 to 0.06 W/m2 (See Table S1 in supplementary material), compared with 808 

the daytime results in Table 4 (−0.03 ~ 0.04 W/m2). We must emphasize that caution 809 

must be taken when interpreting the results from this test. Although solar noise certainly 810 

has an important role, other factors, in particular the natural aerosol diurnal cycle, could 811 

also cause differences between daytime and nighttime CALIOP aerosol retrievals. Future 812 

studies and independent data are needed to better understand these differences. 813 

6.3. Summary	of	uncertainty	study	814 

Finally, combining the results from the control run (Table 3) and sensitivity tests 815 

(Table 4 and Table S2), we estimate that the annual mean diurnally average TOA DRE 816 

due to ACA over global ocean is about 0.015 W/m2 with a range of −0.03 to 0.06 W/m2. 817 

The lower bound (−0.03 W/m2) is based on the combination of the least absorbing 818 

aerosol combination, i.e., Haywood smoke and OBS dust model, and operational (un-819 

scaled) daytime AOT. The upper bound (0.06 W/m2) is based on the combination of the 820 

most absorbing aerosol models, i.e., CALIOP smoke and OPAC dust model, and scaled 821 

nighttime AOT. The DREs at surface and within the atmosphere are −0.15 W/m2 (with a 822 

range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (with a range of 0.11 to 0.24 W/m2), 823 

respectively. It should be noted that the rather small TOA DRE when averaged over 824 

global ocean is partly because of the cancellation of positive (in SE Atlantic and NW 825 

Pacific) and negative (TNE Atlantic and Arabian See) regional DREs. The regional and 826 

seasonal mean DREs, as shown in Table 5 and Table S3, could be much stronger. For 827 

example, in the SE Atlantic region the JJA seasonal mean cloudy-sky DRE is about 0.7 828 
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W/m2 (with a range of 0.2 to 1.2 W/m2) at TOA (Table 5 and Table S3). From a different 829 

perspective, the results in Table 3 and Table S1 suggest that the light-absorbing ACAs, 830 

i.e., smoke and polluted dust, induce an annual mean TOA DRE of about 0.04 W/m2 831 

(with a range of about 0.015 ~ 0.065 W/m2), which is largely cancelled by the negative 832 

DRE due to above-cloud dust (annual mean of about −0.024 W/m2 with a range between 833 

−0.004 to −0.044 W/m2). 834 

Overall, we found significant uncertainties in our DRE computation. Even the sign of 835 

global ocean mean cloud-sky TOA DRE is uncertain. This is partly because, as analyzed 836 

above, the positive DREs in regions dominated by light-absorbing ACAs (i.e., SE 837 

Atlantic and NW Pacific) are largely cancelled by the negative DREs in the regions 838 

dominated by above-cloud dust (i.e., TNE Atlantic and Arabian Sea). In addition, there 839 

are also substantial uncertainties in regional DREs caused by uncertainties in aerosol 840 

optical properties, in particular aerosol absorption, and uncertainties in the CALIOP 841 

operational aerosol retrieval products. Reducing these uncertainties requires improved 842 

knowledge of the optical properties of ACAs, in particular single-scattering albedo, on 843 

regional scales, and at the same time more accurate ACA property retrievals, in particular 844 

AOT. New measurements from upcoming field campaigns, for example NASA’s 845 

ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), will help 846 

improve our knowledge of the ACA properties in SE Atlantic region. In addition, the 847 

emerging remote sensing techniques summarized in (Yu and Zhang, 2013) will provide 848 

independent ACA retrievals to compare and validate the results from this study and 849 

improve our understanding of the DRE of ACA. Finally, as pointed out earlier, we have 850 

ignored the cloud diurnal cycle in the DRE computation, as well as the uncertainty 851 
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analysis in this section. The impact of cloud diurnal cycle on DRE computations will be 852 

investigated in future work along with updated uncertainty analysis.   853 

7. Summary	and	Discussion	854 

In this study, we used 8 years (2007-2014) of CALIOP ACA and MODIS cloud 855 

observations to derive the shortwave DRE of ACA over global oceans. The main findings 856 

are summarized below: 857 

1) Similar to previous studies, we found high occurrence frequency of ACA in 858 

several regions of the globe (see Figure 2), including i) the SE Atlantic where 859 

marine boundary layer clouds are persistently covered by smoke and polluted 860 

dust aerosols originating from biomass burning activities in the African 861 

Savanna; ii) the TNE Atlantic region where ACAs are predominately blown 862 

dust from Sahara; iii) the Arabian Sea region where dust aerosols from 863 

surrounding deserts overlap with clouds associated with the Asian monsoon; 864 

and iv) the North Pacific region where transported pollution from Asia is often 865 

found above clouds in boreal winter and early spring (see Figure 3).     866 

2) In regions where ACAs are dominated by smoke and polluted dust (e.g., SE 867 

Atlantic and North Pacific), the cloudy-sky DRE at TOA due to ACA is 868 

generally positive, while in regions dominated by dust aerosols (e.g., TNE 869 

Atlantic and Arabian Sea) the DRE at TOA is generally negative (see Figure 870 

5). After averaging over global oceans, the light-absorptive ACAs, i.e., smoke 871 

and polluted dust, yield a TOA DRE of about 0.04 W/m2 (range of about 872 

0.015 ~ 0.065 W/m2). In contrast, above-cloud dusts yield an annual mean of 873 
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about −0.024 W/m2 (range of −0.004 to −0.044 W/m2) (see Table 3). The 874 

cancellation of positive and negative DREs results in a rather small global-875 

ocean averaged annual mean cloudy-sky TOA DRE of about 0.015 W/m2 with 876 

a range of −0.03 to 0.06 W/m2. The global-ocean averaged annual mean 877 

cloudy-sky DREs at the surface and within the atmosphere are about −0.15 878 

W/m2 (range of −0.09 to −0.21 W/m2), and 0.17 W/m2 (range of 0.11 to 0.24 879 

W/m2), respectively. 880 

3) We estimated the impacts on our DRE computation of two major sources of 881 

uncertainty, one associated with assumed aerosol optical properties and the 882 

other with potential CALIOP AOT retrieval biases. As expected, we found the 883 

DRE of ACA is highly sensitive to the aerosol absorption. The use of a less 884 

absorptive smoke model can reduce the positive TOA DRE in the SE Atlantic 885 

region by a factor of 2 (see Figure 14 and Table 3). The impact of potential 886 

low biases in the CALIOP AOT retrieval due to the high bias in the detected 887 

aerosol layer bottom is even stronger. The scaling has a stronger impact on the 888 

AOT of smoke than dust (see Figure 15), leading to a less negative or even 889 

positive global annual mean DRE. The combination of AOT scaling and using 890 

more absorptive aerosol optical models can lead to a global-ocean averaged 891 

annual mean TOA DRE of about 0.04 W/m2 (see Table 4), and up to 0.06 892 

W/m2 if nighttime CALIOP aerosol retrievals are used.  893 

To our best knowledge, this is the first study to provide an observational-based global 894 

and multiyear perspective on the DRE of ACA. Our results can be used for evaluating 895 
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and improving model simulations of cloudy-sky DRE of aerosols that currently have 896 

large diversity (Schulz et al., 2006).  897 

 There are several limitations to this study that could be improved in future work. 898 

First, as we mentioned in section 4, although we consider the diurnal solar variation we 899 

ignored the diurnal variation of cloud and aerosol in our DRE computation. This is 900 

because the A-Train observes most regions of the globe only once during the daytime. 901 

This is not enough, especially in regions where clouds and/or aerosols have a strong 902 

diurnal cycle. For example, as shown in (Min and Zhang, 2014) the cloud fraction in the 903 

SE Atlantic region varies substantially from the maximum value of about 80% in the 904 

early morning to about 60% in the late afternoon. Cloud liquid water path and cloud 905 

optical thickness have a similar diurnal cycle (Wood et al., 2002). Approximating such a 906 

strong diurnal cycle using only the snapshot from the afternoon A-train crossing is likely 907 

to cause significant errors in DRE computation (Min and Zhang, 2014). In this regard, 908 

geostationary observations from, for instance, the SEVIRI (Spinning Enhanced Visible 909 

and InfraRed Imager) onboard MSG (MeteoSat Second Generation) (Schmetz et al., 910 

2002), can be used to assess the impact of cloud diurnal cycle on ACA DRE computation. 911 

One of our future work will be using the diurnal cloud observations from SEVIRI and 912 

ACA observations from CALIOP or other satellite instruments to study the impact of 913 

cloud diurnal cycle on all-sky aerosol forcing in the SE Atlantic region. Second, we used 914 

only the aerosol retrievals from CALIOP in DRE computation. As aforementioned, 915 

recent studies have found significant biases and uncertainties in the operational CALIOP 916 

aerosol product (Jethva et al., 2014; Liu et al., 2015; Meyer et al., 2013). We have tried to 917 

estimate the impact of CALIOP retrieval uncertainties on our DRE computations. 918 
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Nevertheless, future study is needed to better understand the uncertainties in our results. 919 

The emerging ACA property retrievals from the passive satellite sensors would provide 920 

independent datasets for such studies (Jethva et al., 2013; Meyer et al., 2015; Torres et 921 

al., 2012; Waquet et al., 2009). Finally, our current knowledge on the microphysical and 922 

optical properties of ACAs is still very limited due to the lack of measurements in 923 

comparison with clear-sky aerosols (e.g., no measurement from AERONET). New 924 

measurements from upcoming field campaigns, for example NASA’s ORACLES 925 

(ObseRvations of Aerosols above CLouds and their intEractionS), and emerging satellite 926 

remote sensing techniques will help improve our DRE computations in the future.   927 

928 
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Tables: 1189 

Table 1 Geo-locations of four active ACA regions. 1190 

Region Latitude and longitude region  

Southeastern 
Atlantic 

30°S~10°N; 20°W~20°E 

Tropical 
Northeastern 

Atlantic 

10°N~30°N; 45°W~18°W 

Arabian Sea 0°~30°N; 40°E~80°E 

Northwestern 
Pacific 

40°N~55°N; 145°E~180°E 

 1191 

1192 
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 1193 

Table 2 The seasonal and annual mean of diurnally averaged cloudy-sky DREs due to 1194 
ACA at TOA (numbers on the top in each cell), surface (numbers in the middle) and 1195 
within atmosphere (numbers on bottom). The unit is W/m2. 1196 

Region DRE DJF MAM JJA SON Annual 

SE Atlantic 
Ocean 

DRETOA 

DRESFC 

DREATM 

−0.02 

−0.21 

0.19 

−0.04 

−0.15 

0.11 

0.41 

−0.56 

0.98 

0.44 

−0.49 

0.93 

0.21 

−0.34 

0.56 

TNE Atlantic 
Ocean 

DRETOA 

DRESFC 

DREATM 

−0.05 

−0.21 

0.16 

−0.57 

−1.45 

0.88 

−2.39 

−5.99 

3.60 

−0.20 

−0.48 

0.28 

−0.78 

−1.99 

1.21 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.02 

−0.16 

0.14 

−0.44 

−1.11 

0.67 

−0.97 

−2.44 

1.47 

−0.25 

−0.73 

0.48 

−0.54 

−1.41 

0.88 

NWPacific 
Ocean 

DRETOA 

DRESFC 

DREATM 

0.01 

−0.03 

0.04 

0.05 

−0.07 

0.12 

0.08 

−0.07 

0.15 

0.01 

−0.01 

0.03 

0.04 

−0.05 

0.09 

Global Ocean DRETOA 

DRESFC 

DREATM 

0.00 

−0.04 

0.04 

−0.02 

−0.11 

0.09 

−0.06 

−0.27 

0.20 

0.01 

−0.07 

0.08 

−0.02 

−0.13 

0.11 

 1197 

1198 
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 1199 

Table 3 The global annual mean of diurnally averaged cloudy-sky DREs at TOA induced 1200 
by different types of ACA according to CALIOP observations. The numbers in the 1201 
parentheses are results based on the scaled AOT (See section 6.2 for details). The unit is 1202 
W/m2. 1203 

Type  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

Smoke DRETOA 

DRESFC 

DREATM 

0.013 (0.035) 

−0.011 (−0.025) 

0.023 (0.060) 

0.005 (0.018) 

−0.021 (−0.052) 

0.026 (0.070) 

0.013 (0.035) 

−0.011 (−0.025) 

0.023 (0.060) 

Dust DRETOA 

DRESFC 

DREATM 

−0.036 (−0.044) 

−0.088 (−0.116) 

0.051 (0.071) 

−0.036 (−0.044) 

−0.088 (−0.116) 

0.051 (0.071) 

−0.014 (−0.014) 

−0.106 (−0.141) 

0.092 (0.127) 

Polluted Dust DRETOA 

DRESFC 

DREATM 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

0.009 (0.019) 

−0.021 (−0.035) 

0.030 (0.054) 

 1204 

1205 
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 1206 

Table 4 The regional and annual mean of diurnally averaged cloudy-sky DREs at TOA 1207 
based on different combinations of aerosol optical models. The numbers in the 1208 
parentheses are results based on the scaled AOT (See section 6.2 for details). The unit is 1209 
W/m2. 1210 

Region  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

SE Atlantic DRETOA 

DRESFC 

DREATM 

0.21 (0.67) 

−0.34 (−0.73) 

0.56 (1.37) 

0.10 (0.38) 

−0.50 (−1.13) 

0.59 (1.51) 

0.23 (0.68) 

−0.36 (−0.76) 

0.60 (1.44) 

TNE Atlantic DRETOA 

DRESFC 

DREATM 

−0.78 (−1.00) 

−1.99 (−2.68) 

1.22 (1.69) 

−0.78 (−0.99) 

−1.99 (−2.67) 

1.21 (1.70) 

−0.31 (−0.34) 

−2.40 (−3.22) 

2.09 (2.88) 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.54 (−0.59) 

−1.41 (−1.59) 

0.88 (1.00) 

−0.54 (−0.59) 

−1.42 (−1.60) 

0.88 (1.00) 

−0.25 (−0.27) 

−1.67 (−1.88) 

1.42 (1.62) 

NW Pacific DRETOA 

DRESFC 

DREATM 

0.04 (0.12) 

−0.05 (−0.12) 

0.09 (0.24) 

0.04 (0.10) 

−0.06 (−0.16) 

0.1 (0.26) 

0.05 (0.14) 

−0.05 (−0.13) 

0.10 (0.27) 

Global Ocean DRETOA 

DRESFC 

DREATM 

−0.02 (0.00) 

−0.13 (−0.18) 

0.11 (0.18) 

−0.03 (−0.01) 

−0.14 (−0.21) 

0.11 (0.20) 

0.00 (0.04) 

−0.14 (−0.20) 

0.14  (0.24) 

 1211 

 1212 

 1213 

 1214 

 1215 
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Table 5 Same as Table 4, except for JJA seasonal mean.  1216 

Region  CALIOP 
smoke+OBS 

dust 

Haywood 
smoke+OBS 

dust 

CALIOP 
smoke+OPAC 

dust 

SE Atlantic DRETOA 

DRESFC 

DREATM 

0.41 (1.12) 

−0.56 (1.20) 

0.98 (2.32) 

0.21 (0.67) 

−0.85 (−1.89) 

1.06 (2.57) 

0.44 (1.17) 

−0.58 (−1.22) 

1.01 (2.40) 

TNE Atlantic DRETOA 

DRESFC 

DREATM 

−2.39 (−3.05) 

−5.99 (−8.10) 

3.60 (5.04) 

−2.39 (−3.06) 

−5.99 (−8.10) 

3.60 (5.04) 

−0.91 (−1.03) 

−7.26 (−9.80) 

6.35 (8.77) 

Arabian Sea DRETOA 

DRESFC 

DREATM 

−0.97 (−1.06) 

−2.44 (−2.76) 

1.47 (1.70) 

−0.97 (−1.07) 

−2.44 (−2.76) 

1.47 (1.70) 

−0.46 (−0.49) 

−2.92 (−3.30) 

2.46 (2.81) 

NW Pacific DRETOA 

DRESFC 

DREATM 

0.08 (0.22) 

−0.07 (−0.20) 

0.15 (0.41) 

0.06 (0.19) 

−0.10 (−0.27) 

0.16 (0.46) 

0.09 (0.24) 

−0.08 (−0.20) 

0.17 (0.44) 

Global Ocean DRETOA 

DRESFC 

DREATM 

−0.06 (−0.04) 

−0.27 (−0.38) 

0.20 (0.34) 

−0.08 (−0.06) 

−0.28 (−0.42) 

0.21 (0.36) 

0.00 (0.03) 

−0.31 (−0.44) 

0.31 (0.47) 

 1217 

 1218 

1219 
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Figures: 1220 

 1221 

 1222 

Figure 1 Multiyear seasonal mean total cloud fraction in a) DJF, b) MAM, c) JJA and d) 1223 
SON derived from 8 years of daytime CALIOP observations.    1224 

1225 
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 1226 

Figure 2 Multiyear seasonal mean occurrence frequency of ACA ( fACA ) in a) DJF, b) 1227 
MAM, c) JJA and d) SON derived from 8 years of daytime CALIOP observations. The 1228 
red boxes indicate the 4 regions with high ACA occurrence frequency. See also Table 1 1229 
for the exact geolocation.  1230 

1231 



 

 60 

 1232 

 1233 

Figure 3 8-year averaged monthly mean daytime occurrence frequency of aerosol types 1234 
observed by CALIOP for the a) Southeast Atlantic region, b) North tropical Atlantic 1235 
region, c) Arabian Sea, and d) Northwestern Pacific.   1236 

1237 
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 1238 

 1239 

Figure 4 Single scattering properties, including extinction efficiency (Qe), single-1240 
scattering albedo (ω ), and asymmetry factor (g) for a) CALIOP smoke, b) Haywood 1241 
smoke, c) OBS dust, d) OPAC dust, and e) CALIOP polluted dust.  1242 

1243 
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 1244 

 1245 

Figure 5: 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE at TOA, 1246 
using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in the 1247 
computation is from the CALIOP operational product without any adjustment.   1248 

 1249 

1250 
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 1251 

 1252 

Figure 6 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE at surface, 1253 
using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in the 1254 
computation is from the CALIOP operational product without any adjustment.   1255 

 1256 

 1257 

1258 
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 1259 

 1260 

Figure 7 8-year seasonal mean diurnally averaged shortwave cloudy-sky DRE within the 1261 
atmosphere, using the CALIOP smoke and OBS dust aerosol models. The ACA AOT in 1262 
the computation is from the CALIOP operational product without any adjustment.   1263 

1264 
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 1265 

Figure 8 Time series of monthly mean diurnally averaged shortwave cloudy-sky DRE at 1266 
TOA from 2007 to 2014. The horizontal bars on the y-axis mark the 8-year annual mean 1267 
values. 1268 

 1269 

 1270 

 1271 

1272 
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 1273 

 1274 

Figure 9 Diurnally averaged TOA above-cloud aerosol DRE as a function of COT and 1275 
 above-cloud AOT for the CALIOP smoke (a) and polluted dust (b) models. Also plotted 1276 
for each aerosol model are the joint PDFs of above-cloud AOT and underlying COT (line 1277 
contours); PDFs are obtained from the entire 8-year JJA record for the SE Atlantic region. 1278 
Here, the solar zenith angle is assumed to be 24° and CER  is assumed to be 12.5 µm.   1279 

 1280 

1281 
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 1282 

 1283 

Figure 10 Dependence of grid-mean diurnally averaged DRE at TOA on grid-mean ACA 1284 
AOT for a) smoke and b) polluted dust in the SE Atlantic Ocean from 8 years of 1285 
CALIOP observations. The colors correspond to grid-mean underlying COT. 1286 

 1287 
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 1290 

Figure 11 The 8-year seasonal mean (JJA) a) AOT of ACA, b) underlying COT, c) 1291 
cloudy-sky diurnally averaged DRE at TOA (Wm-2), and d) TOA DRE efficiency (Wm-1292 
2AOT-1) in the SE Atlantic region.      1293 

 1294 
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 1297 

Figure 12: Same as Figure 9 and Figure 10 but for the dust aerosols in the TNE Atlantic 1298 

region (a and b) and Arabian Sea (c and d).  1299 

1300 
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 1302 

 1303 

Figure 13 Same as Figure 9 but for the a) smoke, b) polluted dust and c) dust aerosols in 1304 
the Northwest Pacific Ocean. 1305 

1306 
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 1307 

 1308 

Figure 14 Annual mean cloudy-sky a) DRE at TOA and b) DRE efficiency due to ACA 1309 

computed using the control run aerosol models; c) and d) are the same as a) and b), 1310 

except that the CALIOP smoke model has been replaced by the Haywood smoke model; 1311 

e) and f) are the same as a) and b), except that the OBS dust model has been replaced by 1312 

the OPAC dust model. 1313 

 1314 
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 1317 

Figure 15 Comparison of the probability density function of above-cloud smoke AOT 1318 
between the operational CALIOP retrieval (solid) and scaled result based on Eq. (11) 1319 
(dashed). The comparison is based on one year (2008) of CALIOP data.   1320 
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 1321 

Figure 16 Same as Figure 14, except that the scaled AOT based on Eq. (11) is used in the 1322 
computations for smoke aerosols.  1323 

 1324 
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