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Abstract. This study presents results from the European Centre for Medium-Range Weather Fore-

casts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled

through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Green-

house gases Observing Satellite (GOSAT). The analysis is compared to a free run simulation (with-

out assimilation of XCO2) and they are both evaluated against XCO2 data from the Total Carbon5

Column Observing Network (TCCON). We show that the assimilation of the GOSAT XCO2 product

from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algo-

rithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts

per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free

run (1.1 ppm and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared10

to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations

in the vicinity of frontal systems where the GOSAT retrievals are sparse due to cloud contamination.

We finally computed the 10 day forecast from each analysis at 00:00 UTC, and we demonstrate that

the CO2 forecast shows synoptic skill for the largest scale weather patterns (of the order of 1000 km)

even up to day 5 compared to its own analysis.15
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1 Introduction

Carbon in the atmosphere is present mostly in the form of carbon dioxide (CO2). Its amount is

relatively small compared to the amount of carbon present in other reservoirs like the ocean (Ciais

et al., 2013). Being well mixed, atmospheric CO2 is nevertheless easier to monitor by measurements

than other carbon reservoirs. To improve the monitoring of atmospheric CO2, one can combine20

atmospheric CO2 measurements with a numerical model. This paper describes such a system, which

has been developed for the Copernicus Atmosphere Monitoring Service (CAMS).

Rather than using the relatively sparse network of the surface air-sample measurements, here

we explore the measurements from satellite sounders in order to have a more global picture of the

atmospheric CO2. To extract information on the CO2 content in the atmosphere, passive atmospheric25

remote sounders measure in the thermal infrared (TIR) or in the near infrared / short wave infrared

(NIR/SWIR).

The Atmospheric Infrared Sounder (AIRS), measuring in the TIR, detects thermal radiation emit-

ted by the Earth’s surface and the atmosphere (Chédin et al., 2003). The assimilation of the AIRS

observed radiances was developed by Engelen et al. (2009) at the European Centre for Medium-30

Range Weather Forecasts (ECMWF) using a four-dimensional variational (4-D-Var) data assimila-

tion scheme. Their results showed the potential of data assimilation to constrain atmospheric CO2.

They also showed the limitations of the assimilation of AIRS radiances, in particular due to the ver-

tical sensitivity of the sounder. Due to the low thermal contrast between the Earth’s surface and the

air masses above, AIRS measurements have limited or no sensitivity to the lower troposphere and35

higher sensitivity to the middle atmosphere. Because the signals of the CO2 surface sources and

sinks are the largest in the near-surface and lower troposphere than in the middle atmosphere, AIRS

measurements were not able to capture these signals.

In contrast, column-averaged dry-air mole fractions of CO2 (or XCO2) with a high near-surface

sensitivity are retrieved from NIR/SWIR measurements based on scattered and back-scattered solar40

radiation; however, the NIR/SWIR measurements also have their limitations. They need sunlight and

are therefore limited to daytime observations. Sufficiently cloud-free conditions and a low aerosol

optical depth are also needed for accurate XCO2 retrievals.

The aim of this study is to document the assimilation of XCO2 products from NIR/SWIR mea-

surements in order to constrain atmospheric CO2 and to document how the assimilation impacts the45

simulated atmospheric CO2 concentration. For that purpose, we assimilated the XCO2 products de-

rived from the NIR/SWIR spectra of the Greenhouse gases Observing Satellite (GOSAT, Kuze et. al,

2009). The assimilation system is based on the ECMWF system of Engelen et al. (2009), which

has lately evolved for CAMS in order to assimilate retrieved products instead of observed radiances

(Massart et al., 2014).50

The assimilation system provides an analysis of the atmospheric CO2 concentration that is then

integrated in time using a forecast model. The CO2 forecast model used in this study is documented
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by Agustí-Panareda et al. (2014). In this model, the production and loss of CO2 at the surface is based

on surface fluxes that are partially prescribed and partially modelled. These CO2 surface fluxes are

not directly constrained by observations and they may deviate from reality. The accumulation of55

surface fluxes errors then leads to biases in the atmospheric CO2. On the other hand, the strength

of the CO2 forecast model is its ability to provide a realistic CO2 synoptic variability. The first

objective of this study is to determine the quality of the XCO2 fields resulting from the assimilation

of GOSAT XCO2 data with a CO2 forecast model where the CO2 surface fluxes are not constrained.

The atmospheric CO2 synoptic variability on a regional scale is related to the passage of frontal60

systems (Wang et al., 2007). These events are difficult to capture with the GOSAT measurements as

the availability of the data is limited due to cloud contamination. Therefore, the second objective of

this study is to document if the assimilation helps improve the simulation of atmospheric CO2 for

synoptic events despite the lack of measurements nearby frontal systems.

Within CAMS, ECMWF is providing a CO2 analysis based on the assimilation of GOSAT XCO265

data with a delay of 5 days behind real time. A ten day forecast is then issued from the analysis in

order to provide the atmospheric CO2 field in real time and for the next few days. The last objective

of this study is to assess the quality of this forecast. The forecast quality as a function of the lead

time and the season is evaluated against the analysis.

This paper is structured as follows. Section 2 introduces the data sets used in this study. Section 370

describes our atmospheric CO2 simulations with and without assimilation of the GOSAT XCO2

data, and how we compared them with independent measurements. Sections 4 to 6 present the global

evaluation of our simulations, a case study and the evaluation of the CO2 forecast based on the

analysis. Finally, Sect. 7 presents our conclusions.

2 Data sets75

In this study, we used two sets of data. The first one is the measurements from the GOSAT’s Fourier

transform spectrometer and the XCO2 product retrieved from these measurements by the University

of Bremen (UoB) and described in Sect. 2.1. The second one is the collection of measurements

provided by the Total Carbon Column Observing Network (TCCON) and described in Sect. 2.2.

2.1 GOSAT XCO280

The GOSAT satellite is a joint effort between the Japanese Aerospace Exploration Agency (JAXA),

the National Institute for Environmental Studies (NIES) and the Japanese Ministry of the Environ-

ment (MOE) as part of the Global Change Observation Mission (GCOM) programme of Japan. The

GOSAT satellite was launched on 23 January 2009 and carries the Thermal And Near-infrared Sen-

sor for carbon Observations, which consists of a Fourier Transform Spectrometer (TANSO-FTS)85

and a Cloud and Aerosol Imager (TANSO-CAI).
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In this study, we used XCO2 retrieved from TANSO-FTS measurements of the upwelling radi-

ance at the top of the atmosphere by the Bremen Optimal Estimation DOAS – Differential Optical

Absorption Spectroscopy – (BESD) algorithm of UoB. The BESD algorithm was initially devel-

oped to retrieve XCO2 from nadir measurements of the SCanning Imaging Absorption spectroMeter90

for Atmospheric CHartographY (SCIAMACHY) remote sensing spectrometer on the ENVIronment

SATellite (ENVISAT, Reuter et al., 2010, 2011). The BESD algorithm has been modified to also

retrieve XCO2 from GOSAT measurements. A detailed description of the GOSAT BESD algorithm

can be found in Heymann et al. (2015). In brief, the algorithm uses three fitting windows, the O2-

A band (12 920–13 195 cm−1), a weak CO2 absorption band (6170–6278 cm−1) and a strong CO295

band (4804–4896 cm−1) from both the medium and high-gain (respectively M-gain and H-gain)

GOSAT nadir modes. An optimal estimation based inversion technique is used to derive the most

likely atmospheric state from every individual GOSAT measurement using a priori knowledge. The

BESD algorithm explicitly accounts for atmospheric scattering by clouds and aerosols, reducing po-

tential systematic biases. The scattering information on cloud and aerosols is mainly obtained from100

the O2-A and strong CO2 absorption bands.

We used an inhomogeneous GOSAT BESD XCO2 dataset in this study as the GOSAT BESD

algorithm was still under development. This intermediate version of the GOSAT BESD XCO2 data

is referred to as MACC GOSAT BESD XCO2 (MACC standing for Monitoring Atmospheric Com-

position and Climate, the precursor of CAMS). Nevertheless, from the beginning of 2014 onwards,105

we have been assimilating the current version of the GOSAT BESD data (v01.00.02, Heymann et al.,

2015) in near real time.

The TANSO-FTS detector has a circular field of view of 10.5 km when projected on the Earth’s

surface (at exact nadir). In 2013, it measured in a mode with 3 measurements across track, and

the footprints were separated by ∼ 263 km across track and ∼ 283 km along track. The GOSAT110

satellite can also operate in target mode resulting in a finer sampling distance. For these specific

situations, we further thinned the observations on a 1◦×1◦ grid by removing all the observations but

one chosen at random. This procedure avoids having several measurements in the same model grid

cell during the assimilation. This thinning, plus the characteristics of the instrument (measurement

only during sunlit periods) and the processing of the level-2 data procedure (retrievals for clear-sky115

conditions and only over land), reduces the number of GOSAT XCO2 data to about 100 per day.

The assimilation window being 12 hours, this means that about 50 GOSAT XCO2 data points are

assimilated during each time window.

The geographic distribution of these data is dependent on the season and the atmospheric condi-

tions as illustrated by Fig. 1. For example, in July 2013 GOSAT BESD data are available up to 75◦ N,120

and in October 2013 they are available only up to 60◦ N. The reason for this is the solar geometry

and the filtering of measurements under high solar zenith angle (SZA) conditions where XCO2 is

more challenging to retrieve as the impact of atmospheric scattering becomes larger compared to
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low SZA conditions. Other data gaps are due to the strict cloud filtering and other filtering like the

ones based on the quality of the spectral fits, on scattering parameters, on the meteorological state,125

and on the measurement geometry.

The MACC GOSAT BESD XCO2 dataset have been bias corrected using the TCCON data. As

this dataset is delivered in near real time and the TCCON data are delivered with a delay of few

months, it was not possible to directly compare the two data sets. Instead, the TCCON data from

the previous year were used and they were corrected assuming a 2 ppm global atmospheric growth130

of CO2. A global offset was then computed and applied to the MACC GOSAT BESD XCO2 based

on the comparison between this dataset and the corrected TCCON dataset of the previous year.

Moreover, with this procedure the TCCON data used in this study (same year as for the MACC

GOSAT BESD XCO2 dataset) can be considered as independent data.

For the assimilation, the observation error covariances have to be specified. In this study, we135

assumed that the observation errors are not correlated in space and time. For the standard deviation

of the observation error, we used the uncertainty of the BESD XCO2 product provided together with

the data. The BESD XCO2 uncertainty product accounts for the various sources of uncertainty of the

retrieval process. It varies in time and space around an average value of 2 parts per million (ppm). We

furthermore established that the specified observation error based on the XCO2 uncertainty globally140

matches the expected observation error using diagnostics posterior to the analysis (not shown).

2.2 TCCON XCO2

The TCCON is a network of ground-based Fourier Transform Spectrometers recording direct solar

spectra in the near infrared spectral region (http://tccon.ornl.gov/). The column-averaged dry-air

mole fractions of CO2 are retrieved from these spectra together with other chemical components145

of the atmosphere (Wunch et al., 2011a). In 2014, the version GGG2014 of the TCCON data was

released. The errors on the retrieved XCO2 are documented to be below 0.25% (∼ 1 ppm) until the

solar zenith angles are larger than 82◦ (http://dx.doi.org/10.14291/tccon.ggg2014.documentation.

R0/1221662).

When we downloaded the GGG2014 data in November 2015, 20 TCCON stations were providing150

data within the time period we are interested in (year 2013). Not all the stations were used in this

study. First we removed JPL 2011 (USA), Pasadena/Caltech (USA) and Tsukuba (Japan), as they are

not background stations and are associated with significant representativity errors. We also removed

Edwards (USA). This station started to retrieve data from the middle of the year 2013, and we

assumed that this was not long enough to provide information on the seasonal variation of the error155

in our simulations. Additionally, we removed Eureka (Canada) from the list of stations as the site

was providing data during only three days in 2013. This selection of the TCCON stations left 16

stations for the study (Table 1).

5

http://tccon.ornl.gov/
http://dx.doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662
http://dx.doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662
http://dx.doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662


Orléans (France) had a specific treatment compared to the other stations. The averaging kernels

were not specified in the GGG2014 release. So we decided to use the same information as for Lamont160

(USA) as advised in the previous release of the TCCON data (version GGG2012).

3 Experimental setup

We ran two model simulations for the year 2013. The first is similar to the operational CAMS CO2

forecast (Agustí-Panareda et al., 2013) and is referred to as the “free run”. This simulation is used

as the reference to assess the impact of the assimilation of the GOSAT BESD XCO2 data. The165

second simulation is the analysis in which the GOSAT XCO2 data are assimilated and is referred to

as the “analysis”. The configuration of both simulations is described in Sect. 3.1. The simulations

were evaluated against each other and also against the TCCON data. Section 3.2 introduces the

methodology used in comparison of simulations and the TCCON data.

3.1 Model simulations170

The global simulations of atmospheric CO2 are performed within the Numerical Weather Prediction

(NWP) framework of the Integrated Forecasting System (IFS). The CO2 mass mixing ratio is di-

rectly transported within IFS as a tracer and is affected by surface fluxes. The transport is computed

online and is updated each 12 h benefiting from the assimilation of all the operational observations

within the IFS 4-D-Var assimilation system. The terrestrial biogenic carbon fluxes are also computed175

online by the carbon module of the land surface model (Carbon-TESSEL or CTESSEL, Boussetta

et al., 2013) while other prescribed fluxes are read from CO2 surface fluxes inventories (see Agustí-

Panareda et al., 2014 for more details).

The ability to assimilate retrieval products from GOSAT was included in IFS and is detailed in

Massart et al. (2014) for the assimilation of methane data. The system used in this study is similar to180

the one of Massart et al. (2014) and is based on fixed background errors derived from the National

Meteorological Center (NMC) method (Parrish and Derber, 1992). The standard deviation of the

background error is constant for each model level and slowly increases from the upper troposphere

to the lower troposphere with values from about 1 to about 5 ppm, and then rapidly increases to

reach a value of about 40 ppm at the surface. The correlation of the background errors varies over185

the whole domain and vertically with a representative length scale of about 250 km. The system does

not account for the spatial or temporal correlation between the errors of the observations.

We chose in this study to have a horizontal resolution of TL255 on a reduced Gaussian grid

(∼ 80km×80km), and 60 vertical levels from the surface up to 0.1 hPa. This resolution is sufficient

for resolving the large and synoptic scale horizontal structures (∼ 1000km) of the atmospheric CO2190

fields.
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3.2 Comparison with TCCON

To evaluate the quality of the model simulations (free run and analysis), we have extensively used

the TCCON data in this study. The comparison is performed in the TCCON space using the TCCON

a priori and averaging kernel information (see Appendix A for more details). In order to have a de-195

composition of the errors of the model column-averaged CO2 against the TCCON measurement, we

computed for each TCCON station k for k ∈ [1,N ], the mean difference (or bias) δk and the stan-

dard deviation of the difference (or scatter) σk over the Mk times ti for i ∈ [1,Mk] when we have a

TCCON observation for the station k. If ĉok (ti) for i ∈ [1,Mk] is the observed TCCON XCO2 time

series for the station k and if ĉk (ti) for i ∈ [1,Mk] is the model equivalent time series, then the bias200

δk and scatter σk are defined by

δk =
1

Mk

Mk∑
i=1

[ĉk (ti)− ĉok (ti)] ,

σk =

√√√√ 1

Mk − 1

Mk∑
i=1

[ĉk (ti)− ĉok (ti)− δk]
2
. (1)

Additionally, we computed the correlation coefficient rk between ĉk (ti) and ĉok (ti) for i ∈ [1,Mk].

Following Heymann et al. (2015), we also computed the model offset δ, the mean absolute error205

(MAE) ∆, the station-to-station bias deviation σ and the model precision π for the N TCCON

stations

δ =
1

N

N∑
k=1

δk , ∆ =
1

N

N∑
k=1

|δk| ,

σ =

√√√√ 1

N − 1

N∑
k=1

[δk − δ]2 , π =
1

N

N∑
k=1

σk . (2)

The statistics for the comparisons of the simulations against the TCCON data have some gaps in210

time due to gaps in the availability of the TCCON data. They are also valid only where the TCCON

sites are located, i.e. 16 points distributed over the globe. To have a more global overview of the

model bias and scatter against the TCCON data, we smoothed these statistics in time and space (see

Appendix B for more details). In summary, for the bias we averaged all the model–measurement

differences for each TCCON site using a 1-week time bin. We then fit the time evolution of the215

weekly bias with a function that combines a linear and a harmonic component for each station.

The second step is an extrapolation in space. For each week, the weekly biases of every station are

extrapolated using a quadratic function of latitude. This results in a Hovmöller diagram of the bias

as a function of time and latitude. A similar process is applied for the scatter (see Figs. 2 and 3).
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4 Global evaluation of the analysis220

In this section we first present the characteristics of the XCO2 derived from the free run simulation

when compared to the TCCON data. Second, we present the impact of the assimilation of the MACC

GOSAT BESD XCO2 comparing the XCO2 from the analysis against the XCO2 from the free run.

Then, we discuss if the analysis represents an improvement compared to the free run in terms of

statistics against the TCCON data. Finally, we discuss the merits of the analysis compared to the225

MACC GOSAT BESD data using the TCCON data as a reference.

4.1 Free run simulation vs. TCCON

When compared with the TCCON data, the free run simulation has a mean offset δ of−0.36 ppm and

a mean absolute error ∆ of 1.08 ppm (Table 2). However, the individual station bias δk spans a range

from 2.3 ppm at Ascension Island (Saint Helena, Ascension and Tristan da Cunha) to −2.9 ppm at230

Białystok (Poland). The station-to-station bias deviation σ of the free run simulation has then a value

of 1.27 ppm.

The variations of the bias as well as the seasonal cycle of the bias are highlighted in the Hovmöller

diagram displayed in Fig. 2a. First, it shows that the initial condition of the free run has a positive

bias of about 2 ppm over the tropical region (region between 23◦ S and 23◦ N) when compared to235

the TCCON data. This bias is reduced during the spring and reappears the next summer. It reaches

its highest values in autumn with more than 2 ppm. These results are slightly different from those

of Agustí-Panareda et al. (2014) where the model bias was found to be more constant in the trop-

ical region when comparing the background CO2 in the marine boundary layer with the National

Oceanic and Atmospheric Administration (NOAA) GLOBALVIEW-CO2. Here, the evaluation of240

the bias in the tropics is driven by the comparison with XCO2 measurements from the TCCON

station of Ascension Island. For this station, the values of the bias from July to September result

from the interpolation process as no measurements were reported during this period (Fig. S1 of the

Supplement).

In contrast to the situation at the tropics, the initial condition of the free run has a negative bias at245

northern mid-latitudes (region between 23◦ N and 66◦ N) and reaches almost 4 ppm at the latitude

of Sodankylä (Finland, 67◦ N) when compared to the TCCON XCO2. This value is the result of the

smoothing process as we do not have data for that period (Fig. 4a). The negative bias at these mid-

latitudes is nevertheless confirmed by the comparison with other stations, like Karlsruhe (Germany)

and Park Falls (USA), where we have some data at the beginning of the year (Figs. 4b and 4c). The250

negative bias at northern mid-latitudes remains high during the whole year, with an absolute value

generally greater than 1 ppm at the end of spring, and in June and December. This can be explained

by the fact that the model does not release enough CO2 before and after the growing season, i.e.,
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March to May and October to December, and by the fact that, in the model, the onset of the CO2

sink associated with the growing season starts too early in the season (Agustí-Panareda et al., 2014).255

The precision π of the free run measured by the average scatter between the simulation and the

TCCON data is 1.4 ppm (Table 2). Similarly to the bias, the scatter varies in time and space as

highlighted by the Hovmöller diagram of the scatter (Fig. 3a). The scatter has its highest values of

more than 1 ppm at the northern mid-latitudes during May–June–July. This increase in the scatter is

driven by the behaviour of the free run at Sodankylä. There, the simulation has a larger variability260

than the measurements. For example, end of June, the simulation presents a decrease of about 7 ppm

in 36 hours whereas the measurements show a decrease of about 4 ppm (Fig. 4a). Elsewhere, there is

also an increase of the scatter between May and July which is during the northern hemisphere grow-

ing season. This increase could be explained by the difficulty for CTESSEL to model the terrestrial

biogenic carbon fluxes during the growing season, which leads to higher variability of the simulated265

atmospheric CO2.

4.2 Analysis vs. free run

To assess the impact of the assimilation of the MACC GOSAT BESD XCO2, we compared the

evolution of XCO2 from the analysis with XCO2 from the free simulation. Figure 5 presents the

Hovmöller diagram (time vs. latitude) of this difference. It shows that the first region where the270

analysis impacts XCO2 is the tropics. There, compared to the free run, the analysis continuously

decreases XCO2, by up to 1 ppm in June and by more than 2 ppm from September to December. The

assimilation of the GOSAT data consequently causes an improvement as the free run has a positive

bias in this region in autumn compared to the TCCON data.

The analysis also decreases XCO2 over the southern extra tropics (region between 23◦ S and275

66◦ S) when compared to the free run (Fig. 5). The decrease extends to the southern high latitudes (≥
66◦ S) even when no GOSAT data were assimilated in this region. This decrease results mainly from

the transport of CO2 from the equatorial region and southern mid-latitudes towards southern high

latitudes. Unfortunately, there are no independent XCO2 data available at southern high latitudes to

assess the merits of the analysis there.280

Despite the fact that some GOSAT data are assimilated in the northern mid-latitudes during the

first months of the simulation, the analysis only starts to differ significantly from the free run from

March onwards. In this region, north of 30◦ N, the analysis has higher values of XCO2 than the free

run, with a difference of more than 2 ppm during the northern summer. Again, the assimilation of

the GOSAT data improves the simulated XCO2 as the free run shows a strong negative bias there.285

Similar to the behaviour discussed for the southern high latitudes, the change in the CO2 concen-

tration at northern mid-latitudes is transported northward to higher latitudes. There is, nevertheless,

a difference between the two hemispheres. For the Northern Hemisphere we have more data at high
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latitudes, especially during the summer when the northernmost GOSAT measurements cover goes

up to 80◦ N.290

4.3 Analysis vs. TCCON data

When compared with the TCCON data, the GOSAT BESD XCO2 analysis has an offset δ of

−0.34 ppm and a mean absolute error ∆ of 0.57 ppm (Table 2). The offset is similar to that of

the free run (−0.36 ppm), but the mean absolute error is improved (1.08 ppm for the free run). The

individual station bias is moreover more constant in time for the analysis compared to the free run.295

For example, the trend of the free run bias is 2.08 ppm yr−1 for Lauder (New Zealand) (Table S1

of the Supplement), and it improves to 0.47 ppm yr−1 for the analysis (Table S2 of the Supplement

and Fig. 4c).

By increasing XCO2 in the northern mid-latitudes as discussed before, the analysis considerably

reduces the bias. A residual seasonal cycle in the bias is still present, with values usually in the range300

of 0 to 3 ppm (Fig. 2b). This could be explained by the fact that we correct the atmospheric state of

CO2 and not the CO2 fluxes. During the seasons when the CO2 fluxes are the main driver of the

atmospheric CO2, the optimisation of the atmospheric state only may not be enough.

The analysis has a more constant bias in time than the free run. It is also more accurate in space,

with a station-to-station bias deviation σ that is largely reduced compared to the free run with a value305

of 0.61 ppm against 1.27 ppm (Table 2). The assimilation of the MACC GOSAT BESD XCO2

thus helps significantly improve the accuracy of the model. The assimilation also helps improve the

precision π, with the mean scatter improved by 15 %, reduced to a value of 1.22 ppm. The scatter

of the analysis is reduced for all TCCON stations compared to the free run except for Garmisch

(Germany) where the scatter remains essentially unchanged. The Hovmöller diagram of the scatter310

shows that the main reduction is in the northern high latitudes in May (Fig. 3). In particular, the

analysis shows less spurious variability than the free run at Sodankylä (Fig. 4a).

4.4 Analysis vs. MACC GOSAT BESD data

The analysis is much more accurate and more precise than the free run when compared to the TC-

CON data. The analysis also fills the gaps in time and space of the MACC GOSAT BESD data. In315

this section, we evaluate the analysis against the MACC GOSAT BESD data once more using the

TCCON data as a reference.

The MACC GOSAT BESD data were compared to the TCCON data using a geolocation crite-

rion of 5◦ in space and a time window of ±2 h. Before computing the difference between each

GOSAT/TCCON pair, following Dils et. al (2014), we added a correction to the GOSAT retrieved320

value in order to account for the use of different a priori CO2 profiles in the two products. Moreover,

we only kept the stations where more than 30 GOSAT/TCCON pairs were found in order to have

more robust statistical results. This procedure removes Izaña (Spain), Ascension Island, Réunion
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Island (France) and Lauder from the list of the used TCCON stations in the comparison and reduces

the number of stations to 12 (Table 3).325

For each GOSAT/TCCON pair, we extracted the CO2 profile from the analysis at the same lo-

cation and time as the GOSAT measurement before computing the difference between the model

and the TCCON data. In this way, we have a fair comparison between the analysis and the MACC

GOSAT BESD data with respect to the TCCON data.

The resulting subset of the analysis minus TCCON differences has a different offset than the full330

dataset but a similar mean absolute error, station-to-station bias deviation and precision (Tables 2

and 3). The difference in the offset is mainly due to a difference in the sampling between the subset

and the full dataset over the Northern Hemisphere. Due to few or no pairs occurring in spring for the

subset, the sampling misses the negative bias of the analysis there. Missing the negative bias of the

analysis results in an increased offset. In that respect, the mean absolute error is less sensitive to the335

used dataset (subset or full dataset).

The analysis has a lower mean absolute error ∆ than the one from the MACC GOSAT BESD

data (0.65 ppm vs 1. ppm, Table 3), a station-to-station bias deviation σ almost half of the one

from GOSAT data (0.7 ppm vs 1.3 ppm) and has an improved precision π (1 ppm vs 3.3 ppm). The

mean correlation coefficient is also higher in the analysis than in the satellite data with a value of340

0.8 compared to 0.5. The statistics of the MACC GOSAT BESD data found here are different than

those of Heymann et al. (2015) who used a more recent version of the GOSAT BESD product. With

the successive improvements in the BESD algorithm, the latest version has a station-to-station bias

deviation of ∼ 0.4 ppm and a precision of ∼ 2 ppm.

The better precision (lower value of π) and the lower value of the mean absolute error ∆ and345

station-to-station bias deviation σ of the analysis compared to the MACC GOSAT BESD dataset

shows that the analysis is capable of smoothing the scatter of the satellite data. Moreover, the analysis

is able to fill the gaps of the satellite data in time and space.

5 Case study of a cold front over Park Falls

The CO2 concentration could be strongly affected by frontal systems. As an illustration, such a situ-350

ation occurred at the end of May 2013, close to the TCCON station of Park Falls, Wisconsin, USA,

when a cold front came from the North-West. On 31 May, the XCO2 dropped from 398.62 ppm

at 08:15 LT (Local Time) to 395.97 ppm at 12:53 LT (Fig. 6, top panel). This sudden decrease of

2.65 ppm in less than 5 h occurs after the arrival of a cold front, which is associated with a decrease

of the surface pressure and a decrease of the temperature at 500 hPa (Fig. 6, lower panel).355

The free run is able to capture the sudden decrease in XCO2, highlighting the skill of the model

for such a situation (Fig. 6, upper panel). The flow during this period is mainly a descent of cold air

from Canada towards the Midwestern and Eastern US. This cold air mass is depleted in CO2 relative
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to the background (Figs. 7e and f). When it moves towards Park Falls, it results in decreasing XCO2

as observed and simulated, but the decrease in the free run is too strong by 2 to 3 ppm compared to360

the measurements.

We investigated whether the assimilation of the GOSAT data helps improve the simulated evolu-

tion of the CO2 concentration for such situations even if the number of BESD GOSAT data is limited

in the vicinity of a frontal system due to the strict cloud filtering. Frontal systems are associated with

clouds formed when moist air between the cold and warm fronts is lifted.365

On May, 30 we have a few GOSAT measurements over the North and North-East region of

North America (Fig. 7a). These measurements have the effect of increasing the XCO2 in this re-

gion (Figs. 7b–d). The cold air mass is then richer in CO2 in the analysis compared to the free run,

and when it moves towards Park Falls, the decrease is weaker and closer to the observed decrease.

The assimilation of the GOSAT data helps improve the simulation by correcting the large scale370

structure upstream and by improving the large scale atmospheric XCO2 horizontal gradient.

The XCO2 decrease continues the next day on 1 June in both simulations as the cold front contin-

ued its descent. Unfortunately, likely due to the presence of clouds, no TCCON measurements are

available during this period to corroborate the simulated XCO2 decrease.

6 Forecast based on the analysis375

Within CAMS, we are receiving the GOSAT BESD data for a given day with a delay of 5 days

behind real time. The analysis for this day is run as soon as the data are received. A 10 day forecast

is then subsequently run based on the resulting analysis.

In this section, we aim to evaluate the forecast as a function of its lead time by comparing the

forecast to the analysis valid for the same time. This comparison informs us about how long the380

information provided by the analysis remains in the forecast. Assuming perfect transport and perfect

surface fluxes, the analysis and the forecast (valid for the same time) should be similar given that

the analysis accurately corrects the atmospheric concentration of CO2. In practice, the differences

observed between the analysis and the forecast could either come from the transport, the surface

fluxes or the analysis.385

To compare a forecast with the analysis valid for the same time, we computed the anomaly cor-

relation coefficient (ACC) for XCO2 (see Appendix C for more details). The ACC can be regarded

as a skill score relative to the climatology: the higher the ACC, the better the forecast. In the frame-

work of NWP, an ACC reaching 50 % corresponds to forecasts for which the error is the same as

for a forecast based on a climatological average. An ACC of about 80 % indicates valuable skill in390

forecasting large-scale synoptic patterns.

We computed the ACC for each month individually as we know that the surface fluxes, drivers of

the difference between the forecast and the analysis, have a strong seasonal cycle. We also computed
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it for different domains (globe, tropics and mid to high latitudes) and for several forecast lead times,

from 12 h up to 10 days. We found that the ACC is globally more than 90 % for day 3 and almost395

always more than 85 % for day 5 for each single month (Fig. 8a). This means that the forecast for

today based on the analysis of 5 days ago shows the same large-scale synoptic XCO2 patterns as

the analysis. The information of the analysis therefore lasts long enough in the forecast to provide

a good quality 5-day forecast for today (compared to the analysis). The information lasts longer in

the tropics than in the Northern Hemisphere and slightly longer in the Northern Hemisphere than in400

the Southern Hemisphere (Fig. 8b to d). This difference between the two hemispheres may reflect

the fact that the CO2 variability is much weaker in the Southern Hemisphere.

For forecasts longer than 5 days, globally, there are two particular months for which the ACC

decreases faster than the others, i.e. July and December. For example, for these two months the ACC

at day 5 is similar to the ACC at day 10 for October. This means that for July and December, the405

medium range XCO2 forecast (between 5 and 10 days) should be used more carefully. For July, the

drop in skill occurs mainly over the Northern Hemisphere. The main reason is that the CO2 fluxes

are an even more important driver of the CO2 concentration than the initial CO2 concentration

for this month. To better understand the impact of the surface fluxes, let us assume that in July

we have too little release or, similarly, too much uptake of CO2 in the atmosphere in the model410

over the Northern Hemisphere (as confirmed by Fig. 2a). This induces a negative bias of the CO2

surface fluxes in the model. In the meantime, the analysis increases the CO2 concentration helped

by the GOSAT BESD data (Fig. 5). However, the next 12-hour short-term forecast (used as the

background for the next analysis) will not increase enough the CO2 concentration due to the negative

bias of the CO2 fluxes. This opposition between the analysis and the short-term forecast explains415

the reduction in skill during the periods when the surfaces fluxes are the most important driver of the

CO2 concentration in the atmosphere.

The global drop in skill for December is not directly related to a particular region as for July.

It is nonetheless the second worst month for the tropics (after January) and the third worst for the

Northern Hemisphere (together with September). Over the tropics during the winter, the reduction420

in skill is due to the opposite effect as for July over the Northern Hemisphere: the CO2 fluxes are

important and there is a positive bias in the fluxes (too much release or too little uptake of CO2

in the atmosphere) in the model. For these situations when the CO2 fluxes are the main driver of

the atmospheric CO2, the only solution to improve the skill would be to optimise the CO2 fluxes

together with the CO2 initial conditions.425

7 Conclusions

The Copernicus Atmosphere Monitoring Service (CAMS) greenhouse gases data assimilation within

the Numerical Weather Prediction (NWP) framework of the Integrated Forecasting System (IFS) is
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designed to correct the atmospheric concentration of CO2 instead of the surface fluxes in order to

constrain the atmospheric CO2. This requires the use of a short assimilation window so to neglect the430

model errors of the short-term forecast (lasting the length of the assimilation window). In the case

of atmospheric CO2, model errors are related to potentially inaccurate surface fluxes or transport.

This article demonstrates the benefit of the assimilation of XCO2 data derived from the Green-

house gases Observing Satellite (GOSAT) by intermediate versions of the Bremen Optimal Estima-

tion DOAS (BESD) algorithm of the University of Bremen (UoB). The assimilation of the GOSAT435

BESD XCO2 provides a CO2 analysis that was compared to a free run forecast where the CO2

concentration is not constrained by any CO2 observation. The comparison was one year long (year

2013) and both simulations (analysis and free run) were evaluated against measurements from the

Total Carbon Column Observing Network (TCCON). We showed that the free run has a negative bias

at northern mid-latitudes and a large positive bias in the tropical region with strong seasonal varia-440

tions in both regions. These results are consistent with the biases documented by Agustí-Panareda

et al. (2014) and mainly associated with biogenic fluxes.

The analysis significantly reduces these biases without completely removing them with a remain-

ing mean offset of −0.34 ppm and a mean absolute error of 0.57 ppm compared to the TCCON

data. However, the accuracy estimated with the station-to-station bias deviation is 0.61 ppm. This445

represents a large improvement compared to the free run for which the accuracy is 1.27 ppm. The

precision of the analysis estimated with the mean scatter is 1.22 ppm, slightly better than for the free

run with a value of 1.43 ppm.

The analysis produced in this paper was compared to the assimilated MACC GOSAT BESD data

using TCCON data as a reference. This comparison showed that the analysis has a lower station-450

to-station bias deviation than the assimilated data (0.7 ppm compared to 1.3 ppm). The precision is

much better for the analysis, with a scatter of 1 ppm, while the assimilated data have a scatter of

3.3 ppm. The precision of the analysis is also better than the documented precision of other GOSAT

XCO2 products. The precision of the NIES product extracted from Yoshida et. al (2013) is 1.8 ppm.

The precision of the University of Leicester product and of the SRON Netherlands Institute for455

Space Research product is respectively 2.5 ppm and 2.37 ppm (Dils et. al, 2014). The CO2 analysis

is consequently an alternative to the standard XCO2 GOSAT products as it provides a lower or

similar station-to-station bias deviation and a better precision XCO2 product compared to TCCON.

Moreover, it has a uniform spatio-temporal resolution.

The pre-operational CAMS CO2 analysis is similar to the analysis presented in this paper having460

nevertheless a higher horizontal resolution (TL511 on a reduced Gaussian grid, ∼ 40km× 40km),

and a higher vertical resolution with 137 vertical levels. It currently assimilates the most recent

version of the GOSAT BESD data presented by Heymann et al. (2015) in near real time. These data

have an improved bias deviation (∼ 0.4 ppm) and an improved precision (∼ 2 ppm) compared to
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those used in this study. The near real time CAMS CO2 analysis should therefore have an improved465

station-to-station bias deviation and precision than the analysis presented in this paper.

We corrected the atmospheric concentration by only constraining the atmospheric concentration

and not the surface fluxes. When and where the surface flux is a significant driver of the atmospheric

concentration and if the assimilated data are not good enough or not numerous enough (in time and

space), then constraining only atmospheric CO2 does not compensate for the error in the surface470

flux. The next step is to further improve the carbon module CTESSEL in order to reduce the bias of

the model. Another long term solution would be to constrain the surface flux at the same time as the

concentration.

One strength of the CO2 model used in this study is its ability to represent CO2 variations asso-

ciated with synoptic weather systems (Agustí-Panareda et al., 2014). By correcting the large scale475

XCO2 patterns and removing part of the model bias, we showed with a case study that the anal-

ysis is able to better represent the CO2 variations associated with these situations. The variations

of the atmospheric reservoir of CO2 are the result of changes in the surface fluxes to and from the

atmosphere. If the characteristics of the analysis are found to be satisfactory in terms of bias and

precision, it could be included into a flux inversion system to infer surface fluxes.480

The horizontal resolution of this study is half the horizontal resolution of the pre-operational

analysis and the vertical resolution of the the pre-operational analysis is also higher. One should

expect an even better representation of the CO2 variability in the pre-operational analysis. In the

future, the horizontal resolution could be increased even further toward the ECMWF operational

resolution of about 16km× 16km.485

The quality of the analysis is considered to be sufficient to assess the quality of the forecast

as a function its lead time. We showed that the forecast for day 3 and day 5, which will be the

valid range for today’s forecast, has an anomaly correlation coefficient of 90 and 85 %, respectively.

This means that we are providing a CO2 forecast with accurate synoptic features for today. With

a good representation of the variability and a bias mostly under 1 ppm, the CAMS atmospheric CO2490

promises to become a useful product, for example, for planning a measurement campaign. It could

also be used as the a priori in the satellite or TCCON retrieval algorithms or be used to evaluate the

retrieval products from the Orbiting Carbon Observatory-2 (OCO-2, oco.jpl.nasa.gov).

Appendix A: Comparing the model against TCCON

For the comparison with the TCCON data, one has to account for the a priori information used in the495

retrieval that links ĉo, the TCCON retrieved XCO2 to xt, the true (unknown) CO2 profile (Wunch

et al., 2011b),

ĉo = cb +aT
(
xt−xb

)
+ ε, (A1)
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where xb is an a priori profile of CO2, a is a vector resulting from the product of the averaging

kernel matrix with a dry-pressure weighting function vector (for the vertical integration), cb is the500

column-averaged mixing ratio computed from xb, and ε is the error in the retrieved column-averaged

mixing ratio. This error includes the random and systematic errors in the measured signal and in the

retrieval algorithm.

To compare the model with the TCCON retrieved value, we used the same a priori information,

so that the model profile x is converted to a column-averaged mixing ratio ĉ by505

ĉ= cb +aT
(
x−xb

)
. (A2)

The comparison between the simulation and TCCON occurs in the observation space with the

difference between the model column-averaged mixing ratio ĉ of Eq. (A2) and the TCCON column-

averaged mixing ratio ĉo of Eq. (A1),

ĉ− ĉo = aT
(
x−xt

)
− ε. (A3)510

Let us define η = aT(x−xt) as the model error in terms of the column-averaged mixing ratio.

It accounts for numerous errors, for example, the errors directly linked to the model processes like

the transport, the errors in the surface fluxes, the representativity error and the error due to the

assimilation of the GOSAT XCO2 data for the analysis. The difference between the smooth model

column-averaged mixing ratio ĉ and the TCCON column-averaged mixing ratio ĉo is, therefore, the515

sum of the model error η and the error in the retrieved column-averaged mixing ratio ε.

To compute the model column-averaged mixing ratio ĉ of Eq. (A2) equivalent to each TCCON

measurement, we extracted the two model profiles that are closest to the measurement time and at

the nearest grid point to the measurement. The two profiles are then interpolated in time in order to

obtain the model profile at the same time as the measurement. Finally, we computed the column-520

averaged mixing ratio according to Eq. (A2).

Appendix B: Smoothing the statistics against TCCON

In order to have a more global view of the bias and the scatter of a simulation against the data

from the TCCON network, we have developed and used a two-step algorithm. The first step consists

in computing the statistics (bias and the standard deviation) for each week of 2013 and for each525

TCCON station when the data are available. The weekly statistics are then interpolated in time using

a function described in the following Sect. B1. This allows one to fill in the gaps in time when no

data are available. We therefore have a value for the bias at each station and for each week. For the

second step, we compute a quadratic function of latitude that best fits the interpolated biases for each

week (Sect. B2).530
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B1 Time smoothing

For each TCCON station k and for each week wl for l ∈ [1,52], we compute the mean difference

δlk and the standard deviation of the difference σl
k between every TCCON observation during this

week and the model equivalent value. The statistics are computed only when more than 10 TCCON

measurements are available during the week. The averaged difference (or bias) is then interpolated535

in time t with the function b̃k (t) that combines a linear growth and a harmonic component,

b̃k (t) = ak t+ bk +αk sin

(
t

τ1
+ϕk

)
+βk sin

(
t

τ2
+ϕk

)
. (B1)

ak, bk, αk, βk and ϕk are the parameters of the function b̃k (t) obtained by an optimisation procedure

that minimises the distance between b̃k (t) and the series of δlk for l ∈ [1,52]. τ1 is chosen to be 6

months and τ2 3 months. The form of the function of Eq. (B1) thus gives a linear growing bias and540

allows seasonal variations. A similar function is used for the standard deviation.

B2 Spatial smoothing

The time smoothing allows us to fill in the gaps in the time series of the bias for each station, when

for a given week we do not have any measurement to compare with. Following Bergamaschi et al.

(2009), we then compute for each week wl the best fit of the interpolated biases with a quadratic545

function of latitude b̂l,

b̂l (φ) = alφ2 + blφ+ cl , (B2)

with φ is the sine of the latitude. al, bl and cl are obtained by an optimisation procedure that min-

imises the distance between b̂l and the weekly interpolated biases δlk for k ∈ [1,N ]. A similar func-

tion is used for the standard deviation.550

B3 Discussion

For some stations, the availability of the weekly differences is not uniform in time and the time

smoothing of Eq. B1 provides spurious values. We solved this issue by fixing the coefficient αk to a

zero value (See Table S1 of the Supplement).

With a root mean square error (RMSE) mostly under 0.7 ppm and a correlation mostly over 0.8,555

the smoothed bias matches well with the weekly bias (Table S1 of the Supplement). The Hovmöller

diagram (Fig. 2) can, thus, be considered as an accurate representation of the overall bias.

Compared to the bias, the fit between the time series of the weekly scatter and the regression is

not as good for the scatter. The correlation coefficient is mostly between 0.5 and 0.7 (Table S1 of the

Supplement).560
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Appendix C: Anomaly correlation coefficient

The anomaly correlation coefficient ACC between the forecast f and the analysis a is computed

using the climatology c by

ACC =
(f − c)(a− c)√
(f − c)2 (a− c)2

, (C1)

where the overline, is the spatial and temporal average. For example, for the forecast range 24 hr,565

we take the XCO2 fields from all the 24 hr forecasts for a given month, all the analyses valid for the

same time, and a fixed climatology for this month.

The climatology is based on a free run simulation using the optimised CO2 surface fluxes from

Chevallier et al. (2010) which simulated the years from 2003 to 2012. For each month, we compute

the average over the 10 years of the simulation, rescaling the mean so that the mean is the same570

as for the analysis, avoiding by this procedure the issue of the increase in CO2 over time. The two

dimensional climatology field for XCO2 for the month m is

c(m) =
1

10

2012∑
y=2003

1

n(y,m)

n(y,m)∑
d=1

[
Σ(y,m,d)−Σ(y,m,d)

]
+ Σan (m) , (C2)

where y is the year, n the number of days for the year y and the month m, d is an index for the day,

Σ(y,m,d) is the XCO2 field from the simulation for the year y, the month m and the day d, Σ is575

a spatial average of Σ and Σan (m) is the spatial and temporal average of the XCO2 fields from the

analysis for the month m (and the year 2013).

The Supplement related to this article is available online at

doi:10.5194/acp-0-1-2016-supplement.
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Table 1. List on the used TCCON stations ordered by latitude from North to South.

Site Lat Lon Starting date Reference

Sodankylä (sodankyla01) 67.37 26.63 6 Feb 2009 Kivi et al. (2014)
Białystok (bialystok01) 53.23 23.02 1 Mar 2009 Deutscher et al. (2014)
Bremen (bremen01) 53.10 8.85 6 Jan 2005 Notholt et al. (2014)
Karlsruhe (karlsruhe01) 49.10 8.44 19 Apr 2010 Hase et al. (2014)
Orléans (orleans01) 47.97 2.11 29 Aug 2009 Warneke et al. (2014)
Garmisch (garmisch01) 47.48 11.06 16 Jul 2007 Sussmann and Rettinger (2014)
Park Falls (parkfalls01) 45.94 −90.27 26 May 2004 Wennberg et al. (2014a)
Four Corners (fourcorners01) 36.80 −108.48 1 Mar 2011 Dubey et al. (2014)
Lamont (lamont01) 36.60 −97.49 6 Jul 2008 Wennberg et al. (2014b)
Saga (saga01) 33.24 130.29 28 Jul 2011 Kawakami et al. (2014)
Izaña (izana01) 28.30 −16.48 18 May 2007 Blumenstock et al. (2014)
Ascension Island (ascension01) −7.92 −14.33 22 May 2012 Feist et al. (2014)
Darwin (darwin01) −12.43 130.89 28 Aug 2005 Griffith et al. (2014a)
Réunion Island (reunion01) −20.90 55.49 6 Oct 2011 De Mazière et al. (2014)
Wollongong (wollongong01) −34.41 150.88 26 Jun 2008 Griffith et al. (2014b)
Lauder 125HR (lauder02) −45.05 169.68 2 Feb 2010 Sherlock et al. (2014)
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Table 2. Statistics of the XCO2 difference between the simulations (free run and analysis) and the average
hourly TCCON data (model-TCCON): bias (δk, in ppm), scatter (σk, in ppm) and correlation coefficient (rk).
Also shown are the mean, the mean absolute error (MAE) and the deviation of the stations bias (respectively δ,
∆ and σ, in ppm), the mean scatter (π, in ppm) and the mean r (last three rows). The second column (N ) is
the number of data used for computing the statistics.

Free run Analysis

Site N Bias Scatter r Bias Scatter r

Sodankylä 20441 −1.59 1.35 0.91 −0.55 1.35 0.92
Białystok 16063 −2.68 1.96 0.81 −1.66 1.80 0.77
Bremen 4883 −1.62 1.52 0.79 −0.41 1.27 0.82
Karlsruhe 4201 −1.26 1.72 0.80 −0.25 1.54 0.82
Orléans 8444 −0.38 1.36 0.85 0.09 1.21 0.91
Garmisch 10371 −0.92 1.59 0.82 −0.29 1.62 0.80
Park Falls 27991 −1.69 2.06 0.81 −0.60 1.45 0.90
Four Corners 19872 0.69 1.76 0.58 0.57 1.43 0.74
Lamont 43731 −0.20 2.09 0.59 −0.04 1.35 0.80
Saga 10349 −1.19 1.61 0.75 −0.64 1.33 0.83
Izaña 4463 0.27 0.80 0.90 0.40 0.62 0.94
Ascension Island 7111 2.31 1.29 0.24 0.72 1.27 0.21
Darwin 29194 1.57 1.12 0.78 −0.02 1.04 0.79
Réunion Island 18880 0.56 0.73 0.76 −0.77 0.60 0.78
Wollongong 27562 0.30 1.05 0.71 −1.08 1.06 0.65
Lauder 53500 0.01 0.83 0.86 −0.97 0.59 0.85

Mean 16 −0.36 1.43 0.75 −0.34 1.22 0.78
MAE 16 1.08 – – 0.57 – –
Deviation 16 1.27 – – 0.61 – –
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Table 3. Statistics of the XCO2 differences between the MACC GOSAT BESD dataset and the average hourly
TCCON data (left block, GOSAT-TCCON) or the analysis and the average hourly TCCON data (right block,
model-TCCON): bias (δk, in ppm), scatter (σk, in ppm) and correlation coefficient (rk). The analysis has been
sampled similarly to the GOSAT dataset in time and space. Also shown are the mean, the mean absolute error
(MAE) and the deviation of the stations bias, the mean scatter (all in ppm) and the mean r (last three rows).
The second column (N ) is the number of data points used for computing the statistics.

MACC GOSAT dataset Analysis

Site N Bias Scatter r Bias Scatter r

Sodankylä 90 −0.26 4.50 0.39 0.24 1.41 0.92
Białystok 58 −0.28 3.45 0.32 1.06 1.99 0.17
Bremen 41 1.19 2.34 0.53 0.54 0.86 0.81
Karlsruhe 91 1.45 2.74 0.52 0.89 0.74 0.88
Orléans 52 0.20 2.44 0.34 1.29 0.57 0.84
Garmisch 76 1.64 3.10 0.55 1.17 1.06 0.77
Park Falls 63 1.50 3.22 0.71 −0.08 1.03 0.95
Four Corners 102 −0.00 3.79 0.64 0.65 0.81 0.89
Lamont 340 −1.01 4.05 0.57 0.05 1.01 0.91
Saga 61 0.40 2.95 0.76 0.14 0.88 0.90
Darwin 234 −1.27 3.37 0.42 −0.11 0.81 0.84
Wollongong 221 −3.03 3.86 0.31 −1.54 1.07 0.74

Mean 12 0.04 3.32 0.50 0.36 1.02 0.80
MAE 12 1.02 – – 0.65 – –
Deviation 12 1.31 – – 0.74 – –
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(a) July 2013

(b) October 2013

GOSAT BESD XCO2 (ppm)

Figure 1. Example of the distribution of the assimilated GOSAT BESD XCO2 data: July 2013 (top panel, about
3400 retrievals) and October 2013 (bottom, about 1270 retrievals). The monthly data are here aggregated on
a 2◦ × 2◦ grid and averaged. The blue/red represents the low/high averaged XCO2 values in ppm.
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(a) Free run bias (ppm)

(b) Analysis bias (ppm)

Figure 2. Hovmöller diagram (latitude vs. time) of the smoothed bias (in ppm, negative/positive in blue/red) of
the simulated XCO2 against the data of the TCCON network, from 1 January to 31 December, 2013. Top: free
run simulation. Bottom: analysis.
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(a) Free run scatter (ppm)

(b) Analysis scatter (ppm)

Figure 3. Same as Fig. 2 but for the standard deviation and yellow/red for low/high values.
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Figure 4. Time series of XCO2 (in ppm) at (a) Sodankylä, Finland, (b) Karlsruhe, Germany, (c) Park Falls,
USA and (d) Lauder, New Zeland, between 1 January and 31 December, 2013. For each station, the top panel
presents the daily averaged data from TCCON (black dots), the daily averaged data from GOSAT co-located
in time and space with the station (yellow squares), the simulated XCO2 (solid lines) and the daily averaged
simulated XCO2 in the observation space (coloured dots). The bottom panel presents the weekly averaged bias
of the simulated XCO2 against the TCCON data (coloured dots) and the smoothed bias (solid lines). The blue
colour is for the free run while the red colour is for the analysis.

Figure 5. Hovmöller diagram (latitude vs. time) of the difference in ppm (negative/positive in blue/red) between
XCO2 from the analysis and from the free run simulation, from 1 January to 31 December, 2013. The horizontal
dotted lines represent the latitude of the northernmost and the southernmost TCCON station respectively. The
grey shaded areas are where GOSAT does not provide observations.
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Figure 6. Situation over Park Falls (USA) between 30 May and 2 June. Top panel: evolution of XCO2 (in ppm)
from hourly averaged TCCON data (black dots), the free run (blue line and dots) and the analysis (red line and
dots). The dots are the values of the model in the observation space. Lower panel: evolution of the mean sea
level pressure (in hPa, black line) and the temperature at 500 hPa (in K, magenta line). The vertical dotted lines
represent 31 May, at 00:00 UTC at 12:00 UTC, and the 1 June, at 00:00 UTC.
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(b) XCO2 analysis 31 May 2013 00:00 (a) XCO2 increment 30 May 2013 

(c) XCO2 analysis 31 May 2013 12:00 (d) XCO2 analysis 1 June 2013 00:00 

(e) XCO2 free run 31 May 2013 12:00 (f) XCO2 free run 1 June 2013 00:00 

Figure 7. Situation around Park Falls (black triangle), Wisconsin, USA, end of May 2013. (a) average increment
in terms of XCO2 (in ppm, negative/positive in blue/red) on 30 May 2013 (contours) and location of the GOSAT
measurements during this day (black rectangles). (b–d) XCO2 (in ppm) respectively on 31 May at 00:00 UTC,
at 12:00 UTC and on 1 June at 00:00 UTC from the analysis. (e, f) XCO2 (in ppm) on 31 May at 12:00 UTC
and on 1 June at 00:00 UTC from the free run (below/above background value in blue/red). For (b) to (f) the
dark contours are the values of the geopotential at 500 hPa.
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Figure 8. Anomaly correlation coefficient (ACC) of the forecast compared to its own analysis as a function
of the forecast lead time and for each month: (a) global ACC, (b) ACC for the Northern Hemisphere (20◦ N–
90◦ N), (c) ACC for the tropics (20◦ S–20◦ N), (d) ACC for the Southern Hemisphere (90◦ S–20◦ S). Each
month is represented by a different colour (see inset legends).
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