

Supplement of

Multimodel emission metrics for regional emissions of short lived climate forcers

B. Aamaas et al.

Correspondence to: B. Aamaas (borgar.aamaas@cicero.oslo.no)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

- 1 Not all details are given in the article. Exact emission metric values and additional figures are
- 2 provided below. There is no single emission metric and time horizon that fits all applications, and the
- 3 selection will depend on what aspects of climate change are considered to be most important
- 4 (Aamaas et al., 2013).

5 1. Emission metric values and comparison with literature

- 6 Emission metric values for GWP and GTP with time horizons 20 years and 100 years are given in
- 7 Table SI1. We provide also emission metric values for emissions on land outside of Europe and East
- 8 Asia. This category is labelled "rest of the world". Both values from our study and the literature are
- 9 given.
- 10

11 12 Table SI1: Emission metric values for a few selected emission metrics and time values. A comparison with other studies is

included. The units used are given in the brackets, such as $NO_{\rm x}$ are based on N basis.

Species	GWP(20)	GWP(100)	GTP(20)	GTP(100)
BC [C], this study				
BC, Europe, summer	2000	540	570	74
BC, Europe, winter	1700	470	490	64
BC, East Asia, summer	1300	370	390	50
BC, East Asia, winter	1100	300	320	41
BC, Rest of the world, summer	2200	610	650	83
BC, Rest of the world, winter	24009	600	680	88
BC, Shipping, NH summer	1700	450	480	62
BC, Shipping, NH winter	1800	480	510	66
BC, Global, NH summer	2100	570	600	78
BC, Global, NH winter	2000	530	570	74
BC, other studies				
Bond et al. (2013), BC, total, global. Metric	3200	900	920	130
values are given for total effect				
Collins et al. (2013), BC (four regions)	1200	345	420	56
Collins et al. (2013), BC, Europe	N/A	N/A	530	71
Collins et al. (2013), BC, East Asia	N/A	N/A	410	55
Bond et al. (2011), BC, aerosol-radiation	2900	830	N/A	N/A
interaction + albedo, global				
Fuglestvedt et al. (2010), BC, global	1600	460	470	64
OC [C], this study				
OC, Europe, summer	-760	-210	-220	-28
OC, Europe, winter	-390	-110	-110	-15
OC, East Asia, summer	-480	-130	-140	-18
OC, East Asia, winter	-180	-49	-52	-6.8
OC, Rest of the world, summer	-710	-190	-210	-27
OC, Rest of the world, winter	-720	-190	-210	-27
OC, Shipping, NH summer	-2100	-580	-620	-80
OC, Shipping, NH winter	-1100	-290	-310	-40
OC, Global, NH summer	-680	-180	-200	-25
OC, Global, NH winter	-570	-150	-160	-21
OC, other studies				
Bond et al. (2011), OC	-160	-46	N/A	N/A
Collins et al. (2013), OC (four regions)	-160	-46	-55	-7.3
Collins et al. (2013), OC, Europe	N/A	N/A	-58	-7.7
Collins et al. (2013), OC, East Asia	N/A	N/A	-50	-6.7
Fuglestvedt et al. (2010), OC, global	-240	-69	-71	-10
			(continued c	n nevt nage)

13

14

(continued on next page)

Species	GWP(20)	GWP(100)	GTP(20)	GTP(100)
SO2 [SO2], this study				
SO2, Europe, summer	-430	-120	-130	-16
SO2, Europe, winter	-140	-38	-41	-5.3
SO2, East Asia, summer	-255	-69	-74	-9.6
SO2, East Asia, winter	-104	-28	-30	-3.9
SO2, Rest of the world, summer	-490	-130	-140	-19
SO2, Rest of the world, winter	-320	-90	-92	-12
SO2, Shipping, NH summer	-560	-150	-160	-21
SO2, Shipping, NH winter	-390	-110	-110	-15
SO2, Global, NH summer	-410	-110	-120	-15
SO2, Global, NH winter	-230	-60	-70	-8.5
SO2, other studies				
Collins et al. (2013), SO2 (four regions)	N/A	N/A	-38	-5.1
Collins et al. (2013), SO2, Europe	N/A	N/A	-43	-5.7
Collins et al. (2013), SO2, East Asia	N/A	N/A	-31	-4.1
Fuglestvedt et al. (2010), SO2, global	-140	-40	-41	-5.7
NH3 [NH3], this study				
NH3, Europe, summer	-55	-15	-16	-2.0
NH3, Europe, winter	-36	-9.7	-10	-1.3
NH3, East Asia, summer	-27	-7.2	-7.7	-1.0
NH3, East Asia, winter	-51	-14	-15	-1.9
NH3, Rest of the world, NH summer	-21	-5.7	-6.0	-0.78
NH3, Rest of the world, NH winter	-32	-8.8	-9.4	-1.2
NH3, Global, NH summer	-25	-6.7	-7.2	-0.9
NH3, Global, NH winter	-37	-10	-11	-1.4
NH3, other studies				
NH3, Shindell et al. (2009)	-80	-23	-23	-3.2
			(continued c	on next page)

Species	GWP(20)	GWP(100)	GTP(20)	GTP(100)
NOx [N], this study				
NOx, Europe, summer	-110	-36	-90	-5.1
NOx, Europe, winter	-61	-19	-40	-2.7
NOx, East Asia, summer	-63	-22	-75	-3.3
NOx, East Asia, winter	-140	-41	-75	-5.8
NOx, Rest of the world, summer	-120	-44	-160	-6.6
NOx, Rest of the world, winter	-180	-61	-190	-8.9
NOx, Shipping, NH summer	79	-2.2	-230	-1.3
NOx, Shipping, NH winter	-250	-98	-400	-15
NOx, Global, NH summer	-120	-42	-150	-6.2
NOx, Global, NH winter	-170	-55	-160	-8.1
NOx, other studies				
Collins et al. (2013), NOx (four regions),	-15.9	-11.6	-62.1	-2.2
based on Fry et al. (2012) with including				
stratospheric H2O				
Collins et al. (2013), NOx, Europe, based on	-39.4	-15.6	-48.0	-2.5
Fry et al. (2012) with including stratospheric				
H ₂ O				
Collins et al. (2013), NOx, East Asia, based	6.4	-5.3	-55.6	-1.3
on Fry et al. (2012) with including				
stratospheric H ₂ O				
Shindell et al. (2009), NOx, global, including	-560	-159	N/A	N/A
direct and indirect aerosol effects				
Surface				
Naik et al. (2005), Tropics, as given by	43	-28	-260	-6.6
Fuglestvedt et al. (2010)				
Wild et al. (2001), Tropics, as given by	130	-9.7	-220	-5.4
Fuglestvedt et al. (2010)				
Naik et al. (2005), Mid-lat, as given by	-43	-18	-54	-2.9
Fuglestvedt et al. (2010)				
Berntsen et al. (2005), UiO, Mid-lat, as given	23	1.6	-37	-0.024
by Fuglestvedt et al. (2010)				
Berntsen et al. (2005), LMDz, Mid-lat, as	23	-6.3	-55	-2.4
given by Fuglestvedt et al. (2010)				
Wild et al. (2001), Mid-lat, as given by	-3.7	-9.3	-48	-2.0
Fuglestvedt et al. (2010)				
Wild et al. (2001), Global, as given by	19	-11	-87	-2.9
Fuglestvedt et al. (2010)				
Shipping				
NOx, Shipping, Collins et al. (2010)	-107	-73	-135	N/A
Eyring et al. (2007), as given by Fuglestvedt	-76	-36	-130	-6.1
et al. (2010)				
Endresen et al. (2003), as given by	-47	-32	-190	-5.3
Fuglestvedt et al. (2010)				
Fuglestvedt et al. (2008), as given by	-31	-25	-160	-4.2
Fuglestvedt et al. (2010)				

19

(continued on next page)

Species	GWP(20)	GWP(100)	GTP(20)	GTP(100)
Aircraft				
Stevenson et al. (2004), as given by	120	-2.1	-240	-2.2
Fuglestvedt et al. (2010)				
Wild et al. (2001) (as in Stevenson et al.	410	71	-200	7.6
(2004)), as given by Fuglestvedt et al. (2010)				
Köhler et al. (2008), as given by Fuglestvedt	470	6.9	-590	-9.5
et al. (2010)				
CO [CO], this study				
CO, Europe, summer	7.3	2.2	4.3	0.31
CO, Europe, winter	7.9	2.4	4.9	0.34
CO, East Asia, summer	8.3	2.4	4.5	0.34
CO, East Asia, winter	8.5	2.5	5.0	0.36
CO, Rest of the world, summer	7.5	2.2	4.4	0.31
CO, Rest of the world, winter	8.1	2.4	4.9	0.34
CO, Shipping, NH summer	8.4	2.5	4.7	0.35
CO, Shipping, NH winter	8.6	2.6	5.9	0.37
CO, Global, NH summer	7.6	2.3	4.4	0.32
CO, Global, NH winter	8.2	2.4	4.9	0.35
CO, other studies				
Collins et al. (2013), CO (four regions), based	5.4	1.8	3.5	0.26
on Fry et al. (2012) with including				
stratospheric H ₂ O				
Collins et al. (2013), CO, Europe, based on	4.9	1.6	3.2	0.24
Fry et al. (2012) with including stratospheric				
H ₂ O				
Collins et al. (2013), CO, East Asia, based on	5.4	1.8	3.5	0.26
Fry et al. (2012) with including stratospheric				
H ₂ O				
Shindell et al. (2009), CO, global, including	18.6	5.3	N/A	N/A
direct and indirect aerosol effects				
CO, surface, Berntsen et al. (2005) UiO Mid-	7.2	2.3	4.1	0.33
lat, as given by Fuglestvedt et al. (2010)				
CO, surface, Berntsen et al. (2005) LMDz	9.3	3.3	6.1	0.55
Mid-lat, as given by Fuglestvedt et al. (2010)				
Derwent et al. (2001), as given by	6.0	2.0	3.7	0.27
Fuglestvedt et al. (2010), CO, surface				
			(continued or	

22

(continued on next page)

Species	GWP(20)	GWP(100)	GTP(20)	GTP(100)
VOC [C], this study				
VOC, Europe, summer	41	12	23	1.7
VOC, Europe, winter	27	7.9	14	1.1
VOC, East Asia, summer	42	12	19	1.7
VOC, East Asia, winter	11	3.6	8.9	0.51
VOC, Rest of the world, summer	38	11	22	1.6
VOC, Rest of the world, winter	40	12	25	1.7
VOC, Shipping, NH summer	47	14	32	2.1
VOC, Shipping, NH winter	45	14	30	1.9
VOC, Global, NH summer	38	11	22	1.6
VOC, Global, NH winter	35	10	21	1.5
VOC, other studies				
Collins et al. (2013), VOC (four regions),	18.7	5.8	10.0	0.9
based on Fry et al. (2012) with including				
stratospheric H ₂ O				
Collins et al. (2013), VOC, Europe, based on	18.0	5.6	9.5	0.8
Fry et al. (2012) with including stratospheric				
H ₂ O				
Collins et al. (2013), VOC, East Asia, based	16.3	5.0	8.4	0.7
on Fry et al. (2012) with including				
stratospheric H ₂ O				
Collins et al. (2002), as given by Fuglestvedt	14	4.5	7.5	0.66
et al. (2010), VOC, surface				
CH4 [CH4], this study				
CH4, Global	77	23	48	3.3
CH4, other studies				
Myhre et al. (2013)	84	28	67	4.3

27 GWP(100) values for the species not shown in Fig. 3 are given for all regions and seasons,

28 decomposed by processes in Fig. SI1.

32 Figure SI1: GWP(100) values for the species not shown in the article, for all regions and seasons, decomposed by

processes. The regions included are Europe (EUR), East Asia (EAS), shipping (SHP), and global (GLB), all for both NH

34 summer, May-October, (s) and NH winter, November-April, (w).

35 2. Variations with time horizon

- 36 Emission metric values for the first 50 years are given for the species not shown in Figure 7 for GTP in
- 37 Figure SI2 and GWP in Figure SI3.

Figure SI3: GWPs for the species.

3. Gradual implementation of mitigation 47

Figure 9 presented how the emission metric values evolve with pulse emissions, sustained emissions, 48

and a case of 15 years of ramp-up to illustrate a gradual implementation of mitigation policy. We 49

present the same in Figure SI4 for the species not shown in the article. The ramp-up case is given for 50

51 the different regions and seasons in Figure 10. Here, we include for those species not presented in

52 the article, see Figure SI5 and Figure SI6.

Figure SI4: The emission metric values for different types of emission profiles. GTP to the left and GWP to the right.

Figure SI5: GTPs for species with ramp-up emissions over 15 years.

66 Figure SI6: GWPs for species with ramp-up emissions over 15 years.

References 67

- 68 Aamaas, B., Peters, G., and Fuglestvedt, J. S.: Simple emission metrics for climate impacts, Earth Syst. Dynam., 4, 145-170,
- 69 10.5194/esd-4-145-2013, 2013.
- 70 Berntsen, T., Fuglestvedt, J. S., Joshi, M., Shine, K., Stuber, N., Li, L., Hauglustaine, D., and Ponater, M.: Climate response to 71 regional emissions of ozone precursers: sensitivities and warming potentials, Tellus B, 57, 283-304, 2005.
- 72 Bond, T. C., Zarzycki, C., Flanner, M. G., and Koch, D. M.: Quantifying immediate radiative forcing by black carbon and
- 73 organic matter with the Specific Forcing Pulse, Atmos. Chem. Phys., 11, 1505-1525, 10.5194/acp-11-1505-2011, 2011.
- 74 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B.,
- 75 Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S.,
- 76 Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell,
- 77 D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific 78 assessment, Journal of Geophysical Research: Atmospheres, n/a-n/a, 10.1002/jgrd.50171, 2013.
- 79 Collins, W. J., Sitch, S., and Boucher, O.: How vegetation impacts affect climate metrics for ozone precursors, J. Geophys.
- 80 Res., 115, D23308, 10.1029/2010jd014187, 2010.
- 81 Collins, W. J., Fry, M. M., Yu, H., Fuglestvedt, J. S., Shindell, D. T., and West, J. J.: Global and regional temperature-change
- 82 potentials for near-term climate forcers, Atmos. Chem. Phys., 13, 2471-2485, 10.5194/acp-13-2471-2013, 2013.
- 83 Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.: Transient Behaviour of Tropospheric Ozone Precursors in
- 84 a Global 3-D CTM and Their Indirect Greenhouse Effects, Climatic Change, 49, 463-487, 10.1023/a:1010648913655, 2001.
- 85 Endresen, Ø., Sørgård, E., Sundet, J. K., Dalsøren, S. B., Isaksen, I. S. A., Berglen, T. F., and Gravir, G.: Emission from 86 international sea transportation and environmental impact, Journal of Geophysical Research, 108, 4560, 2003.
- 87 Eyring, V., Stevenson, D. S., Lauer, A., Dentener, F. J., Butler, T., Collins, W. J., Ellingsen, K., Gauss, M., Hauglustaine, D. A.,
- 88 Isaksen, I. S. A., Lawrence, M. G., Richter, A., Rodriguez, J. M., Sanderson, M., Strahan, S. E., Sudo, K., Szopa, S., van Noije, T.

- P. C., and Wild, O.: Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate
 in 2000 and 2030, Atmos. Chem. Phys., 7, 757-780, 10.5194/acp-7-757-2007, 2007.
- 91 Fry, M. M., Naik, V., West, J. J., Schwarzkopf, D., Fiore, A., Collins, W. J., Dentener, F., Shindell, D. T., Atherton, C. S.,
- 92 Bergmann, D. J., Duncan, B. N., Hess, P. G., MacKenzie, I. A., Marmer, E., Schultz, M. G., Szopa, S., Wild, O., and Zeng, G.: The
- 93 influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing,
- 94 J. Geophys. Res., 117, D07306, 10.1029/2011JD017134, 2012.
- 95 Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., and Skeie, R. B.: Climate forcing from the transport sectors, Proceedings
- 96 of the National Academy of Sciences, 105, 454-458, 10.1073/pnas.0702958104, 2008.
- 97 Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., Skeie, R. B., Velders, G. J. M., and Waitz, I. A.:
- 98 Transport impacts on atmosphere and climate: Metrics, Atmospheric Environment, 44, 4648-4677, 2010.
- Köhler, M. O., Rädel, G., Dessens, O., Shine, K. P., Rogers, H. L., Wild, O., and Pyle, J. A.: Impact of perturbations to nitrogen
 oxide emissions from global aviation, Journal of Geophysical Research: Atmospheres, 113, D11305, 10.1029/2007JD009140,
 2008.
- 102 Myhre, G., Shindell, D., Bréon, F.-M., Collins, B., Fuglestvedt, J. S., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B.,
- 103 Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in:
- 104 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 105 Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
- Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and
 New York, NY, USA, 2013.
- 108 Naik, V., Mauzerall, D., Horowitz, L., Schwarzkopf, M. D., Ramaswamy, V., and Oppenheimer, M.: Net radiative forcing due
- to changes in regional emissions of tropospheric ozone precursors, J. Geophys. Res., 110, D24306, 10.1029/2005jd005908,
 2005.
- Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved Attribution of Climate Forcing
 to Emissions, Science, 326, 716-718, 10.1126/science.1174760, 2009.
- 113 Stevenson, D. S., Doherty, R. M., Sanderson, M. G., Collins, W. J., Johnson, C. E., and Derwent, R. G.: Radiative forcing from
- 114 aircraft NOx emissions: Mechanisms and seasonal dependence, J. Geophys. Res., 109, D17307, 10.1029/2004jd004759,
- 115 2004.
- Wild, O., Prather, M. J., and Akimoto, H.: Indirect long-term global radiative cooling from NOx emissions, Geophys. Res. Lett.,
 28, 1719-1722, 10.1029/2000gl012573, 2001.
- 118