

Supplement of

Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

S. H. Jathar et al.

Correspondence to: C. D. Cappa (cdcappa@ucdavis.edu) and M. J. Kleeman (mjkleeman@ucdavis.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Domain	California	Eastern US		
Resolution	24 km, nested 8 km	36 km		
Grid cells	44 x 43; 63 x 30	65 x 65		
Time Period	July 15 - Aug 2, 2005	Aug 15 - Sep 2, 2006		
Meteorology	WRF v3.4 run with NAM reanalysis data			
Emissions	Anthropogenics: CARB (2000) Wildfires: NCAR Biogenics: MEGAN Gridded using UCD emissions processor	Anthropogenics+Wildfires: NEI (2005) Biogenics: MEGAN Gridded using SMOKE version 2.5		
Gas-phase mechanism	SAPRC-11 (Carter and Heo, 2013)			
Inorganics	ISORROPIA (Nenes et al., 1998)			
Initial/Boundary conditions	MOZART-NCEP (Emmons et al., 2010)			
SOA model	2-product model, acid-catalyzed SOA from isoprene, oligomerization, (Carlton et al., 2010)			

Table S.1: Details of the chemical transport model and modeling system used in this work.

SAPRC-11 Species	Descriptor	Surrogate to determine BaseM fits	NO _x	Кр	,	(x	Reference
ALK_C06	Long alkanes	n dedecene	Low	0.200	0.010	0.001	0.016	Loza et al. (2014)
		<i>n</i> -dodecane	High	0.200	0.010	0.000	0.018	
ALK_C07	Long allegnas	n dedecene	Low	0.200	0.010	0.000	0.028	Loza et al. (2014)
	Long alkanes	<i>n</i> -dodecane	High	0.200	0.010	0.001	0.035	
ALK_C08 I	Long alkanes	<i>n</i> -dodecane	Low	0.200	0.010	0.000	0.088	Loza et al. (2014)
	Long arkanes	<i>n</i> -dodecalle	High	0.200	0.010	0.005	0.084	
ALK COO	Long allegnas	<i>n</i> -dodecane	Low	0.200	0.010	0.003	0.147	Loza et al. (2014)
ALK_C09	Long alkanes	<i>n</i> -dodecalle	High	0.200	0.010	0.013	0.105	
ALV C10	L on a ollron og	a dedesare	Low	0.200	0.010	0.009	0.232	Loza et al. (2014)
ALK_C10	Long alkanes	<i>n</i> -dodecane	High	0.200	0.010	0.029	0.217	
ALK C11	Long alkanes	<i>n</i> -dodecane	Low	0.200	0.010	0.018	0.341	Loza et al. (2014)
ALK_C11			High	0.200	0.010	0.041	0.250	
ALK_C12 Lo	Long alkanes	<i>n</i> -dodecane	Low	0.200	0.010	0.035	0.447	Loza et al. (2014)
			High	0.200	0.010	0.048	0.279	
ALK_C13 Lon	Long alkanes	<i>n</i> -dodecane	Low	0.200	0.010	0.083	0.441	Loza et al. (2014)
	Long alkanes		High	0.200	0.010	0.047	0.228	
Benzene Benzen	Donzono	Benzene	Low	0.283	0.026	0.281	0.127	Ng et al. (2007)
	Delizene	Belizelle	High	100.000	0.013	0.074	0.642	
	High-yield	Toluene	Low	0.215	0.001	0.617	0.001	Zhang et al. (2014)
	aromatics		High	18.502	0.023	0.021	0.537	
	Low-yield aromatics	<i>m</i> -xylene	Low	0.269	0.111	0.322	0.080	Ng et al. (2007)
			High	0.160	0.001	0.078	0.001	
Isoprene	Isoprene	Isoprene	Low	5.434	0.008	0.021	0.594	Chhabra et al. (2011)
			High	0.136	0.003	0.004	0.409	
TRP1/SESQ	Terpenes	α-pinene	Low	100.000	0.004	0.102	0.671	Chhabra et al. (2011),
			High	0.549	0.009	0.046	0.489	Griffin et al. (1999)

Table S.2: SAPRC-11 model species, surrogate molecules and BaseM parameters for two-product model.

Cascading Oxidation Model (COM)

The Cascading Oxidation Model (COM) is based on the implementation of the multigenerational oxidation scheme in Baek et al. (2011). It is described in Table S.2 and can be demonstrated using the following example. In the Base model, benzene formed two semi-volatile products under high NO_x conditions (low-volatility product SV_BNZ1 and high-volatility product SV_BNZ2) and one non-volatile product under low NOx conditions (SV_BNZ3). Under the multi-generational oxidation scheme, the vapors of the high-volatility product, SV_BNZ2, were allowed to react with the OH radical using the same reaction rate constant as the parent (in this case, benzene) to form the low-volatility product, SV_BNZ1. In turn, the vapors of the lowvolatility product, SV_BNZ1, were allowed to react with the OH radical using the same reaction rate constant as the parent to the non-volatile product SV_BNZ3. The scheme was extended for all the Base model species.

Table S.3: Reactions added to SAPRC-11 to model multi-generational oxidation of SOA. For consistency, the names of the SAPRC-11 model species and the Base model species are kept the same as those described in CMAQ v4.7¹. The species SV_ALK2, SV_ISO4, SV_TRP3 and SV SQT2, denoted with an asterisk, are new non-volatile species added to SAPRC-11.

VOC	SAPRC-11 model species	Semi-volatile Base model species	Multi-generational aging reactions added to SAPRC11
Alkanes	ALK5	SV_ALK	$SV_ALK + OH = SV_ALK2*$
Benzene	BENZENE	SV_BNZ1, SV_BNZ2	$SV_BNZ2 + OH = SV_BNZ1$ $SV_BNZ1 + OH = SV_BNZ3$
High-yield aromatics	ARO1	SV_TOL1, SV_TOL2	$SV_TOL2 + OH = SV_TOL1$ $SV_TOL1 + OH = SV_TOL3$
Low-yield aromatics	ARO2	SV_XYL1, SV_XYL2	$SV_XYL2 + OH = SV_XYL1$ $SV_XYL1 + OH = SV_XYL3$
Isoprene	ISOPRENE	SV_ISO1, SV_ISO2	$SV_{ISO1} + OH = SV_{ISO2}$ $SV_{ISO2} + OH = SV_{ISO4}$ *
Terpenes	TRP1	SV_TRP1, SV_TRP2	$SV_TRP2 + OH = SV_TRP1$ $SV_TRP1 + OH = SV_TRP3*$
Sesquiterpenes	SESQ	SV_SQT	$SV_SQT + OH = SV_SQT2*$

For the South Coast Air Basin (SoCAB), the organic aerosol (OA) predictions from the COM simulation were modestly higher than the Base simulation (predicted mean at STN sites increased from 5.5 μ g m⁻³ to 8.1 μ g m⁻³ and that at IMPROVE sites increased from 2.4 μ g m⁻³ to 4.6 μ g m⁻³), bringing the model-measurement comparison (aggregated across three STN and three IMPROVE sites) within the 'good model performance' criteria set by EPA (fractional bias <±35% and fractional error<50%)². In SoCAB, OA was dominated by POA and hence changes in OA concentrations were modest despite a factor of 4 to 8 increase in secondary organic aerosol (SOA) concentrations. In contrast, the OA predictions from the COM simulation for the eastern US changed substantially; predicted mean at STN sites increased from 2.8 μ g m⁻³ to 7.6 μ g m⁻³ and that at IMPROVE sites increased from 2.3 μ g m⁻³ to 7.4 μ g m⁻³. However, that change did not lead to an improvement in the model-measurement comparison, i.e. the fractional

bias changed from a large negative bias (-48%) to a large positive bias (36%) and had no effect on the fractional error.

Table S.4: Domain- and episode-averaged SOA concentrations in $\mu g m^{-3}$ from different precursors for the BaseM and SOM simulations for SoCAB and the eastern US. The direction of the arrow shows increase (up arrow), no change (horizontal arrow) or decrease (down arrow) in averaged SOA concentrations for the SOM simulations relative to the BaseM simulations.

SOA precursor	So	CAB	Eastern US	
	BaseM	SOM	BaseM	SOM
Alkanes	0.001	0.003 🛧	0.009	0.021 ↑
Aromatics	0.037	0.047 🛧	.110	0.112 →
Isoprene	0.066	0.043 🗸	.166	0.150 🗸
Monoterpenes	0.227	0.149 🗸	.521	0.400 🗸
Sesquiterpenes	0.043	0.044 →	.297	0.342 ↑

Thermodenuder Model

The model of Cappa and Jimenez $(2010)^3$ was used to simulate evaporation of SOA particles in a thermodenuder (TD). The TD design considered here used a plug flow residence time of 30 seconds in the heated section and 15 seconds in the denuder section. In the heated section the temperature increased from 25 C to the target temperature in 6 seconds. Cooling in the heated section began 80% of the way through the heated section. Vapors were assumed to be lost to the walls of the denuder section only. Monodisperse particles were assumed with an initial diameter of 120 nm. The accommodation coefficient was assumed to be unity, and the diffusivity of the evaporating molecules was assumed to be $3.9 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$. Evaporation from the particles was treated dynamically. The SOA concentration at 25 C was assumed in all simulations to be 1 $\mu \text{g m}^{-3}$.

Acknowledgements

References

1. Carlton, A. G.; Bhave, P. V.; Napelenok, S. L.; Edney, E. O.; Sarwar, G.; Pinder, R. W.; Pouliot, G. A.; Houyoux, M., Model representation of secondary organic aerosol in CMAQv4. 7. *Environmental Science & Technology* **2010**, *44*, 8553-8560.

2. Morris, R. E.; McNally, D. E.; Tesche, T. W.; Tonnesen, G.; Boylan, J. W.; Brewer, P., Preliminary evaluation of the Community Multiscale Air Quality model for 2002 over the southeastern United States. *Journal of the Air & Waste Management Association* **2005**, *55*, (11), 1694-1708.

3. Cappa, C. D.; Jimenez, J. L., Quantitative estimates of the volatility of ambient organic aerosol. *Atmospheric Chemistry & Physics* **2010**, *10*, 5401-5924.