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Abstract 13 

 Multi-generational oxidation of volatile organic compound (VOC) oxidation products can 14 

significantly alter the mass, chemical composition and properties of secondary organic aerosol 15 

(SOA) compared to calculations that consider only the first few generations of oxidation 16 

reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or 17 

global models that account for multi-generational oxidation (1) consider only functionalization 18 

reactions but do not consider fragmentation reactions; (2) have not been constrained to 19 

experimental data; and (3) are added on top of existing parameterizations. The incomplete 20 

description of multi-generational oxidation in these models has the potential to bias source 21 

apportionment and control calculations for SOA.  In this work, we used the Statistical Oxidation 22 

Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber 23 

data, to evaluate the regional implications of multi-generational oxidation considering both 24 

functionalization and fragmentation reactions. SOM was implemented into the regional 25 

UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. 26 

The mass, composition and properties of SOA predicted using SOM were compared to SOA 27 

predictions generated by a traditional “two-product” model to fully investigate the impact of 28 

explicit and self-consistent accounting of multi-generational oxidation.   29 

Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are 30 

very similar to those predicted by a two-product model when both models use parameters that 31 

are derived from the same chamber data. Since the two-product model does not explicitly resolve 32 

multi-generational oxidation reactions, this finding suggests that the chamber data used to 33 

parameterize the models captures the majority of the SOA mass formation from multi-34 



generational oxidation under the conditions tested. Consequently, the use of low and high NOx 35 

yields perturbs SOA concentrations by a factor of two and are probably a much stronger 36 

determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is 37 

similar for the  SOM and two-product models, the SOM model predicts increased SOA 38 

contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA 39 

contributions from isoprene and monoterpene relative to the two-product model calculations. The 40 

SOA predicted by SOM has a much lower volatility than that predicted by the traditional model; 41 

resulting in better qualitative agreement with volatility measurements of ambient OA. On 42 

account of its lower-volatility, the SOA mass produced by SOM does not appear to be as 43 

strongly influenced by the inclusion of oligomerization reactions, whereas the two-product 44 

model relies heavily on oligomerization to form low volatility SOA products. Finally, an 45 

unconstrained contemporary hybrid scheme to model multi-generational oxidation within the 46 

framework of a two-product model in which “ageing” reactions are added on top of the existing 47 

two-product parameterization is considered. This hybrid scheme formed at least three times more 48 

SOA than the SOM during regional simulations as a result of excessive transformation of semi-49 

volatile vapors into lower volatility material that strongly partitions to the particle phase.  This 50 

finding suggests that these “hybrid” multi-generational schemes should be used with great 51 

caution in regional models.  52 

 53 

1. Introduction 54 

Organic aerosol (OA) is generally the dominant component of submicrometer-sized 55 

atmospheric particulate matter (Jimenez et al., 2009), which plays an important role in the energy 56 

budget of the earth (IPCC, 2007) and the health effects of air pollution (Bernstein et al., 2004). 57 

Despite its prominence, OA is the least understood component of atmospheric aerosol. Large-58 

scale chemical transport models are the essential tool to simulate concentration distributions, 59 

which are needed to form strategies to mitigate, the climate and health impacts of atmospheric 60 

aerosols.  61 

OA is a complex mixture of thousands of different compounds that have a wide range of 62 

properties (Goldstein and Galbally, 2007). OA can be directly emitted to the atmosphere in 63 

particulate form (so-called primary organic aerosol; POA) or it can be formed in situ by the 64 

oxidation of volatile organic compounds (VOCs) to yield lower volatility products that condense 65 



into the aerosol phase, so-called secondary organic aerosol (SOA). This latter route is generally 66 

the predominant one to form OA. Continuous oxidation of VOCs and their oxidation products 67 

yields a broad range of products, including those that have intermediate and low volatility. The 68 

importance of such “multi-generational oxidation” on SOA production has been widely 69 

established in laboratory chamber experiments (Chacon-Madrid et al., 2010;Chacon-Madrid et 70 

al., 2013;Yee et al., 2013;Donahue et al., 2012;Chhabra et al., 2011;Henry and Donahue, 2012). 71 

Multi-generational oxidation includes the initial formation of oxidized products of lower 72 

volatility as well as the loss of SOA mass after initial formation owing to fragmentation 73 

reactions.  For example, experiments performed with the Potential Aerosol Mass (PAM) reactor, 74 

which aims to simulate prolonged VOC oxidation, are always associated with formation 75 

followed by destruction of OA mass (Lambe et al., 2012). Simulations that capture this behavior 76 

require inclusion of multi-generational oxidation.  In addition to altering predicted SOA mass, 77 

inclusion of multi-generational oxidation is expected to alter the oxidation state of OA, which 78 

has important repercussions for OA properties (e.g., water uptake, toxicity) (Jimenez et al., 79 

2009). 80 

Traditionally, models of SOA formation in chamber experiments have represented SOA 81 

formation from VOCs using two to four surrogate products per VOC, the yields for which have 82 

been parameterized to reproduce observed levels of SOA (Odum et al., 1996). These models 83 

generally assume that the surrogate products are non-reactive (i.e., do not undergo multi-84 

generational oxidation). These models, whether implemented in “two-product” or “volatility 85 

basis set” (VBS) forms (Donahue et al., 2006), generally under-predict ambient concentrations of 86 

SOA (Carlton et al., 2010). Some models have used simple chemical schemes to mimic the 87 

effects of multi-generational oxidation. While these schemes differ in their details, in essence, 88 

they assume that the vapors and the products of each surrogate traditional VOC species react 89 

with the hydroxyl radical (OH) to form lower volatility products (Robinson et al., 2007;Pye and 90 

Seinfeld, 2010;Baek et al., 2011). Such “ageing” schemes to account for multi-generational 91 

oxidation of traditional VOC products share similarities with reaction schemes applied to the 92 

oxidation of intermediate-volatility organic compounds (IVOCs) and POA vapors (Robinson et 93 

al., 2007). Note that oxidation of IVOCs and POA vapors is assumed to proceed only through 94 

these ageing-type reactions, whereas oxidation of the semi-volatile products of traditional VOC 95 

precursors is an augmentation to the existing two-product or VBS parameterization. Models that 96 



include these ageing schemes predict SOA mass concentrations that close the gap with measured 97 

ambient concentrations of OA mass.  As a result, over the past five years, both research and 98 

regulatory groups have incorporated these schemes into their 3-D models (e.g., Environmental 99 

Protection Agency’s Community Multiscale Air Quality Model (CMAQ) (Koo et al., 2014), 100 

PMCAMx (Murphy and Pandis, 2009;Tsimpidi et al., 2009), WRF-CHEM (Ahmadov et al., 101 

2012;Lane et al., 2008;Tsimpidi et al., 2009)). These first order SOA schemes have three major 102 

mechanistic drawbacks. First, they typically do not account for laboratory evidence of 103 

fragmentation of oxygenated organic molecules that can lead to decreases in SOA concentrations 104 

(Chacon-Madrid and Donahue, 2011;Henry and Donahue, 2012). Second, they assume that the 105 

multi-generational oxidation of products of different anthropogenic VOCs (e.g., alkanes versus 106 

aromatics) or different biogenic VOCs (e.g., isoprene versus monoterpenes) share the same 107 

reaction mechanism. Finally (and most importantly), these schemes remain under-unconstrained 108 

in that they have not been rigorously tested against measurements of multi-generational products 109 

(or classes of products) under realistic ambient conditions, and they are typically added on top of 110 

existing parameterizations. These concerns apply specifically to the multi-generational oxidation 111 

schemes that are commonly applied to traditional VOCs, but these are also relevant to the 112 

oxidation schemes associated with IVOCs and POA vapors. Chemically explicit models have 113 

seldom been used in 3-D modeling (e.g. Johnson et al. (2006), Chen et al. (2006), Ying and Li 114 

(2011)) due to their heavy computational burden, although some studies have used reduced 115 

complexity forms for 3-D modeling (e.g. Utembe et al. (2011), Lin et al. (2012)) or have 116 

implemented them for box modeling studies (e.g. Lee-Taylor et al. (2011)). 117 

In this work, we use the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012) 118 

to model the multi-generational oxidation reactions inherent in SOA formation. The SOM 119 

provides an efficient framework to track the experimentally-constrained chemical evolution and 120 

gas/particle partitioning of SOA using a carbon and oxygen grid. In Jathar et al. (2015), we 121 

detailed the coupling of the SOM with the gas-phase chemical mechanism SAPRC-11 (Carter 122 

and Heo, 2013) within the UCD/CIT regional air quality model and used the new model to make 123 

predictions over the South Coast Air Basin (SoCAB) in California and the eastern United States 124 

(US). Here, we use the UCD/CIT-SOM model to investigate the influence of constrained multi-125 

generational oxidation on the mass concentrations and properties of SOA and contrast those 126 



results against predictions from a traditional two-product model and an unconstrained multi-127 

generational oxidation model.  128 

 129 

2. Model Description and Simulations 130 

2.1. Air Quality Model 131 

The UCD/CIT air quality model is a regional chemical transport model (CTM) (Kleeman 132 

and Cass, 2001) used here to simulate SOA formation for two geographically-distinct domains 133 

and time periods: (1) the state of California simulated at a grid resolution of 24 km followed by a 134 

nested simulation over the SoCAB at a grid resolution of 8 km from July 20 to August 2, 2005, 135 

and (2) the eastern half of the US simulated at a grid resolution of 36 km from August 20th to 136 

September 2nd, 2006. Details about the latest version of the UCD/CIT model are provided in 137 

Jathar et al. (2015) and summarized in Table S.1. Briefly, anthropogenic emissions for California 138 

were based on the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) inventory of 139 

2000 but scaled to match conditions in 2005. FINN (Fire Inventory for National Center for 140 

Atmospheric Research) (Wiedinmyer et al., 2011) and MEGAN (Model of Emissions of Gases 141 

and Aerosols from Nature) (Guenther et al., 2006) were used to calculate wildfire and biogenic 142 

emissions in California. Anthropogenic and wildfire emissions for the eastern US were based on 143 

the 2005 National Emissions Inventory (NEI), and biogenic emissions were estimated using 144 

BEIS (Biogenic Emissions Inventory System) version 3. Hourly meteorological fields were 145 

generated using the Weather Research and Forecasting (WRF) v3.4 model (www.wrf-146 

model.org). National Center for Environmental Protection’s NAM (North American Mesoscale) 147 

analysis data were used to set the initial and boundary conditions for WRF. Gas- and particle-148 

phase initial and hourly-varying boundary conditions were based on the results from the global 149 

model MOZART-4/NCEP (Emmons et al., 2010). Gas-phase chemistry was modeled using 150 

SAPRC-11. In all simulations, POA was treated as non-volatile, yet absorptive, as per the 151 

treatment in the regulatory Community Multiscale Air Quality (CMAQ) version 4.7 model 152 

(Carlton et al., 2010). As such, contributions of semi-volatile and intermediate volatility organic 153 

compound emissions (which are commonly assumed to originate from the evaporation of and co-154 

emitted with POA) to the SOA burden were not considered in this study. 155 

 156 



2.2. SOA Models 157 

Four types of SOA models are compared in this work: (1) A “Base” two-product model 158 

that is equivalent to the SOA model used in CMAQ and representative of SOA models used in 159 

most chemical transport (Carlton et al., 2010) and global climate models (Henze et al., 2008); (2) 160 

A modified version of the Base model, “BaseM”, which uses the two-product framework, but in 161 

which the SOA formation parameters were determined using newer chamber data; (3) A “SOM” 162 

model (Cappa and Wilson, 2012) in which multi-generational oxidation is accounted for through 163 

semi-explicit representation of progressive generations of gas-phase oxidation of the products 164 

and precursors of SOA, and that was parameterized based on the same dataset as the BaseM 165 

model; (4) A “cascading” oxidation model, wherein ageing of semi-volatile products was 166 

accounted for a posteriori using ageing rates derived from separate experiments.  All of the SOA 167 

models utilize fully dynamic gas/particle partitioning for OA species as in Kleeman and Cass 168 

(2001) . The following sub-sections describe the four SOA models. To aid the reader, a 169 

conceptual schematic comparing various SOA models (e.g. 2-product, SOM, VBS) is provided 170 

in Figure. S.1. 171 

 172 

2.2.1. Base 173 

The Base model simulated SOA formation as per the pathways and parameters in CMAQ 174 

model version 4.7 (Carlton et al., 2010) from the following gas-phase precursors: long alkanes 175 

(ALK5), benzene (BENZENE), low-yield aromatics (ARO1), high-yield aromatics (ARO2), 176 

isoprene, monoterpenes (TRP1) and sesquiterpenes (SESQ). The species in parentheses are the 177 

model species representing those compounds in SAPRC-11 (the gas-phase chemical mechanism 178 

used here). The pathways considered include: (1) oxidation of the above-mentioned precursors to 179 

form non-reactive semi-volatile products that partition into the particle-phase (Odum et al., 1996) 180 

(the so-called two-product model, where model parameters were previously determined from 181 

fitting chamber data); (2) acid enhancement of isoprene SOA (Surratt et al., 2007). SOA 182 

formation from aromatics is NOx dependent; low levels of NOx result in higher SOA formation 183 

and vice-versa. The Base model was extended to include particle-phase oligomerization 184 

(Kalberer et al., 2004), for which particle-phase semi-volatile components were converted to 185 

non-volatile components with koligomer = 9.6 x 10-6 s-1. In summary, the Base model was run in 186 

two configurations, with and without oligomerization reactions: Base and Base-OLIG.  187 



 188 

2.2.2. Base Modified 189 

The “modified” version of the Base model, termed “BaseM” was created to facilitate a 190 

true evaluation of multi-generational oxidation in a two-product model framework.  The BaseM 191 

model: (1) used recent chamber data (Jathar et al., 2015) from California Institute of Technology 192 

to determine alternate two-product model parameters; and (2) did not include acid-catalyzed 193 

enhancement of isoprene SOA and oligomerization reactions. The two-product fit parameters 194 

and data sources are listed in Table S.2. Note that the “long alkane” BaseM parameterization has 195 

been developed using experimental results for SOA formation from n-dodecane (Loza et al., 196 

2014). 197 

 198 

2.2.3. Statistical Oxidation Model 199 

The SOM parameterizes multi-generational oxidation using a two-dimensional carbon-200 

oxygen grid to track the evolution of gas- and particle-phase organic products arising from the 201 

oxidation of SOA precursors (Cappa and Wilson, 2012;Cappa et al., 2013;Zhang et al., 2014). 202 

This evolution through the SOM grid is VOC-specific and defined by six parameters: (P1-P4) 203 

yields of the four products that add 1, 2, 3, and 4 oxygen atoms, respectively, without 204 

fragmentation; (P5) the probability of fragmentation; and (P6) the decrease in vapor pressure (or 205 

volatility) of the species per addition of oxygen atom. Details of the implementation and 206 

parameterization of the SOM model in the UCD-CIT are presented in (Jathar et al., 2015). 207 

Briefly, six SOM grids with precursor-specific parameter sets were used to represent SOA 208 

formation from the same precursor classes in the Base model. Parameter sets were separately 209 

determined from high NOx (low yield) and low NOx
 (high yield) chamber data as the SOM in its 210 

current configuration cannot yet account for continuous variation in NOx. The SOM parameters 211 

were completely determined from explicit fitting to chamber data where the number of fit data 212 

points greatly exceeded the number of fitting parameters (6).  Thus, the SOM model will be 213 

referred to as “constrained” multi-generational oxidation. The SOM parameters and data sources 214 

are listed in Table S.3. 215 

The SOM model parameters used in the present study were determined without 216 

accounting for losses of vapors to chamber walls, which can lead to a substantial underestimation 217 

of the actual SOA formation potential of a given precursor (Matsunaga and Ziemann, 218 



2010;Zhang et al., 2014). A companion paper evaluates vapor wall-loss effects on the SOM 219 

results (Cappa et al., 2015). The SOM parameter fits were derived using dynamic gas-particle 220 

partitioning assuming an accommodation coefficient of unity, which tends to minimize the 221 

influence of vapor wall loss (McVay et al., 2014), and thus represents a conservative lower 222 

bound of SOA formation. The SOM model was additionally extended to consider the influence 223 

of oligomerization reactions by allowing irreversible conversion of particle-phase SOM species 224 

into a single non-volatile species using the same koligomer as in the Base model, referred to as 225 

SOM-OLIG. Oligomerization reactions were added a posteriori to the SOM model, i.e. 226 

oligomerization reactions were not included as part of the data fitting and parameter 227 

determination and are included in the present study only as a sensitivity case. 228 

 229 

2.2.4. Cascading Oxidation Model 230 

Additional simulations were performed using a contemporary multi-generational 231 

oxidation scheme, the Cascading Oxidation Model (COM). The COM builds on the two-product 232 

Base model but allows for additional reaction of the semi-volatile products using the scheme of 233 

Baek et al. (2011). Briefly, the two semi-volatile products from a given precursor react with OH, 234 

with the highest volatility product converted into the lowest volatility product and the lowest 235 

volatility product converted to a non-volatile product (see SI Section on Cascading Oxidation 236 

Model). Like most other schemes that have thus far been used to represent multi-generational 237 

oxidation of SOA from traditional VOCs in 3-D models (Lane et al., 2008), COM does not 238 

consider fragmentation reactions, is not fit or constrained to experimental data, and adds these 239 

ageing reactions on top of an existing parameterization. The COM model will be referred to as 240 

“unconstrained” multi-generational oxidation. 241 

 242 
Table 1: Simulations performed in this work. 243 
Simulation Description
Base Equivalent to Carlton et al. (2010) without oligomerization 
Base-OLIG Equivalent to Carlton et al. (2010) 
BaseM (low yield) two-product model using new high NOx data (low yield) 
BaseM (high yield) two-product model using new low NOx data (high yield) 
SOM (low yield) New high NOx data, no vapor wall losses 
SOM (high yield) New low NOx data, no vapor wall losses 
SOM-OLIG (low yield) and 
SOM-OLIG (high yield) 

SOM with inclusion of oligomerization 



COM Base-OLIG model with added ageing reactions 
 244 
 245 
2.3. Simulations 246 

Table 1 lists the simulations performed in this work. We performed two simulations with 247 

the Base model (with and without oligomerization), two with the BaseM model (low and high 248 

yield), four with the SOM model (low and high yield and with oligomerization accounted for) 249 

and one with the COM model. These nine simulations were performed for both domains: SoCAB 250 

and the eastern US. Simulations were performed for 19 days with the first 5 days used for spin 251 

up. For the SoCAB, each simulated day using the SOM required approximately 4 h of elapsed 252 

time (on 40 Intel i5-3570 processor cores) so a 19-day episode was simulated in less than 4 days. 253 

For the eastern US, each simulated day required approximately 9 h of elapsed time so a 19-day 254 

episode was simulated in about 8 days. The SOM simulations were approximately four times 255 

slower than the BaseM simulations on account of the large number of model species. 256 

 257 

3. Results 258 

3.1. Base versus BaseM 259 

Although the main focus of the present study is on understanding the role of multi-260 

generational oxidation in SOA models, it is useful to begin by considering differences between 261 

the predictions from Base and BaseM (two-product parameters fit to more recent data sets). The 262 

14-day averaged, precursor-resolved SOA concentrations at two sites in the SoCAB (Los 263 

Angeles: urban, Riverside: urban outflow) and at two sites in the eastern US (Atlanta: urban, 264 

Smoky Mountains: remote) from Base and BaseM are compared in Figure 1. Base model 265 

predictions of total semi-volatile SOA concentrations (i.e. SOA exclusive of oligomers) at all 266 

four sites are similar to the BaseM (low yield) model predictions that were parameterized using 267 

high-NOx chamber data. This outcome is perhaps not surprising at Los Angeles, Riverside and 268 

Atlanta since these urban areas have higher NOx levels and, correspondingly, the Base 269 

simulations effectively used high-NOx parameters. While there are slight increases in SOA from 270 

some precursors and decreases from others, BaseM, in comparison to Base, predicted negligible 271 

contributions from alkane SOA. The general agreement between Base and BaseM (low yield) in 272 

rural/remote areas like the Smoky Mountains (where more than three-quarters of the SOA comes 273 

from terpene oxidation) also resulted from increases in SOA from some precursors and decreases 274 



from others. These precursor-specific differences are a result of slight differences between the 275 

two-product yields for these species in Base (Carlton et al., 2010) and BaseM. The comparison 276 

between Base and BaseM suggests that while the newer data might not dramatically affect the 277 

SOA concentrations in high-NOx (or urban) areas — at least those that still have marginal 278 

biogenic contributions — the newer data could increase SOA concentrations (factor of ~2) in 279 

low-NOx (or rural/remote) areas. One important difference is that the BaseM parameterizations 280 

for mono- and sesquiterpenes indicate a NOx dependence, whereas the Base parameterizations 281 

have no NOx dependence for these compounds. This has implications for the assessment of 282 

anthropogenic influences on biogenic SOA and whether biogenic SOA can, to some extent, be 283 

controlled (Carlton et al., 2007).  Further, the substantial decrease in alkane SOA concentrations 284 

in BaseM compared to Base suggests that the Base alkane parameterization might be over-285 

predicting SOA formation from alkanes, at least those that make up ALK5, making it an even 286 

smaller fraction of the total SOA mass.  287 

 288 

3.2. Effect of Constrained Multi-Generational Oxidation 289 

3.2.1. SOA Concentrations 290 

Predictions from BaseM and SOM, which were parameterized using the same data, were 291 

used to investigate the influence of multi-generational oxidation. Domain-wide, 14-day averaged 292 

SOA concentrations from BaseM and SOM for the SoCAB and for the eastern US, along with 293 

the ratio of the SOA concentrations between SOM and BaseM, are shown in Figure 2. The SOA 294 

concentrations presented are averages of the low-yield and high-yield simulations.  295 

Consideration of either the low-yield or high-yield simulations individually affects the details, 296 

but not the general conclusions about multi-generational oxidation below, even though the SOA 297 

mass concentrations from the high-yield simulations are typically 2-4 times larger than from the 298 

low-yield simulations (see Figure S.2). In both the SoCAB and the eastern US, the predicted 299 

spatial distribution of SOA is generally similar between BaseM and SOM, with only minor 300 

differences evident in some locations. For the SoCAB, the SOA concentrations in SOM are 301 

somewhat lower everywhere compared to BaseM, by 10-20% in the Los Angeles metropolitan 302 

area (marked by a red box) and by about 20-30% in regions dominated by biogenic SOA (e.g., 303 

Los Padres National Forest located in the northwest corner of the simulated domain). Similarly, 304 

the SOM predictions for SOA concentrations in the eastern US are 0-20% lower than BaseM 305 



predictions over most of the domain. The urban versus biogenic difference was not evident, 306 

probably owing to a coarser grid resolution (36 km for the eastern US versus 8 km for the 307 

SoCAB). It appears that multi-generational oxidation does not dramatically increase (from 308 

additional functionalization reactions) or decrease (from additional fragmentation reactions) the 309 

total SOA concentrations formed from the precursor compounds considered in either region. 310 

In Figure 1, at all sites, the SOM SOA concentrations are roughly the same or slightly 311 

higher than the BaseM SOA concentrations for the low-yield simulations but consistently lower 312 

for the high-yield simulations, by 18-25%. When averaged, the SOM SOA concentrations are 313 

slightly lower than the BaseM simulations, largely due to the lower predictions of SOA from 314 

mono-terpene and sesquiterpenes in the SOM high yield simulations. The low- versus high-yield 315 

distinction suggests that the SOM-predicted SOA is probably similar to BaseM-predicted SOA in 316 

urban areas (low yield or high NOx) but lower in rural/remote areas (high yield or low NOx). 317 

The seemingly limited influence of multi-generational oxidation on total SOA 318 

concentrations runs counter to the findings from previous work that suggests multi-generational 319 

oxidation is an important source of SOA (Robinson et al., 2007;Murphy and Pandis, 2009;Baek 320 

et al., 2011;Fast et al., 2014;Dzepina et al., 2009). However, these previous efforts accounted for 321 

multi-generational VOC oxidation by adding ageing reactions for semi-volatile products on top 322 

of an existing parameterization, similar to the COM model, and thus may suffer from “double 323 

counting” to some extent (we will return to this point later). These results also indicate that the 324 

two-product model parameterization inherently captures some of the influence of multi-325 

generational oxidation, at least over the timescales and conditions relevant for the SoCAB and 326 

the eastern US. This can be understood by considering that, although the two-product model 327 

assumes non-reactive products, the chamber-observed SOA formation is dependent on 328 

production from all reaction generations, even at short oxidation lifetimes (half to a full day of 329 

photochemistry); the extent to which multi-generational oxidation influences the two-product fit 330 

parameters will depend on the extent to which later generation products are responsible for the 331 

actual SOA formation in a given experiment. In summary, it is possible that the chamber-332 

observed SOA formation accounts for the majority of the multi- generational oxidation reactions 333 

that contribute to SOA mass and hence, a two-product approach to model SOA formation would 334 

already include the mass-enhancement associated with multi-generational oxidation. However, 335 



such a two-product model may not necessarily accurately represent the chemical composition of 336 

SOA  337 

The behavior of SOM vs. BaseM predictions is similar in the SoCAB and the eastern US, 338 

with minor differences likely related to the size of the domain and the average atmospheric 339 

lifetime of the simulated SOA, differences in the evolution of SOA from the various precursors, 340 

and the dominance of certain precursors in different domains. These precursor-specific SOA 341 

concentrations are visualized in Figure 1 and listed as domain-wide averages in Table S.4. These 342 

results indicate that SOM typically produced more SOA from alkanes (although very little 343 

overall) but less from terpenes and isoprene in both the SoCAB and the eastern US, compared to 344 

BaseM. For aromatics and sesquiterpenes the concentrations are generally similar between the 345 

two models, although slightly greater for sesquiterpenes for the eastern US SOM simulations. 346 

The use of the SOM model that inherently accounts for multi-generational oxidation leads to 347 

more SOA mass for some compounds (due to enhanced functionalization) but less SOA mass for 348 

others (due to fragmentation) compared to a static representation of the semi-volatile products. 349 

SOA concentrations in chamber photooxidation experiments have been observed to decrease at 350 

longer times for some VOCs, notably isoprene (Chhabra et al., 2011) and alpha-pinene (Henry 351 

and Donahue, 2012). Such behavior is captured by SOM but not by BaseM, which does not 352 

account for fragmentation.  Consequently, SOA concentrations in BaseM can never decrease 353 

from reactions. The general similarity in the total simulated SOA from BaseM and SOM results 354 

in large part from offsetting trends associated with different SOA precursors. This suggests that 355 

the use of constrained multi-generational oxidation SOA models, such as SOM, over two-356 

product models may help to provide a clearer picture of the sources of SOA in a given region, 357 

even if the different modeling approaches lead to similar total SOA mass concentrations. 358 

The simulated total OA concentrations (POA+SOA) are compared to ambient OA 359 

measurements made at the STN (Speciated Trends Network) and IMPROVE (Interagency 360 

Monitoring of Protected Visual Environments) air quality monitoring sites in the SoCAB and the 361 

eastern US. (IMPROVE sites tend to be remote and with lower OA concentrations compared to 362 

STN sites, which tend to be more urban.) Table 2 lists statistical metrics of fractional bias and 363 

fractional error that capture model performance for OA for all simulations for both domains at 364 

the STN and IMPROVE sites. The simulated SOA fraction of total OA differs greatly between 365 

the SoCAB (~10%) and the eastern US (~80%). Consequently, changes in the amount of SOA 366 



simulated will have a larger influence on the total OA in the eastern US, and thus on the 367 

comparison with observations. Despite these differences, there is no substantial change in model 368 

performance between Base, BaseM and SOM in either domain, with all simulations under-369 

predicting the total OA. In contrast, COM, which leads to substantial increases in the simulated 370 

SOA mass concentrations within both domains (see Section 3.3), improved model performance 371 

at the STN and IMPROVE sites for the SoCAB and at the STN sites for the eastern US.   372 

 373 

Table 2: Fractional bias and fractional error at STN and IMPROVE sites for the SoCAB and the 374 
eastern US for the Base, BaseM (average of low- and high-yield), COM and SOM (average of 375 
low- and high-yield) simulations. Green, yellow, and orange shading represent ‘good’, ‘average’ 376 
and ‘poor’ model performance (Boylan and Russell, 2006). 377 

Simulation 

SoCAB Eastern US 
STN IMPROVE STN IMPROVE 
Frac. 
Bias 

Frac. 
Error 

Frac. 
Bias 

Frac. 
Error

Frac. 
Bias 

Frac. 
Error

Frac. 
Bias 

Frac. 
Error

Base -62 62 -34 43 -78 89 -10 57 
BaseM -61 62 -30 41 -78 87 -8 57 
SOM -62 63 -33 43 -80 89 -12 55 
COM -28 43 27 50 3 61 85 92 
 378 

3.2.2. SOA Volatility 379 

 The effective volatility of the SOA was characterized for the Base, BaseM and SOM 380 

simulations. SOA volatility influences the sensitivity of the SOA to dilution and temperature 381 

changes. Since Base, BaseM and SOM use model species that have very different volatilities, as 382 

characterized by the species saturation concentration, C*, volatility distributions were developed 383 

in which individual species are grouped into logarithmically spaced bins of effective C*, referred 384 

to as volatility basis set-equivalent (VBSeq) distributions (Donahue et al., 2006). In Figure 3(a,c), 385 

we show the normalized, episode-averaged VBSeq distributions of SOA at Los Angeles and 386 

Atlanta for the Base, BaseM and SOM simulations. Qualitatively, the SOA VBSeq distributions 387 

for Base and BaseM are similar, with the bulk of the gas+particle mass being in the C* = 1 to 388 

1000 µg m-3 range. In sharp contrast, the SOA volatility distribution for the SOM simulation had 389 

a substantial fraction of SOA mass in the C* = 0.0001 to 1 µg m-3 range, much lower than the 390 

Base/BaseM simulations. At atmospherically-relevant OA concentrations (1-10 µg m-3), the 391 

mass in these low C* bins would be exclusively in the particle-phase.  392 



 It is not possible to compare the simulated volatility distributions to ambient observations 393 

since direct measurement of volatility distributions has not been demonstrated for such low C* 394 

species. However, the effective volatility of SOA particles has been experimentally assessed by 395 

considering the response of particles to heating in a thermodenuder (Cappa and Jimenez, 396 

2010;Huffman et al., 2009). High volatility species generally evaporate at lower temperatures 397 

than low volatility species. The theoretical response of the predicted SOA mass, expressed as the 398 

mass fraction remaining (MFR), to heating in a thermodenuder over the range 25 to 105 °C was 399 

simulated using the model of Cappa (2010). The C* values varied with temperature according to 400 

the Clausius-Clapeyron equation and the enthalpy of vaporization was assumed to be a function 401 

of C* with Δܪ௩ ൌ 131 െ 11 ൈ ݈ ଵ݃ܥ∗ . (See SI section Thermodenuder Model.) We plot the 402 

results in Figure 3(b,d). At both Los Angeles and Atlanta, differences in the predicted SOA 403 

volatility are quite evident. In general, the effective SOA volatility was higher in the Base and 404 

BaseM simulations than in the SOM simulations. The SOA from the Base and BaseM 405 

simulations is almost entirely evaporated when heated to 70 °C, and some evaporation occurs 406 

even at 25 °C as a response to vapor stripping in the denuder. In contrast, the SOA from the 407 

SOM simulations did not entirely evaporate until 100 °C and exhibits a more gradual decrease 408 

with temperature. The SOM-simulated SOA TD evaporation is much more similar to the 409 

behavior observed in both laboratory experiments and field assessments of SOA volatility 410 

(Cappa and Jimenez, 2010;Huffman et al., 2009;Lee et al., 2010). This suggests that SOM is 411 

producing SOA with more physically realistic properties even though the Base/BaseM and SOM 412 

simulations produced similar SOA concentrations. 413 

 414 

3.2.3. Influence of Oligomerization 415 

The Base-OLIG model includes an oligomerization pathway in which semi-volatile, 416 

condensed-phase material is converted to a non-volatile, yet absorptive material on a fixed 417 

timescale. This effectively “pumps” semi-volatile vapors to the particle phase and leads to 418 

increased SOA concentrations. It has the additional effect of making the SOA less sensitive to 419 

dilution and changes in temperature. To examine the influence of oligomerization, Figure 4 420 

shows predictions of the precursor-resolved SOA concentrations from the Base, Base-OLIG, 421 

SOM and SOM-OLIG simulations for Los Angeles and Riverside, CA. The total SOA 422 

concentrations in Base-OLIG are ~60% higher than Base but the SOA concentrations in SOM-423 



OLIG were only ~14% higher than SOM. This difference can be understood through the 424 

differences between the SOM and Base volatility distributions for semi-volatile species. For the 425 

Base model, a large fraction of the oxidation products have C* > 1 g m-3, and thus a sizable 426 

fraction is in the gas-phase. This gas-phase material can be viewed as potential SOA, and as 427 

oligomers are formed this material is converted to actual SOA. For SOM, much of the material 428 

has C* ≤ 1 g m-3, and thus most of it is already in the particle phase. Consequently, when it is 429 

converted to oligomers only a marginal influence on the total SOA concentration results. 430 

Overall, it is evident that the influence of oligomerization on simulated SOA concentrations is 431 

tightly linked to the semi-volatile product distribution. This may influence the timescales of SOA 432 

formation, since in SOM production of lower volatility material is related to the timescales of 433 

gas-phase oxidation, whereas in Base, the specified oligomerization rate coefficient, which is 434 

largely under-constrained, controls the timescale of low (essentially non-) volatile material. 435 

 436 

3.3. Comparing Constrained Multi-generational Oxidation to 437 

Unconstrained Schemes 438 

The 14-day averaged SOA concentrations from the COM, Base, and SOM simulations 439 

for the SoCAB and the eastern US are compared in Figure 5. Recall that COM allows for 440 

conversion of the semi-volatile products in the Base model to lower-volatility products on top of 441 

the original 2-product parameterization.  The COM simulations predict a factor of 4 to 8 increase 442 

in SOA concentrations over the Base and SOM simulations, attributable to the production of 443 

low-volatility and non-volatile SOA from the added oxidation reactions. Because COM, like 444 

many ad hoc ageing schemes (Simon and Bhave, 2011;Robinson et al., 2007;Pye and Seinfeld, 445 

2010;Baek et al., 2011), lacks fragmentation and adds ageing reactions on top of an existing 446 

parameterization, and with sufficient oxidation all semi-volatile products will be converted into 447 

non-volatile SOA.  This means that the ultimate SOA mass yield is equal to the sum of the mass 448 

yields of the individual products, independent of their vapor pressures. Given that SOM 449 

inherently accounts for multi-generational oxidation as part of the model parameterization, this 450 

comparison clearly suggests that the unconstrained schemes used in the COM simulations form 451 

too much SOA and that such schemes are not truly representative of multi-generational oxidation 452 

in the atmosphere.  453 



Some previous studies have defended the use of a COM-type model because its 454 

implementation improved model performance (Lane et al., 2008;Murphy and Pandis, 455 

2009;Shrivastava et al., 2008), as was also observed here (Table 2). However, given that COM-456 

type models remain generally unconstrained and have been inconsistently applied to different 457 

VOC precursor types (e.g. ageing of anthropogenics but not biogenics) (Farina et al., 2010;Lane 458 

et al., 2008;Murphy and Pandis, 2009), and since recent testing of a COM-type scheme in the 459 

laboratory demonstrated that such schemes do, indeed, lead to over-prediction of SOA mass 460 

concentration (Zhao et al., 2015), we suggest that this apparently improved agreement is more 461 

likely fortuitous than a true indication of improved representation of atmospheric chemistry.  It 462 

should be noted that the current study specifically assesses the performance of a COM-type 463 

model on the SOA production from traditional VOCs only, exclusive of potential contributions 464 

of IVOCs and semi-volatile POA vapors to the SOA burden. Previous studies that have 465 

examined the influence of multi-generational oxidation of traditional VOCs using COM-type 466 

models have typically combined the effects of VOC ageing and IVOC and POA vapor oxidation 467 

(e.g. Murphy and Pandis (2009);Jathar et al. (2011)) together and have not investigated the role 468 

of each process separately. Consequently, our results, which isolate the influence of using a 469 

COM-type oxidation scheme, suggest COM-type models may be inappropriate for use in 470 

regional air quality models even though they can lead to improved model/measurement 471 

comparison (Table 2). They also imply that models that employed COM-like schemes have 472 

potentially underplayed the role of other important OA formation pathways such as aqueous 473 

(aerosol, fog, cloud) processing of water-soluble organics (Ervens et al., 2011) and particle-474 

surface reactions (Liggio et al., 2005;Shiraiwa et al., 2013). Future work to integrate semi-475 

volatile POA treatments with constrained multi-generational ageing schemes like SOM is 476 

needed.  477 

 478 

4. Discussion 479 

 When constrained using the same chamber data, the BaseM (traditional two-product 480 

model that does not resolve multi-generational oxidation) and SOM models predict roughly the 481 

same SOA mass concentrations and spatial distribution for regional air pollution episodes in the 482 

SoCAB and the eastern US. This suggests that the chamber data used to constrain the BaseM and 483 

SOM parameterizations presumably already includes a majority of the SOA mass that would be 484 



attributable to multi-generational oxidation. The extent to which multi-generational oxidation 485 

influences the production of SOA in a given chamber experiment depends on both the volatility 486 

and reactivity of the first-generation products and the time-scale of the experiment (Wilson et al., 487 

2012). If SOA formation is dominated by first-generation products, then explicit accounting for 488 

multi-generational ageing will not be important. Alternatively, if most SOA is formed from 489 

second-generation products with little direct contribution from first-generation products, than a 490 

static representation (such as with the 2-product model) might be sufficient even when multi-491 

generational ageing is, in fact, dominant. But if SOA formation is balanced between 492 

contributions from first, second and later generation products, then the extent to which a static 493 

representation will capture the influence of multi-generational ageing may be highly variable and 494 

sensitive to the experimental conditions and number of oxidation lifetimes. Consequently, the 495 

appropriateness of extrapolating static model parameterizations to longer (global atmospheric) 496 

timescales remains unclear. The results presented here indicate that the 2-product model does 497 

capture the influence of multi-generational ageing as part of the parameterization in terms of 498 

mass concentration, at least for the regional episodes considered, but it is also apparent that the 499 

simulated SOA properties (e.g. volatility) and the explicit contributions of various SOA types are 500 

not fully captured by such simple models.  501 

The BaseM and SOM simulations show that the SOA concentrations in the SoCAB and 502 

eastern US vary by a factor of two when using parameterizations developed from low vs. high 503 

NOx chamber experiments. Hence, we can argue that for the present simulations NOx 504 

dependence is a much more important factor for SOA production than multi-generational 505 

oxidation. While most 3-D models include schemes to simulate the NOx dependence of SOA 506 

formation, these schemes remain ad hoc as they are based on limited experimental measurements 507 

and also rely on the ability of the model to accurately predict radical concentrations (RO2, HO2) 508 

or VOC-to-NOx ratios. In this work, the model predictions from the low- and high-yield 509 

simulations bound the NOx-dependent uncertainty in SOA concentrations and we recommend 510 

that future work examine this issue in much more detail.  511 

SOM predicts a modestly different composition of SOA than BaseM despite similar total 512 

mass concentrations of SOA. The composition predicted by SOM has a slightly higher 513 

contribution from alkanes, aromatics (anthropogenic) and sesquiterpenes and a lower 514 

contribution from isoprene and monoterpenes. These modest differences in the predicted 515 



composition of SOA have implications for understanding the sources of ambient aerosol and 516 

eventually the regulation of these sources to achieve compliance with National Ambient Air 517 

Quality Standards (NAAQS). These more accurate SOA predictions resolved by chemical 518 

families should be tested in epidemiological studies to determine if they are associated with 519 

adverse health effects.  Additionally, SOM predicted a much lower-volatility SOA than BaseM, 520 

and SOM predictions are in better qualitative agreement with ambient thermodenuder 521 

measurements of OA volatility. Since the SOA has a much lower volatility, there is very little 522 

enhancement (10-15%) with the inclusion of oligomerization reactions, implying that while 523 

oligomerization might affect composition, it may not be a source of additional SOA formation as 524 

the Base model suggests.  525 

In this work, we consider POA as non-volatile and non-reactive and do not consider SOA 526 

contributions from IVOCs or semi-volatile POA vapors. Oxidation of IVOCs and semi-volatile 527 

POA vapors (i.e. SVOCs) can lead to the production of new SOA mass, but evaporation of POA 528 

leads to a decrease in the total OA mass. To some extent, these effects are offsetting (especially 529 

for SVOCs, which do not contribute new carbon mass to a model). To the extent that the loss of 530 

POA is balanced exactly by the formation of SOA from IVOCs and ‘recycling’ of semi-volatile 531 

POA vapors, the simulations here represent a scenario in which the total OA mass is conserved, 532 

although possibly with the wrong spatial distribution (Robinson et al., 2007). Most efforts to 533 

incorporate SOA formation from IVOCs and SVOCs have simulated their oxidation using a 534 

version of the VBS model in which multi-generational ageing is implicit, but highly 535 

underconstrained and structured in such a way that the ultimate (long time) SOA yield is greater 536 

than unity because all mass is converted to low-volatility products and oxygen addition is 537 

assumed. The SOM framework provides a way to explicitly account for the influence of multi-538 

generational chemistry in SOA formation experiments that include semi-volatile POA vapors 539 

and IVOCs (Gordon et al., 2014a;Gordon et al., 2014b;Gordon et al., 2013;Grieshop et al., 540 

2009a;Grieshop et al., 2009b;Hennigan et al., 2011;Miracolo et al., 2011;Miracolo et al., 541 

2012;Platt et al., 2013;Platt et al., 2014;Nordin et al., 2013;Chirico et al., 2010;Heringa et al., 542 

2011;Tkacik et al., 2014), and thus should be useful for constraining the contribution of these 543 

compound classes to the ambient OA budget. In addition, the simulations here do not consider 544 

the influence of vapor wall losses on SOA formation. Such losses can influence SOA yields in 545 

chambers, and consequently the parameterizations that result from fitting of such chamber data. 546 



The influence of vapor wall losses on simulated ambient SOA and OA concentrations within the 547 

SOM framework is examined in a companion paper (Cappa et al., 2015). Ultimately, models like 548 

the SOM can be applied to chamber experiments to better understand the role and contribution of 549 

POA, IVOCs and vapor wall-losses to total OA.  550 

 Finally, the comparison between the constrained SOM and the unconstrained COM 551 

(commonly used in large-scale models) suggests that COM may be double counting SOA 552 

formation.  These simple ageing schemes should be refit to chamber data where all parameters 553 

can be matched to observed trends in a self-consistent manner.   554 

 555 
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Figure Captions 842 
 843 
Figure 1: 14-day averaged SOA concentrations at Los Angeles (a), Riverside (b), Atlanta (c) and 844 
Smoky Mountains (d) for the Base, BaseM, and SOM simulations resolved by the precursor/ 845 
pathway. 846 
 847 
Figure 2: (a-b) 14-day averaged SOA concentrations in SoCAB for the BaseM and SOM 848 
simulations. (c) Ratio of the 14-day averaged SOA concentration from the SOM simulation to 849 
that from the BaseM simulation. The BaseM and SOM results are averages of the low yield and 850 
high yield simulations. Red box indicates urban areas surrounding Los Angeles. 851 
 852 
Figure 3: Volatility distributions of the 14-day averaged gas+particle SOA mass at Los Angeles 853 
(a) and Atlanta (c) for the Base, BaseM and SOM simulations. Thermograms that capture the 854 
volatility of the 14- day averaged gas+particle SOA mass at Los Angeles (b) and Atlanta (d) for 855 
the Base, BaseM and SOM simulations. 856 
 857 
Figure 4: 14-day averaged SOA concentrations at (a) Los Angeles and (b) Riverside for the Base, 858 
Base- OLIG, SOM, SOM-OLIG simulations resolved by the precursor/pathway. 859 
 860 
Figure 5: 14-day averaged SOA concentrations in SoCAB (a-c) and the eastern US (d-f) for the 861 
Base, COM and SOM simulations. The SOM results are averages of the low-yield and high-yield 862 
simulations. 863 
 864 
Figure S.1: Schematic illustrating the differences between some of the different ways of 865 
modeling SOA. From top to bottom: the 2-product model; the COM-type model, i.e. 2-product 866 
with ageing; the VBS as applied to VOCs with no ageing; the VBS as applied to VOCs with 867 
additional ageing; the VBS as applied to S/IVOCs; and the SOM. The black arrows indicate the 868 
production of products directly from the parent VOC and the orange arrows indicate ageing 869 
reactions, i.e. reactions involving product species. For the SOM, all species are reactive and both 870 
functionalization and fragmentation are possible. In the other models that include ageing, only 871 
functionalization reactions are included, i.e. reactions that decrease compound vapor pressures.  872 
 873 
Figure S.2:14-day averaged SOA concentrations in SoCAB for the BaseM and SOM simulations 874 
for the low-yield and high-yield parameterizations. 875 
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Figure 1: 14-day averaged SOA concentrations at 
Los Angeles (a), Riverside (b), Atlanta (c) and 
Smoky Mountains (d) for the Base, BaseM, and 
SOM simulations resolved by the precursor/
pathway.
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Figure 2: (a-b) 14-day averaged SOA concentrations in SoCAB for the BaseM and SOM simulations. (c) 
Ratio of the 14-day averaged SOA concentration from the SOM simulation to that from the BaseM 
simulation. The BaseM and SOM results are averages of the low yield and high yield simulations. Red 
box indicates urban areas surrounding Los Angeles.
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Figure 3: Volatility distributions of the 14-day averaged gas+particle SOA mass at Los Angeles (a) and 
Atlanta (c) for the Base, BaseM and SOM simulations. Thermograms that capture the volatility of the 14-
day averaged gas+particle SOA mass at Los Angeles (b) and Atlanta (d) for the Base, BaseM and SOM 
simulations.
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Figure S.1:14-day averaged SOA concentrations in SoCAB for the BaseM and SOM simulations for the 
low-yield and high-yield parameterizations.




