Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean

L. Luo¹, X. H. Yao², H. W. Gao², S. C. Hsu³, J. W. Li⁴, S. J. Kao¹,*

[1]{State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China}
[2]{Key laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China}
[3]{Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan}
[4]{Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China}

Correspondence to: S. J. Kao (sjkao@xmu.edu.cn)

Abstract

The cumulative atmospheric nitrogen deposition has been found to profoundly impact the nutrient stoichiometry of the East China seas (ECSs) and the northwestern Pacific Ocean (NWPO). In spite of the potential significance of dry deposition in those regions, ship-board observations of atmospheric aerosols remain insufficient, particularly regarding the compositions of water-soluble nitrogen species (nitrate, ammonium and water-soluble organic nitrogen – WSON). We conducted a cruise covering the ECSs and the NWPO during the spring of 2014 and observed three types of atmospheric aerosols. Aluminum content, air mass backward trajectories, weather conditions, and ion stoichiometry allowed us to discern dust aerosol patches and sea fog modified aerosols (widespread over the ECSs) from background aerosols (open ocean). Among the three types, sea fog modified aerosols contained the highest concentrations of nitrate ($536 \pm 300 \text{ nmol N m}^{-3}$), ammonium ($442 \pm 194 \text{ nmol N m}^{-3}$) and WSON ($147 \pm 171 \text{ nmol N m}^{-3}$); furthermore, ammonium and nitrate together
occupied ~ 65% of the molar fraction of total ions. The dust aerosols also contained significant amounts of nitrate (100 ± 23 nmol N m⁻³) and ammonium (138 ± 24 nmol N m⁻³) which were obviously larger than those in the background aerosols (26 ± 32 for nitrate and 54 ± 45 nmol N m⁻³ for ammonium), yet, this was not the case for WSON. It appeared that dust aerosols had less of a chance to contact WSON during their transport. In the open ocean, we found that sea salt (e.g. Na⁺, Cl⁻, Mg²⁺), as well as WSON, correlated positively with wind speed. Apparently, marine dissolved organic nitrogen (DON) was emitted during breaking waves. Regardless of the variable wind speeds from 0.8 to as high as 18 m s⁻¹, nitrate and ammonium, by contrast, remained in narrow ranges implying that some supply and consumption processes of nitrate and ammonium were required to maintain such a quasi-static condition. Mean dry deposition of total dissolved nitrogen (TDN) for sea fog modified aerosols (1090 ± 671 μmol N m⁻² d⁻¹) was 5 times higher than that for dust aerosols (190 ± 41.6 μmol N m⁻² d⁻¹) and around 20 times higher than that for background aerosols (56.8 ± 59.1 μmol N m⁻² d⁻¹). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.

1 Introduction

Anthropogenic reactive nitrogen (Nr) emissions have dramatically increased in the last few decades owing to rapidly growing populations and industry (Galloway et al., 2008). China is one of the largest producers and emitters of Nr in the world (Nr emission of 12.18 Tg y⁻¹; Reis et al., 2009). Inevitably, large amounts of Nr emanate into the adjacent seas through various pathways. Through the atmosphere, annual nitrogen depositions into the east China seas (ECSs; the Yellow Sea and East China Sea) had been reported to be the same order of magnitude carried by the Yangtze River discharge (Nakamura et al., 2005; Zhang et al., 2007). Besides observational data, global models revealed that both of the Chinese marginal seas and the
northwestern Pacific Ocean (NWPO) are under the atmospheric influence of the Asian continent, which supplied significant amounts of anthropogenic Nr (Duce et al., 2008) and terrigenous materials (Jickells et al., 2005). The cumulative effect of atmospheric input in the past decades even altered the nutrient stoichiometry on a regional scale, including the Chinese marginal seas and the North Pacific Ocean (T. W. Kim et al., 2011; I. N. Kim et al., 2014).

To better constrain atmospheric deposition of Nr into the ocean over large spatial and temporal scales, modeling the transport and deposition of air pollutants is essential. Models of atmospheric nitrogen deposition include abundant parameters, such as local emission densities, particle size, deposition velocity, chemical processes and meteorological conditions (Liu et al., 2005; Guenther et al., 2006; Kanakidou et al., 2012). However, model accuracy strongly relies on the validation by observational data. Unfortunately, ship-board observations, particularly for an offshore gradient from marginal seas to the open sea, are still limited.

In the marginal seas of China, dust and fog storms are two common intermittent weather events during the transition period from a cold to a warm season (Sun et al., 2001; Zhang et al., 2009). Dust aerosols may serve as a carrier bringing significant amounts of terrigenous and anthropogenic fingerprints including trace elements (Duce et al., 1980) and Nr (Chen and Chen, 2008) from inland into the open sea via long-range transport. By contrast, sea fog is relatively stagnant and restricted on a spatial scale. Fog is the intermediate stage between precipitation and aerosol. Fog forms by the activation of particulate with subsequent growth and incorporation of other gases and particles (Cape et al., 2011). Fog droplets are smaller in size when compared to rain drops; however, concentrations of water-soluble species in fog water were not necessarily higher or lower than those of precipitation because of complicated chemical processes (Sasakawa et al., 2002; Watanabe et al., 2006; Jung et al., 2013). Inland fog chemistry was well studied and its impacts on terrestrial ecosystems were highlighted (Chang et al., 2002; Lange et al., 2003). Researchers even designed experiments to investigate the differences in aerosol chemistry for pre-
and post-fog formation periods to explore the inland fog impact on aerosol chemistry (Biswas et al., 2008; Safai et al., 2009). Fog, in fact, can be sampled only by specialist fog samplers; however, during aerosol sampling at sea there is no way to avoid fog once sea fog forms. Nevertheless, the effect of sea fog on aerosol chemistry has not yet been well studied, not mentioning in the coastal and marginal seas of China where air pollution is serious. Therefore, compared with inland fog and dust aerosols, we have less knowledge about sea fog chemistry and the aerosol chemistry under sea fog influence. This is the first investigation of Nr speciation and deposition of sea fog modified aerosols (aerosol collected under sea fog influence) on the marginal seas off a continent producing strong emissions.

Different types of aerosols may be composed of different amounts of nitrogen species based on their formation history (e.g. origin, flow path, reactions during transport). In this study, we sampled total suspended particulate (TSP) marine aerosols on a cruise crossing over the ECSs and NWPO during spring 2014. Water-soluble nitrogen species and ion characteristics among different aerosol types, including dust, background and sea fog modified aerosols, were investigated. These observational data promoted our understanding of the type-specific concentration and deposition of various nitrogen species and the role of sea fog on nitrogen scavenging. The data may aid in validating model outputs for the Asian region and potentially evaluate the framework of nitrogen and aerosol interactions in current models.

2 Materials and Methods

2.1 Aerosol sample collection and chemical analyses

A total of 44 TSP samples were collected using a high-volume TSP aerosol sampler (TE–5170D; Tisch Environmental Inc.) during a research cruise on the R/V Dongfanghong II from 17 March to 22 April 2014. The cruise tracks (Fig. 1) covered the ECSs and the NWPO. The samples were taken at ~ 12 h intervals. To avoid self-contamination from the research vessel, we sampled only when the vessel was
cruising; thus, the sampling interval was not exactly 12 h. Based on simultaneous one-second particle number concentration measurements made using an Optical Particle Sizer (Tsi, US), we found that ship plumes affected the TSP sampling occasionally during cruising (these data will be presented in a separate paper). We calculated the plume contribution to the measured volume particle concentration of PM$_{10}$ during each TSP sampling (self-contamination) and the short-period contribution was less than 3%. Detailed sampling information including date, time period and locations for each sample are listed in Table S1. Meteorological data (Fig. 2) including wind speed and direction, relative humidity (RH) and temperature were recorded on-board.

The cruise encountered sea fog in the first few days (orange shadow in Fig. 2 for 17–19 March) and five samples (nos. 1–5) were collected. Surprisingly, sea fog occurred again on 21–22 April while approaching land (samples nos. 43 and 44). During the fog events, high RH and slow wind speed were recorded (see orange shadow in Fig. 2). The strong temperature gradient indicated that the sea fog formed owing to a cold air mass from land confronting warm air from the sea. Since these samples were collected on fog days (see orange tracks in Fig. 1) when we could collect aerosols, the sea fog modified the aerosols as well as sea fog droplets. Since we could not separate them from each other through our method, we classified these samples as “sea fog modified aerosol”.

Whatman 41 cellulose filters (Whatman Limited, Maidstone, UK) were used for filtration. The analytical procedures were described by Hsu et al. (2010b and 2014). Briefly, one-eighth of the filter was extracted using 15 mL of Milli-Q water on a reciprocating shaker for 0.5 h and at rest for an additional 0.5 h at room temperature. Then, the extract was filtered through a polycarbonate membrane filter (0.4 μm pore size and 47 mm in diameter from Nuclepore). The filter was leached three times with Milli-Q water, and then 5 mL Milli-Q water was used to rinse the filter. The extract 45 mL solution was mixed with the rinsing 5 mL, poured into a 50 mL clean plastic centrifuge tube and used for the determination of the ion species and water-soluble
The water soluble and total concentrations of Al in the TSPs were analyzed using an inductively coupled plasma mass spectrometers (ICP-MS). For total Al, briefly, one-eighth of the filter was digested with an acid mixture (4 mL HNO₃ + 2 mL HF) using an ultra-high throughput microwave digestion system (MARSXpress, CEM; Corporation, Matthews, NC), and the efficiency of the digestion scheme was checked by subjecting a certain amount of a standard reference material (SRM1648, urban particulate matter, National Institute of Standards and Technology, USA) to the same treatment. The recoveries of Al in the SRM 1648 through digestion with the HNO₃-HF mixture fell within ±10% (n = 5) of the certified values. Details regarding the ICP-MS analysis were described by Hsu et al. (2008).

The major ionic species (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻, NO₂⁻ and SO₄²⁻) in the extract were analyzed using ion chromatography (model ICS-1100 for anions and model ICS-900 for cations) equipped with a conductivity detector (ASRS-ULTRA) and suppressor (ASRS-300 for the ICS-1100 and CSRS-300 for the ICS-900). Separator columns (AS11-HC for anions, and CS12A for cations) and guard columns (AG11-HC for anions and CG12A for cations) were used in the analyses. The precision for all ionic species was better than 5%. Details of the analytical processes can be found in Hsu et al. (2014). Only five samples contained NO₂⁻ (1.39 nmol m⁻³ for no. 2, 2.32 nmol m⁻³ for no. 4, 3.69 nmol m⁻³ for no. 5, 5.96 nmol m⁻³ for no. 43 and 3.76 nmol m⁻³ for no. 44), which accounted for < 1% of the total dissolved nitrogen (TDN).

The TDN was analyzed using the wet oxidation method to convert all nitrogen species into nitrate with re-crystallized potassium persulfate, and then the concentration of nitrate was measured using chemiluminescence (Knapp et al., 2005). Monitoring with laboratory stock (NO₃⁻ + NH₄⁺ + Glycine + EDTA) showed that the recoveries of TDN by the persulfate oxidizing reagent (POR) digestion fell within 95–105% (n = 6) over the range of detection.
2.2 Data analysis

The amount of non-sea-salt Ca\(^{2+}\) (nss-Ca\(^{2+}\)) and non-sea-salt SO\(_4^{2-}\) (nss-SO\(_4^{2-}\)) in the aerosol, and the Ca\(^{2+}\) and SO\(_4^{2-}\) fractions in excess over that expected from sea salt, were calculated using the unit of equivalent concentration (neq m\(^{-3}\)) in the following equations:

\[
\text{nss-Ca}^{2+} = [\text{Ca}^{2+}] - [\text{ss-Ca}^{2+}], \quad \text{where } [\text{ss-Ca}^{2+}] = 0.044 \times [\text{Na}^+], \tag{1}
\]

\[
\text{nss-SO}_4^{2-} = [\text{SO}_4^{2-}] - [\text{ss-SO}_4^{2-}], \quad \text{where } [\text{ss-SO}_4^{2-}] = 0.121 \times [\text{Na}^+], \tag{2}
\]

where the factors 0.044 and 0.121 used above are the typical calcium-to-sodium and sulfate-to-sodium equivalent molar ratios in seawater (Chester, 1990).

Relative acidity (RA) was calculated using all the observed ion species in their equivalent concentrations following Yao and Zhang (2012):

\[
\text{RA} = ([\text{Na}^+] + [\text{Mg}^{2+}] + [\text{K}^+] + [\text{Ca}^{2+}] + [\text{NH}_4^+]) / ([\text{Cl}^-] + [\text{NO}_3^-] + [\text{SO}_4^{2-}]), \tag{3}
\]

where [Na\(^+\)], [Mg\(^{2+}\)], [K\(^+\)], [Ca\(^{2+}\)], [NH\(_4^+\)], [Cl\(^-\)], [NO\(_3^-\)] and [SO\(_4^{2-}\)] are the equivalent concentrations of those water extracted ions. The relative acidity is based on the imbalance of cations and anions, which caused by the non-detected ions such as H\(^+\), HCO\(_3^-\) and CO\(_3^{2-}\) (Kerminen et al., 2001). When the total ions were distributed over a wide range (by a factor of 20 in our case), the ratio of total anions to cations in neq m\(^{-3}\) is more effective in presenting the relative acidity than the absolute value of imbalance (total cations – total anions).

The concentration of water-soluble organic nitrogen (WSON) was calculated using the following equation:

\[
[\text{WSON}] = [\text{TDN}] - [\text{NO}_3^-] - [\text{NH}_4^+] - [\text{NO}_2^-], \tag{4}
\]

where [TDN], [NO\(_3^-\)], [NH\(_4^+\)] and [NO\(_2^-\)] are molar concentrations (nmol N m\(^{-3}\)) of those water-soluble nitrogen species in TSPs. The standard errors propagated through WSON calculation varied from sample to sample (17 to 1500%). The average standard error was 116% when all samples were considered and when the extreme value was excluded the average standard error was reduced to 81%.
2.3 Flux calculation

The dry deposition flux (F) was calculated by multiplying the aerosol concentrations of water-soluble nitrogen speciation (C) by the dry deposition velocity (V):

\[F = C \times V, \]

(5)

where V is a primarily function of particle size and meteorological parameters, such as wind speed, RH and sea surface roughness (Duce et al., 1991). According to previous reports, dry deposition velocity varies by more than 3 orders of magnitude at a particle size ranging from 0.1 to 100 μm (Hoppel et al., 2002). In general, ammonium appears in submicron mode from 0.1 to 1 μm with a small fraction residing in the coarser mode; on the contrary, nitrate is mainly distributed in a supermicron size ranging from 1 to 10 μm (Nakamura et al., 2005; Baker et al., 2010; Yao and Zhang, 2012; Hsu et al., 2014). The non-single-mode size distribution appears not just in nitrogenous elements but also metals including aluminum and iron (e.g., Baker et al., 2013). Thus, for any compound or elements by using a fixed deposition velocity to calculate dry deposition flux might cause under- or overestimation as discussed by Baker et al. (2013). Unfortunately, we collected TSPs with no information for size distributions. Not mentioning when the highly variable meteorological parameters were considered. In our observation wind speed ranging from 0.8 to 18 m s\(^{-1}\) under a RH ranging from 40 to 100% (Fig. 2). Thus, it is very difficult to provide variable dry deposition velocities under a wide range of environmental conditions (Hoppel et al., 2002; Baker et al., 2013); thus, assumptions were made based on existing knowledge. Based on the model and experimental results for aerosols deposition to the sea surface (Duce et al., 1991; Hoppel et al., 2002) and the size distribution of nitrate and ammonium in particles as reported above, deposition velocity of 2 cm s\(^{-1}\) was applied for nitrate and 0.1 cm s\(^{-1}\) for ammonium. Both deposition velocities were often used in calculating the specific nitrogen deposition fluxes, especially for the maritime aerosols, though uncertainties were involved (de Leeuw et al., 2003; Nakamura et al., 2005; Chen et al., 2010; Jung et al., 2013). As for WSON, the size distribution of WSON in previous studies showed that
WSON appears in a wide size spectrum (Chen et al., 2010; Lesworth et al., 2010; Srinivas et al., 2011). In previous studies, different orders of magnitude of deposition velocity were employed for WSON deposition (1.2 cm s\(^{-1}\) by He et al., 2011; 0.1 cm s\(^{-1}\) for fine and 1.0 cm s\(^{-1}\) for coarse by Srinivas et al., 2011; 0.075 cm s\(^{-1}\) for fine and 1.25 cm s\(^{-1}\) for coarse by Violaki et al., 2010). Our TSP aerosols covered the entire size distribution; thus, 1.0 cm s\(^{-1}\) was applied for WSON deposition. Since 1.0 cm s\(^{-1}\) is near the upper boundary of velocities previously applied for WSON deposition, our calculation of WSON deposition may represent the upper boundary.

Note that, a period of our aerosol sampling was influenced by sea fog, which we could not avoid as mentioned earlier in the Introduction. Apparently, the deposition velocity for sea fog modified aerosol differs from that of common aerosol, thus, the deposition velocity needs to be revised once we have sufficient knowledge about the influence of sea fog on aerosol deposition.

2.4 Air mass backward trajectories analysis

In order to investigate the likely origins of aerosols in the transporting air masses, 3 days with three heights of above sea level air mass backward trajectories were calculated using the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model with a 1°x1° latitude–longitude grid and the final meteorological database. Details about the HYSPLIT model can be found at https://ready.arl.noaa.gov/HYSPLIT.php, as prepared by the NOAA Air Resources Laboratory. The time period of 3 days was suggested to be sufficient for dust transport from dust source to the NWPO (Husar et al., 2001). The three heights (100, 500 and 1000 m) were selected because 1000 m can be taken as one of the typical atmospheric boundary layers (Hennemuth and Lammert, 2006).

3 Results and discussion

Using the Al content, air mass backward trajectories, weather conditions, and ion
stoichiometry, we classified aerosols into three types and then discussed the speciation and concentrations of Nr for each aerosol type as well as the potential processes involved. We compared the chemical characteristics of dust aerosols collected in the ECSs with ours under sea fog influence. Global aerosol and precipitation WSON data were also compiled to reveal the significance of WSON. Finally, we estimated the deposition of individual nitrogen species for the three types of aerosol and highlighted the importance of atmospheric nitrogen deposition in different regions.

3.1 Aerosol type classification

Total Al content in aerosol samples is an often used index to identify dust events (Hsu et al., 2008). As shown in Fig. 3, the total Al concentrations in aerosols ranged from 52 to 6293 ng m\(^{-3}\) during our entire cruise. For the first three samples (from nos. 1 to 3 collected in the Yellow Sea), total Al increased from 1353 to 6293 ng m\(^{-3}\), and then rapidly decreased (nos. 4 and 5 in the East China Sea) as the cruise moved eastward to the NWPO (orange shadow in Fig. 3). When the cruise returned to the ECSs, the total Al concentrations in the aerosols (nos. 43 and 44) increased once again. Apparently, an abundance of dust is frequently present in the low atmosphere over the Chinese marginal seas in spring. The air mass backward trajectories by HYSPLIT (Fig. 4a) revealed that the air masses for these fog samples mainly hovered over the ECSs at an altitude of < 500 m and the air masses for nos. 1–5 originated from the east coast of China. The air masses for the samples of nos. 43–44 were from south of Korea. The water-soluble Al followed the same pattern as total Al (Fig. 3) but the leachable concentrations were significantly higher when compared with dust aerosols reported for the same area. The relative acidity of aerosols showed that the values of sea fog modified aerosols were all below 0.9 (Fig. 3) indicating an enhanced acidification relative to those aerosols with sea fog influence. The low RA values explained the higher concentrations of water-soluble Al.

As for sample nos. 6, 7, 25–27 and 29 collected in the NWPO (see pink tracks in Fig. 1), the total Al concentrations ranged from 590 to 1480 ng m\(^{-3}\) with an average of
1025 ± 316 ng m⁻³ (pink shadow in Fig. 3), which were significantly higher than the remaining samples (212 ± 120 ng m⁻³) from the NWPO. Although most of the air mass backward trajectories of these samples collected in the NWPO originated from 25°N to 40°N (and beyond) as well as high altitude (Fig. 4b), the lidar browse images from NASA (Fig. S1) clearly indicated that the air masses of these aerosol samples pass through dusty regions. The consistency between high total Al concentration and the occurrence of dust and polluted dust defined by the lidar browse images from the NASA allowed us to separate dust aerosols from background aerosols. In this paper, background aerosols stand for non-dusty and non-foggy aerosol in our classification. It is more like a baseline aerosol collected within this study region during the investigating period, thus, the “background” may vary over space and time and it does not necessarily have to be pristine. Below we can also see a discernable ion stoichiometry among the three types.

3.2 Ion stoichiometry in three types of aerosol

Excluding sea fog modified aerosols, all the ratios of total anions and total cations followed close to a 1:1 linear relationship (Fig. 5a). Such a well-defined positive relationship indicated the charge balance and further emphasized the validity of our measurements. The sea fog modified aerosols in the ECSs contained higher contents of anions than cations, which was consistent with previous observations for fog water (Chang et al., 2002; Lange et al., 2003; Yue et al., 2014). The non-measured H⁺ ion should be the dominant cation for charge compensation as indicated previously (Chang et al., 2002; Lange et al., 2003). The low RA values for sea fog modified aerosols also supported this notion (Fig. 3). Below we set out the characteristics of the three types of aerosol with ion stoichiometry.

Since the Cl⁻/Na⁺ ratios of all samples including sea fog modified aerosols (Fig. 5b) were near 1.17, this indicated that almost all the Na and Cl for our aerosols originated from sea salt. The relationship between Mg²⁺ vs. Na⁺ (Fig. 5c) indicated that almost all Mg²⁺ also originated from sea salt sources (Mg/Naₗₚ = 0.23) except...
sea fog modified aerosols, which held a deviated correlation due to Mg enrichment ($y = 0.32x + 8.7, R^2 = 0.88$) because of terrestrial mineral sources of Mg. Such Mg enrichment was not observed in summer sea fog in the subarctic North Pacific Ocean (Jung et al., 2013).

As for Ca$^{2+}$ (Fig. 5d), all types of aerosol were enriched in Ca$^{2+}$ but at different levels, indicating various degrees of terrestrial mineral influence on the marine aerosols. For background aerosols, a strong correlation between Ca$^{2+}$ and Na$^+$ ($y = 0.044x + 6.6, R^2 = 0.92$) was observed. The slope was identical to that of sea water (Ca/Na$_{as} = 0.044$) suggesting that most Ca$^{2+}$ and Na$^+$ in background aerosols were sourced from sea salt. An unusually high regression slope (20 × the sea salt) observed between Ca$^{2+}$ and Na$^+$ in sea fog modified aerosols ($y = 0.90x - 1.8, R^2 = 0.71$) was attributable to the reaction between mineral CaCO$_3$ and H$^+$ in fog droplets during the formation of sea fog (Yue et al., 2012). The more excessive Ca$^{2+}$ observed in dust aerosols implied that stronger heterogeneous reactions between the acid gas and dust minerals had occurred during long-range transport (Hsu et al., 2014). Similar to Ca$^{2+}$, patterns between K$^+$ and Na$^+$ can also be seen in Fig. 5e. However, besides the contribution from inland dust (Savoie and Prospero, 1980) excess K$^+$ may also originate from biomass burning in China (Hsu et al., 2009). Note that statistically significant intercepts could be seen in Ca$^{2+}$ against Na$_{as}$ and K$^+$ against Na$_{as}$ scatter plots for background aerosols. Although small, such excesses in Ca$^{2+}$ and K$^+$ relative to Na$^+$ in widespread background aerosols warrant explanation.

As shown in Fig. 5f, a correlation was found between NH$_4^+$ and nss-SO$_4^{2-}$. Except for three sea fog samples, all ratios fell close to the 1:1 regression line suggesting the dominance of (NH$_4$)$_2$SO$_4$ rather than NH$_4$HSO$_4$. Complete neutralization of NH$_4^+$ by nss-SO$_4^{2-}$ had likely occurred, and a similar phenomenon was found elsewhere (Zhang et al., 2013; Hsu et al., 2014).

The ratio of [NO$_3^-$ + nss-SO$_4^{2-}$] / [NH$_4^+$ + nss-Ca$^{2+}$] for background aerosols (Fig. 5g) closely followed unity, thus suggesting that NH$_4^+$ + nss-Ca$^{2+}$ was neutralized by
the acidic ions NO_3^- and nss-SO_4^{2-}. However, for the dust and foggy aerosols, $\left[\text{NO}_3^- + \text{nss-SO}_4^{2-}\right] / \left[\text{NH}_4^+ + \text{nss-Ca}^{2+}\right]$ ratios located between 1:1 and 2:1 indicated that the excessive anthropogenic acidic ions that originated from coal fossil fuel combustion and vehicle exhaust had been transported to the ECSs and NWPO by the Asian winter monsoon as previously indicated (Hsu et al., 2010a). On the other hand, Liu et al. (2013) suggested that NHx emission in China is important and may play a major role in neutralizing the acidic ions. As shown in Fig. 5h, the scatter plot of NH_4^+ against NO_3^-, revealed that almost all dust and background aerosols sampled in the NWPO had $\text{NH}_4^+/\text{NO}_3^-$ ratios larger than 1, which is common in aerosol observation. However, significantly enriched NO_3^- in sea fog modified aerosols drew the ratio down to < 1. Nevertheless, such relatively enriched nitrate to ammonium was consistent with a previous study of sea fog water collected from the South China Sea (Yue et al., 2012). In summary, the three types of aerosol had distinctive features in nitrogen speciation and ion stoichiometry including relative acidity (Fig. 6a) further supporting our aerosol type classification.

3.3 Nitrogen speciation and associated processes in different types of aerosol

3.3.1 Sea fog modified aerosols

Only a few studies concerning water-soluble nitrogen species in sea fog water were reported (Sasakawa and Uematsu, 2002; Yue et al., 2012; Jung et al., 2013). To the best of our knowledge, ours is the first first-hand data from the Chinese marginal seas (the ECSs) in spring concerning water-soluble nitrogen species in aerosols collected under the influence of sea fog. As shown in Table 1 and Fig. 6a, in sea fog modified aerosols the concentrations of nitrate ranged from 160 to 1118 nmol N m$^{-3}$ with a mean of 536 ± 300 nmol N m$^{-3}$ and ammonium was slightly lower than nitrate ranging from 228 to 777 nmol N m$^{-3}$ with a mean of 442 ± 194 nmol N m$^{-3}$. WSON in sea fog modified aerosols was the lowest nitrogen species ranging from 23 to 517
nmol N m\(^{-3}\) with a mean of 147 ± 171 nmol N m\(^{-3}\) (Table 1 and Fig. 6a). The sea fog modified aerosols contained 2–11 times higher concentration of nitrate, 2–6 times higher ammonium and 3–6 times higher WSON when compared with aerosols in the ECSs and other regions (Table 1). Such high concentrations of Nr not only highlighted the seriousness of the nitrogen air pollution in Chinese marginal seas, but also underscored that water-soluble nitrogen species can be scavenged efficiently during sea fog formation.

Since none chemistry data of sea fog modified aerosols had been reported before, we can only compare with the dust aerosols from the same regions in spring. The concentrations of leachable ions, water-soluble and total Al and RA for dust aerosols and sea fog modified aerosols sampled in the ECSs were listed in Table 2. The seven sea fog modified aerosols were distinctive in chemical characteristics. For all except NH\(_4^+\), NO\(_3^-\) and SO\(_4^{2-}\), sea fog modified aerosols had lower or similar molar concentrations relative to dust aerosols. The anthropogenic species, particularly NO\(_3^-\) and NH\(_4^+\), were the most abundant ions in the sea fog modified aerosols. On the contrary, Na\(^+\) and Cl\(^-\) were the highest among all the ions in dust aerosols from the island of Jeju and the East China Sea. Taking Jeju as an example, the concentration levels of Na\(^+\) and Cl\(^-\) were similar to those of our sea fog modified aerosols, yet both NO\(_3^-\) and NH\(_4^+\) in sea fog modified aerosols were > 6 times higher than those from the island of Jeju.

The pie charts for ion fractions of aerosols from the ECSs were shown in Fig. 7. Note that the fraction distribution of ions for the dust aerosols from a previous cruise in the ECS (n = 8, Fig. 7b, Hsu et al., 2010b) resembled that collected from the island of Jeju (n = 49, Fig. 7c, Kang et al., 2009) despite the fact that their sampling were in different spaces and at different times. Such consistency in the ion pie chart indicated the representativeness of these dust aerosols. However, the pie chart for sea fog modified aerosols revealed that NH\(_4^+\) and NO\(_3^-\) occupied approximately 30 and 36% of the total ionic concentration (Fig. 7a). Such an overwhelmingly high occupation of nitrogenous ions emphasized the role of sea fog in modifying the chemistry of
non-foggy dust aerosols.

In a previous study in the Po Valley, the average scavenging efficiency for aerosol nitrate and ammonium were reported to be at similar levels (70 and 68%; Gilardoni et al., 2014), while in our case the concentrations of nitrate in sea fog modified aerosols were higher than those of ammonium (Table 1 and Fig. 6a). Since the gas phase HNO$_3$ is rapidly dissolved in liquid water particles during the early stages of fog formation (Fahey et al., 2005; Moore et al., 2004), it was reasonable to infer that the enriched nitrate in sea fog was attributed to gaseous HNO$_3$ owing to the gas–liquid equilibrium between NO$_3^-$ and HNO$_3$ in fog droplets. Moreover, our sea fog modified aerosols were collected from the air masses roaming around east China and the ECSs, where the NO$_x$ emission is the highest in China (Gu et al., 2012). The lifetime of NOx in the boundary layer is generally less than 2 days (Liang et al., 1998). Based on our air mass backward trajectories analysis, the travel time of air masses from inland China to the marginal seas is long enough for oxidation of NOx into HNO$_3$. Thus, nitrate enrichment in the sea fog modified aerosol was likely a synergistic consequence due to the sea fog formation and gas–liquid equilibrium of gaseous HNO$_3$.

As for SO$_4^{2-}$, both the concentration and percentage occupation were comparable in sea fog modified aerosols and dust aerosols (Table 2 and Fig. 7). However, the concentrations of nss-SO$_4^{2-}$ in sea fog modified aerosols was 60% higher than those of dust aerosols (Table 2), suggesting the addition of anthropogenic SOx emission during sea fog formation as indicated by Gilardoni et al. (2014). In the marginal seas adjacent to the anthropogenic emission source, acidified sea fog induced by additional sulfuric and nitric acid was common (Sasakawa and Uematsu, 2005; Yue et al., 2014). In general, Al in marine aerosols originated from terrestrial minerals (Uematsu et al., 2010). The mean concentrations of total Al in our seven sea fog samples were the lowest among those in dust aerosols from the ECSs (Table 2). However, the concentrations as well as the fractions of water-soluble Al in sea fog modified aerosols were significantly higher than those of dust aerosols. Because of the high
acidity (low RA values) for sea fog modified aerosols (Fig. 6a), we suspected that
during the seasonal transition period the formation of sea fog at the land–ocean
boundary may acidify the aerosol to effectively promote the solubility of metals in
aerosol minerals.

Finally, it has been shown that dissolved organic matter can be scavenged by fog,
but its scavenging efficiency was lower than those of nitrate and ammonium due to
hydrophobic organic species were more difficult to be scavenged than hydrophilic
ones (Maria and Russell, 2005; Gilardoni et al., 2014). In our case, although
concentrations of WSON in sea fog modified aerosols (147 ± 171 nmol N m⁻³) were
significantly higher than those of background aerosols, the ratio of WSON to TDN in
sea fog modified aerosols (10 ± 6%) was similar to those (ranging from 10 to 24%) of
background aerosols sampled in the ECSs (Table 1). Such high WSON concentration
but low WSON% in TDN in sea fog modified aerosols may indicate the lower
scavenging efficiency of WSON relative to other nitrogen species or that its source
region is different or both.

Note that all these aerosols in our study were sampled by TSP. Conventional
knowledge indicates that aerosol may act as a precursor for fog formation, but this
does not necessarily mean all the aerosols we sampled were directly associated with
fog. Nevertheless, we observed distinctive chemistry for this type of aerosol either
comparing with aerosols sampled during the same cruise or comparing with
“non-foggy” aerosols collected in the ECS in previous study. More studies are needed
to explore the effect of sea fog formation on aerosol chemistry.

3.3.2 Dust aerosols

For dust aerosols collected in the NWPO, nitrate ranged from 79 to 145 nmol N m⁻³
with an average of 100 ± 23 nmol N m⁻³, and ammonium ranged from 94 to 163 nmol
N m⁻³ with an average of 138 ± 24 nmol N m⁻³ (Table 1 and Fig. 6a). Relative to
background aerosols, both nitrate and ammonium were significantly higher in dust
aerosols revealing the anthropogenic nitrogen fingerprint carried by the Asian dust
outflow along with westerlies (Chen and Chen, 2008). Interestingly, dust aerosols contained a low concentration of WSON (11.2 ± 4.0 nmol N m\(^{-3}\)) resembling that of background aerosols (Table 1 and Fig. 6a). Moreover, dust aerosols held the lowest WSON fraction in total dissolved nitrogen among the three types (Table 1 and Fig. 6b). Based on the good correlation between nss-Ca\(^{2+}\) and WSON, previous studies demonstrated that dust can carry anthropogenic “nitrogen” activity into remote oceans and simultaneously promote the ratio of WSON /TDN in aerosol (Mace et al., 2003b; Lesworth et al., 2010; Violaki et al., 2010). However, in our case there was no correlation between WSON and nss-Ca\(^{2+}\) (not shown), likely illustrating that these aerosols had less chance to contact WSON along their pathway from a high altitude, or that WSON had been scavenged during transport. However, the latter was less likely.

3.3.3 Background aerosols

For the 31 background aerosol samples, the mean concentrations of NO\(_3^-\) and NH\(_4^+\) were 26 ± 32 and 54 ± 45 nmol N m\(^{-3}\) (Table 1). Both were 10 times higher than those collected in the same region during summer (2.5 ± 1.0 nmol N m\(^{-3}\) for nitrate and 5.9 ± 2.9 nmol N m\(^{-3}\) for ammonium; Jung et al., 2011). The 10 times higher Nr for springtime background aerosols indicated that the “spring background” was not pristine at all. Such distinctive seasonality was ascribed to the origins of air mass, since in summer the air masses in our study area were mainly from the open ocean while in spring the air masses came from the northeast of China through the Japanese Sea and Japan (Fig. 4c), where they were strongly influenced by anthropogenic nitrogen emission (Kang et al., 2010). The concentration of WSON in background aerosols was 10.9 ± 6.8 nmol N m\(^{-3}\), which fell within the wide range reported previously (~1 to 76 nmol N m\(^{-3}\); Table 1). In the open ocean, the WSON in aerosols may come from natural and anthropogenic sources. For example, the highest percentage of WSON in TDN in the southern Atlantic (84%) was attributed to high biological productivity (Violaki et al., 2015). Unfortunately, no marine biological data
(i.e. special amines or amino acids as summarized by Cape et al., 2011) existed in our case to directly support marine sourced aerosol WSON.

Nevertheless, our sampling cruise experienced a wide range of wind speed with variable sea salt contents during the collection of background aerosols. The correlations between ion content and wind speed may reveal some useful information as indirect evidence. Higher sea salt, e.g. Na\(^+\), Cl\(^-\), Mg\(^{2+}\), appeared with higher wind speed conditions (Fig. 8a-c). Positive correlations can be seen although r square values were small possibly due to time-integrated sampling (~12 h) and averaged wind speed over the sampling period. The positive correlation illustrated that the emission of sea salt aerosols was driven by wind intensity as indicated by Shi et al. (2012). Except for WSON (Fig. 8d), which was consistent with sea salt associated ions, no statistically significant relationships can be derived from scatter plots of nitrate and ammonium against wind speed (Fig. 8e and f). An analogous tendency between WSON and sea salt ions suggested that WSON might come from the surface ocean. Since the concentration of dissolved organic nitrogen (DON) in surface sea water was less variable, ranging from 4.5 to 5.0 µM in the Pacific Ocean (Knapp et al., 2011), DON can be taken as a relatively constant component in surface sea water similar to Na\(^+\), Cl\(^-\) and Mg\(^{2+}\). Very likely, breaking waves and sea spray brought DON into the atmosphere under higher wind speed. In fact, using free amino acids and urea compositions in the maritime aerosol, Mace et al. (2003a) indicated that live species in the sea surface microlayer may serve as a source of atmospheric organic nitrogen.

Compared with DON in the surface ocean, it is not possible that nitrate and ammonium in the surface seawater are a source of atmospheric aerosol nitrate and ammonium since the concentrations of nitrate and ammonium are very low (a few tens to hundreds of nM) in the surface ocean. However, under a wide range of wind speed, we observed relatively narrow concentration ranges of aerosol ammonium and nitrate. This was strange, given that high wind speed implied vigorous exchange on the air-sea interface, during which both sea salt emission and scavenging were
supposed to be high. Under efficient scavenging conditions, to maintain a relatively uniform aerosol nitrate or ammonium concentration (quasi-static), some supply processes are needed for compensation. Since the surface ocean is not a possible source for both aerosol ammonium and nitrate, we suggested alternative supplies which included deposition from the upper atmosphere and photochemical production/consumption.

Based on δ^{15}N-\text{NH}_4+ in aerosol (Jickells et al., 2003) and rainwater (Altieri et al., 2014) collected in the Atlantic, the ocean was suggested to be one of the ammonium sources for the atmosphere. Because of the low concentration of ammonium in the ocean surface, direct ammonium emission via sea spray was less likely. Based on our observation, we hypothesized that the emitted marine WSON in the atmosphere may serve as a precursor for ammonium and/or nitrate via the photo-degradation and photo-oxidation processes reported previously (Spokes and Liss, 1996; Vione et al., 2005; Xie et al., 2012). A most recent study by Paulot et al. (2015) supported our hypothesis. By modeling global inventories of ammonia emissions, they found that the ammonia source from the ocean cannot neutralize the sulfate aerosol acidity, thus photolysis of marine DON at the ocean surface or in the atmosphere was suggested to be a source of atmospheric ammonia. More studies about the exchange processes among nitrogen species through the ocean–atmosphere boundary layer are needed.

3.4 WSON in aerosol and rainwater: a global comparison

Organic nitrogen, distributed in the gas, particulate and dissolved phases, is an important component in the atmospheric nitrogen cycle. In our case, mean fractions of WSON in aerosol TDN were 10 ± 6, 5 ± 2 and $14 \pm 8\%$ for modified sea fog, dust and background aerosols. All values fell within the wide range reported previously (also in Table 1). Here we synthesized a published data set about aerosol WSON from around the world for comparison (Fig. 9a). The synthesized data revealed that aerosol WSON concentrations varied over 3 orders of magnitude and the fraction of WSON in TDN ranged from 1% to as high as 85%. Additionally, the fraction of WSON was the less
variable towards high WSON concentrations. The slope of the linear regression between WSON and TDN indicated that WSON accounted for 18% of aerosol TDN. Although the positive correlation between WSON and TDN may imply WSON’s anthropogenic origin (Jickells et al., 2013), the marine sourced WSON cannot be ignored in the open ocean as discussed in Section 3.3.3.

In Fig. 9b, we made a comparison between the distribution of the WSON fraction in rainwater TDN and that in aerosol. The distribution pattern of WSON fractions in aerosols (Fig. 9b, grey bar) was relatively concentrated revealing a tendency towards lower fractions. Its peak frequency appeared at the category of 10–20% and at least 80% of the observed WSON fractions fell within the range < 25%. However, for WSON/TDN in rainwater (Fig. 9b, blue bar), the distribution pattern was relatively diffusive shifting towards a higher percentage and peaking at around categories of 25–40% with a mean value of 33% (n = 332), which is slightly higher than that (24%, n = 115) obtained by Jickells et al. (2013). Although values of the coefficient of variation for both aerosol and rainwater were high, the results were still statistically meaningful. The mean WSON fraction for rainwater was around 2 times that for aerosol (18%), but the sampling bias inherited in such comparison should be noted. In a previous study, Mace et al. (2003a) reported that the fractional contribution of dissolved free amino acids to organic nitrogen in rainwater was 4 times higher than that in aerosol. The higher fractional contribution of WSON to TDN for rainwater may imply that precipitation washed out hydrophilic organic matter or WSON from the atmosphere more effectively (Maria and Russell, 2005).

3.5 Dry deposition of TDN and the implications

As shown in Fig. 10, the atmospheric nitrogen dry deposition over the cruise revealed a large spatial variance under different weather conditions. In the ECSs, the mean DIN (NH₄⁺ + NO₃⁻) deposition on fog days was estimated to be ~ 960 μmol N m⁻² d⁻¹ (926 ± 518 and 38 ± 17 μmol N m⁻² d⁻¹ for nitrate and ammonium), which was around 6 times higher than the average values for ordinary aerosols derived from literature.
reports (153 μmol N m⁻² d⁻¹ for aerosol nitrate and 12.3 μmol N m⁻² d⁻¹ for aerosol ammonium; see Table 3). The WSON deposition ranged from 20 to 446 μmol N m⁻² d⁻¹ with an average of 127 ± 148 μmol N m⁻² d⁻¹. Since the bioavailability of aerosol WSON to phytoplankton was reported to be high (12–80%; Bronk et al., 2007; Wedyan et al., 2007), by adding WSON into consideration, the deposition of TDN will be ~ 1100 μmol N m⁻² d⁻¹.

Taking 1150 ×10³ km² for the total area cover by the ECSs, we calculated the daily nitrogen supply from atmospheric deposition associated with sea fog to be 18 ± 11 Gg TDN d⁻¹, which is around 6 times the nitrogen input from the Yangtze River in spring (total amount of 3.1 Gg DIN d⁻¹; Li et al., 2011) and 2 times the supply from the subsurface intrusion of the Kuroshio (7.9 Gg NO₃⁻-N d⁻¹; Chen, 1996). In the ECSs, the sea fog occurrence was around 3–5 days in March and 8–10 days in April (Zhang et al., 2009). Given such high TDN deposition per day, the contribution of foggy weather should really be taken into account on a monthly estimate even though the occurrence of sea fog is limited in time and space. Moreover, the atmospheric influence is more widespread than the river focusing on the plume area.

Assuming that nitrogen was the limiting nutrient and that all the total dissolved nitrogen deposited from atmosphere into the sea was bioavailable and would be utilized for carbon fixation, we obtained a C-fixation rate of ~ 87 mg C m⁻² d⁻¹ in spring for the ECSs based on the Redfield C/N ratio of 6.6. Since atmospheric nitrogen deposition is an external source, such a conversion represents new production. When compared with the primary productivity in the East China Sea (292–549 mg C m⁻² d⁻¹; Gong et al., 2000), the new production associated with sea fog nitrogen deposition may account for 16–30% of the primary production in the ECSs on foggy days in spring.

Similar to sea fog on the ECSs, sporadic dust events are frequently observed from March to May in the NWPO (Shao and Dong, 2006). In our spring case, the average deposition of dust aerosol nitrate and ammonium (172 ± 40 μmol N m⁻² d⁻¹ for nitrate and 11.9 ± 2.1 μmol N m⁻² d⁻¹ for ammonium) were significantly higher than that of
background aerosols (44.6 ± 55.3 μmol N m\(^{-2}\) d\(^{-1}\) for nitrate and 4.7 ± 4.0 μmol N m\(^{-2}\) d\(^{-1}\) for ammonium; see Table 3). However, both dust and background aerosols depositions were significantly higher in spring when compared to summer dry deposition in the subtropical western North Pacific (3.0 ± 1.5 for nitrate and 2.7 ± 2.1 μmol N m\(^{-2}\) d\(^{-1}\) for ammonium) and the subarctic western North Pacific (3.3 ± 2.3 for nitrate and 1.9 ± 0.63 μmol N m\(^{-2}\) d\(^{-1}\) for ammonium) (Jung et al., 2011). Likewise, the C-fixation rate in the NWPO during spring was estimated to be 4.5–15 mg C m\(^{-2}\) d\(^{-1}\) based on the above assumptions and observations. The minimal level of C-fixation induced by dry deposition, in fact, equals to the maximum carbon uptake (3.6 mg C m\(^{-2}\) d\(^{-1}\); Jung et al., 2013) in summer by the total atmospheric DIN deposition (wet + dry + sea fog) in the western North Pacific Ocean. Thus, the contribution of atmospheric nitrogen deposition to primary production in the NWPO could be significantly different between seasons.

4 Conclusions

We presented the total dissolved nitrogen species including water-soluble organic nitrogen in TSP sampled over the ECSs and NWPO during spring and the samples of the ECSs were collected under sea fog influence. Three types of aerosol, the sea fog modified, the dust and the background aerosols, were classified. We found that sea fog formation significantly altered the aerosol chemistry resulting in the highest concentrations of all nitrogen species among the three types of aerosol, accompanied with higher acidity and higher cation deficiency. On a daily basis, the nitrogen supply from sea fog associated atmospheric deposition into the ECSs was around 6 times the nitrogen supply from the Yangtze River in spring (total amount of 3.1 Gg DIN d\(^{-1}\)) and 2 times the supply from the subsurface intrusion of Kuroshio (7.9 Gg NO\(_3\) - N d\(^{-1}\)).

Sea fog associated deposition and chemical processes require more attention and need to be considered in future aerosol monitoring and modeling works especially in marginal seas during seasonal transition.

In the open sea, the spring background aerosol ammonium and nitrate were 10
times higher than previous report for summer indicating an anthropogenic influence and the importance of the seasonality of the air mass source. The ammonium and nitrate varied in narrow ranges showing no correlation with wind speed, which may represent the degree of sea salt emission and scavenging. It is likely that nitrate and ammonium in the atmosphere above sea surface had reached a budget balance. Since the supply of nitrate and ammonium from surface ocean (bottom) is not possible, their sources might come from upper atmospheric boundary layer (top) or photochemical production of nitrogenous compounds. On the contrary, WSON revealed a similar pattern to the sea salt ions (Na\(^+\), Mg\(^{2+}\) and Cl\(^-\)), in which concentrations increased as the wind speed increased. Such a similarity indicated that at least a portion of the WSON should come from the surface ocean where DON emitted with sea salt. Future studies of nitrogen isotopic compositions of aerosol WSON and marine DON may shed light on the role of marine DON in nitrogen cycling of the air-sea interface.

The dust aerosols were significantly enriched in nitrate and ammonium, but not in WSON. Unless WSON-depletion processes had occurred, such a disproportionate enrichment suggested that dust aerosols from high latitude and altitude may have less chance to contact WSON during long range transport.

The WSON to TDN ratios of aerosols collected in the ECSs and NWPO fell within that of the global pattern of aerosols. Since nitrate and ammonium are mainly anthropogenic, the significantly positive correlation between WSON and TDN may imply WSON’s anthropogenic origin. When TDN concentrations were low (<100 nmol m\(^{-3}\)), the proportions of WSON in TDN were more diffusive indicating that factors other than anthropogenic ones were involved. The mean ratio of WSON to TDN in aerosols was only 1/2 of that for precipitation over the world. Such a low proportion of WSON in aerosol TDN suggested that the aerosol was less capable of scavenging hydrophilic organic nitrogen when compared with precipitation. Nevertheless, WSON occupies a significant portion of the TDN for both aerosol and precipitation and, thus, cannot be overlooked in the atmospheric nitrogen cycle.
Acknowledgements

This research was funded by the Major State Basic Research Development Program of China (973 program) (nos. 2014CB953702 and 2015CB954003), and the National Natural Science Foundation of China (NSFC U1305233, 91328207 and 41121091). We also thank Peirang Yu and Tianfeng Guo (Ocean University of China) for helping us to collect samples during the cruise and Shuen-Hsin Lin (Academia Sinica in Taiwan) for help in chemical analyses. Professor John Hodgkiss of The University of Hong Kong is thanked for his assistance with English.

References

Cornell, S. E.: Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component, Environ. Pollut., 159, 2214–2222, 2011.

Gilardoni, S., Massoli, P., Giulianelli, L., Rinaldi, M., Paglie, M., Pollini, F.,

Hsu, S.-C., Liu, S. C., Huang, Y.-T., Chou, C. C. K., Lung, S. C. C., Liu, T.-H., Tu,

Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,

Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene, W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission of ammonia:

Shi, G., Li, Y., Jiang, S., An, C., Ma, H., Sun, B., and Wang, Y.: Large-scale spatial variability of major ions in the atmospheric wet deposition along the China Antarctica transect (31°N–69°S), Tellus B, 64, 1–10, 2012.

Xie, H., Bélanger, S., Song, G., Benner, R., Taalba, A., Blais, M., Tremblay, J.-É., and

Table 1. Nitrogen speciation in various aerosols reported from different regions.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Date</th>
<th>Location</th>
<th>NO$_3^-$</th>
<th>NH$_4^+$</th>
<th>WSON</th>
<th>NO$_2^-$</th>
<th>NH$_3^+$</th>
<th>WSON</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP (Sea fog)</td>
<td>Mar–Apr 2014</td>
<td>ECSs Shelves</td>
<td>536 ± 300</td>
<td>442 ± 194</td>
<td>147 ± 171</td>
<td>48 ± 7</td>
<td>42 ± 9</td>
<td>10 ± 6</td>
<td>This study</td>
</tr>
<tr>
<td>TSP (Dust)</td>
<td>Mar–Apr 2014</td>
<td>NWPO Remote ocean</td>
<td>100 ± 23</td>
<td>138 ± 24</td>
<td>11.2 ± 4.0</td>
<td>41 ± 5</td>
<td>56 ± 7</td>
<td>5 ± 2</td>
<td>This study</td>
</tr>
<tr>
<td>TSP (Bgd.)</td>
<td>Mar–Apr 2014</td>
<td>NWPO Remote ocean</td>
<td>26 ± 32</td>
<td>54 ± 45</td>
<td>10.9 ± 6.8</td>
<td>27 ± 9</td>
<td>60 ± 11</td>
<td>14 ± 8</td>
<td>This study</td>
</tr>
<tr>
<td>TSP (Dust)</td>
<td>Aug 2007–2008</td>
<td>Barbados, Atlantic Island</td>
<td>101 ± 4</td>
<td>11 ± 7</td>
<td>1.4 ± 1.3</td>
<td>45c</td>
<td>49c</td>
<td>6c</td>
<td>Zamora et al. (2011)</td>
</tr>
<tr>
<td>TSP (Dust)</td>
<td>May 2007–July 2009</td>
<td>Miami, FL, Atlantic Coastal city</td>
<td>28 ± 9</td>
<td>26 ± 10</td>
<td>3.0 ± 2.0</td>
<td>50c</td>
<td>45c</td>
<td>5c</td>
<td>This study</td>
</tr>
<tr>
<td>PM$_{2.5}$ (Dust)</td>
<td>Mar 2005–Apr 2007</td>
<td>Southwest ECS Shelves</td>
<td>84 ± 98</td>
<td>177 ± 151</td>
<td>54 ± 17</td>
<td>15c</td>
<td>61c</td>
<td>24</td>
<td>Nakamura et al. (2006)</td>
</tr>
<tr>
<td>TSP (Dust)</td>
<td>Feb 1992–May 2004</td>
<td>Island of Jeju Island</td>
<td>71 ± 44</td>
<td>72 ± 48</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Kang et al. (2009)</td>
</tr>
<tr>
<td>TSP</td>
<td>Feb–Mar 2007</td>
<td>Northwest ECS Shelves</td>
<td>68c</td>
<td>193c</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Shi et al. (2010)</td>
</tr>
<tr>
<td>TSP</td>
<td>Mar–Apr 2007</td>
<td>Southwest ECS Shelves</td>
<td>38 ± 45</td>
<td>89 ± 76</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Hsu et al. (2010b)</td>
</tr>
<tr>
<td>TSP</td>
<td>Sep 2007</td>
<td>ECS Shelves</td>
<td>34c</td>
<td>136c</td>
<td>54 ± 36</td>
<td>15c</td>
<td>61c</td>
<td>24</td>
<td>This study</td>
</tr>
<tr>
<td>TSP</td>
<td>Mar 2004</td>
<td>ECS Shelves</td>
<td>39c</td>
<td>91c</td>
<td>16 ± 19</td>
<td>27c</td>
<td>62c</td>
<td>10</td>
<td>This study</td>
</tr>
<tr>
<td>TSP</td>
<td>Mar–Apr 2006</td>
<td>Yellow Sea Shelves</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>This study</td>
</tr>
<tr>
<td>TSP</td>
<td>Apr 2010</td>
<td>Northwest ECS Island</td>
<td>111c</td>
<td>76c</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>This study</td>
</tr>
<tr>
<td>TSP</td>
<td>Mar 2011</td>
<td>Northwest ECS Island</td>
<td>137c</td>
<td>202c</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Zhu et al. (2013)</td>
</tr>
<tr>
<td>TSP</td>
<td>Jul–Aug 2008</td>
<td>NWPO Remote ocean</td>
<td>2.5</td>
<td>5.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Jung et al. (2013)</td>
</tr>
<tr>
<td>TSP</td>
<td>Nov–Dec 2000</td>
<td>Island of Tasmania</td>
<td>11 ± 7</td>
<td>2.6 ± 3.0</td>
<td>3.6 ± 5.7</td>
<td>63</td>
<td>15</td>
<td>21</td>
<td>Mace et al. (2003)</td>
</tr>
<tr>
<td>TSP</td>
<td>Aug–Sep 2008</td>
<td>NWP Remote ocean</td>
<td>1.8 ± 1.5</td>
<td>1.2 ± 1.1</td>
<td>1.1 ± 0.93</td>
<td>43c</td>
<td>30c</td>
<td>28c</td>
<td>Miyazaki et al. (2011)</td>
</tr>
<tr>
<td>TSP</td>
<td>Apr 2007–Mar 2008</td>
<td>Marina, Singapore urban</td>
<td>50 ± 31</td>
<td>14 ± 8</td>
<td>56 ± 22</td>
<td>40 ± 15</td>
<td>11 ± 6</td>
<td>49 ± 17</td>
<td>He et al. (2011)</td>
</tr>
<tr>
<td>TSP</td>
<td>Jan–Dec 2006</td>
<td>Keelung, Taiwan Coast city</td>
<td>76 ± 28</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Chen et al. (2010)</td>
</tr>
<tr>
<td>TSP (Sea-spray)</td>
<td>6.7 ± 2.7</td>
<td>4.2 ± 1.7</td>
<td>0.5 ± 0.3</td>
<td>59c</td>
<td>37d</td>
<td>4d</td>
<td>Zamora et al. (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSP (Bb)</td>
<td>11 ± 11</td>
<td>18 ± 13</td>
<td>3.3 ± 2.0</td>
<td>34c</td>
<td>56c</td>
<td>10c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSP (Bb)</td>
<td>28 ± 16</td>
<td>48 ± 48</td>
<td>6.2 ± 6.4</td>
<td>34c</td>
<td>58c</td>
<td>8c</td>
<td>Zamora et al. (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSP (Pollution)</td>
<td>22 ± 11</td>
<td>23 ± 24</td>
<td>3.7 ± 2.8</td>
<td>45c</td>
<td>48c</td>
<td>8c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM1.3-10</td>
<td>2005, 2006</td>
<td>Crete, Greece Island</td>
<td>26 ± 9</td>
<td>8.9 ± 4.0</td>
<td>5.5 ± 3.9</td>
<td>64</td>
<td>23</td>
<td>13</td>
<td>Violaki et al. (2010)</td>
</tr>
<tr>
<td>PM1.3</td>
<td>2005, 2006</td>
<td>Crete, Greece</td>
<td>1.5 ± 1.3</td>
<td>70 ± 35</td>
<td>12 ± 14</td>
<td>2</td>
<td>85</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>Jan-Dec 2005</td>
<td>Indian Ocean Remote ocean</td>
<td>0.3 ± 0.2</td>
<td>1.3 ± 1.0</td>
<td>0.8 ± 1.4</td>
<td>14</td>
<td>53</td>
<td>32</td>
<td>Violaki et al. (2015)</td>
</tr>
<tr>
<td>PM2.5-10</td>
<td></td>
<td></td>
<td>0.2 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.2 ± 0.4</td>
<td>26</td>
<td>39</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>Jan 2007</td>
<td>Middle S. Atlantic Remote ocean</td>
<td>1.3 ± 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 a Percentage in total dissolved nitrogen
2 b Bb indicated Biomass burning
3 c Calculated value from the original data
Table 2. Mean molar concentrations (nmol m\(^{-3}\)) of major ionic species together with Al (ng m\(^{-3}\)) in sea fog modified aerosols and dust aerosols in the ECSs.

<table>
<thead>
<tr>
<th></th>
<th>Sea fog(^a) mean ± SD</th>
<th>Dust(^b) mean ± SD</th>
<th>Dust(^c) mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td>123.2 ± 97.5</td>
<td>294.8 ± 238.3</td>
<td>130.4 ± 85.2</td>
</tr>
<tr>
<td>NH(_4^+)</td>
<td>441.5 ± 193.9</td>
<td>177.6 ± 150.7</td>
<td>72.2 ± 47.7</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>24.1 ± 16.5</td>
<td>41.2 ± 32.4</td>
<td>25.0 ± 12.9</td>
</tr>
<tr>
<td>K(^+)</td>
<td>17.5 ± 9.9</td>
<td>21.8 ± 19.1</td>
<td>17.9 ± 9.2</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>54.7 ± 52.2</td>
<td>61.7 ± 39.5</td>
<td>76.9 ± 58.5</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>125.2 ± 111.3</td>
<td>280.9 ± 349.1</td>
<td>121.3 ± 101.6</td>
</tr>
<tr>
<td>NO(_3^-)</td>
<td>535.9 ± 299.7</td>
<td>83.6 ± 98.4</td>
<td>71.0 ± 43.5</td>
</tr>
<tr>
<td>SO(_4^{2-})</td>
<td>172.5 ± 54.1</td>
<td>145.2 ± 103.2</td>
<td>104.0 ± 47.2</td>
</tr>
<tr>
<td>nss-SO(_4^{2-})</td>
<td>165.1 ± 50.3</td>
<td>94.9 ± 89.0</td>
<td>96.1 ± 47.3</td>
</tr>
<tr>
<td>Total Al</td>
<td>2460 ± 2160</td>
<td>3470 ± 2730</td>
<td>4900 ± 6500</td>
</tr>
<tr>
<td>Soluble Al</td>
<td>124 ± 36</td>
<td>38 ± 45</td>
<td>nd.</td>
</tr>
<tr>
<td>Al Solubility</td>
<td>5.0 ± 1.7 %</td>
<td>1.1 ± 1.6 %</td>
<td>nd.</td>
</tr>
<tr>
<td>Relative acidity</td>
<td>0.73 ± 0.13</td>
<td>1.07</td>
<td>1.06</td>
</tr>
</tbody>
</table>

\(^a\) This study; \(^b\) Hsu et al. (2010b); \(^c\) Kang et al. (2009); nd.: no data
Table 3. The depositional fluxes reported or calculated for the Asian region and Pacific Ocean based on assumed deposition velocity.

<table>
<thead>
<tr>
<th>Locations</th>
<th>Collection type</th>
<th>Date</th>
<th>(\text{NO}_3^+)(^a)</th>
<th>(\text{NH}_4^+)(^a)</th>
<th>WSON(^a)</th>
<th>Total(^a)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSs (Sea fog)</td>
<td>Cruise</td>
<td>Mar-Apr 2014</td>
<td>926 ± 518</td>
<td>38 ± 17</td>
<td>127 ± 148</td>
<td>1090 ± 671</td>
<td>This study</td>
</tr>
<tr>
<td>NWPO (Dust)</td>
<td>Cruise</td>
<td>Mar-Apr 2014</td>
<td>172 ± 40</td>
<td>11.9 ± 2.1</td>
<td>6.5 ± 5.7</td>
<td>190 ± 41.6</td>
<td>This study</td>
</tr>
<tr>
<td>NWPO (Bgd.)</td>
<td>Cruise</td>
<td>Mar-Apr 2014</td>
<td>44.6 ± 55.3</td>
<td>4.66 ± 3.90</td>
<td>7.6 ± 6.5</td>
<td>56.8 ± 59.1</td>
<td>This study</td>
</tr>
<tr>
<td>Subarctic western</td>
<td>Cruise</td>
<td>Jul-Aug 2008</td>
<td>3.3 ± 2.3</td>
<td>1.9 ± 0.63</td>
<td>--</td>
<td>5.3 ± 2.6</td>
<td>Jung et al. (2011)</td>
</tr>
<tr>
<td>Subtropical western</td>
<td>Cruise</td>
<td>Aug-Sep 2008</td>
<td>3.0 ± 1.5</td>
<td>2.7 ± 2.1</td>
<td>--</td>
<td>5.7 ± 3.5</td>
<td>Jung et al. (2011)</td>
</tr>
<tr>
<td>North Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central North Pacific</td>
<td>Cruise</td>
<td>Jan 2009</td>
<td>1.6 ± 0.44</td>
<td>1.4 ± 0.96</td>
<td>--</td>
<td>3.1 ± 1.4</td>
<td>Jung et al. (2011)</td>
</tr>
<tr>
<td>Northwest ECS*</td>
<td>Cruise</td>
<td>Feb-Mar 2007</td>
<td>117</td>
<td>17</td>
<td>--</td>
<td>134</td>
<td>Shi et al. (2010)</td>
</tr>
<tr>
<td>Southwest ECS*</td>
<td>Cruise</td>
<td>Spring 2005-2007</td>
<td>66</td>
<td>8</td>
<td>--</td>
<td>74</td>
<td>Hsu et al. (2010b)</td>
</tr>
<tr>
<td>Northwest ECS*</td>
<td>Coastal island</td>
<td>Apr 2010</td>
<td>192</td>
<td>6.6</td>
<td>--</td>
<td>198.6</td>
<td>Zhu et al. (2013)</td>
</tr>
<tr>
<td>Northwest ECS*</td>
<td>Coastal island</td>
<td>Mar 2011</td>
<td>237</td>
<td>17.5</td>
<td>--</td>
<td>254.5</td>
<td>Zhu et al. (2013)</td>
</tr>
</tbody>
</table>

\(^a\) recalculated fluxes based on assumed deposition velocity

\(^a\) in \(\mu\text{mol} \, \text{N} \, \text{m}^{-2} \, \text{d}^{-1}\)
Figure 1. Map of the cruise track. Orange, pink and blue indicate sea fog, dust and background days during the cruise. Sample number and the collection range were shown.
Figure 2. The meteorological parameters collected during the sampling period (solid line). Wind speed is in purple, wind direction in green, RH in blue and temperature in red. The orange shadings indicate the period of sea fog contact and pink indicate the dust period. Non-sampling period is in dashed curves.
Figure 3. Total and water soluble Al concentrations and relative acidity (RA) for TSP.

The orange bars indicate the sea fog period, the pink bars indicate the dust period. Sample identifications are shown on the x-axis (see Table S1). The horizontal blue dashed line (590 ng m$^{-3}$) stands for the reference to define background aerosols, and black dashed line indicates the criterion of 0.9 for relative acidity.
Figure 4. Map and cruise track superimposed on 3-days air mass backword trajectories corresponding to each sample. Altitudes of 100 m a.s.l. (triangles), 500 m a.s.l. (asterisks) and 1000 m a.s.l. (squares) are above sea levels during the collection of (a) sea fog modified aerosols, (b) dust aerosols and (c) background aerosols. The colour bar represents the altitude (in km).
Figure 5. Scatter plots for equivalent concentrations of specific ions. (a) total anions vs. total cations, (b) chloride vs. sodium, (c) magnesium vs. sodium, (d) calcium vs. sodium, (e) potassium vs. sodium, (f) ammonium vs. nss-sulfate, (g) Σ (nitrate + nss-sulfate) vs. Σ (nss-calcium + ammonium) and (h) nitrate vs. ammonium. Orange, pink and blue are for sea fog modified, dust and background aerosols.
Figure 6. Box plots for (a) concentrations of NO_3^-, NH_4^+, WSON and nss-Ca^{2+}, and RA, and (b) fractions of nitrogen species in total dissolved nitrogen and proportion of nss-Ca^{2+} in Ca^{2+}, in sea fog modified, dust and background aerosols. The large boxes represent the inter-quartile range from the 25th to 75th percentile. The line inside the box indicates the median value. The whiskers extend upward to the 90th and downward to the 10th percentile.
Figure 7. Pie charts of ion distribution for (a) sea fog modified aerosols (this study), (b) dust aerosols collected over the East China Sea (n = 8) (Hsu et al., 2010b), and (c) dust aerosols collected on the island of Jeju (n = 49) (Kang et al., 2009).
Figure 8. Scatter plots of concentrations of (a) Na\(^+\), (b) Cl\(^-\), (c) Mg\(^{2+}\), (d) WSON, (e) NO\(_3^-\), and (f) NH\(_4^+\) against corresponding wind speed for background aerosols. Wind speed was derived by averaging wind speed (5 min average) in corresponding sampling intervals. Crosses in (d), (e) and (f) were not considered during the linear regression.
Figure 9. (a) Scatter plot of published aerosol WSON and TDN concentrations from the world (red circles for this study, black crosses from Lesworth et al., 2010; Chen et al., 2007; Mace et al., 2003; Miyazaki et al., 2011; Shi et al., 2010; Srinivas et al., 2011; Zamora et al., 2011; and Violaki et al., 2015). (b) Frequency histograms for percentage WSON in aerosol TDN (grey bars, data from Fig. 9a) and in rainwater (blue bars, data from Cornell, 2011; Zhang et al., 2012; Altieri et al., 2012; Cui et al., 2014; Chen et al., 2015; and Yan and Kim, 2015).
Figure 10. Dry deposition of aerosol nitrogen against sample identification. Nitrate is in blue, ammonium in red and WSON in green. Sample identifications, which matched with Table S1, are shown on the x axis.