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Thank you to all reviewer’s for your suggestions. We respond to each comment below in italics. 

We will also submit a version of the article with all the changes marked to the editor. 

 

Response to Andrew Sawyer 

This is not a review of the paper, only a short comment about the MODIS aerosol data 

used. 

In this study, the authors use MODIS Collection 6 data for MODIS Aqua, but MODIS 

Collection 5 data from MODIS Terra. The latest data version, which is expected to remain 

the standard for at least the next few years, is Collection 6; older versions should generally 

be considered obsolete and avoided where possible. In case the authors are unaware, I 

thought I should mention that Collection 6 data are also available for MODIS Terra. In the 

’Dark Target’ data set which it looks like the authors are using, there were several 

important bug fixes and updates going from Collection 5 to Collection 6 (see the Levy et al., 

2013 paper cited in the manuscript). It may therefore be advisable to repeat the Terra 

portion of the analysis with Collection 6 data, if this is practical. My expectation is that 

results for eastern North America may not change too much, but western North America 

and China may change more significantly. This is consistent with what the authors see in 

e.g. Figure 6 (Terra/Aqua differences are not consistent with diurnal sampling effects), and 

so using the latest data version for both platforms may simplify the analysis somewhat. I 

realise, though, that this may be quite a computational burden to update the data set use at 

this stage. MODIS Collection 6 also includes Deep Blue aerosol data covering all land 

surfaces, and therefore may be of additional interest for this type of study. Our experience 

suggests that the two data sets are quite similar over North America, though, so it might be 

that not much is gained from using both Deep Blue and Dark Target as model constraints 

(they would probably have a similar effect on the model over North America). 

Thank you for this comment. We started this work using Collection 5, but upon release of 

Collection 6, we redid all of our analysis with the updated product for Aqua MODIS, but did not 

reprocess MODIS-Terra due to the timeline of release (and the need for many years of data). 

However, we kept the discussion of Collection 5 because previous studies using a satellite-based 

PM2.5 method have relied on Collection 5 and there is substantial difference (as shown) between 

Collection 5 and Collection 6, which could be a significant source of uncertainty in those 

previous estimates. We have now removed any discussion of Terra from our results, ensuring that 

we are using the latest data products in our analysis.  

 

As a minor unrelated point, I notice that C. A. Pope’s surname is typeset as "Pope III" 
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in the paper and reference list. The surname should just read "Pope". If the authors 

are using LaTeX/BibTeX then I think the correct formatting can be achieved by writing 

"Pope, III, C. A." rather than "Pope III, C. A. 

This is a typesetting issue which we will be sure to catch in the final version. 

 

Response to Anonymous Referee #1 

General comments: This paper estimates sources of uncertainty in exposure estimates by 

analyzing differences in model versus satellite-derived PM2.5 and various concentration-

response functions. I think that this is an important contribution to the field because it 

compares the influence of individual assumptions on estimated mortality and compares 

results to different studies.  

Thank you for your review. Responses are in italics below each comment. 

Specific comments:  

-Pg. 25333, line 14: Did the five-year population estimates indicate that a linear 

interpolation was appropriate in China?  

Population growth is likely not linear in China over the time period, but it is outside the scope of 

this paper (beyond acknowledging this as a source of uncertainty) to determine the actual annual 

change in population given the projections for 2005, 2010, and 2015. Additionally, we calculate 

the average annual mortality over a 8 year time period, so this should reduce some of the 

uncertainty.   

-Pg. 25334, line 4: How would you expect different spatial resolutions of baseline mortality 

data to influence your results and comparisons with the studies mentioned?  

Spatial resolutions of all variables will impact local results, including the baseline mortality, 

specifically in regions where grid boxes might straddle two countries or states with very different 

mortality rates. Many previous studies use a country-wide regional baseline mortality rate; we 

go one step beyond by using state-specific mortality for the US, however we acknowledge that 

further spatially resolved mortality data (particularly in China) would provide more accurate 

local estimates of the burden. To address this concern, we had added discussion throughout the 
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text about resolution and referenced Punger and West (2013) and Thompson et al. (2014) both of 

which discuss the impact of resolution for estimating health impacts.  

-Pg. 25338, line 18: Specify here that satellite-based estimates are gridded at the same 

spatial resolution as the unconstrained model instead of (or in addition to) further down in 

this section.  

Done. 

 -Pg. 25339, line 5: Explain why MODIS and MISR were both used (strengths/weakness of 

each dataset), and why collection 6 for Aqua and 5 for Aqua and Terra. Also, how does this 

compare with also using SeaWiFS in the more recent van Donkelaar et al. (2014) work?  

We used MISR and MODIS to highlight their differences because previous studies have used 

either or both of these for a combined AOD product. Additionally, MISR is generally biased low 

and MODIS is biased high (in comparisons with AERONET). This has been noted in other 

studies, and we address this discrepancy in the text and reference these other studies.  

We started this work using Collection 5, but upon release of Collection 6, we redid all of our 

analysis with the updated product for Aqua MODIS, but did not reprocess MODIS-Terra due to 

the timeline of release. However, we retained the discussion of Collection 5 in our submitted text 

because previous studies using this method have relied on Collection 5 and there is substantial 

difference (as shown) between Collection 5 and Collection 6, which could be a significant source 

of uncertainty in those previous estimates. However, given concerns about the data quality of 

Collection 5 (particularly raised by Andrew Sawyer) and that this comparison is not central to 

our study, we have now removed all MODIS-Terra data from the analysis to ensure clarity.  

van Donkelaar et al. (2014) use a combined product of MODIS, MISR, and SeaWiFs. Using this 

product would likely also provide different results because it is a different product. The 

discussion however would remain the same, that different satellites products have different biases 

and therefore would result in different estimates. We want to stress that the goal of this paper is 

not to design a PM2.5 product as with the series of papers by van Donkelaar et al. (2010; 2013; 

2014; 2015) but to discuss uncertainties in these products and stress the necessity of 

understanding the data used in assessing health impacts.  
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-Pg. 25341, line 22: This is mentioned briefly later in the manuscript, but do you have any 

indication of how MODIS and MISR compare with observations at shorter timescales 

(daily)? Are the satellites overestimating or underestimating peaks and how could this 

impact exposure estimates?  

The satellites both underestimate and overestimate peaks in AOD depending on the time and 

location. Compared to AERONET sites, the mean normalized gross error in daily AOD for 

MODIS is 75% in the western U.S., 50% in western China, 35% in the eastern U.S. and in 

eastern China. Determining chronic exposure from long-term averages should reduce some of 

the uncertainty from not capturing daily variability (unless there is a systematic bias). Our 

discussion in the sensitivity analyses section of using average AODs to compute PM2.5 alludes to 

some of the uncertainty in this, that daily variability can influence the annual means.  

-Pg. 25342, line 17: Is there a difference in PM2.5 components between China and the U.S. 

that could influence results?  

Yes, this is why we do some sensitivity tests examining the potential biases in aerosol composition 

(i.e. the sulfate and BC only sensitivity tests). As to the toxicity of different components, this is 

still an open area of research (i.e. Chung et al., 2015), therefore we do not estimate or discuss 

speciated PM2.5 estimates here.  

Chung Y, Dominici F, Wang Y, Coull BA, Bell ML. 2015. Associations between long-term 

exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare 

enrollees in the eastern United States. Environ Health Perspect 123:467–474; 

http://dx.doi.org/10.1289/ehp.1307549. 

-Pg. 25344, line 21: Is there a figure or table with these AERONET results?  

We have added a figure with these results. 

-Pg. 25344, line 25: Better in the eastern US and eastern China than the western parts of 

each country? Please clarify.  

We have added to the text:”than in the western U.S. and western China” 

-Pg. 25348, lines 21-22: What are examples of some of these regional sources?  

We have added to the text: “e.g biogenic aerosol in the Southeastern U.S.” 

http://dx.doi.org/10.1289/ehp.1307549


 5 

-Pg. 25352, line 4: Implications of a study that is smaller and using only white participants?  

The implications are that it may not be representative of the larger population that might not 

have the same demographics. 

-Pg. 25353, line 3: Can you comment on how the results of Chen et al. (2013) (or another 

China-specific study) would impact your results?  

We cannot make a quantitative comparison with the Chen et al. (2013) study because they used 

total suspended particles (TSP) rather than PM2.5 (and most epidemiological studies agree that 

the most harmful constituent is the fine fraction). Pope and Dockery, 2013 do compare the Chen 

et al. (2013) results with other studies and find that the elevated risk is lower than found in the 

Laden et al. (2006) and Pope et al. (2002) studies which is in line with Aunan and Pan (2004)as 

mentioned in the text. We have added the Chen et al. (2013) reference to the text.  

-Pg. 25355, line 17: What was the spatial resolution of the Lelieveld et al. (2013) study? As 

the authors mentioned earlier in the text, spatial resolution might be driving some 

differences in more populated grid cells.  

Lelieveld et al. (2013) uses a model with a horizontal resolution of ~1.1° x 1.1° which is 

somewhat coarser than our model resolution. 

-Conclusions: I think that the discussion of Figure 9 needs to be expanded, which could also 

include a brief discussion of how different spatial resolutions (among different models and 

between model and satellite-based estimates), emissions inventories, region-specific health 

data, etc. impact these estimates. And, if possible, it might be helpful if the authors could 

give some sort of general recommendations regarding the “best practices” of the factors 

that are most important for future authors to consider when estimating exposure at either 

at a global scale or for China and the U.S. specifically.  

 We have moved Figure 9 to section 4 and expanded the discussion. We have added more 

comments regarding resolution throughout the paper and added comments about other sources 

of uncertainty to the conclusion. As stated, the CRF seem to be the most important for attributing 

mortality, as such, we prefer to leave the recommendation about the “best practices” to experts 

in that field and instead suggest that a range of results are presented for comparison to other 

studies which also use a range of different methods.  
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-Table 1: Would it make sense to include the updated estimates of Lelieveld et al. (2015)? 

Also, doesn’t Evans et al. (2013) provide estimates with different CRFs?  

Lelieveld et al., 2015 had not been released at the time of submission but has now been added to 

the text along with several other estimates. Yes, Evans et al. (2013) does provide estimates with 

different CRFs which we have now added along with several other studies.  

-Table 1: Does the heading mean that some of the U.S. estimates are for all of North 

America and China for all of Asia/Western Pacific? Please clarify in the caption because it’s 

unclear if these refer to studies that were specific to the countries or to regions. You 

mention that the Anenberg study is regional in the text but it’s unclear about the others. 

Also, are all of these studies for similar years?  

We have clarified the region for the estimate in the table next to the study and added an extra 

column in Table 1 noting the year of the estimate.  

-Figure 4: Anything available for China? It would be helpful to see a plot based on any 

available data, maybe AERONET as mentioned in the text?  

There are now a significant number of surface monitoring sites in China, but there were none 

with long-term measurements (that were publically accessible) for the period of 2004-2011. We 

have added a figure with AERONET sites and comparisons (Figure 7). 

-Figure 9: Are the previous estimates including only country-based US and China specific 

studies, or are some regional? This figure is very helpful and I would appreciate a more in-

depth discussion.  

Yes, there are. We have tried to clarify this in Table 1 and have added to the discussion on 

Figure 9. 

Technical corrections:  

-Pg. 25330, line 19: “on the order of..” fixed 

-Pg. 25344, line 20: Are you referring to Fig. 5a (exposure plot) or to Fig. 6a (AOD plot)?  

Figure 6, fixed 
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-Pg. 25345, line 2: Missing a period or this is a run-on sentence. This is a typesetting error  

(we prefer U.S. to US) which we look for in the final version.  

-Pg. 25345, line 10: Fig. 6b? yes. 

-Pg. 25346, line 17: “Requires model output,” that is unnecessary as written. Fixed. 

-Pg. 25351, lines 19-23: Much of this is repeated from the introduction and could likely be 

cut or shortened if the word limit is an issue. We chose to leave it for clarification. 

-Table 1: Do you mean that Table 4 provides additional information?  

Yes, thank you for noting this mistake. 

-Table 3: Define threshold abbreviations in caption.  

We have altered the table. 

-Figure 2: Can you change the font size of the individual studies? This figure is difficult to 

read, and the information might make more sense in a table.  

We have made the font bigger. 

-Figure 7: Please clarify that abbreviations are also defined in Table 3.  

Done. 

-Figure 8: Shouldn’t this refer to the last column in Table 4?  

Yes. This has been fixed. 

References mentioned above: Chen, Y., Ebenstein, A., Greenstone, M. and Li, H.: Evidence 

on the impact of sustained exposure to air pollution on life expectancy from China’s Huai 

River policy, Proc. Natl. Acad. Sci. USA, 110(32), 12936–12941, 

doi:10.1073/pnas.1300018110, 2013. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. 

and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality 

on a global scale, Nature, 525(7569), 367–371, doi:10.1038/nature15371, 2015. 

 

Response to Anonymous Referee #2 
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“Exploring the Uncertainty Associated with Satellite-Based Estimates of Premature 

Mortality due to Exposure to Fine Particulate Matter” by Ford and Heald. This study 

estimated the premature mortality in US and China by using satellite data and GEOS-

Chem model simulations, and quantified the uncertainties of the results caused by different 

methods and dataset used to derive. The study is useful to constrain the estimated health 

effect due to increased concentrations of fine particulate matter with satellite-based 

observations. I have a few major concerns and some specific comments as below. Firstly, 

the relationship η, which links PM2.5 and AOD, is derived from the GEOS-Chem 

simulation in this study, although the authors have conducted a couple of sensitivity 

experiments to understand how much difference would be caused due to the uncertainty in 

η, I am curious that how these would be different from the real η if directly linking the 

surface PM2.5 and satellite AOD. Secondly, the relative risk (RR in the paper), which is a 

key factor to determine the premature mortality due to exposure to PM2.5, differs 

significantly because the pathophysiological mechanisms are currently unclear. The authors 

assessed the uncertainty of the estimated mortality rate by using different PM2.5 

concentration response function. I wonder is it possible to give us a “better choice” for the 

study region such as US and China? Finally, the authors have conducted a few sensitivity 

experiments to test how different factors impact their estimations, which is a good attempt 

to improve our understanding. The disadvantage is lacking of the detailed explanations and 

discussions on theses sensitivity results.  

For comparison of the actual η vs. model η using ground-based measurements, we refer the 

reviewer to Snider et al., 2015 and add this reference to the text and for discussion of the satellite 

η, we refer the reviewer to van Donkelaar et al., 2012. We have added text to the sensitivity 

discussion to better address these questions. As the CRF seem to be the most important for 

attributing mortality, we prefer to leave the recommendation about the “best choice” to experts 

in that field and instead suggest that a range of results are presented for comparison to other 

studies which also use a range of different functions.  
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Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., 

Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., 

Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., 

Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., 

Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: 

SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level 

particulate matter for global health applications, Atmos. Meas. Tech., 8, 505-521, 

doi:10.5194/amt-8-505-2015, 2015. 

Specific comments:  

p.25333, at top of the page, it is difficult to see here how PM2.5 contributes to health from 

the equations Eq.1 and 2; please add an equation to describe the link between PM2.5 and 

RR, if possible.  

These are standard equations to determine the attributable fraction of mortality due to a specific 

factor, not just for PM2.5 exposure. Therefore, we prefer to leave the equations as they are in 

order to align with what is standard in the literature. The concentration response functions are 

described in Section 2.4 which we refer to in this section. 

p.25333 last paragraph, You use crude death rates, instead respiratory disease, to 

determine baseline mortalities, which will overestimate the burden of death due to air 

pollution. Can you find and use the death rates from non-accidental death? In China, it is 

even cruder as population rather than death rate is used to estimate. Can the authors 

estimate the biases caused by this?  

We do not use overall crude death rates (or “all cause”), but the death rates specific for each 

disease (respiratory, heart, and lung cancer) for each state and each year. Same for China, these 

are not crude death rates; they are year-specific age-standardized mortality rates by cause from 

the WHO for China as described in Section 2.2. 

Fig.2. the text is too small to see, I suggest the authors to make this figure bigger.  

This may be related largely to ACPD formatting but we have made the font bigger and will 

ensure that this is legible in the final version. 
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Table 2: table caption, “… in Eq. (8)…”, should be Eq.(7).  

Yes. Thank you. 

p.25339, line 5-20, You removed the satellite observations with high AOD (>2.0), can you 

explain how do you decide this threshold? since AOD could be very high (over 2.0) in some 

cases, e.g. heavy pollution?  

We choose this threshold to attempt to take care of cloud contamination as discussed in the 

methods from our previous work (Ford and Heald, 2012, 2013). We acknowledge this and note 

that this could remove high pollution events, particularly in China. 

Fig.5. How do you compute the values shown in Fig.5? Which field in Eqs corresponds to 

the results shown here? can you clarify that if the results are P in Eq. (2), or others?  

This is a cumulative distribution plot showing the percent of the population exposed to different 

annually-averaged PM2.5 concentrations calculated using the population (which is P in Equation 

2) and the concentration (which is C in the RR equations). It is calculated as a sum of the 

population in each grid box which has an annual average concentration at or above each 

concentration on the x-axis. We have added this to the text to clarify. 

p.25344, bottom paragraph. It would be good to give a plot to show the AERONET sites 

used in the comparisons in both US and China. The quantitative comparison of AOD 

between satellite and AERONET is not shown in a plot and/or table, and not even given in 

the text. Please include these comparisons.  

A figure has been added (now Figure 7). 

p.25347 and Fig.7: As I can see the NMB is apparently largest in Southeastern China from 

the experiment vertical profile, but there are no explanation in the text. For the test 

Relative humidity, there are positive NMB in Southeastern and Northeaster China, but 

negative NMB in western and Central China. The necessary explanations and discussions 

are needed in this sensitivity tests.  

We have added more to this discussion to clarify these results. 

Figure 8, figure caption “… in Table 3”, should be Table 4.  
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Fixed. 

Figure.9, I suggest to move the Figure 9 and associated text into section 4, rather than last 

section, i.e. section 5. 

Done. 

Response to Anonymous Referee #3 

The authors present an interesting paper in which they estimate the health burden of 

PM2.5 in the US and China, compare those estimates with previous studies, and then 

explore uncertainties in the calculation due to satellite estimates of PM2.5, health function 

parameters, etc. The paper is unusual in its detailed treatment of atmospheric science and 

satellite retrievals, as well as concentration-response functions within a single paper. To my 

mind, this is both a strength of the paper – as different uncertainties are addressed within a 

single paper – and a weakenss, as the discussion ranges over a wide body of literature and 

can be hard to follow at times.  

Overall, my sense is that the paper is a worthwhile addition to the existing literature.  

Thank you for your review. 

 

However, I feel that the presentation of the complex discussion can be improved and I have 

some general questions or concerns about the approach: 

1) It seems that the main points of the paper are summarized in Figure 9. Differences in 

health burden are presented when exposure estimates are driven by the model vs. two 

satellite estimates, and then uncertainty analysis is performed on 3 parameters individually. 

Given that the uncertainty due to individual parameters has been estimated by the authors, 

I am surprised that they did not take the next step to estimate an overall uncertainty given 

uncertainty in those parameters individually. Also, is the uncertainty in CRF in Figure 9 a 

simple uncertainty given the confidence intervals from a single study, or does it somehow 

account for uncertainty as illustrated in Figure 8 or Table 4? 

 

Our goal was to show a range of uncertainty due to the specific parameters that we explored. We 

did not examine every sources of uncertainty, especially with regards to the model. Estimating an 

overall uncertainty would be a much more complicated process that would likely require a much 

more thorough examination of the parameter space (along the lines of Lee et al., 2013). For this 

reason, we do not want to provide an overall uncertainty that might misrepresent the analysis 

done here. The grey lines show the uncertainty from the confidence intervals of the Krewski et al. 

study, the colored bar shows the uncertainty from Figure 8 (now Figure 9). 

 

2) The goal as stated p. 25354 is “to explore how mortality burden estimates are made and 

how choices within this methodology can explain some of [the discrepancies among previous 
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studies].” The authors have succeeded in estimating how different modeling choices or 

parameters contribute to the overall uncertainty. But as there are many differences among 

many different studies, I don’t know that this paper helps to clarify those differences in 

results – or it certainly does not explain why a particular study is high or low vs. others. 

The results shown are not surprising given the current literature, and since previous studies 

have often included analysis and discussion comparing their results with others, I’m not 

sure that the authors add something new here. The results are interesting and seem to add 

to the literature, but I’d encourage the authors to think harder about what is new and 

present that more clearly. 

We have added to the discussion of Figure 9 (now Figure 10) and the conclusions which we 

believe  does a better job clarifying the differences.  

 

 

3) Related to #2, despite the complexity of the paper and its extensive discussion, I thought 

the bottom-line messages were rather few. The authors should consider reorganizing in 

places to reduce repetition, and/or removing excessive discussion.  

 

Thank you for this suggestion. As the reviewer highlighted, this was a study with a wide-ranging 

discussion, and we have endeavored in this final version to streamline the discussion. In 

particular, we believe that moving our discussion of the overall uncertainty from the conclusions 

into a separate section (4.4) clarifies the conclusions and contributions of the study.   

 

More specific modeling questions & concerns: 

1) I might be wrong, but I’m not aware that anyone uses a linear function as described in 

equation 3. 

 

It is not commonly used for the reason stated in the text, that it produces very large estimates for 

high concentrations. However, it is used as an alternative concentration-response curve in Cohen 

et al. (2004; 2005), and the Hoek et al. 2013 is presented as linear by Pope et al. (2015). Our 

goal was to start with the simplest form and then explain alternate functions and the impact this 

has on the estimates. We have tried to clarify this is the text. Additionally, in order to be more in 

line with recent literature, we have chosen to use the Burnett et al. (2014) as our baseline 

function and discuss other forms as sensitivity tests.  

 

2) They assume the C0 to be zero. I don’t think that there are other studies that use zero as 

C0, and I am concerned that it requires a significant leap of faith to assume that the same 

concentration-response relationships hold at concentrations below which we have 

observations. If the authors keep this assumption, they should do more to discuss and 

justify this choice. 
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Thank you for raising this point. Sun et al. (2015) uses a threshold of zero and many studies 

which estimate the change in mortality from different sensitivity simulations, which use a base 

case concentration (for changes over time or comparing natural and anthropogenic sources) as 

the C0 value are not accounting for a threshold if those values are less than the threshold of the 

given CRF (e.g.. Anenberg et al., 2010; Silva et al., 2013). Many other studies also test using 

threshold values below the observations (e.g. Johnston et al., 2012; Evans et al., 2013). 

 

The reason one might not include a threshold is that, as stated in the text, most experts in health 

impacts of ambient air quality agree that there is no population-level threshold (Roman et al., 

2008). Additionally, the literature is full of assumptions about the shape and magnitude of the 

CRF above which there were no observations in the original studies (it is relatively linear in the 

range of observations, which is why there is so much discussion on the shape of the CRF at high 

concentrations) which is even more uncertain than at lower concentrations (see confidence 

intervals in Burnett et al., 2014).    

 

However, we would like to point out that we are not trying to defend this as the “correct” 

approach, we instead stress that we explain different assumptions and how this impacts the 

results. We have tried to clarify this in the text. 

 

More specific comments: - The title focuses on satellite-based estimates, but model 

estimates are also used here, and uncertainty in concentration-response factors are also a 

major focus of the analysis. 

As stressed in the paper, satellite-based estimates are in many ways also model estimates, they 

are just constrained model estimates. Additionally, estimating premature mortality due to 

exposure (as in the title) requires use of a CRF so this is implicit. Furthermore our objective is to 

provide context for the interpretation of satellite-derived PM2.5 health estimates, and we feel that 

our title accurately reflects this.   

 

- Given the interest in models, satellites, and ground observations in the paper, I am 

surprised the authors didn’t mention “data fusion” types of approaches such as Brauer et al 

(EST, 2012), who did data fusion to underlie the Lim et al. global burden estimates. Do data 

fusion studies reduce these uncertainties? The question may be beyond the scope of the 

paper, but I thought it deserved at least a little qualitative discussion.  

Thank you for this suggestion. Data fusion methods can indeed reduce some of the uncertainty. 

We have added a reference to Brauer et al., (2012; 2015) and van Donkelaar et al. (2015b) in the 

conclusion. 

 

p. 25331, l. 8-19 – The discussion here seems to mix up estimates of concentration to drive 

epidemiological studies vs. concentrations to drive risk assessments. This also seems to be 

confused a few times later in the paper. I would think that using concentrations to drive 
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risk assessments would be the main purpose here. The last sentence of this paragraph I 

don’t think is true – many epidemiological studies consider health effects for whole 

populations using monitors as imperfect estimates of concentration (and not as estimates of 

personal exposure). 

Our goal here was not to confuse the two, but to discuss them together as both rely on accurate 

PM2.5 observations. Risk assessments use CRFs from epidemiological studies, so the difference 

in how concentration is determined in the original epidemiological study versus how the 

concentration is determined in a risk assessment using that CRF could be important, and the 

difference in the population included in the study (gender, age, socioeconomic status, etc.) versus 

the whole population is likely very important. While monitors can be used to estimate population-

level exposure, health effects are still an individual response (specific individuals with specific 

characteristics died or had an asthma attack) and the available health data may not be 

representative of the whole population (if there is some sort of bias in the percent of susceptible 

people or confounding variables not accounted for) but the response is still aggregated to be 

applicable to the whole population when a relative risk is determined. We have clarified this in 

the text.  

 

p. 25332, l. 8 – “both” is ambiguous here since you’ve just talked about monitoring, 

satellites, and models. 

We removed “both of” 

 

p. 25334 top – it’s not clear to me whether one value is used for the whole US or if different 

values are used in different states. If the first, then why is it important to start with state 

level data and use gridded population? 

Different values are used for different states. We have clarified this in the text. 

 

p. 25336 – The authors are correct that different studies use the terms linear and log-linear 

in different ways. But the discussion here doesn’t quite clarify how the authors are using 

these terms. 

These are both log-linear and are now referred to by the equation number later in the text. 

 

 

p. 25338 top – what is the source for emissions for the rest of the world?  

EDGAR and GEIA for anthropogenic emissions, but that is overwritten by regional inventories, 

such as BRAVO for Mexico, CAC for Canada, EMEP for Europe. We have added these 

references to the text. 

 

p. 25340 bottom shows model performance compared to IMPROVE and AQS. In contrast, 

p. 25341 top discusses AERONET AOD, but presents no model performance evaluation. 
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The goal of satellite-based PM2.5 estimates is to improve surface PM2.5 estimates, not AOD 

(although inherently the method assumes that the two scale the same). As stated, we use 

AERONET to discuss the uncertainty in satellite AOD and have added a figure to show this.  

 

p. 25341, l. 23 – what does “initial fraction” mean? 

This should be “attributable fraction” and has been changed in the text. 

 

p. 25346, l. 12-15 – This discusses how compensating errors may be hidden by NMB. 

For that reason, it is common to also present Normalized Mean Error. 

Yes, compensating errors can be hidden by the NMB and we have also investigated the NME. 

However, as discussed in the text, we use NMB here as appropriate for errors in annual mean 

values (since these are used for chronic exposure).  

 

p. 25352 bottom – this long discussion of low thresholds might seem more appropriate to 

present in methods (there is some discussion there) or in a discussion sector. 

We have removed this paragraph from this section and moved some of it to the methods section. 

 

p. 25354 – Is this the first time Figure 9 is referenced? I find it a little strange to present a 

new figure in the conclusions section. 

We moved this figure and associated text to section 4 following the suggestion of another 

reviewer.  

 

p.25355, l. 14 – “correctly applying response functions is a determining factor” Are the 

authors claiming that some previous studies have done this incorrectly? I would think that 

there may be better or worse choices to make, but that authors may have reasons for 

choosing the approach that they do. I also wouldn’t call these “epidemiological approaches” 

because these are risk assessment studies, not epidemiology. 

Thank you for pointing out this potential misinterpretation of our text! We have removed the 

words “correctly” and “epidemiological.” 

 

p. 25355, l. 17 – “using only populated places” I don’t understand what this means. 

There should be no health effects in unpopulated places. 

The populated places data set gives values for a point location rather than a grid and therefore 

has values for all major cities and town, but only some of the smaller towns in sparsely inhabited 

regions. We clarify this in the text.  
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Table 1 – I’m surprised that uncertainty is shown for only one study – certainly at least 

some of the other studies also estimated uncertainty. Also, Punger & West 2013 estimated 

US PM2.5 burden. Zheng et al. isn’t listed in the references. 

We didn’t include the confidence intervals, just the different estimates from different CRFs. We 

have added Punger and West, 2013 and a reference to Zheng et al. 2014.  

 

Figure 2 is pretty small and difficult to read. Is it true that all of these studies are chronic 

PM2.5? 

We believe that this is largely an issue related to ACPD formatting, however we have made the 

font bigger and will ensure legibility in the final version. Yes, these are all for chronic exposure 

as stated in the Figure caption.  

 

Figure 8 & 9 – units should be “deaths per year” 

Fixed. 
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List of  significant changes: 

- We have changed our base CRF from the Krewski et al. (2009) linear function to the 

Burnett et al. (2014) IER in order to be more in line with the literature published in 2015. 

 

- As per the request of the reviewers, we have added in a new figure showing the location 

of the AERONET sites and the calculated NMB. 

 

- Also following the request of the reviewers, we have moved some of our discussion and 

final figure into the new section 4.4.  
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Abstract 11 

The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary 12 

motivator for air quality research. However, estimates of the air pollution health burden vary 13 

considerably and strongly depend on the datasets and methodology. Satellite observations of 14 

aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface 15 

monitoring and to assess the global population exposure to PM2.5 and the associated premature 16 

mortality. Here we quantify the uncertainty in determining the burden of disease using this 17 

approach, discuss different methods and datasets, and explain sources of discrepancies among 18 

values in the literature. For this purpose we primarily use the MODIS satellite observations in 19 

concert with the GEOS-Chem chemical transport model. We contrast results in the United States 20 

and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response 21 

function, a simple linear concentration response function with no threshold, Wwe estimate that in 22 

the United States, exposure to PM2.5 accounts for approximately 24% of total deaths compared to 23 

1422% in China (using satellite-based exposure), which falls within the range of previous 24 

estimates. The difference in estimated mortality burden based solely on a global model vs. that 25 

derived from satellite is approximately 91420% for the U.S. and 42% for China on a nationwide 26 

basis, although regionally the differences can be much greater. This difference is overshadowed by 27 
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the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we 1 

quantify to be on the order of 20% due to uncertainties in the AOD-to-surface-PM2.5 relationship, 2 

10% due to the satellite observational uncertainty, and 30% or greater uncertainty associated with the 3 

application of concentration response functions to estimated exposure. 4 

1 Introduction 5 

By 2030, air pollution will be the leading environmentally-related cause of premature mortality 6 

worldwide (OECD, 2012). The World Health Organization (WHO) estimates that exposure to 7 

outdoor air pollution resulted in 3.7 million premature deaths in 2012. Many epidemiological 8 

studies have shown that chronic exposure to fine particulate matter (PM2.5) is associated with an 9 

increase in the risk of mortality from respiratory diseases, lung cancer, and cardiovascular 10 

disease, with the underlying assumption that a causal relationship exists between PM and health 11 

outcomes  (Dockery et al., 1993; Jerrett et al., 2005; Krewski et al., 20002009; Pope et al., 1995; 12 

2002; 2004; 2006). This has been shown through single and multi-population time series 13 

analyses, long-term cohort studies, and meta-analyses. 14 

In order to stress the negative impacts of air pollution on human health and inform policy 15 

development (particularly with regard to developing strategies for intervention and risk 16 

reduction), many studies have calculated the total number of premature deaths each year 17 

attributable to air pollution exposure or the “burden of disease,” through health impact 18 

assessment methods. One of the main obstacles in attributing specific health impacts of PM2.5 is 19 

determining personal exposure and linking this to specific health outcomes. Jerrett et al. (2005) 20 

suggest personal monitors would be the optimal method because it would be easier to attribute 21 

individual recorded health outcomes to specific particulate levels, but point out that the financial 22 

costs and time-intensiveness limit widespread use. Many studies have instead relied on fixed-site 23 

monitors within a certain radius to estimate population-level exposure. However, these 24 

monitoring networks are generally located in urban regions and provide no information on 25 

concentration gradients between sites. Thus, epidemiological studies typically have to quantify 26 

the aggregate population response to an area-average concentration. Additionally, health data can 27 

be limited and therefore the responses may be determined from a subset of individuals that may 28 

not be representative of the wider population.  29 
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Estimating the burden of disease associated with particulate air pollution requires robust 1 

estimates of PM2.5 exposure. Fixed-site monitoring networks can be costly to operate and 2 

maintain, and the sampling time period for many of these monitors in the United States is often 3 

only every third or sixth day. Due to the high spatial and temporal variability in aerosol 4 

concentrations, this makes it difficult to determine exposure and widespread health impacts.  5 

Worldwide, monitoring networks are even scarcer, with many developing countries lacking any 6 

long-term measurements. “Satellite-based” concentrations are now used extensively for 7 

estimating mortality burdens and health impacts (e.g. Crouse et al., 2012; Evans et al., 2013; Fu 8 

et al., 2015; Hystad et al., 2012; Villeneuve et al., 2015) (e.g. Crouse et al., 2012; Hystad et al., 9 

2012; Evans et al., 2013). Satellite observations of aerosol optical depth (AOD) can offer much 10 

needed observational constraints for population-level exposure estimates in regions where surface 11 

air quality monitoring is limited; however they represent the vertically-integrated extinction of 12 

radiation due to aerosols, and thus additional information on the vertical distribution and the 13 

optical properties of particulate matter is required (often provided by a model) to translate these 14 

observations to surface air quality (van Donkelaar et al., 2006, 2010; Liu et al., 2004, 2005). 15 

Alternatively, studies have relied on model-based estimates of PM2.5 exposure.  Table 1 shows 16 

that the resulting estimates of premature mortality vary widely. Here, we discuss both of these 17 

different methods and contrast the uncertainty in these approaches for estimating exposure for 18 

both the U.S., where air quality has improved due to regulations and control technology, and 19 

China, where air quality is a contemporary national concern. Our objective is to investigate the 20 

factors responsible for uncertainty in chronic PM2.5 burden of disease estimates, and use these 21 

uncertainties to contextualize the comparison of satellite-based and model-based estimates of 22 

premature mortality with previous work. As health impact assessment methods are becoming 23 

more popular in the scientific literature, a greater understanding of the uncertainties in these 24 

methods and the datasets that are used is important.   25 

 26 
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2 Methods and Tools 1 

2.1 General formulation to calculate the burden of disease 2 

To estimate the burden of premature mortality due to a specific factor like PM2.5 exposure, we 3 

rely on equations 1 and 2 (equations 6 and 8 in Ostro, 2004 and as previously used in van 4 

Donkelaar et al., 2011; Evans et al., 2013; Marlier et al., 2013; Zheng et al., 2015). The 5 

attributable fraction (AF) of mortality due to PM2.5 exposure depends on the relative risk value 6 

(RR), which here is the ratio of the probability of mortality (all-cause or from a specific disease) 7 

occurring  in an exposed population to the probability of mortality occurring in a non-exposed 8 

population. The total burden due to PM2.5 exposure (ΔM) can be estimated by convolving the AF 9 

with the baseline mortality (equal to the baseline mortality rate Mb x exposed population P). The 10 

relative risk is assumed to change (ΔRR) with concentration, so that, in general, exposure to 11 

higher concentrations of PM2.5 should pose a greater risk for premature mortality (section 2.4). 12 

AF= (RR-1) / (RR)  (or the alternate form of AF= ΔRR / (ΔRR+1)  (1) 13 

ΔM=Mb x P x AF          (2) 14 

Application of this approach requires information on the baseline mortality rates and population, 15 

along with the RR, which is determined through a concentration response function (including a 16 

shape and initial relative risk, section 2.4), and ambient surface PM2.5 concentrations.  17 

2.2 Baseline mortality and population 18 

For population data, we use the Gridded Population of the World, Version 3 (GPWv3), created 19 

by the Center for International Earth Science Information Network (CIESIN) and available from 20 

the Socioeconomic Data and Applications Center (SEDAC). This gridded dataset has a native 21 

resolution of 2.5 arc-minutes (~5km at the equator) and provides population estimates for 1990, 22 

1995, and 2000, and projections (made in 2004) for 2005, 2010, and 2015. We linearly 23 

interpolate between available years to get population estimates for years not provided. Population 24 

density for China and the United States for the year 2000 are shown in Figure 1 along with the 25 

projected change in population density by the year 2015, illustrating continued growth of 26 

urbanized areas (at the expense of rural regions in China). We also compare mortality estimates 27 
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using only urban area population (similar to Lelieveld et al., 2013 which estimates premature 1 

mortality in mega-cities). For this, we rely on the populated places dataset (provided by Natural 2 

Earth, which gives values for a point location rather than a grid and includes all major cities and 3 

towns along with some smaller towns in sparsely inhabited regions) which is determined from 4 

LandScan population estimates (Bright et al., 2008). In the U.S., approximately 80% of the 5 

population lives in urban areas. For China, 36% of the population lived in urban areas in 2000, 6 

but this number rose to 53% in 2013 (World Bank, 2015). 7 

To determine baseline mortalities in the U.S. for cardiovascular disease (ischemic heart disease 8 

and stroke), lung cancer, and respiratory disease, we use mortalitydeath rates for each cause of 9 

death for all ages from the Center for Disease Control (cdc.gov) for each year and each state. 10 

which wWe then multiply by the gridded population by these state-level mortality rates to obtain 11 

the total baseline mortality in each grid box. Other studies have also used country-wide (or 12 

regional) (e.g. Evans et al., 2013) or county-level (e.g. Fann et al., 2013) average deaths rates. 13 

Some studies use the mortality rate for all cardiovascular diseases, which would produce larger 14 

estimates than just using ischemic heart disease and cerebrovascular disease (stroke). 15 

Additionally, some studies also only consider respiratory deaths related to ozone exposure.  16 

Mortality values are not as readily available for China, so we rely on country-wide values for 17 

baseline mortality (WHO age-standardized mortality rates by cause). Therefore, in China spatial 18 

variations in Mb are only due to variations in population and not regional variations in actual 19 

death rates (i.e. we do not account for death-specific mortality rates varying between provinces). 20 

In order to account for some regional variability in mortality rates, we use a population threshold 21 

to distinguish between urban and rural regions for lung cancer mortality rates (Chen et al., 22 

2013a)(Chen et al., 2013).  23 

2.3 Relative Risk  24 

The relative risk (RR) is a ratio of the probability of a health endpoint (in this case premature 25 

mortality) occurring in a population exposed to a certain level of pollution to the probability of 26 

that endpoint occurring in a population that is not exposed. Values greater than one suggest an 27 

increased risk, while a value of one would suggest no change in risk. These values are determined 28 

through epidemiological studies which relate individual health impacts to changes in 29 
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concentrations, and literature values span a large range (Figure 2). While these studies attempt to 1 

account for differences in populations, lifestyles, pre-existing conditions, and co-varying 2 

pollutants, relative risk ratios determined from each study still differ. This is likely due to 3 

variables not taken into consideration, errors in exposure estimates (“exposure misclassification”) 4 

(Sheppard et al., 2012), and because, although the long-term effects of exposure to atmospheric 5 

pollutants have been well-documented, the pathophysiological mechanisms linking exposure to 6 

mortality risk are still unclear (Chen and Goldberg, 2009; Pope and Dockery, 2013; Sun et al., 7 

2010), which makeing it difficult to determine how transferable results are from the context in 8 

which they were generated. 9 

For our initial estimates, Wwe use the integrated risk function from Burnett et al. (2014) risk 10 

ratios for heart disease, respiratory disease, cardiovascular and lung cancer premature mortality 11 

due to chronic exposure. We also compare our results to premature mortality estimates using risk 12 

ratios determined by Krewski et al. (2009), which is an extended analysis of the American Cancer 13 

Society study (Pope et al., 1995), and for respiratory disease, from Laden et al. (2006) which is 14 

an updated and extended analysis of the Harvard Six Cities study (Pope et al., 2002). The We use 15 

the updated Krewski et al. (2009) risk ratios have beenas they are widely used in similar studies 16 

due to the large study population with national coverage, 18 year time span, and extensive 17 

analysis of confounding variables (ecological covariates, gaseous pollutants, weather, medical 18 

history, age, smoking, etc.). However, the Burnett et al. (2014) function is becoming more widely 19 

used in the literature (e.g. Lelieveld et al., 2015; Lim et al., 2012, Apte et al., 2015) because it 20 

provides the shape of the mortality function for the global range of exposure concentrations. 21 

Using these same different risk ratios also can makes our results more directly comparable to 22 

studies in Table 1 which rely on the risk ratios from these fourthree studies (Burnett et al., 2014; 23 

Krewski et al., 2009; Laden et al., 2006; Pope et al., 2002).  24 

2.4 Concentration response function  25 

In order to determine an attributable fraction, it is necessary to understand how the 26 

response changes with concentration (i.e. does the relative risk increase, decrease, or level off 27 

with higher concentrations?). The shape of this concentration response function is an area of on-28 

going epidemiological research (e.g. Burnett et al., 2014; Pope et al., 2015).  29 
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For our initial results, we rely on equation 4, where In the simplest form, it might be 1 

assumed that the change in relative risk (RR, given as per 10 µg/m3) linearly depends on the 2 

surface PM2.5 concentration (C, in µg/m3) as given in equation 4 (and as presented as an alternate 3 

form in Cohen et al., 2004; 2005).  4 

ΔRR= (RR-1) x (C-C0)/10      (4) 5 

In this equation, C0 can be considered the “policy relevant (PRB)/target”, “natural background” 6 

or “threshold”/ “counterfactual”/ “lowest effect level” surface PM2.5 concentration. As sStudies 7 

have shown that there is not a concentration level below which there is no adverse health effect 8 

for PM (e.g. Pope et al., 2002; Shi et al., 2015) and most experts in health impacts of ambient air 9 

quality agree that there is no population-level threshold (although there may be individual-level 10 

thresholds, e.g. Roman et al., 2008)., However, there are few epidemiological studies in regions 11 

with very low annual average concentrations (Crouse et al., 2012 does records a 1.9 µg m-3 12 

annual concentration in rural Canada) making it difficult to determine the health risks in 13 

relatively clean conditions. How to extrapolate the relationship out of the range of observed 14 

measurements is uncertain. iIn our initial analysis, we assume this value is zero. However, 15 

Therefore, rather than assuming that the function is linear down to zero, other studies often set C0 16 

to the value of the lowest measured level (LML) observed in the epidemiology study from which 17 

the RRs are derived [e.g. Evans et al., 2013 use 5.8 µg/m3 with the RR from Krewski et al. 2009] 18 

or use the “policy relevant” background (PRB, generally 0-2 µgm-3) concentration., This is the 19 

level to which policies might be able to reduce concentration and which is generally determined 20 

from model simulations in which domestic anthropogenic emissions have been turned off (e.g. 21 

Fann et al., 2012). Similarly, some studies have set this value to preindustrial (1850) pollution 22 

levels (e.g. Fang et al., 2013; Silva et al., 2013). 23 

ΔRR= (RR-1) x (C-C0)/10      (4) 24 

Linear response functions are generally a good fit to observed responses at lower concentrations 25 

(Pope et al., 2002). However, some studies have suggested that linear response functions can 26 

greatly overestimate RR at high concentrations (e.g. Pope et al., 2015), where responses may start 27 

to level off. There is is uncertainty at high concentrations because, as most epidemiology studies 28 

of the health effects of air pollution exposure have generally been conducted under lower 29 
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concentrations (i.e. in the U.S.). In order to determine the shape of this response at higher 1 

concentrations, smoking has been used as a proxy (Burnett et al., 2014; Pope et al., 2011, 2 

2009)(Pope et al., 2011, 2009), which does show a diminishing response at higher concentrations. 3 

Therefore, both log-linear (Equations 5 and 6, where β = 0.15515/0.23218 for heart disease/lung 4 

cancer from Pope et al. (2002) or β = 0.18878/0.21136 for heart disease/lung cancer from 5 

Krewski et al., 2009 in Equation 6 and β = 0.01205/0.01328 for heart disease/lung cancer from 6 

Krewski et al., 2009 in Equation 5) and power law (Equation 7, where I is the inhalation rate of 7 

18m3day-1, β = 0.2730/0.3195, α = 0.2685/0.7433 for heart disease/lung cancer from Pope et al., 8 

2011 and as used in Marlier et al., 2013) functions have been also been explored in this study. 9 

ΔRR= exp [β (C-C0)] - 1      (5) 10 

ΔRR= [(C+1)/(C0+1)]β - 1      (6) 11 

ΔRR= α (I x C) β       (7) 12 

 We note that Cohen et al. (2005) and Anenberg et al. (2010) reference Equation 5 as a log-linear 13 

function (and take the log of C-C0, also referred to as a log-log model), while Ostro (2004), and 14 

Evans et al. (2013), and Giannadaki et al. (2014) use this as their linear function and instead use 15 

Equation 6 as their log-linear function, we will refer to these equation numbers for clarity in other 16 

sections. Another method to limit the response at high concentrations is to simply use a “ceiling,” 17 

“maximum exposure/high-concentration threshold,” or “upper truncation” value in which it is 18 

assumed that the response remains the same for any value above it (e.g. Anenberg et al., 2012; 19 

Cohen et al., 2005; Evans et al., 2013). This can be a somewhat arbitrary value or the highest 20 

observed concentration in the original epidemiological study. 21 

ΔRR= exp [β (C-C0)] - 1      (5) 22 

ΔRR= [(C+1)/(C0+1)]β - 1      (6) 23 

ΔRR= α (I x C) β       (7) 24 

Recently, Burnett et al. (2014) fit an integrated exposure response (IER) model using RRs from a 25 

variety of epidemiological studies on ambient and household air pollution, active smoking, and 26 

second hand tobacco smoke in order to determine RR functions over all global PM2.5 exposure 27 

ranges for ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary 28 

disease, and lung cancer (Equation 8). Monte Carlo simulations were conducted in order to derive 29 
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the one thousand sets of coefficients for the IER function (the coefficients are available at 1 

http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-2 

pollution-risk-model-1990-2010).The fitted values for each cause of death are given in Table 2. 3 

    for C < C0, ΔRR= 0 4 

    for C ≥ C0, ΔRR= α{1-exp[-γ(C-C0)
ρ]}    (8) 5 

This form is now being widely used (Apte et al., 2015; Lelieveld et al., 2015; Lim et al., 2012) 6 

and we use it here for our baseline estimates. In the following sections, we will discuss the 7 

uncertainty on the burden of disease associated with the shape of the concentration response 8 

function and threshold concentration. 9 

2.5 Estimating surface PM2.5  10 

We use both a global model and satellite observations to estimate surface PM2.5 concentrations 11 

and translate these to PM2.5 exposure and health burden. In addition, we use surface 12 

measurements of PM2.5 to test the accuracy of these estimates.   13 

2.5.1 Unconstrained Model Simulation 14 

We use the global chemical transport model GEOS-Chem (geos-chem.org) to simulate both 15 

surface PM2.5 and AOD. We use v9.01.03 of the model, driven by GEOS-5 meteorology, in the 16 

nested grid configuration over North America and Asia (0.5°x0.667° horizontal resolution) for 17 

2004-2011. Using this longer time period gives greater confidence in our uncertainty results. The 18 

GEOS-Chem aerosol simulation includes sulfate, nitrate, ammonium (Park et al., 2004), primary 19 

carbonaceous aerosols (Park et al., 2003), dust (Fairlie et al., 2007; Ridley et al., 2012), sea salt 20 

(Alexander et al., 2005), and secondary organic aerosols (SOA) (Henze et al., 2008). There are 21 

several regional anthropogenic emission inventories used in the model, such as BRAVO over 22 

Mexico (Kuhns et al., 2003), EMEP over Europe (Vestreng et al., 2007), CAC for Canada 23 

(http://www.ec.gc.ca/pdb/cac/cac_home_e.cfm), the EPA NEI05 inventory (Hudman et al., 2007, 24 

2008) over the U.S., and Streets et al. (2006) over Asia. Any location not covered by one of these 25 

regional inventories relies on the GEIA (Benkovitz et al., 1996) and EDGAR (Olivier and 26 

Berdowski, 2001; Olivier et al., 2001] inventories.  Most anthropogenic and biofuel Biofuel 27 

emissions over the U.S.A are also from the EPA NEI05 inventory (Hudman et al., 2007, 2008) 28 

http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0042
http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0090
http://www.ec.gc.ca/pdb/cac/cac_home_e.cfm
http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0007
http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0062
http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0062
http://onlinelibrary.wiley.com/doi/10.1029/2011JD016977/full#jgrd17738-bib-0063
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and from  over Asia; although anthropogenic emissions of black and organic carbon over North 1 

America follow Cooke et al. (1999) with the seasonality from Park et al. (2003). Biogenic VOC 2 

emissions are calculated interactively following MEGAN (Guenther et al., 2006), while year-3 

specific biomass burning is specified according to the GFED2 inventory (van der Werf et al., 4 

2006). Surface dry PM2.5 is calculated by combining sulfate, nitrate, ammonium, elemental 5 

carbon, organic matter, fine dust, and accumulation mode sea salt concentrations in the lowest 6 

model grid box. In the following discussion, these values are referred as the “unconstrained 7 

model.” Simulated AOD is calculated at 550 nm based on aerosol optical and size properties as 8 

described in Ford and Heald (2013). 9 

2.5.2 Satellite-based 10 

 We also derive a satellite-based surface PM2.5 using satellite observed aerosol optical 11 

depth, with additional constraints from the GEOS-Chem model,  in a similar manner to Liu et al. 12 

(2004, 2007) and van Donkelaar et al. (2006, 2010, 2011). This method relies on the following 13 

relationship:  14 

 PM2.5,surface = ƞ x AODsatellite        (9) 15 

 Where the satellite-derived PM2.5 is estimated at the resolution of the unconstrained model by 16 

multiplying the satellite observed AOD by the value ƞ, which is the ratio of model simulated 17 

surface PM2.5 to simulated AOD at the time of the satellite overpass. This is then a combined 18 

product which relies on a chemical transport model to simulate the spatially and temporally 19 

varying relationship between AOD and surface PM2.5 by accounting for all the aerosol properties 20 

and varying physical distribution and then constraining these results by “real” (i.e. satellite) 21 

measurements of AOD. Using the satellite to constrain the model concentrations is extremely 22 

useful in regions where emissions inventories and model processes are less well known.  23 

For AOD, we use observations from both of the Moderate Resolution Imaging Spectroradiometer 24 

(MODIS) instruments and from the Multi-angle Imaging SpectroRadiometer (MISR) instrument. 25 

For this work we use MODIS 550 nm Level 2, Collection 6, Atmosphere Products for Aqua as 26 

well as Level 2, Collection 5 for Terra and Aqua. We filter these data for cloud fraction (CF < 27 

0.2) and remove observations with high AOD (>2.0), as cloud contamination causes known 28 

biases in the AOD (Zhang et al., 2005) as in Ford and Heald (2012) although we note that this 29 
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could remove high pollution observations, particularly in China. For MISR, we also use the Level 1 

2 AOD product (F12, version 22, 500nm). We note that this is a different wavelength than from 2 

the MODIS instrument, but we neglect that difference for these comparisons. We use both of 3 

these observations for comparison as MODIS has a greater number of observations while MISR 4 

is generally considered to better represent the spatial and temporal variability of AOD over China 5 

(Cheng et al., 2012; Qi et al., 2013; You et al., 2015). Satellite observations are gridded to the 6 

GEOS-Chem nested grid resolution. We sample GEOS-Chem to days and grid boxes with valid 7 

satellite observations to calculate the ƞ used to translate the AOD to surface PM2.5. 8 

In Figure 3, we show the long-term average (2004-2011) of satellite-based PM2.5 for the U.S. and 9 

China using MODIS Aqua Collection 6 and compare this to model-only estimates. In the 10 

following sections, most of our results will be shown using Collection 6; but reference and 11 

comparisons will be made to other products as a measure of uncertainty. In general the 12 

unconstrained model and satellite-based estimates show similar spatial features and magnitudes, 13 

with stronger local features apparent in the satellite-based PM2.5. The satellite-based estimate 14 

suggests that concentrations should be higher over much of the western U.S., particularly over 15 

California, Nevada, and Arizona (comparisons with surface measurements are discussed in 16 

section 2.5.3). In China, the satellite-derived PM2.5 is higher in Eastern China, around Beijing and 17 

the Heibei province, Tianjin, and Shanghai, but lower in many of the central provinces. While 18 

many previous studies suggest that MODIS may be biased high (and MISR biased low) over 19 

China (e.g. Cheng et al., 2012; Qi et al., 2013; You et al., 2015) and the Indo-Gangetic Plain 20 

(Bibi et al., 2015); Wang et al. (2013) note that the GEOS-Chem model underestimates PM2.5 in 21 

the Sichuan basin, suggesting that the MODIS satellite-based estimate could reduce the bias in 22 

this province.   23 

2.5.3 Surface-based Observations 24 

We use observations of PM2.5 mass from two networks in the United States (where long-term 25 

values are more readily available than in China) to evaluate the model and satellite-derived 26 

PM2.5: the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the EPA 27 

Air Quality System (AQS) database. The IMPROVE network measures PM2.5 over a 24-hour 28 

period every third day and these measurements are then analyzed for concentrations of fine, total, 29 
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and speciated particle mass (Malm et al., 1994). We use the reconstructed fine mass (RCFM) 1 

values, which are the sum of ammonium sulfate, ammonium nitrate, soil, sea salt, elemental 2 

carbon and organic matter.  3 

Previous studies have generally shown good agreement between measurements and GEOS-Chem 4 

simulations of PM2.5 (e.g. Ford and Heald, 2013; van Donkelaar et al., 2010). In Figure 4, we 5 

show the long-term average of PM2.5 at AQS and IMPROVE sites in the U.S. overlaid on 6 

simulated concentrations. In general, GEOS-Chem agrees better with measurements at 7 

IMPROVE sites, likely because these are located in rural regions where simulated values will not 8 

be as impacted by the challenge of resolving urban plumes in a coarse Eulerian model. There are 9 

noted discrepancies in California (Schiferl et al., 2014) and the Appalachia/Ohio River Valley 10 

region where the model is biased low. The model has a low mean bias of -25% compared to 11 

measurements at the EPA AQS sites and a bias of -6% compared to measurements at IMPROVE 12 

sites. Annual mean bias at individual sites ranges from -100 to 150%. At these same AQS sites, 13 

the satellite-derived PM2.5 is less biased (-12% using MODIS C6 or -8% using MISR).  14 

To estimate the uncertainty in satellite AOD, we also rely on surface-based measurements of 15 

AOD from the global AErosol RObotic NETwork (AERONET) of sun photometers. AOD and 16 

aerosol properties are recorded at eight wavelengths in the visible and near-infrared (0.34-17 

1.64µm) and are often used to validate satellite measurements (e.g. Remer et al., 2005). 18 

AERONET AOD has an uncertainty of 0.01-0.015 (Holben et al., 1998). For this work, we use 19 

hourly Version 2 Level 2 measurements sampled to two hour windows around the times of the 20 

satellite overpasses. We also perform a least-square polynomial fit to interpolate measurements to 21 

550 nm.  22 

 23 

3 Estimated health burden associated with exposure to PM2.5 24 

We compare national exposure estimates for the U.S. and China using unconstrained and 25 

satellite-based (MODIS and MISR) annual average PM2.5 concentrations in (Figure 5), which is a 26 

cumulative distribution plot that is calculated as the sum of the population in each grid box which 27 

has an annual average concentration at or above each concentration level. For the U.S., satellite-28 

based estimates suggest a slightly greater fraction of the population is exposed to higher annual 29 
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average concentrations, while in China, the satellite-based estimates suggest a lower fraction. 1 

Using MISR AOD suggests higher annual average concentrations in the U.S. and much lower in 2 

China, as MISR has a high bias in regions of low AOD and a low bias in regions of high AOD 3 

(Jiang et al., 2007; Kahn et al., 2010)(Kahn et al., 2010). The large discrepancy between results 4 

from MISR and MODIS could be due to differencing in sampling, but studies have also shown 5 

that MODIS is biased high in China and MISR is biased low (Cheng et al., 2012; Qi et al., 2013; 6 

You et al., 2015). We discuss the uncertainties in these estimates in section 4.  7 

These exposure estimates are used to calculate an attributableinitial fraction of mortality 8 

associated with heart disease, lung cancer, and respiratory disease attributable to chronic 9 

exposure using both model and satellite-based annual average concentrations for the U.S. and 10 

China (Table 1). In the U.S., we estimate that exposure to PM2.5 accounts for approximately 42% 11 

of total deaths (136% of heart diseases and 125% of respiratory diseases) compared to 2214% 12 

(3340% of heart and 2522% of respiratory) in China using satellite-based concentrations. The 13 

Global Burden of Disease estimates for 2010, that 10% of total deaths in China and 3% of total 14 

deaths in the U.S. are attributable to exposure to PM2.5 (Lim et al., 2012). We present these as an 15 

average over the 2004-2011 time period in order to provide more robust results that are not 16 

driven by an outlier year, as there is considerable year-to-year variability in AOD and surface 17 

PM2.5 concentrations (for example, heavy dust years in China). However, there are trends in 18 

population (Figure 1) and surface concentrations that can influence these results. For example, 19 

there is a significant decreasing trend in AOD over the northeastern U.S. simulated in the model 20 

which is also noticeable in the satellite observations and the surface concentrations (Hand et al., 21 

2012). This decreasing trend can be attributed to declining SO2 emissions in the U.S. as noted in 22 

Leibensperger et al. (2012). Trends in China are more difficult to ascertain  as emissions have been 23 

variable over this period in general [Lu et al., 2011; Zhao et al., 2013] with widespread increases 24 

from 2004 to 2008 followed by variable trends in different regions through 2011. The difference 25 

between mortality burden estimates using model or satellite concentrations is approximately 26 

209% for the U.S. and 42% for China on a nationwide basis, although regionally the difference 27 

can be much greater.  A question we aim to address here is whether these model and satellite-28 

based estimates are significantly different. 29 
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We compare our results to premature mortality burden estimates from other studies in Table 1. In 1 

general, our estimates for the U.S. and China are higher than most previous global estimates, 2 

except for Lelieveld et al. (2015) and Rohde and Muller (2015). However, these studies provide 3 

estimates for 2010 and 2014, respectively, and we did find an increasing trend in our mortality 4 

estimates over the study time period. For the U.S., our estimates are in the lower range of 5 

previous studies.Anenberg et al. (2010) (although their estimates are for all of North America and 6 

all of Asia) and Fann et al. (2012). In particular, our estimates appear to be twice those found by 7 

Lelieveld et al. (2013).  The spread among these studies can be attributed to the data used (i.e. 8 

MODIS Collection 5 rather than Collection 6 or unconstrained model concentrations, and choice 9 

of baseline mortality rates, and population), the resolution of the data, the years studied, as well 10 

as the risk ratios and response functions and the resoultion of these products. For example, Evans 11 

et al. (2013) also use satellite-based concentrations (using MISR/MODIS Collection 5 and 12 

GEOS-Chem), but use a different concentration response function.but their resulting mortality 13 

estimates are much lower. However, unlike this study, they use a lower threshold value and a 14 

different response function with lower baseline mortalities. In the following sections, we 15 

delineate the uncertainty in our these results and reasons for differences from previous studies.  16 

 17 

4 Uncertainty in Satellite-based PM2.5  18 

Uncertainties in the PM2.5 concentrations derived from satellite observations arise from the two 19 

pieces of information which inform this estimate: (1) satellite AOD and (2) model ƞ. Here we 20 

explore some of the limitations and uncertainties associated with each of these inputs. 21 

4.1 Uncertainty Associated with Satellite AOD 22 

While satellite observations of aerosols are often used for model validation (e.g. Ford and Heald, 23 

2012), these are indirect measurements with their own limitations and errors. The uncertainty in 24 

satellite AOD can be due to a variety of issues such as the presence of clouds, the choice of 25 

optical model used in the retrieval algorithm, and surface properties (Toth et al., 2014; Zhang and 26 

Reid, 2006). For validation of satellite products, studies have often relied on comparisons against 27 

AOD measured with sun photometers at AERONET ground sites (e.g. Kahn et al., 2005; Levy et 28 

al., 2010; Remer et al., 2005, 2008; Zhang and Reid, 2006). The uncertainty in AOD over land 29 
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from MODIS is estimated as 0.05 ± 15% (Remer et al., 2005), while Kahn et al. (2005) suggest 1 

that 70% of MISR AOD data are within 0.05 (or 20 % ×AOD) of AERONET AOD. 2 

There are also discrepancies between AOD measured by the different instruments due to different 3 

observational scenarios and instrument design. The Aqua platform has an afternoon overpass 4 

while the Terra platform has a morning overpass. It might be expected that there would be some 5 

differences in retrieved AOD associated with diurnal variations in aerosol loading. However, the 6 

difference of 0.015 in the globally averaged AOD between MODIS onboard Terra and Aqua 7 

(Collection 5), although within the uncertainty range of the retrieval, is primarily attributed to 8 

uncertainties and a drift in the calibration of the Terra instrument, noted in Zhang and Reid 9 

(2010) and Levy et al. (2010).  Collection 6 (as will be discussed further) reduces the AOD 10 

divergence between the two instruments (Levy et al., 2013). MISR employs a different multi-11 

angle measurement technique with a smaller swath width; as a result the correlation between 12 

MISR AOD and MODIS AOD is only 0.7 over land (0.9 over ocean) (Kahn et al., 2005).  13 

Not only are there discrepancies in AOD between instruments, there are also differences between 14 

product versions for the same instrument. The MODIS Collection 6 Level 2 AOD is substantially 15 

different from Collection 5.1 (Levy et al., 2013) and Figure 6. In general, AOD decreases over 16 

land and increases over ocean with Collection 6. These changes are due to a variety of algorithm 17 

updates including better detection of thin cirrus clouds, a wind speed correction, a cloud mask 18 

that now allows heavy smoke retrievals, better assignments of aerosol types, and updates to the 19 

Rayleigh optical depths and gas absorption corrections (Levy et al., 2013). These differences can 20 

also impact the derived PM2.5 (and can explain some differences between our results and previous 21 

studies). In particular, because Collection 6 suggests higher AOD over many of the urbanized 22 

regions, the derived PM2.5 and resulting exposure estimates (all other variables constant) are 23 

greater. The difference between these two retrieval products, given the same set of radiance 24 

measurements from the same platform, gives a sense of the uncertainty in the satellite AOD 25 

product (Figure 65a).  26 

We estimate the uncertainty in satellite AOD used here by comparing satellite observations to 27 

AERONET and determining the normalized mean bias (NMB) between AOD from each satellite 28 

instrument and AERONET for the U.S. and China (Figure 7). Although there a very limited 29 

number of sites in China, from these comparisons, we find that the satellites generally agree with 30 
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AERONET better in the eastern U.S. and northeastern China than in the western U.S. and 1 

western and southeastern China.and have There are larger biases in the west near deserts and at 2 

coastal regions where it may be challenging to distinguish land and water in the retrieval 3 

algorithm. NMBs at each AERONET site are generally similar among the instruments (MISR 4 

comparison not shown), with greater differences at these western sites. While Collection 6 does 5 

reduce the bias at several sites along the East Coast in the U.S., it is generally more biased at the 6 

Four Corners region of the U.S. We use these NMBs to regionally “bias correct” our AOD values 7 

and estimate the associated range of uncertainty in our premature mortality estimates. Compared 8 

to the standard MODIS AOD retrieval uncertainty, our overall NMB is less in the eastern U.S. (-9 

1%) and western China (11%) and higher in the western U.S. (40%) and eastern China (18%). 10 

There may also be biases associated with the satellite sampling, should concentrations on days 11 

with available observations be skewed. In order to assess the sampling bias, we use the model 12 

and compare the annual mean to the mean of days with valid observations (Figure 65b). In 13 

general, sampling leads to an underestimation in AOD (average of 20% over the U.S.). This can 14 

partly be attributed to the presence of high aerosol concentrations below or within clouds which 15 

cannot be detected by the satellite,  the mistaken identification of high aerosol loading as cloud in 16 

retrieval algorithms, as well as the removal of anomalously high AOD values (>2.0) from the 17 

observational record.  This suggests that the average AOD values can also be influenced by the 18 

chosen filtering and data quality standards. Analysis of the impact of satellite data quality on the 19 

AOD to PM2.5 relationship is discussed in Toth et al. (2014). They find that using higher quality 20 

observations does tend to improve correlations between observed AOD and surface PM2.5 across 21 

the U.S. though in general correlations are low (<0.55).  22 

4.2 Uncertainty Associated with Model ƞ 23 

In general, the model simulates PM2.5 well (Figure 4) and represents important processes; but,  24 

satellite AOD can help to constrain these estimates to better represent measured concentrations 25 

(van Donkelaar et al., 2006). However, in specific regions or periods of time, errors in ƞ could 26 

lead to discrepancies between satellite-derived and actual surface mass and. Snider et al. (2015) 27 

does show some regional biases in the GEOS-Chem model ƞ compared to ƞ determined from 28 

collocated surface measurements of AOD and PM2.5. In order to assess the potential uncertainty 29 
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in model-based ƞ, we perform multiple sensitivity tests to determine the impact that different 1 

aerosol properties, grid-size resolution and time scales will have on ƞ and, ultimately, on the 2 

resulting satellite-based PM2.5 (listed in Table 32). These sensitivity tests are performed solely 3 

with model output, which can provide a complete spatial and temporal record, and results from 4 

the modified simulations are compared to the standard model simulation. We note that these are 5 

“errors” only with respect to our baseline simulation; we do not characterize how each sensitivity 6 

simulation may be “better” or “worse” compared to true concentrations of surface PM2.5, but 7 

rather how different they are from the baseline, thus characterizing the uncertainty in derived 8 

PM2.5 resulting from the model estimates of ƞ. We make these comparisons for both the U.S. and 9 

China and show results in Figure 87. Because mass concentrations in China are generally much 10 

higher, the absolute value of potential errors can also be much greater.   11 

The timescale of the estimated PM2.5 influences the error metric we choose for this analysis. We 12 

use the NMB for estimating error associated with annual PM2.5 exposure (the metric of interest 13 

for chronic exposure). This allows for the possibility that day-to-day errors may compensate, 14 

resulting in a more generally unbiased annual mean value. The error on any given day of satellite-15 

estimated PM2.5 is likely larger, and not characterized by the NMB used here.   16 

Our first sensitivity tests relate specifically to the methodology. To derive a satellite-based PM2.5 17 

with this method requires that model output for every day and that there are valid satellite 18 

observations. Running a model can be labor intensive, at the same time there are specific regions 19 

and time periods with poor satellite coverage. Therefore, it might be beneficial to be able to use a 20 

climatological ƞ or a climatological satellite AOD. To test the importance of daily variability in 21 

AOD, we compute daily ƞ values and then solve for daily surface PM2.5 values using a seasonally 22 

averaged model simulated AOD (AvgAOD). This mimics the error introduced by using 23 

seasonally averaged satellite observations, an attractive proposition to overcome limitations in 24 

coverage. This approximation often produces the greatest error (~20% in the U.S. and 0-50% in 25 

China) especially in regions where AOD varies more dramatically and specifically where 26 

transported layers aloft can significantly increase AOD (Figure 87). For the seasonally averaged 27 

ƞ test (AvgEta), we estimate daily PM2.5 values (which are averaged into the annual 28 

concentration) from the seasonally averaged ƞ and daily AOD values. As regional ƞ relationships 29 

can be more consistent over time than PM2.5 or AOD, this test evaluates the necessity of using 30 
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daily model output to define the ƞ relationship. The error in the annual average of daily PM2.5 1 

values determined using a seasonally averaged ƞ creates results that are very similar to the error 2 

found calculating an annual average of daily PM2.5 values calculated using a seasonally averaged 3 

AOD.  4 

The model ƞ also inherently prescribes a vertical distribution of aerosol, which may be 5 

inaccurately represented by the model and introduce errors in the satellite-derived PM2.5. 6 

Previous studies have shown that an accurate vertical distribution is essential for using AOD to 7 

predict surface PM2.5. (e.g. Li et al., 2015; van Donkelaar et al., 2010). We test the importance of 8 

the variability of the vertical distribution in the ƞ relationship for predicting surface PM2.5 9 

concentrations by comparing values from the standard simulation against using an ƞ from a 10 

seasonally averaged vertical distribution (AvgProf). For this comparison, we allow the column 11 

mass loading to vary day-to-day, but we assume that the profile shape does not change (i.e. we 12 

re-distribute the simulated mass to the same seasonally averaged vertical profile). We note that 13 

this is not the same as assuming a constant ƞ, as relative humidity and aerosol composition are 14 

allowed to vary. Additionally, this differs from other studies (van Donkelaar et al., 2010; Ford 15 

and Heald, 2013) in that we are not testing the representativeness of the seasonal average profile, 16 

but testing the importance of representing the daily variability in the vertical profile. From Figure 17 

7, we see that using a seasonally averaged vertical distribution (AvgProf) can lead to large errors 18 

in surface concentrations. Information on how the pollutants are distributed is extremely 19 

important because changes in column AOD can be driven by changes in surface mass loading, 20 

but also by layers of lofted aerosols that result from production aloft or transport (and changes in 21 

the depth of the boundary layer). This is important in areas that are occasionally impacted by 22 

transported elevated biomass burning plumes or dust. In China, lLarge errors often occur in 23 

western and central China, especially during the spring when these regions are influenced by 24 

transported dust from the Taklamakan and Gobi Deserts (Wang et al., 2008). Southeastern China 25 

has the largest NMB due to not only transport from interior China, but also from other countries 26 

in Southeast Asia. There is a positive bias in most regions, because on average, most of the 27 

aerosol mass is located at the surface; therefore, using an average profile will overpredict the 28 

surface concentrations. Similar to the average AOD and ƞ (AvgAOD and AvgEta), average 29 

vertical distributions generally overpredicts PM2.5 due to the presence of outliers. This stresses 30 
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the importance of not only getting the mean profile correct, but the necessity of also simulating 1 

the variability in the profile on shorter timescales.   2 

We also test the sensitivity of derived PM2.5 to aerosol water uptake. This is done by recalculating 3 

ƞ using a seasonally averaged relative humidity (RH) profile (AvgRH). This generally reduces 4 

the seasonally averaged AOD (less water uptake) in every season (because hygroscopic growth of 5 

aerosols is non-linear with RH). This leads to an overestimate of ƞ that when applied to the AOD 6 

values from the standard simulation and generally overestimates surface PM2.5 in regions with 7 

potentially higher RH and more hygroscopic aerosols (eastern U.S. and eastern China). This is 8 

because, for the same AOD, a higher ƞ value would suggest more mass at the surface in order to 9 

compensate for optically smaller particles aloft. Western China (and some of central China) has a 10 

negative bias, suggesting that using a mean relative humidity actually underestimates PM2.5. 11 

However, this is because the RH is generally low but can have large variability, and 12 

concentrations (outside of the desert regions) are also low so that the NMB may be large although 13 

the absolute error is not. 14 

A higher resolution model, although more computationally expensive, will likely better represent 15 

small scale variability and is better suited for estimating surface air quality. Punger and West 16 

(2013) find that coarse resolution models often drastically underestimate exposure in urban areas. 17 

We therefore investigate the grid-size dependence of our simulated ƞ. For this, we determine the 18 

ƞ values from a simulation running at 2°x 2.5° grid resolution (with the same emission inputs and 19 

time period), re-grid these values to the nested grid resolution (0.5°x0.666°) and  solve for the 20 

derived PM2.5 concentrations using the AOD values from the nested simulation (noted as 2x2.5 in 21 

Figure 78). From Figure 78, we see larger discrepancies in regions which are dominated by more 22 

spatially variable emissions (Northeastern U.S. and China) rather than areas with broad regional 23 

sources (Southeastern U.S.).  This is line with Punger and West (2013) who show smaller 24 

differences due to resolution in estimated premature mortality due to PM2.5 exposure in rural 25 

areas than in urban areas. However, cCompared to the other sensitivity tests, using the coarser 26 

grid leads to mean errors of only 10-15% in the U.S. and in China, which suggests that spatially 27 

averaged ƞ are potentially more useful than temporally averaged ƞ for constraining surface PM2.5. 28 

This is in line with the conclusions from Thompson and Selin (2012) and Thompson et al. 29 

(2014)who show that coarse grids can overpredict pollutant concentrations and consequently 30 
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health impacts (associated with exposure to ozone), but using very fine grids does not 1 

significantly decrease the error in simulated concentrations compared to observations. . This 2 

effect was more pronounced with ozone. Additionally, their coarsest grid resolution is 36 km 3 

which they compare to results at 2, 4, and 12 km. Punger and West (2013) compare health 4 

impacts at a variety of resolutions out to several 400 km and show that coarser resolutions 5 

underestimate health impacts because concentrations are diluted over larger areas rather than high 6 

concentrations being co-located with large urban populations.  7 

The GEOS-Chem simulation of surface nitrate aerosol over the U.S. is biased high (Heald et al., 8 

2012). This can be an issue in regions where nitrate has a drastically different vertical profile (or 9 

ƞ) from other species. To test how this nitrate bias could impact ƞ and the derived PM2.5, we 10 

compute ƞ without nitrate aerosol, and then derive PM2.5 using the standard AOD (No NO3). This 11 

is not a large source of potential error (<15%), with only slightly larger errors in winter and in 12 

regions where nitrate has a significant high bias (central U.S.). Furthermore, these errors are less 13 

than the bias between the model and surface observations of nitrate in the U.S. (1-2 µgm-3 14 

compared to 2-7 µgm-3), suggesting that even though there is a known bias in the model, using 15 

satellite observations may largely correct for this by constraining the total AOD when estimating 16 

satellite-derived PM2.5. We also did this comparison for China. Measured nitrate concentrations 17 

are not widely available for evaluation, but Wang et al. (2014) suggests that model nitrate is also 18 

too high in eastern China. The NMB is even less in regions in China (<10%), with negative 19 

values in eastern China (where nitrate concentrations are high) and positive values in western and 20 

central China (where nitrate concentrations are lower and have less bias compared to 21 

observations).  22 

To further explore the role of aerosol composition (and possible mischaracterization in the 23 

model), we take the simulated mass concentrations and compute the AOD assuming that the 24 

entire aerosol mass is sulfate (SO4 in Figure 78) or, alternatively, hydrophobic black carbon (BC 25 

in Figure 78). Black carbon has a high mass extinction efficiency, which is constant with RH 26 

given its hydrophobic nature; while sulfate is very hygroscopic, resulting in much higher 27 

extinction efficiencies at higher relative humidity values. Overall, assuming that all the mass is 28 

sulfate leads to low biases on the order of 15-20% as the AOD in many regions in the U.S. is 29 

dominated by inorganics. Errors are largest in regions and seasons with larger contributions of 30 
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less hygroscopic aerosols (organic carbon and dust) and/or high relative humidity. Assuming the 1 

entire aerosol mass is black carbon can lead to greater errors than sulfate  because BC has a larger 2 

mass extinction at lower relative humidity values and hydrophobic black carbon generally makes 3 

up a small fraction of the mass loading in all regions in the U.S. and China. When RH is low, this 4 

assumption increases the AOD, which leads to an under prediction in the derived PM2.5. When 5 

RH is high, this decreases the AOD and leads to an over prediction in derived PM2.5.  The largest 6 

percentage changes occur in the southwestern U.S. and western China (~-30%) due to the low 7 

relative humidity, low mass concentrations, and large contribution of dust.  8 

We also compare these sensitivity tests on daily timescales. We do not show the results here 9 

because we rely on chronic exposure (annual average concentrations) for calculating mortality 10 

burdens.  The normalized mean biases in annual average concentrations (Figure 87) are generally 11 

much less (range of ±20% in U.S. and ±50% in China) than potential random errors in daily 12 

values as many of these daily errors cancel out in longer term means. This is the case for our 13 

sensitivity tests regarding the vertical profile and relative humidity, which have much larger 14 

errors on shorter timescales. However, because our method to test the sensitivity to aerosol type 15 

assumes that all aerosol mass is black carbon or sulfate, we introduce a systematic bias that is not 16 

significantly reduced in the annual NMB. This highlights the differing potential impacts due to 17 

systematic and random errors, which is an important distinction for determining the usefulness of 18 

this method. Systematic errors may not be as obvious on short timescales compared to random 19 

errors (related to meteorology and/or representation of plumes) that can lead to large biases in 20 

daily concentrations. However, these random errors have less impact when we examine annual 21 

average concentrations and mortality burdens. Systematic errors, potentially related to sources or 22 

processes, may be harder to counteract even on longer timescales and even when the model is 23 

constrained by satellite observations. However, we also show that random daily errors can bias 24 

the long term mean, stressing the importance of not only correcting regional biases, but also in 25 

accurately simulating daily variability.  26 

We translate this potential uncertainty in ƞ to potential uncertainty in mortality estimates 27 

determined from the satellite-based PM2.5. We use the normalized mean bias in annual PM2.5 28 

determined from the sensitivity tests for RH, the vertical profile, grid resolution, and aerosol 29 

composition for each grid box and then use these values to “bias correct” our satellite-based 30 
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annual PM2.5 concentrations and re-calculate exposure (shown in Figure 5) and mortality 1 

(discussed in Section 6). From Figure 5, we see that the uncertainty in ƞ, when translated to an 2 

annual exposure level, are larger than the differences in exposure levels estimated from model 3 

and satellite-based PM2.5, suggesting that satellite-based products which rely strongly on the 4 

model or which do not account for the variability in the aforementioned variables, does not 5 

necessarily provide a definitively better estimate of exposure. Secondly, these uncertainties in 6 

many regions are greater than the difference between both the model and surface PM2.5 and the 7 

satellite-based and surface observations. While these comparisons are limited spatially and 8 

temporally, this highlights that constraining the model with the satellite observations can improve 9 

estimates of PM2.5 but there remains a large amount of uncertainty in these estimates.   10 

4.3 Selection of concentration response function and relative risk 11 

The choice of the shape of the concentration response function (CRF) and relative risk ratio value 12 

explains much of the difference in burden estimated in different studies listed in Table 1. In 13 

general, it is difficult to determine risks at the population level and ambient air quality 14 

measurements may not necessarily be representative of an individual’s actual exposure. Sstudies 15 

have found that using ambient concentrations tend to under predict health effects (e.g. Hubbell et 16 

al., 2009). However, personal monitoring is costly and time-intensive, and therefore, 17 

epidemiology studies generally rely on determining population -level concentration response 18 

functions rather than personal-level exposure responses. However, populations also respond 19 

differently; and therefore the shape and magnitude of this response varies among studies.  20 

For an initial metric of the uncertainty in the risk ratios, studies often include estimates generated 21 

using the that we used, we can include the range using the 95% confidence intervals of the RR 22 

determined in the original study (as shown in Figure 2 in the Laden et al. (2006) and Krewski et 23 

al. (2009) studies. A confidence interval shows the statistical range within which the true PM 24 

coefficient for the study population is likely to lie, which could be a single city, region, or 25 

population group. The Krewski et al. [2009] study, which is a reanalysis of the American Cancer 26 

Society (ACS) Cancer Prevention Study II (CPS-II), included 1.2 million people in the Los 27 

Angeles and New York City regions, whereas the Laden et al. (2006) study, an extended analysis 28 

of the Harvard Six Cities Studies, included 8,096 white participants. Using just these confidence 29 
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intervals as a measure of uncertainty suggests that there exists a large range of uncertainty in 1 

population-level health responses to exposure and caution should be exercised when attempting 2 

to transfer these values beyond the population from which they were determined in order to 3 

estimate national-level mortality burdens based on ambient concentrations.  The IER coefficients 4 

from Burnett et al. (2014) are generated using the risk ratios, threshold values, and confidence 5 

intervals from previous studies and therefore also provide a large range in premature mortality 6 

estimates. To depict this range, we also include the 5th and 95th percentile estimates in addition to 7 

the mean estimate and show the maximum value in our sensitivity tests.  8 

To test the impact of methodological choices associated with the burden calculation, we compare 9 

results using different concentration response functions and relative risk ratios that previous 10 

studies have used. Table 4 3 lists the different choices that we explore regarding the CRF and 11 

relative risk, the study that used these values, and the resulting percent change in burden 12 

compared to our initial estimates using the IER from Burnett et al. (2014). In particular we 13 

compare our results using risk ratio values from Krewski et al. (2009), Pope et al. (2002) and 14 

Laden et al. (2006), and log-linear and power law relationships. Figure 8 9 shows that the largest 15 

difference in burden is associated with using the higher risk ratios from Laden et al. (2006) vs. 16 

using Krewski et al. (2009) or the mean estimates determined using the IER coefficients from 17 

Burnett et al. (2014), the former suggest a much greater mortality response to PM2.5 exposure. 18 

We also test the use of a “threshold” value.  Most experts in health impacts of ambient air quality 19 

agree that there is no population-level threshold (although there may be individual-level 20 

thresholds, e.g. Roman et al., 2008); however, there are few epidemiological studies in regions 21 

with very low annual average concentrations (Crouse et al., 2012 records a 1.9 µgm-3 annual 22 

concentration in rural Canada) making it difficult to determine the health risks in relatively clean 23 

conditions. Therefore, the lowest measured concentration is often used to account for uncertainty 24 

in the shape of the response function at very low concentrations.  Other studies have not used a 25 

threshold value, but a PRB concentration (generally 0-2 µgm-3) to calculate mortality attributable 26 

to concentrations due to national anthropogenic emissions (not transport or natural sources, i.e. 27 

the concentration levels to which policies might be able to reduce, e.g. Fann et al., 2012). 28 

Our estimates of Section 3 also use the same relative risk values for every location. However, 29 

studies have found that different populations have varied responses to exposure (potential for 30 



 24 

“effect modification”) (Dominici et al., 2003). One of the main uncertainties in our these methods 1 

is relying on risk ratios that are primarily determined from epidemiology studies conducted in the 2 

United States, which may not represent the actual risks for populations in China. Long-term 3 

epidemiology studies examining exposure to PM2.5 across broad regions of China are scarce, but 4 

studies using acute exposure to PM2.5 or chronic exposure to PM10 or total suspended particles 5 

have suggested lower exposure-response coefficients than determined by studies conducted in the 6 

U.S. and Europe (Aunan and Pan, 2004; Chen et al., 2013b; Shang et al., 2013), indicating that 7 

assessments which use CRFs from studies conducted in the U.S. might overestimate the health 8 

effects in China.  9 

We also explore using different “threshold” values. The IER function uses threshold values 10 

between 5.8 µgm-3 and 8.8 µgm-3. In the U.S., using the lowest measured value of 5.8 µgm-3 from 11 

the Krewski et al. (2009) study has a significant impact, higher threshold values can significantly 12 

reduceing our burden estimates. by more than half (which consequently would put our estimates 13 

into agreement with Lelieveld et al., 2013 as it reduce the impact to zero in any rural region with 14 

low concentration). When we compare sensitivity tests that use the same CRF (Krewski et al., 15 

2009) but Using with a CF value of 4 µgm-3 or a regional PRB concentration instead of the 16 

lowest measured level (5.8 µgm-3), also reduces the premature mortality our estimates are 17 

reduced, s but not by as much, suggesting that the choice of this value is very important in the 18 

U.S. where annual mean concentrations are relatively low.  However, in China these threshold 19 

values have less than a 10% impact on our results because annual mean concentrations are high 20 

enough that subtracting a threshold makes little difference. Conversely, using a ceiling value of 21 

30 µgm-3 or (50 µgm-3) produces no difference in the U.S. (0% of the population experiences 22 

annual concentration values greater than 30 µgm-3), while strongly reducing burden estimates in 23 

China.  24 

We also see that the shape of the CRF produces different results between the U.S. and China. 25 

Using a power law or log-linear (Equation 6) function increase relative risks at low 26 

concentrations and decreases risk ratios at high concentrations such that total disease burden 27 

estimates increase in the U.S. and decrease in China. In the U.S., a log-linear CRF is almost 28 

equivalent to a linear response because of the low concentrations. In general, the shape of the 29 

concentration response function is more important at low or very high concentrations. 30 



 25 

4.4  Comparison of uncertainty 1 

Figure 10 provides a summary of the different sources of uncertainty discussed here is shown in 2 

Figure 10. We show the mortality burdens for respiratory disease, lung cancer and heart disease 3 

associated with chronic exposure to ambient PM2.5 and calculated using annual average model-4 

based and “satellite-based” values (from MISR and MODIS) for both the U.S. and China. We 5 

show here that the satellite-based estimates suggest slightly higher national burdens in the U.S. 6 

and slightly lower in China. However, our values using these different annual average 7 

concentrations fall within the range of values found in the literature (Table 1).  8 

We further contrast these estimates to the range in uncertainty associated with our observations 9 

and methodology. The difference between the burden calculated using strictly the model or the 10 

satellite-based approach is greater than the uncertainty range in the satellite AOD, suggesting that 11 

this difference is outside of the scope of measurement limitations and errors. However, the 12 

potential uncertainty in the satellite-based estimate due to the conversion from AOD to surface 13 

PM2.5 (represented by the model ƞ) is substantially larger, larger even than the difference between 14 

model-derived and satellite-derived estimates.  Therefore, while constraining the model estimate 15 

of PM2.5 by actual observations should improve our health effect estimates, the uncertainty in the 16 

required model information may limit the accuracy of this approach. Again, we stress that these 17 

are “potential” model uncertainties which may overestimate the true uncertainty in regions where 18 

the model accurately represents the composition and distribution of aerosols. We also 19 

acknowledge that we have investigated a limited set of factors; additional biases may exacerbate 20 

these uncertainties.    However, adding additional observational data and model estimates can 21 

also help to better constrain these satellite-based PM2.5 estimates (Brauer et al., 2012, 2015; van 22 

Donkelaar et al., 2015a, 2015b). 23 

Figure 10 also conveys the range in mortality estimates for the U.S. and China that can result 24 

from varying choices for the risk ratio or shape of the concentration response. While 25 

epidemiology studies attempt to statistically account for differences in populations and 26 

confounding variables, there is still a large spread in determined risk ratios. Just as important, or 27 

perhaps more so than determining ambient concentrations, applying response functions is a 28 

determining factor in quantifying the burden of mortality due to outdoor air quality. Differences 29 

in exposure estimates can be overshadowed by these different approaches. As an added example, 30 
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we calculated the mortality burden using only populated places, similar to Lelieveld et al. (2013) 1 

and Cohen et al. (2004) and find that for the U.S. this decreased the burden by 13%, (satellite-2 

based, 18% for model). For China, this reduces the burden estimate by 72%. Differences in our 3 

estimates here and those found in the literature can be partly attributed to differences in 4 

application of the CRF function, along with differences in baseline mortalities and population 5 

estimates. Disease burdens estimated in various studies can therefore only be truly compared 6 

when the methodology is harmonized. 7 

 8 

5 Discussion and Conclusions 9 

Calculating health burdens is an extremely important endeavor for informing air pollution policy, 10 

but literature estimates cover a large range due to differences in methodology regarding both the 11 

measurement of ambient concentrations and the health impact assessment. Satellite observations 12 

have proved useful in estimating exposure and the resulting health impacts (van Donkelaar et al., 13 

2015b; Yao et al., 2013)(e.g. van Donkelaar et al., 2015; Yao et al., 2013). However, there 14 

remain large uncertainties associated with these satellite measurements and the methods for 15 

translating them into surface air quality that needs to be further investigated.  Our goal with this 16 

work is to explore how mortality burden estimates are made and how choices within this 17 

methodology can explain some of these discrepancies. We also aim to provide a context for 18 

interpreting the quantification of PM2.5 chronic exposure health burdens.  19 

While we have discussed several potential sources for uncertainty in calculating health burdens 20 

with satellite-based PM2.5, there are still a significant number of other sources of uncertainty that 21 

we did not explore. There are processes that could impact the AOD to PM2.5 relationship in the 22 

model, such as different emissions and removal processes. Additionally, our sensitivity test 23 

results are likely partly tied to the spatial resolution of the model and, the satellite AOD, and their 24 

ability to capture finer spatial variations in pollution in regions with high populations. 25 

AlthoughHowever, as Thompson et al., (2014) suggest that, uncertainty in the CRF will likely 26 

still have a larger impact than uncertainties in population-weighted concentrations due to model 27 

resolution.    28 

 29 



 27 

 1 

In Figure 910, we show the mortality burdens for respiratory disease, lung cancer and heart 2 

disease associated with chronic exposure to ambient PM2.5 and calculated using annual average 3 

model-based and “satellite-based” values (from MISR and MODIS) for both the U.S. and China. 4 

We show here that the satellite-based estimates suggest slightly higher national burdens in the 5 

U.S. and slightly lower in China. However, our values using these different annual average 6 

concentrations fall within the range of values found in the literature (Table 1).  7 

We further contrast these estimates to the range in uncertainty associated with our observations 8 

and methodology. The difference between the burden calculated using strictly the model or the 9 

satellite-based approach is greater than the uncertainty range in the satellite AOD, suggesting that 10 

this difference is outside of the scope of measurement limitations and errors. However, the 11 

potential uncertainty in the satellite-based estimate due to the conversion from AOD to surface 12 

PM2.5 (represented by the model ƞ) is substantially larger, larger even than the difference between 13 

model-derived and satellite-derived estimates.  Therefore, while constraining the model estimate 14 

of PM2.5 by actual observations should improve our health effect estimates, the uncertainty in the 15 

required model information may limit the accuracy of this approach. Again, we stress that these 16 

are “potential” model uncertainties which may overestimate the true uncertainty in regions where 17 

the model accurately represents the composition and distribution of aerosols. We also 18 

acknowledge that we have investigated a limited set of factors; additional biases may exacerbate 19 

these uncertainties.   20 

Figure 910 also conveys the range in mortality estimates for the U.S. and China that can result 21 

from varying choices for the risk ratio or shape of the concentration response. While 22 

epidemiology studies attempt to statistically account for differences in populations and 23 

confounding variables, there is still a large spread in determined risk ratios. Just as important, or 24 

perhaps more so than determining ambient concentrations, correctly applying response functions 25 

is a determining factor in quantifying the burden of mortality due to outdoor air quality. 26 

Differences in exposure estimates can be overshadowed by these different epidemiological 27 

approaches. As an added example, we calculated the mortality burden using only populated 28 

places, similar to  and find that for the U.S. this decreased the burden by 13 %, (satellite-based, 29 
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18% for model). For China, this reduces the burden estimate by 72%. Disease burdens estimated 1 

in various studies can therefore only be truly compared when the methodology is harmonized. 2 

Satellite measurements have provided great advancements in monitoring global air quality, 3 

providing information in regions with previously few measurements. However, further progress 4 

still needs to be made in determining how to characterize exposure to ambient PM2.5 using these 5 

satellite observations, especially as they are becoming more widely used in epidemiological 6 

studies and health impact assessments. Reducing uncertainty, even at the lower concentrations 7 

observed in the U.S., is important if these methods and datasets are to be used for policy 8 

assessment or air quality standards. However, Aas air pollution is a leading environmentally-9 

related cause of premature mortality, the difficulties in applying this data should not negate the 10 

importance of this endeavor. Overcoming sampling limitations in satellite observations and better 11 

accounting for regional biases could help to reduce the uncertainty in satellite-retrieved AOD and 12 

adding additional observational data and model estimates can help to better constrain satellite-13 

based PM2.5 estimates (Brauer et al., 2012, 2015; van Donkelaar et al., 2015a, 2015b). Future 14 

geostationary satellites will also be critical to advance this methodology and will provide 15 

extremely valuable information for daily monitoring and tracking of air quality. Furthermore, 16 

these geostationary observations, in concert with greater surface monitoring, will offer new 17 

constraints for epidemiological studies to develop health risk assessments and lessen the 18 

uncertainty in applying concentration-response functions and determining health burdens.   19 
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Table 1 Premature mortality from PM2.5 exposure by all-cause (All), heart disease (heart), and 1 

lung cancer (LC) as estimated in other studies for the globe, U.S. (or North America), and China 2 

(or Asia). Values are for (x 1000 deaths per year). All cause values for this study are calculated as 3 

the sum of heart disease, lung cancer, and respiratory disease deaths (as opposed to calculating 4 

this based on an all-cause CRF).  *Study provides several estimates determined using different 5 

CRFs. **Study provides several estimates from 14 different models. Table 3 provides additional 6 

information on the data sources and concentrations response functions used in these studies.  7 

Study U.S. (North America) 
China (Asia/Western 

Pacific, East Asia) 
Global 

Year for 

estimate 

 All Heart LC All Heart LC All Heart LC  

Evans et al., 2013* (WHO 

region) 
      

33132640-

4220 

12561123-

1669 

222176-

264 

2004 

Fann et al., 2012* (U.S.) 
130-

320 
        

2005 

Anenberg et al., 2010* 
(continents) 

141 124 17 2736 2584 152 

3381 

(2077-

7714) 

3499 

(1800-

4549) 

222 

(39-

336) 

2000 

Lelieveld et al., 2013(U.S. and 

China) 
55 46 9.1 1006 898 108 2200 2000 186 

2005 

Cohen et al., 2004*  (WHO 
region) 

28 3-55 1-12 487355 192-504 22-53 800799 
712474-
1132 

39-105 
2000 

Lim et al., 2012 (GBD 2010, 

U.S. and China) 
86 58 20 858 563 185 3100   

2010 

Forouzanfar et al., 2015 

(GBD 2013, U.S. and China) 
78 54 17 916 600 201 2900   

2013 

WHO, 2014 (WHO region) 152   1669   3700 1505 227 2012 

Fang et al., 2013 (North 
America and East Asia) 

 38 4.4  661 53  1532 95 
2000 

Silva et al., 2013** 

(continents) 

12.2-

77 
  

908-

1240 
  1880-2380   

2000 

U.S. EPA, 2010* (U.S.) 
26-

360 
        

2005 

U.S. Environmental Protection 
Agency, 2009 (U.S.) 

144         
 

Punger and West, 2013 (U.S.) 66 61 9.9       2005 

Lelieveld et al., 2015 (U.S. 

and China) 
55   1357   3297   

2010 

Sun et al., 2015  (U.S.) 103.3 68.3 15.4       2000 

Rohde and Muller, 2015 

(China) 
   1600      

2014 

This Study: Satellite (U.S. and 
China) 

113 82 15 2084 1512 220 - - - 
 

This Study: Model (U.S. and 

China) 
104 75 14 2171 1570 231 - - - 

 

This Study: Satellite (U.S. and 

China) with Burnett et al., 

2014 

4950 38 5 12714 920 138    

2004-

2011 

This Study: Model (U.S. and 

China) with Burnett et al., 

2014 

403 302 4 1300297 9310 1434    

2004-

2011 

8 
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 Table 2. Parameters for the IER model given in Equation 8 determined in Burnett et al., 2014 1 

and as in Zheng et al., 2014. 2 

Disease α γ C0 ρ 

Ischemic Heart Disease 1.65 0.0483 7.45 0.467 

Cerebrovascular Disease 1.31 0.0120 7.36 1.274 

Chronic Obstructive Pulmonary Disease 22.16 0.00110 7.34 0.697 

Lung Cancer 159.22 0.00020 7.35 0.759 

3 
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Table 32. List of model sensitivity tests and descriptions with results shown in Figure 78. 1 

Sensitivity Test Description 

AvgAOD AOD is held constant through season while Ƞ 

varies daily. 

AvgEta AOD varies daily, while Ƞ is held constant 

through season. 

AvgProf Column mass varies daily, but shape of vertical 

profile is held constant for season. AOD and Ƞ 

vary daily but are re-calculated for redistributed 

mass.   

AvgRH AOD and Ƞ vary daily but are re-calculated 

assuming relative humidity remains constant 

throughout season. 

2x2.5 Ƞ values are calculated for simulation run at 

coarser (2°x2.5°) resolution and then regrid to 

nested resolution (0.5°x0.666°). 

SO4 Assume all mass in column is sulfate and 

recalculate Ƞ. 

BC Assume all mass in column is black carbon and 

recalculate Ƞ. 

No NO3 Calculate AOD and Ƞ without the contribution 

of nitrate. 

2 



 42 

Table 43. Input for premature mortality burden estimate sensitivity tests and the resulting percent 1 

change in mortality due to chronic exposure determined from satellite-based concentrations. 2 

Parentheses are for values determined from model simulated concentrations. 3 

RR source Threshold CRF shape 
% Change 

USA 

% Change 

China 
Study using method 

In Fig. 8 

Krewski et al., 

2009 
No Linear 

base base 
 

K-L 

Krewski et al., 

2009 

Yes, LMLlowest 

measured level 
Linear 

-56 (-62)  -8 (-8) Annenburg Anenberg et 

al., 2010 

K-L-LM 

Krewski et al., 

2009 

Yes, 

CFcounterfactual 
Linear 

-38 (-43)  -6 (-5)  
 

K-L-CF 

Krewski et al., 

2009 

Yes, PRBpolicy 

relevant 

background 

Linear 

-10 (-11)   

 

K-L-PRB 

Krewski et al., 

2009 
No 

Linear to 30 

ugm-3 

0 (0) -30 (-33)  Anenburg Anenberg et 

al., 2010 

K-L-30 

Krewski et al., 

2009 
No 

Linear to 50 

ugm-3 

0 (0) -4 (-8)  
 

K-L-50 

Krewski et al., 

2009 

Yes, LMLlowest 

measured level 

Log-Linear (Eq. 

6) 
-23 (-30)  -13 (-15)  

Evans et al., 2013; Fann 

and Risley, 2013; U.S. 

EPA, 2010 

K-LL-

LML 

Krewski et al., 

2009 

Yes, 

CFcounterfactual 

Log-Linear (Eq. 

6) 

28 (23)  -2 (-4)  
 

K-LL-CF 

Krewski et al., 

2009 
No 

Log-Linear (Eq. 

5) 

10 (10) 26 (26) 
 

K-LL 

Krewski et al., 

2009 

lowest measured 

levelYes, LML 

Log-Linear (Eq. 

5) 

-53 (-59)  14 (16)  
U.S. EPA, 2010 

K-LL-

LML 

Pope et al., 2002 No Power Law 44 (52)  -17 (-18)  Marlier et al., 2013  K-PL 

Pope et al., 2002 
lowest measured 

levelYes, LML 
Power Law 

-8 (-8) -44 (-46)  
 

K-PL-

LML 

Pope et al., 2002 

Yes, PRBpolicy 

relevant 

background 

Power Law 

21 (35)   

 

K-L-PRB 

Laden et al., 2006 No Linear 105 (108)  47 (45)   L-L 

Laden et al., 2006 
lowest measured 

levelYes, LML 
Linear 

-14 (-24) 38 (36)  Annenburg et al., 2010; 

U.S. EPA, 2010 

L-L-LML 
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Laden et al., 2006 
Yes, 

CFcounterfactual 
Linear 

32 (24)  51 (49)  
 

L-L-CF 

Burnett et al., 2014 Yes, fitted IER 

base-26 (-33) base-18 (-20) Lim et al., 2012; Zheng 

et al., 2014; Lelieveld et 

al., 2015 

B-IER 

Burnett et al., 2014 fitted IER 

167 (167) 65 (64) *maximum value 

detemined from set of 

coefficeints 

B-IERmax 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3) 
Equation 5 

18 (15) 18 (21) Evans et al., 2013; 

Lelieveld et al., 2013 

K-L5.8 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3), 

ceiling (30 µg m-3) 

Equation 5 

 18 (15) -24 (-26) 

Anenberg et al., 2010 

K-Lc30 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3), 

ceiling (50 µg m-3) 

Equation 5 

90 (93) 6 (4) 

Cohen et al., 2004 

K-Lc50 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3) 
Equation 6 

143 (167) -6 (-7) 
Evans et al., 2013 

K-LL5.8 

Krewski et al., 

2009 

Policy Relevant 

Background 
Equation 5 

134 (158)  
U.S. EPA, 2010 

K-LPR 

Krewski et al., 

2009 
No threshold Equation 5 

169 (200) 52 (55) 
Silva et al., 2013 

K-L0 

Pope et al., 2002 

Lowest measured 

level (5.8 µg m-3), 

ceiling (30 µg m-3) 

Power Law 

134 (158) -26 (-28) 

Marlier et al., 2013 

P-PL5.8c30 

Pope et al., 2002 
Lowest measured 

level (7.5 µg m-3) 
Power Law 

102 (105) -15 (-15) 
Pope et al., 2002 

P-PL7.5 

Laden et al., 2006 
lowest measured 

level (10 µg m-3) 
Equation 5 

-58 (-68) 126 (130) Anenburg et al., 2010; 

U.S. EPA, 2010 

L-L10 

Laden et al., 2006 
lowest measured 

level (10 µg m-3) 
Equation 5 

239 (275)  
U.S. EPA, 2010 

L-LPR 

Laden et al., 2006 

lowest measured 

level (10 µg m-3); 

ceiling (30 µg m-3) 

Equation 5 

 38 (33) 

Anenburg et al., 2010 

L-Lc30 

Pope et al., 2002 
lowest measured 

level (7.5 µg m-3) 
Equation 5 

-55 (-58) -25 (-27) 
 

P-L7.5 

Pope et al., 2002 
lowest measured 

level (7.5 µg m-3) 
Equation 6 

-29 (-28) 1 (1) 
 

P-LL7.5 

1 



 44 

 1 

 2 

Figure 1. Population density [per km2] for the year 2000 from the GPWv3 data for (a) the 3 

continental U.S. and (c) China. The projection for increase in population density by the year 2015 4 

for (b) the continental U.S. and (d) China. 5 
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 47 

Figure 2. Relative risk ratios from select previous studies for mortality due to chronic exposure to PM2.5 (given as per 10µgm-3 1 

increase) colored by cause of death. Studies applied in this work are highlighted in bold. 2 
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Figure 3. Long-term average (2004-2011) unconstrained model simulation of PM2.5 for the (a) 3 

continental U.S. and (b) China, along with the (MODIS-Aqua Collection 6) satellite-based PM2.5 4 

for the (c) continental U.S. and (d) China, and the difference between the satellite-constrained 5 

and unconstrained model PM2.5 concentrations. 6 

7 
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Figure 4. GEOS-Chem simulated average surface PM2.5 mass for years 2004-2011 overlaid with 3 

measurements at IMPROVE (circles) and AQS sites (diamonds). 4 

5 
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Figure 5. Percent of the population exposed to different annual PM2.5 concentrations in the U.S. 3 

(a) and China (b). Lines denote estimates using the unconstrained GEOS-Chem simulation (red) 4 

or using satellite-based estimates with MODIS (green) and MISR (blue). Shading represents 5 

potential uncertainty associated with the model η (described in Section 4.2) and dashed black 6 

lines represent national annual air quality standards. 7 
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Figure 6. (a) Percent difference between annual mean AOD from MODIS Collection 6 and 3 

Collection 5 and (b) simulated bias in satellite-derived annual average surface PM2.5 associated 4 

with satellite sampling. 5 

6 
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Figure 7. Normalized mean bias in AOD between MODIS-Aqua Collection 6 and AERONET 2 

sites for (a) the U.S. and (b) China. 3 

4 
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Figure 78. Distribution of normalized mean biases in annual average PM2.5 for grid boxes in 3 

different regions of the U.S. (top row) and China (bottom row) determined from sensitivity tests 4 

to investigate the uncertainty in η. Sensitivity tests are described (and abbreviations defined) in 5 

Table 3. 6 

7 
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Figure 89. Premature mortality estimates for (a) the U.S. and (b) China determined using 2 

different RR, CRFs, and threshold/ceiling values, as described in Table 3. Colors represent cause 3 

of death estimated using PM2.5 concentrations from unconstrained model simulations (solid) and 4 

satellite-based estimates (hatched). 5 

6 
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Figure 910. Burden of mortality due to outdoor exposure to fine particulate matter as determined 4 

in previous studies (Table 1, gray bars with values from individual studies designated by black 5 

lines), calculated using model (GEOS-Chem, solid) and satellite-based (hatched) annual 6 

concentrations (colored by disease, whiskers denote 5th and 95th percentile estimates generated 7 

using the Burnett et al., 2014 coefficients95% confidence intervals on RRs). The uncertainty 8 

range on the MODIS-based estimates due to satellite AOD (taupe), model ƞ (coral), and CRF 9 

(blue) are shown on the right. 10 


