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Abstract 11 

The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary 12 

motivator for air quality research. However, estimates of the air pollution health burden vary 13 

considerably and strongly depend on the datasets and methodology. Satellite observations of 14 

aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface 15 

monitoring and to assess the global population exposure to PM2.5 and the associated premature 16 

mortality. Here we quantify the uncertainty in determining the burden of disease using this 17 

approach, discuss different methods and datasets, and explain sources of discrepancies among 18 

values in the literature. For this purpose we primarily use the MODIS satellite observations in 19 

concert with the GEOS-Chem chemical transport model. We contrast results in the United States 20 

and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response 21 

function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2% 22 

of total deaths compared to 14% in China (using satellite-based exposure), which falls within the 23 

range of previous estimates. The difference in estimated mortality burden based solely on a 24 

global model vs. that derived from satellite is approximately 14% for the U.S. and 2% for China 25 

on a nationwide basis, although regionally the differences can be much greater. This difference is 26 

overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite 27 
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observations, which we quantify to be on the order of 20% due to uncertainties in the AOD-to-1 

surface-PM2.5 relationship, 10% due to the satellite observational uncertainty, and 30% or greater 2 

uncertainty associated with the application of concentration response functions to estimated exposure. 3 

1 Introduction 4 

By 2030, air pollution will be the leading environmentally-related cause of premature mortality 5 

worldwide (OECD, 2012). The World Health Organization (WHO) estimates that exposure to 6 

outdoor air pollution resulted in 3.7 million premature deaths in 2012. Many epidemiological 7 

studies have shown that chronic exposure to fine particulate matter (PM2.5) is associated with an 8 

increase in the risk of mortality from respiratory diseases, lung cancer, and cardiovascular 9 

disease, with the underlying assumption that a causal relationship exists between PM and health 10 

outcomes  (Dockery et al., 1993; Jerrett et al., 2005; Krewski et al., 2009; Pope et al., 1995; 2002; 11 

2004; 2006). This has been shown through single and multi-population time series analyses, 12 

long-term cohort studies, and meta-analyses. 13 

In order to stress the negative impacts of air pollution on human health and inform policy 14 

development (particularly with regard to developing strategies for intervention and risk 15 

reduction), many studies have calculated the total number of premature deaths each year 16 

attributable to air pollution exposure or the “burden of disease,” through health impact 17 

assessment methods. One of the main obstacles in attributing specific health impacts of PM2.5 is 18 

determining exposure and linking this to specific health outcomes. Jerrett et al. (2005) suggest 19 

personal monitors would be the optimal method because it would be easier to attribute individual 20 

recorded health outcomes to specific particulate levels, but point out that the financial costs and 21 

time-intensiveness limit widespread use. Many studies have instead relied on fixed-site monitors 22 

within a certain radius to estimate population-level exposure. However, these monitoring 23 

networks are generally located in urban regions and provide no information on concentration 24 

gradients between sites. Thus, epidemiological studies typically have to quantify the aggregate 25 

population response to an area-average concentration. Additionally, health data can be limited 26 

and therefore the responses may be determined from a subset of individuals that may not be 27 

representative of the wider population.  28 
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Estimating the burden of disease associated with particulate air pollution requires robust 1 

estimates of PM2.5 exposure. Fixed-site monitoring networks can be costly to operate and 2 

maintain, and the sampling time period for many of these monitors in the United States is often 3 

only every third or sixth day. Due to the high spatial and temporal variability in aerosol 4 

concentrations, this makes it difficult to determine exposure and widespread health impacts.  5 

Worldwide, monitoring networks are even scarcer, with many developing countries lacking any 6 

long-term measurements. “Satellite-based” concentrations are now used extensively for 7 

estimating mortality burdens and health impacts (e.g. Crouse et al., 2012; Evans et al., 2013; Fu 8 

et al., 2015; Hystad et al., 2012; Villeneuve et al., 2015) Satellite observations of aerosol optical 9 

depth (AOD) can offer observational constraints for population-level exposure estimates in 10 

regions where surface air quality monitoring is limited; however they represent the vertically-11 

integrated extinction of radiation due to aerosols, and thus additional information on the vertical 12 

distribution and the optical properties of particulate matter is required (often provided by a 13 

model) to translate these observations to surface air quality (van Donkelaar et al., 2006, 2010; Liu 14 

et al., 2004, 2005). Alternatively, studies have relied on model-based estimates of PM2.5 15 

exposure.  Table 1 shows that the resulting estimates of premature mortality vary widely. Here, 16 

we discuss these different methods and contrast the uncertainty in these approaches for estimating 17 

exposure for both the U.S., where air quality has improved due to regulations and control 18 

technology, and China, where air quality is a contemporary national concern. Our objective is to 19 

investigate the factors responsible for uncertainty in chronic PM2.5 burden of disease estimates, 20 

and use these uncertainties to contextualize the comparison of satellite-based and model-based 21 

estimates of premature mortality with previous work. As health impact assessment methods are 22 

becoming more popular in the scientific literature, a greater understanding of the uncertainties in 23 

these methods and the datasets that are used is important.   24 

 25 
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2 Methods and Tools 1 

2.1 General formulation to calculate the burden of disease 2 

To estimate the burden of premature mortality due to a specific factor like PM2.5 exposure, we 3 

rely on equations 1 and 2 (equations 6 and 8 in Ostro, 2004 and as previously used in van 4 

Donkelaar et al., 2011; Evans et al., 2013; Marlier et al., 2013; Zheng et al., 2015). The 5 

attributable fraction (AF) of mortality due to PM2.5 exposure depends on the relative risk value 6 

(RR), which here is the ratio of the probability of mortality (all-cause or from a specific disease) 7 

occurring  in an exposed population to the probability of mortality occurring in a non-exposed 8 

population. The total burden due to PM2.5 exposure (ΔM) can be estimated by convolving the AF 9 

with the baseline mortality (equal to the baseline mortality rate Mb x exposed population P). The 10 

relative risk is assumed to change (ΔRR) with concentration, so that, in general, exposure to 11 

higher concentrations of PM2.5 should pose a greater risk for premature mortality (section 2.4). 12 

AF= (RR-1) / (RR)  (or the alternate form of AF= ΔRR / (ΔRR+1)  (1) 13 

ΔM=Mb x P x AF          (2) 14 

Application of this approach requires information on the baseline mortality rates and population, 15 

along with the RR, which is determined through a concentration response function (including a 16 

shape and initial relative risk, section 2.4), and ambient surface PM2.5 concentrations.  17 

2.2 Baseline mortality and population 18 

For population data, we use the Gridded Population of the World, Version 3 (GPWv3), created 19 

by the Center for International Earth Science Information Network (CIESIN) and available from 20 

the Socioeconomic Data and Applications Center (SEDAC). This gridded dataset has a native 21 

resolution of 2.5 arc-minutes (~5km at the equator) and provides population estimates for 1990, 22 

1995, and 2000, and projections (made in 2004) for 2005, 2010, and 2015. We linearly 23 

interpolate between available years to get population estimates for years not provided. Population 24 

density for China and the United States for the year 2000 are shown in Figure 1 along with the 25 

projected change in population density by the year 2015, illustrating continued growth of 26 

urbanized areas (at the expense of rural regions in China). We also compare mortality estimates 27 
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using only urban area population (similar to Lelieveld et al., 2013 which estimates premature 1 

mortality in mega-cities). For this, we rely on the populated places dataset (provided by Natural 2 

Earth, which gives values for a point location rather than a grid and includes all major cities and 3 

towns along with some smaller towns in sparsely inhabited regions) which is determined from 4 

LandScan population estimates (Bright et al., 2008). In the U.S., approximately 80% of the 5 

population lives in urban areas. For China, 36% of the population lived in urban areas in 2000, 6 

but this number rose to 53% in 2013 (World Bank, 2015). 7 

To determine baseline mortalities in the U.S. for cardiovascular disease (ischemic heart disease 8 

and stroke), lung cancer, and respiratory disease, we use mortality rates for each cause of death 9 

for all ages from the Center for Disease Control (cdc.gov) for each year and each state. We 10 

multiply  the gridded population by these state-level mortality rates to obtain the baseline 11 

mortality in each grid box. Other studies have also used country-wide (or regional) (e.g. Evans et 12 

al., 2013) or county-level (e.g. Fann et al., 2013) average deaths rates. Some studies use the 13 

mortality rate for all cardiovascular diseases, which would produce larger estimates than just 14 

using ischemic heart disease and cerebrovascular disease (stroke). Additionally, some studies also 15 

only consider respiratory deaths related to ozone exposure. Mortality values are not as readily 16 

available for China, so we rely on country-wide values for baseline mortality (WHO age-17 

standardized mortality rates by cause). Therefore, in China spatial variations in Mb are only due 18 

to variations in population and not regional variations in actual death rates (i.e. we do not account 19 

for death-specific mortality rates varying between provinces). In order to account for some 20 

regional variability in mortality rates, we use a population threshold to distinguish between urban 21 

and rural regions for lung cancer mortality rates (Chen et al., 2013a).  22 

2.3 Relative Risk  23 

The relative risk (RR) is a ratio of the probability of a health endpoint (in this case premature 24 

mortality) occurring in a population exposed to a certain level of pollution to the probability of 25 

that endpoint occurring in a population that is not exposed. Values greater than one suggest an 26 

increased risk, while a value of one would suggest no change in risk. These values are determined 27 

through epidemiological studies which relate individual health impacts to changes in 28 

concentrations, and literature values span a large range (Figure 2). While these studies attempt to 29 
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account for differences in populations, lifestyles, pre-existing conditions, and co-varying 1 

pollutants, relative risk ratios determined from each study still differ. This is likely due to 2 

variables not taken into consideration, errors in exposure estimates (“exposure misclassification”) 3 

(Sheppard et al., 2012), and because, although the long-term effects of exposure to atmospheric 4 

pollutants have been well-documented, the pathophysiological mechanisms linking exposure to 5 

mortality risk are still unclear (Chen and Goldberg, 2009; Pope and Dockery, 2013; Sun et al., 6 

2010), which make it difficult to determine how transferable results are from the context in which 7 

they were generated. 8 

For our initial estimates, we use the integrated risk function from Burnett et al. (2014) for heart 9 

disease, respiratory disease, and lung cancer premature mortality due to chronic exposure. We 10 

also compare our results to premature mortality estimates using risk ratios determined by 11 

Krewski et al. (2009), which is an extended analysis of the American Cancer Society study (Pope 12 

et al., 1995), and  from Laden et al. (2006) which is an updated and extended analysis of the 13 

Harvard Six Cities study (Pope et al., 2002). The updated Krewski et al. (2009) risk ratios have 14 

been widely used in similar studies due to the large study population with national coverage, 18 15 

year time span, and extensive analysis of confounding variables (ecological covariates, gaseous 16 

pollutants, weather, medical history, age, smoking, etc.). However, the Burnett et al. (2014) 17 

function is becoming more widely used in the literature (e.g. Lelieveld et al., 2015; Lim et al., 18 

2012, Apte et al., 2015) because it provides the shape of the mortality function for the global 19 

range of exposure concentrations. Using these different risk ratios can makes our results more 20 

directly comparable to studies in Table 1 which rely on the risk ratios from these four studies 21 

(Burnett et al., 2014; Krewski et al., 2009; Laden et al., 2006; Pope et al., 2002).  22 

2.4 Concentration response function  23 

In order to determine an attributable fraction, it is necessary to understand how the 24 

response changes with concentration (i.e. does the relative risk increase, decrease, or level off 25 

with higher concentrations?). The shape of this concentration response function is an area of on-26 

going epidemiological research (e.g. Burnett et al., 2014; Pope et al., 2015).  27 
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In the simplest form, it might be assumed that the change in relative risk (RR, given as per 1 

10 µg/m3) linearly depends on the surface PM2.5 concentration (C, in µg/m3) as given in equation 2 

4 (and as presented as an alternate form in Cohen et al., 2004; 2005).  3 

ΔRR= (RR-1) x (C-C0)/10      (4) 4 

In this equation, C0 can be considered the “policy relevant (PRB)/target”, “natural background” 5 

or “threshold”/ “counterfactual”/ “lowest effect level” surface PM2.5 concentration. Studies have 6 

shown that there is not a concentration level below which there is no adverse health effect for PM 7 

(e.g. Pope et al., 2002; Shi et al., 2015) and most experts in health impacts of ambient air quality 8 

agree that there is no population-level threshold (although there may be individual-level 9 

thresholds, e.g. Roman et al., 2008). However, there are few epidemiological studies in regions 10 

with very low annual average concentrations (Crouse et al., 2012 does records a 1.9 µg m-3 11 

annual concentration in rural Canada) making it difficult to determine the health risks in 12 

relatively clean conditions. How to extrapolate the relationship out of the range of observed 13 

measurements is uncertain.  Therefore, rather than assuming that the function is linear down to 14 

zero, studies often set C0 to the value of the lowest measured level (LML) observed in the 15 

epidemiology study from which the RRs are derived [e.g. Evans et al., 2013 use 5.8 µg/m3 with 16 

the RR from Krewski et al. 2009] or use the “policy relevant” background (PRB, generally 0-2 17 

µgm-3) concentration. This is the level to which policies might be able to reduce concentration 18 

and  is generally determined from model simulations in which domestic anthropogenic emissions 19 

have been turned off (e.g. Fann et al., 2012). Similarly, some studies have set this value to 20 

preindustrial (1850) pollution levels (e.g. Fang et al., 2013; Silva et al., 2013). 21 

Linear response functions are generally a good fit to observed responses at lower concentrations 22 

(Pope et al., 2002). However, studies suggest that linear response functions can greatly 23 

overestimate RR at high concentrations (e.g. Pope et al., 2015), where responses may start to 24 

level off. There is uncertainty at high concentrations because most epidemiology studies of the 25 

health effects of air pollution exposure have generally been conducted under lower 26 

concentrations (i.e. in the U.S.). In order to determine the shape of this response at higher 27 

concentrations, smoking has been used as a proxy (Burnett et al., 2014; Pope et al., 2011, 2009), 28 

which does show a diminishing response at higher concentrations. Therefore, both log-linear 29 

(Equations 5 and 6, where β = 0.15515/0.23218 for heart disease/lung cancer from Pope et al. 30 
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(2002) or β = 0.18878/0.21136 for heart disease/lung cancer from Krewski et al., 2009 in 1 

Equation 6 and β = 0.01205/0.01328 for heart disease/lung cancer from Krewski et al., 2009 in 2 

Equation 5) and power law (Equation 7, where I is the inhalation rate of 18m3day-1, β = 3 

0.2730/0.3195, α = 0.2685/0.7433 for heart disease/lung cancer from Pope et al., 2011 and as 4 

used in Marlier et al., 2013) functions have been also been explored in this study. ΔRR= exp [β 5 

(C-C0)] - 1      (5) 6 

ΔRR= [(C+1)/(C0+1)]β - 1      (6) 7 

ΔRR= α (I x C) β       (7) 8 

We note that Cohen et al. (2005) and Anenberg et al. (2010) reference Equation 5 as a log-linear 9 

function, while Ostro (2004), Evans et al. (2013), and Giannadaki et al. (2014) use this as their 10 

linear function and instead use Equation 6 as their log-linear function, we will refer to these 11 

equation numbers for clarity in other sections. Another method to limit the response at high 12 

concentrations is to simply use a “ceiling,” “maximum exposure/high-concentration threshold,” 13 

or “upper truncation” value in which it is assumed that the response remains the same for any 14 

value above it (e.g. Anenberg et al., 2012; Cohen et al., 2005; Evans et al., 2013). This can be a 15 

somewhat arbitrary value or the highest observed concentration in the original epidemiological 16 

study. 17 

Recently, Burnett et al. (2014) fit an integrated exposure response (IER) model using RRs from a 18 

variety of epidemiological studies on ambient and household air pollution, active smoking, and 19 

second hand tobacco smoke in order to determine RR functions over all global PM2.5 exposure 20 

ranges for ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary 21 

disease, and lung cancer (Equation 8). Monte Carlo simulations were conducted in order to derive 22 

the one thousand sets of coefficients for the IER function (the coefficients are available at 23 

http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-24 

pollution-risk-model-1990-2010)..    for C < C0, ΔRR= 0 25 

    for C ≥ C0, ΔRR= α{1-exp[-γ(C-C0)
ρ]}    (8) 26 

This form is now being widely used (Apte et al., 2015; Lelieveld et al., 2015; Lim et al., 2012) 27 

and we use it here for our baseline estimates. In the following sections, we will discuss the 28 
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uncertainty on the burden of disease associated with the shape of the concentration response 1 

function and threshold concentration. 2 

2.5 Estimating surface PM2.5  3 

We use both a global model and satellite observations to estimate surface PM2.5 concentrations 4 

and translate these to PM2.5 exposure and health burden. In addition, we use surface 5 

measurements of PM2.5 to test the accuracy of these estimates.   6 

2.5.1 Unconstrained Model Simulation 7 

We use the global chemical transport model GEOS-Chem (geos-chem.org) to simulate both 8 

surface PM2.5 and AOD. We use v9.01.03 of the model, driven by GEOS-5 meteorology, in the 9 

nested grid configuration over North America and Asia (0.5°x0.667° horizontal resolution) for 10 

2004-2011. Using this longer time period gives greater confidence in our uncertainty results. The 11 

GEOS-Chem aerosol simulation includes sulfate, nitrate, ammonium (Park et al., 2004), primary 12 

carbonaceous aerosols (Park et al., 2003), dust (Fairlie et al., 2007; Ridley et al., 2012), sea salt 13 

(Alexander et al., 2005), and secondary organic aerosols (SOA) (Henze et al., 2008). There are 14 

several regional anthropogenic emission inventories used in the model, such as BRAVO over 15 

Mexico (Kuhns et al., 2003), EMEP over Europe (Vestreng et al., 2007), CAC for Canada 16 

(http://www.ec.gc.ca/pdb/cac/cac_home_e.cfm), the EPA NEI05 inventory (Hudman et al., 2007, 17 

2008) over the U.S., and Streets et al. (2006) over Asia. Any location not covered by one of these 18 

regional inventories relies on the GEIA (Benkovitz et al., 1996) and EDGAR (Olivier and 19 

Berdowski, 2001; Olivier et al., 2001) inventories.  Biofuel emissions over the U.S. are also from 20 

the EPA NEI05 inventory (Hudman et al., 2007, 2008) and anthropogenic emissions of black and 21 

organic carbon over North America follow Cooke et al. (1999) with the seasonality from Park et 22 

al. (2003). Biogenic VOC emissions are calculated interactively following MEGAN (Guenther et 23 

al., 2006), while year-specific biomass burning is specified according to the GFED2 inventory 24 

(van der Werf et al., 2006). Surface dry PM2.5 is calculated by combining sulfate, nitrate, 25 

ammonium, elemental carbon, organic matter, fine dust, and accumulation mode sea salt 26 

concentrations in the lowest model grid box. In the following discussion, these values are referred 27 

http://www.ec.gc.ca/pdb/cac/cac_home_e.cfm
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as the “unconstrained model.” Simulated AOD is calculated at 550 nm based on aerosol optical 1 

and size properties as described in Ford and Heald (2013). 2 

2.5.2 Satellite-based 3 

 We also derive a satellite-based surface PM2.5 using satellite observed aerosol optical 4 

depth, with additional constraints from the GEOS-Chem model,  in a similar manner to Liu et al. 5 

(2004, 2007) and van Donkelaar et al. (2006, 2010, 2011). This method relies on the following 6 

relationship:  7 

 PM2.5,surface = ƞ x AODsatellite        (9) 8 

 Where the satellite-derived PM2.5 is estimated at the resolution of the unconstrained model by 9 

multiplying the satellite observed AOD by the value ƞ, which is the ratio of model simulated 10 

surface PM2.5 to simulated AOD at the time of the satellite overpass. This is then a combined 11 

product which relies on a chemical transport model to simulate the spatially and temporally 12 

varying relationship between AOD and surface PM2.5 by accounting for all the aerosol properties 13 

and varying physical distribution and then constraining these results by “real” (i.e. satellite) 14 

measurements of AOD. Using the satellite to constrain the model concentrations is extremely 15 

useful in regions where emissions inventories and model processes are less well known.  16 

For AOD, we use observations from both of the Moderate Resolution Imaging Spectroradiometer 17 

(MODIS) instruments and from the Multi-angle Imaging SpectroRadiometer (MISR) instrument. 18 

For this work we use MODIS 550 nm Level 2, Collection 6, Atmosphere Products for Aqua as 19 

well as Level 2, Collection 5 for Aqua. We filter these data for cloud fraction (CF < 0.2) and 20 

remove observations with high AOD (>2.0), as cloud contamination causes known biases in the 21 

AOD (Zhang et al., 2005) as in Ford and Heald (2012) although we note that this could remove 22 

high pollution observations, particularly in China. For MISR, we also use the Level 2 AOD 23 

product (F12, version 22, 500nm). We note that this is a different wavelength than from the 24 

MODIS instrument, but we neglect that difference for these comparisons. We use both of these 25 

observations for comparison as MODIS has a greater number of observations while MISR is 26 

generally considered to better represent the spatial and temporal variability of AOD over China 27 

(Cheng et al., 2012; Qi et al., 2013; You et al., 2015). Satellite observations are gridded to the 28 
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GEOS-Chem nested grid resolution. We sample GEOS-Chem to days and grid boxes with valid 1 

satellite observations to calculate the ƞ used to translate the AOD to surface PM2.5. 2 

In Figure 3, we show the long-term average (2004-2011) of satellite-based PM2.5 for the U.S. and 3 

China using MODIS Aqua Collection 6 and compare this to model-only estimates. In the 4 

following sections, most of our results will be shown using Collection 6; but reference and 5 

comparisons will be made to other products as a measure of uncertainty. In general the 6 

unconstrained model and satellite-based estimates show similar spatial features and magnitudes, 7 

with stronger local features apparent in the satellite-based PM2.5. The satellite-based estimate 8 

suggests that concentrations should be higher over much of the western U.S., particularly over 9 

California, Nevada, and Arizona (comparisons with surface measurements are discussed in 10 

section 2.5.3). In China, the satellite-derived PM2.5 is higher in Eastern China, around Beijing and 11 

the Heibei province, Tianjin, and Shanghai, but lower in many of the central provinces. While 12 

many previous studies suggest that MODIS may be biased high (and MISR biased low) over 13 

China (e.g. Cheng et al., 2012; Qi et al., 2013; You et al., 2015) and the Indo-Gangetic Plain 14 

(Bibi et al., 2015); Wang et al. (2013) note that the GEOS-Chem model underestimates PM2.5 in 15 

the Sichuan basin, suggesting that the MODIS satellite-based estimate could reduce the bias in 16 

this province.   17 

2.5.3 Surface-based Observations 18 

We use observations of PM2.5 mass from two networks in the United States (where long-term 19 

values are more readily available than in China) to evaluate the model and satellite-derived 20 

PM2.5: the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the EPA 21 

Air Quality System (AQS) database. The IMPROVE network measures PM2.5 over a 24-hour 22 

period every third day and these measurements are then analyzed for concentrations of fine, total, 23 

and speciated particle mass (Malm et al., 1994). We use the reconstructed fine mass (RCFM) 24 

values, which are the sum of ammonium sulfate, ammonium nitrate, soil, sea salt, elemental 25 

carbon and organic matter.  26 

Previous studies have generally shown good agreement between measurements and GEOS-Chem 27 

simulations of PM2.5 (e.g. Ford and Heald, 2013; van Donkelaar et al., 2010). In Figure 4, we 28 

show the long-term average of PM2.5 at AQS and IMPROVE sites in the U.S. overlaid on 29 
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simulated concentrations. In general, GEOS-Chem agrees better with measurements at 1 

IMPROVE sites, likely because these are located in rural regions where simulated values will not 2 

be as impacted by the challenge of resolving urban plumes in a coarse Eulerian model. There are 3 

noted discrepancies in California (Schiferl et al., 2014) and the Appalachia/Ohio River Valley 4 

region where the model is biased low. The model has a low mean bias of -25% compared to 5 

measurements at the EPA AQS sites and a bias of -6% compared to measurements at IMPROVE 6 

sites. Annual mean bias at individual sites ranges from -100 to 150%. At these same AQS sites, 7 

the satellite-derived PM2.5 is less biased (-12% using MODIS C6 or -8% using MISR).  8 

To estimate the uncertainty in satellite AOD, we also rely on surface-based measurements of 9 

AOD from the global AErosol RObotic NETwork (AERONET) of sun photometers. AOD and 10 

aerosol properties are recorded at eight wavelengths in the visible and near-infrared (0.34-11 

1.64µm) and are often used to validate satellite measurements (e.g. Remer et al., 2005). 12 

AERONET AOD has an uncertainty of 0.01-0.015 (Holben et al., 1998). For this work, we use 13 

hourly Version 2 Level 2 measurements sampled to two hour windows around the times of the 14 

satellite overpasses. We also perform a least-square polynomial fit to interpolate measurements to 15 

550 nm.  16 

 17 

3 Estimated health burden associated with exposure to PM2.5 18 

We compare national exposure estimates for the U.S. and China using unconstrained and 19 

satellite-based (MODIS and MISR) annual average PM2.5 concentrations in Figure 5, which is a 20 

cumulative distribution plot that is calculated as the sum of the population in each grid box which 21 

has an annual average concentration at or above each concentration level. For the U.S., satellite-22 

based estimates suggest a slightly greater fraction of the population is exposed to higher annual 23 

average concentrations, while in China, the satellite-based estimates suggest a lower fraction. 24 

Using MISR AOD suggests higher annual average concentrations in the U.S. and much lower in 25 

China, as MISR has a high bias in regions of low AOD and a low bias in regions of high AOD 26 

(Jiang et al., 2007; Kahn et al., 2010). The large discrepancy between results from MISR and 27 

MODIS could be due to differencing in sampling, but studies have also shown that MODIS is 28 
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biased high in China and MISR is biased low (Cheng et al., 2012; Qi et al., 2013; You et al., 1 

2015). We discuss the uncertainties in these estimates in section 4.  2 

These exposure estimates are used to calculate an attributable fraction of mortality associated 3 

with heart disease, lung cancer, and respiratory disease attributable to chronic exposure using 4 

both model and satellite-based annual average concentrations for the U.S. and China (Table 1). In 5 

the U.S., we estimate that exposure to PM2.5 accounts for approximately 2% of total deaths (6% 6 

of heart diseases and 5% of respiratory diseases) compared to 14% (33% of heart and 22% of 7 

respiratory) in China using satellite-based concentrations. The Global Burden of Disease 8 

estimates for 2010, that 10% of total deaths in China and 3% of total deaths in the U.S. are 9 

attributable to exposure to PM2.5 (Lim et al., 2012). We present these as an average over the 10 

2004-2011 time period in order to provide more robust results that are not driven by an outlier 11 

year, as there is considerable year-to-year variability in AOD and surface PM2.5 concentrations 12 

(for example, heavy dust years in China). However, there are trends in population (Figure 1) and 13 

surface concentrations that can influence these results. For example, there is a significant 14 

decreasing trend in AOD over the northeastern U.S. simulated in the model which is also noticeable 15 

in the satellite observations and the surface concentrations (Hand et al., 2012). This decreasing trend 16 

can be attributed to declining SO2 emissions in the U.S. as noted in Leibensperger et al. (2012). 17 

Trends in China are more difficult to ascertain  as emissions have been variable over this period in 18 

general [Lu et al., 2011; Zhao et al., 2013] with widespread increases from 2004 to 2008 followed by 19 

variable trends in different regions through 2011. The difference between mortality burden 20 

estimates using model or satellite concentrations is approximately 20% for the U.S. and 2% for 21 

China on a nationwide basis, although regionally the difference can be much greater.  A question 22 

we aim to address here is whether these model and satellite-based estimates are significantly 23 

different. 24 

We compare our results to premature mortality burden estimates from other studies in Table 1. In 25 

general, our estimates for China are higher than most previous estimates, except for Lelieveld et 26 

al. (2015) and Rohde and Muller (2015).However, these studies provide estimates for 2010 and 27 

2014, respectively, and we did find an increasing trend in our mortality estimates over the study 28 

time period. For the U.S., our estimates are in the lower range of previous studies.The spread 29 

among these studies can be attributed to the data used (i.e. MODIS Collection 5 rather than 30 
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Collection 6 or unconstrained model concentrations, choice of baseline mortality rates, and 1 

population), the resolution of the data, the years studied, as well as the risk ratios and response 2 

functions and the resoultion of these products. For example, Evans et al. (2013) also use satellite-3 

based concentrations (using MISR/MODIS Collection 5 and GEOS-Chem),but use a different 4 

concentration response function... In the following sections, we delineate the uncertainty in these 5 

results and reasons for differences from previous studies.  6 

 7 

4 Uncertainty in Satellite-based PM2.5  8 

Uncertainties in the PM2.5 concentrations derived from satellite observations arise from the two 9 

pieces of information which inform this estimate: (1) satellite AOD and (2) model ƞ. Here we 10 

explore some of the limitations and uncertainties associated with each of these inputs. 11 

4.1 Uncertainty Associated with Satellite AOD 12 

While satellite observations of aerosols are often used for model validation (e.g. Ford and Heald, 13 

2012), these are indirect measurements with their own limitations and errors. The uncertainty in 14 

satellite AOD can be due to a variety of issues such as the presence of clouds, the choice of 15 

optical model used in the retrieval algorithm, and surface properties (Toth et al., 2014; Zhang and 16 

Reid, 2006). For validation of satellite products, studies have often relied on comparisons against 17 

AOD measured with sun photometers at AERONET ground sites (e.g. Kahn et al., 2005; Levy et 18 

al., 2010; Remer et al., 2005, 2008; Zhang and Reid, 2006). The uncertainty in AOD over land 19 

from MODIS is estimated as 0.05 ± 15% (Remer et al., 2005), while Kahn et al. (2005) suggest 20 

that 70% of MISR AOD data are within 0.05 (or 20 % ×AOD) of AERONET AOD. 21 

There are also discrepancies between AOD measured by the different instruments due to different 22 

observational scenarios and instrument design. The Aqua platform has an afternoon overpass 23 

while the Terra platform has a morning overpass. It might be expected that there would be some 24 

differences in retrieved AOD associated with diurnal variations in aerosol loading. However, the 25 

difference of 0.015 in the globally averaged AOD between MODIS onboard Terra and Aqua 26 

(Collection 5), although within the uncertainty range of the retrieval, is primarily attributed to 27 

uncertainties and a drift in the calibration of the Terra instrument, noted in Zhang and Reid 28 
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(2010) and Levy et al. (2010).  Collection 6 (as will be discussed further) reduces the AOD 1 

divergence between the two instruments (Levy et al., 2013). MISR employs a different multi-2 

angle measurement technique with a smaller swath width; as a result the correlation between 3 

MISR AOD and MODIS AOD is only 0.7 over land (0.9 over ocean) (Kahn et al., 2005).  4 

Not only are there discrepancies in AOD between instruments, there are also differences between 5 

product versions for the same instrument. The MODIS Collection 6 Level 2 AOD is substantially 6 

different from Collection 5.1 (Levy et al., 2013) and Figure 6. In general, AOD decreases over 7 

land and increases over ocean with Collection 6. These changes are due to a variety of algorithm 8 

updates including better detection of thin cirrus clouds, a wind speed correction, a cloud mask 9 

that now allows heavy smoke retrievals, better assignments of aerosol types, and updates to the 10 

Rayleigh optical depths and gas absorption corrections (Levy et al., 2013). These differences can 11 

also impact the derived PM2.5 (and can explain some differences between our results and previous 12 

studies). In particular, because Collection 6 suggests higher AOD over many of the urbanized 13 

regions, the derived PM2.5 and resulting exposure estimates (all other variables constant) are 14 

greater. The difference between these two retrieval products, given the same set of radiance 15 

measurements from the same platform, gives a sense of the uncertainty in the satellite AOD 16 

product (Figure 6a).  17 

We estimate the uncertainty in satellite AOD used here by comparing satellite observations to 18 

AERONET and determining the normalized mean bias (NMB) between AOD from each satellite 19 

instrument and AERONET for the U.S. and China (Figure 7). Although there a very limited 20 

number of sites in China, from these comparisons, we find that the satellites generally agree with 21 

AERONET better in the eastern U.S. and northeastern China than in the western U.S. and 22 

western and southeastern China. There are larger biases in the west near deserts and at coastal 23 

regions where it may be challenging to distinguish land and water in the retrieval algorithm. 24 

NMBs at each AERONET site are generally similar among the instruments (MISR comparison 25 

not shown), with greater differences at these western sites. While Collection 6 does reduce the 26 

bias at several sites along the East Coast in the U.S., it is generally more biased at the Four 27 

Corners region of the U.S. We use these NMBs to regionally “bias correct” our AOD values and 28 

estimate the associated range of uncertainty in our premature mortality estimates. Compared to 29 
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the standard MODIS AOD retrieval uncertainty, our overall NMB is less in the eastern U.S. (-1 

1%) and western China (11%) and higher in the western U.S. (40%) and eastern China (18%). 2 

There may also be biases associated with the satellite sampling, should concentrations on days 3 

with available observations be skewed. In order to assess the sampling bias, we use the model 4 

and compare the annual mean to the mean of days with valid observations (Figure 6b). In general, 5 

sampling leads to an underestimation in AOD (average of 20% over the U.S.). This can partly be 6 

attributed to the presence of high aerosol concentrations below or within clouds which cannot be 7 

detected by the satellite,  the mistaken identification of high aerosol loading as cloud in retrieval 8 

algorithms, as well as the removal of anomalously high AOD values (>2.0) from the 9 

observational record.  This suggests that the average AOD values can also be influenced by the 10 

chosen filtering and data quality standards. Analysis of the impact of satellite data quality on the 11 

AOD to PM2.5 relationship is discussed in Toth et al. (2014). They find that using higher quality 12 

observations does tend to improve correlations between observed AOD and surface PM2.5 across 13 

the U.S. though in general correlations are low (<0.55).  14 

4.2 Uncertainty Associated with Model ƞ 15 

In general, the model simulates PM2.5 well (Figure 4) and represents important processes; but,  16 

satellite AOD can help to constrain these estimates to better represent measured concentrations 17 

(van Donkelaar et al., 2006). However, in specific regions or periods of time, errors in ƞ could 18 

lead to discrepancies between satellite-derived and actual surface mass and Snider et al. (2015) 19 

does show some regional biases in the GEOS-Chem model ƞ compared to ƞ determined from 20 

collocated surface measurements of AOD and PM2.5. In order to assess the potential uncertainty 21 

in model-based ƞ, we perform multiple sensitivity tests to determine the impact that different 22 

aerosol properties, grid-size resolution and time scales will have on ƞ and, ultimately, on the 23 

resulting satellite-based PM2.5 (listed in Table 2). These sensitivity tests are performed solely 24 

with model output, which can provide a complete spatial and temporal record, and results from 25 

the modified simulations are compared to the standard model simulation. We note that these are 26 

“errors” only with respect to our baseline simulation; we do not characterize how each sensitivity 27 

simulation may be “better” or “worse” compared to true concentrations of surface PM2.5, but 28 

rather how different they are from the baseline, thus characterizing the uncertainty in derived 29 
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PM2.5 resulting from the model estimates of ƞ. We make these comparisons for both the U.S. and 1 

China and show results in Figure 8. Because mass concentrations in China are generally much 2 

higher, the absolute value of potential errors can also be much greater.   3 

The timescale of the estimated PM2.5 influences the error metric we choose for this analysis. We 4 

use the NMB for estimating error associated with annual PM2.5 exposure (the metric of interest 5 

for chronic exposure). This allows for the possibility that day-to-day errors may compensate, 6 

resulting in a more generally unbiased annual mean value. The error on any given day of satellite-7 

estimated PM2.5 is likely larger, and not characterized by the NMB used here.   8 

Our first sensitivity tests relate specifically to the methodology. To derive a satellite-based PM2.5 9 

with this method requires model output for every day and that there are valid satellite 10 

observations. Running a model can be labor intensive, at the same time there are specific regions 11 

and time periods with poor satellite coverage. Therefore, it might be beneficial to be able to use a 12 

climatological ƞ or a climatological satellite AOD. To test the importance of daily variability in 13 

AOD, we compute daily ƞ values and then solve for daily surface PM2.5 values using a seasonally 14 

averaged model simulated AOD (AvgAOD). This mimics the error introduced by using 15 

seasonally averaged satellite observations, an attractive proposition to overcome limitations in 16 

coverage. This approximation often produces the greatest error (~20% in the U.S. and 0-50% in 17 

China) especially in regions where AOD varies more dramatically and specifically where 18 

transported layers aloft can significantly increase AOD (Figure 8). For the seasonally averaged ƞ 19 

test (AvgEta), we estimate daily PM2.5 values (which are averaged into the annual concentration) 20 

from the seasonally averaged ƞ and daily AOD values. As regional ƞ relationships can be more 21 

consistent over time than PM2.5 or AOD, this test evaluates the necessity of using daily model 22 

output to define the ƞ relationship. The error in the annual average of daily PM2.5 values 23 

determined using a seasonally averaged ƞ creates results that are very similar to the error found 24 

calculating an annual average of daily PM2.5 values calculated using a seasonally averaged AOD.  25 

The model ƞ also inherently prescribes a vertical distribution of aerosol, which may be 26 

inaccurately represented by the model and introduce errors in the satellite-derived PM2.5. 27 

Previous studies have shown that an accurate vertical distribution is essential for using AOD to 28 

predict surface PM2.5. (e.g. Li et al., 2015; van Donkelaar et al., 2010). We test the importance of 29 

the variability of the vertical distribution in the ƞ relationship for predicting surface PM2.5 30 
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concentrations by comparing values from the standard simulation against using an ƞ from a 1 

seasonally averaged vertical distribution (AvgProf). For this comparison, we allow the column 2 

mass loading to vary day-to-day, but we assume that the profile shape does not change (i.e. we 3 

re-distribute the simulated mass to the same seasonally averaged vertical profile). We note that 4 

this is not the same as assuming a constant ƞ, as relative humidity and aerosol composition are 5 

allowed to vary. Additionally, this differs from other studies (van Donkelaar et al., 2010; Ford 6 

and Heald, 2013) in that we are not testing the representativeness of the seasonal average profile, 7 

but testing the importance of representing the daily variability in the vertical profile. From Figure 8 

7, we see that using a seasonally averaged vertical distribution (AvgProf) can lead to large errors 9 

in surface concentrations. Information on how the pollutants are distributed is extremely 10 

important because changes in column AOD can be driven by changes in surface mass loading, 11 

but also by layers of lofted aerosols that result from production aloft or transport (and changes in 12 

the depth of the boundary layer). This is important in areas that are occasionally impacted by 13 

transported elevated biomass burning plumes or dust. Large errors often occur in China, 14 

especially during the spring when these regions are influenced by transported dust from the 15 

Taklamakan and Gobi Deserts (Wang et al., 2008). Southeastern China has the largest NMB due 16 

to not only transport from interior China, but also from other countries in Southeast Asia. There 17 

is a positive bias in most regions, because on average, most of the aerosol mass is located at the 18 

surface; therefore, using an average profile will overpredict the surface concentrations. Similar to 19 

the average AOD and ƞ (AvgAOD and AvgEta), average vertical distributions generally 20 

overpredict PM2.5 due to the presence of outliers. This stresses the importance of not only getting 21 

the mean profile correct, but the necessity of also simulating the variability in the profile on 22 

shorter timescales.   23 

We also test the sensitivity of derived PM2.5 to aerosol water uptake. This is done by recalculating 24 

ƞ using a seasonally averaged relative humidity (RH) profile (AvgRH). This generally reduces 25 

the seasonally averaged AOD (less water uptake) in every season (because hygroscopic growth of 26 

aerosols is non-linear with RH). This leads to an overestimate of ƞ that when applied to the AOD 27 

values from the standard simulation and generally overestimates surface PM2.5 in regions with 28 

potentially higher RH and more hygroscopic aerosols (eastern U.S. and eastern China). This is 29 

because, for the same AOD, a higher ƞ value would suggest more mass at the surface in order to 30 
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compensate for optically smaller particles aloft. Western China (and some of central China) has a 1 

negative bias, suggesting that using a mean relative humidity actually underestimates PM2.5. 2 

However, this is because the RH is generally low but can have large variability, and 3 

concentrations (outside of the desert regions) are also low so that the NMB may be large although 4 

the absolute error is not.A higher resolution model, although more computationally expensive, 5 

will likely better represent small scale variability and is better suited for estimating surface air 6 

quality. Punger and West (2013) find that coarse resolution models often drastically 7 

underestimate exposure in urban areas. We therefore investigate the grid-size dependence of our 8 

simulated ƞ. For this, we determine the ƞ values from a simulation running at 2°x 2.5° grid 9 

resolution (with the same emission inputs and time period), re-grid these values to the nested grid 10 

resolution (0.5°x0.666°) and  solve for the derived PM2.5 concentrations using the AOD values 11 

from the nested simulation (noted as 2x2.5 in Figure 8). From Figure 8, we see larger 12 

discrepancies in regions which are dominated by more spatially variable emissions (Northeastern 13 

U.S. and China) rather than areas with broad regional sources (Southeastern U.S.).  This is line 14 

with Punger and West (2013) who show smaller differences due to resolution in estimated 15 

premature mortality due to PM2.5 exposure in rural areas than in urban areas. Compared to the 16 

other sensitivity tests, using the coarser grid leads to mean errors of only 10-15% in the U.S. and 17 

in China, which suggests that spatially averaged ƞ are potentially more useful than temporally 18 

averaged ƞ for constraining surface PM2.5. Thompson and Selin (2012) and Thompson et al. 19 

(2014) show that coarse grids can overpredict pollutant concentrations and consequently health 20 

impacts, but using very fine grids does not significantly decrease the error in simulated 21 

concentrations compared to observations. . This effect was more pronounced with ozone. 22 

Additionally, their coarsest grid resolution is 36 km which they compare to results at 2, 4, and 12 23 

km. Punger and West (2013) compare health impacts at a variety of resolutions out to several 400 24 

km and show that coarser resolutions underestimate health impacts because concentrations are 25 

diluted over larger areas rather than high concentrations being co-located with large urban 26 

populations.  27 

The GEOS-Chem simulation of surface nitrate aerosol over the U.S. is biased high (Heald et al., 28 

2012). This can be an issue in regions where nitrate has a drastically different vertical profile (or 29 

ƞ) from other species. To test how this nitrate bias could impact ƞ and the derived PM2.5, we 30 
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compute ƞ without nitrate aerosol, and then derive PM2.5 using the standard AOD (No NO3). This 1 

is not a large source of potential error (<15%), with only slightly larger errors in winter and in 2 

regions where nitrate has a significant high bias (central U.S.). Furthermore, these errors are less 3 

than the bias between the model and surface observations of nitrate in the U.S. (1-2 µgm-3 4 

compared to 2-7 µgm-3), suggesting that even though there is a known bias in the model, using 5 

satellite observations may largely correct for this by constraining the total AOD when estimating 6 

satellite-derived PM2.5. We also did this comparison for China. Measured nitrate concentrations 7 

are not widely available for evaluation, but Wang et al. (2014) suggests that model nitrate is also 8 

too high in eastern China. The NMB is even less in regions in China (<10%), with negative 9 

values in eastern China (where nitrate concentrations are high) and positive values in western and 10 

central China (where nitrate concentrations are lower and have less bias compared to 11 

observations).  12 

To further explore the role of aerosol composition (and possible mischaracterization in the 13 

model), we take the simulated mass concentrations and compute the AOD assuming that the 14 

entire aerosol mass is sulfate (SO4 in Figure 8) or, alternatively, hydrophobic black carbon (BC in 15 

Figure 8). Black carbon has a high mass extinction efficiency, which is constant with RH given 16 

its hydrophobic nature; while sulfate is very hygroscopic, resulting in much higher extinction 17 

efficiencies at higher relative humidity values. Overall, assuming that all the mass is sulfate leads 18 

to low biases on the order of 15-20% as the AOD in many regions in the U.S. is dominated by 19 

inorganics. Errors are largest in regions and seasons with larger contributions of less hygroscopic 20 

aerosols (organic carbon and dust) and/or high relative humidity. Assuming the entire aerosol 21 

mass is black carbon can lead to greater errors than sulfate  because BC has a larger mass 22 

extinction at lower relative humidity values and hydrophobic black carbon generally makes up a 23 

small fraction of the mass loading in all regions in the U.S. and China. When RH is low, this 24 

assumption increases the AOD, which leads to an under prediction in the derived PM2.5. When 25 

RH is high, this decreases the AOD and leads to an over prediction in derived PM2.5.  The largest 26 

percentage changes occur in the southwestern U.S. and western China (~-30%) due to the low 27 

relative humidity, low mass concentrations, and large contribution of dust.  28 

We also compare these sensitivity tests on daily timescales. We do not show the results here 29 

because we rely on chronic exposure (annual average concentrations) for calculating mortality 30 
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burdens.  The normalized mean biases in annual average concentrations (Figure 8) are generally 1 

much less (range of ±20% in U.S. and ±50% in China) than potential random errors in daily 2 

values as many of these daily errors cancel out in longer term means. This is the case for our 3 

sensitivity tests regarding the vertical profile and relative humidity, which have much larger 4 

errors on shorter timescales. However, because our method to test the sensitivity to aerosol type 5 

assumes that all aerosol mass is black carbon or sulfate, we introduce a systematic bias that is not 6 

significantly reduced in the annual NMB. This highlights the differing potential impacts due to 7 

systematic and random errors, which is an important distinction for determining the usefulness of 8 

this method. Systematic errors may not be as obvious on short timescales compared to random 9 

errors (related to meteorology and/or representation of plumes) that can lead to large biases in 10 

daily concentrations. However, these random errors have less impact when we examine annual 11 

average concentrations and mortality burdens. Systematic errors, potentially related to sources or 12 

processes, may be harder to counteract even on longer timescales and even when the model is 13 

constrained by satellite observations. However, we also show that random daily errors can bias 14 

the long term mean, stressing the importance of not only correcting regional biases, but also in 15 

accurately simulating daily variability.  16 

We translate this potential uncertainty in ƞ to potential uncertainty in mortality estimates 17 

determined from the satellite-based PM2.5. We use the normalized mean bias in annual PM2.5 18 

determined from the sensitivity tests for RH, the vertical profile, grid resolution, and aerosol 19 

composition for each grid box and then use these values to “bias correct” our satellite-based 20 

annual PM2.5 concentrations and re-calculate exposure (shown in Figure 5) and mortality 21 

(discussed in Section 6). From Figure 5, we see that the uncertainty in ƞ, when translated to an 22 

annual exposure level, are larger than the differences in exposure levels estimated from model 23 

and satellite-based PM2.5, suggesting that satellite-based products which rely strongly on the 24 

model or which do not account for the variability in the aforementioned variables, does not 25 

necessarily provide a definitively better estimate of exposure. Secondly, these uncertainties in 26 

many regions are greater than the difference between both the model and surface PM2.5 and the 27 

satellite-based and surface observations. While these comparisons are limited spatially and 28 

temporally, this highlights that constraining the model with the satellite observations can improve 29 

estimates of PM2.5 but there remains a large amount of uncertainty in these estimates.   30 
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4.3 Selection of concentration response function and relative risk 1 

The choice of the shape of the concentration response function (CRF) and relative risk ratio value 2 

explains much of the difference in burden estimated in different studies listed in Table 1. In 3 

general, it is difficult to determine risks at the population level and studies have found that using 4 

ambient concentrations tend to under predict health effects (e.g. Hubbell et al., 2009). However, 5 

personal monitoring is costly and time-intensive, and therefore, epidemiology studies generally 6 

rely on determining population-level concentration response functions rather than personal-level 7 

exposure responses. However, populations also respond differently; and therefore the shape and 8 

magnitude of this response varies among studies.  9 

For an initial metric of the uncertainty in the risk ratios, studies often include estimates generated 10 

using the 95% confidence intervals of the RR determined in the original study (as shown in 11 

Figure 2). A confidence interval shows the statistical range within which the true PM coefficient 12 

for the study population is likely to lie, which could be a single city, region, or population group. 13 

The Krewski et al. [2009] study, which is a reanalysis of the American Cancer Society (ACS) 14 

Cancer Prevention Study II (CPS-II), included 1.2 million people in the Los Angeles and New 15 

York City regions, whereas the Laden et al. (2006) study, an extended analysis of the Harvard 16 

Six Cities Studies, included 8,096 white participants. Using just these confidence intervals as a 17 

measure of uncertainty suggests that there exists a large range of uncertainty in population-level 18 

health responses to exposure and caution should be exercised when attempting to transfer these 19 

values beyond the population from which they were determined in order to estimate national-20 

level mortality burdens based on ambient concentrations.  The IER coefficients from Burnett et 21 

al. (2014) are generated using the risk ratios, threshold values, and confidence intervals from 22 

previous studies and therefore also provide a large range in premature mortality estimates. To 23 

depict this range, we also include the 5th and 95th percentile estimates in addition to the mean 24 

estimate and show the maximum value in our sensitivity tests.  25 

To test the impact of methodological choices associated with the burden calculation, we compare 26 

results using different concentration response functions and relative risk ratios that previous 27 

studies have used. Table 3 lists the different choices that we explore regarding the CRF and 28 

relative risk, the study that used these values, and the resulting percent change in burden 29 

compared to our initial estimates using the IER from Burnett et al. (2014). In particular we 30 
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compare our results using risk ratio values from Krewski et al. (2009), Pope et al. (2002) and 1 

Laden et al. (2006), and log-linear and power law relationships. Figure 9 shows that the largest 2 

difference in burden is associated with using the higher risk ratios from Laden et al. (2006) vs. 3 

using Krewski et al. (2009) or the mean estimates determined using the IER coefficients from 4 

Burnett et al. (2014), the former suggest a much greater mortality response to PM2.5 exposure. 5 

Our estimates of Section 3 also use the same relative risk values for every location. However, 6 

studies have found that different populations have varied responses to exposure (potential for 7 

“effect modification”) (Dominici et al., 2003). One of the main uncertainties in these methods is 8 

relying on risk ratios that are primarily determined from epidemiology studies conducted in the 9 

United States, which may not represent the actual risks for populations in China. Long-term 10 

epidemiology studies examining exposure to PM2.5 across broad regions of China are scarce, but 11 

studies using acute exposure to PM2.5 or chronic exposure to PM10 or total suspended particles 12 

have suggested lower exposure-response coefficients than determined by studies conducted in the 13 

U.S. and Europe (Aunan and Pan, 2004; Chen et al., 2013b; Shang et al., 2013), indicating that 14 

assessments which use CRFs from studies conducted in the U.S. might overestimate the health 15 

effects in China.  16 

We also explore using different “threshold” values. The IER function uses threshold values 17 

between 5.8 µgm-3 and 8.8 µgm-3. In the U.S., higher threshold values can significantly reduce 18 

burden estimates. . When we compare sensitivity tests that use the same CRF (Krewski et al., 19 

2009) but  with a a regional PRB concentration instead of the lowest measured level (5.8 µgm-3), 20 

the premature mortality  estimates are reduced, suggesting that the choice of this value is very 21 

important in the U.S. where annual mean concentrations are relatively low. However, in China 22 

these threshold values have less impact on our results because annual mean concentrations are 23 

high enough that subtracting a threshold makes little difference. Conversely, using a ceiling value 24 

of 30 µgm-3 or 50 µgm-3 produces no difference in the U.S. (0% of the population experiences 25 

annual concentration values greater than 30 µgm-3), while strongly reducing burden estimates in 26 

China.  27 

We also see that the shape of the CRF produces different results between the U.S. and China. 28 

Using a power law or log-linear (Equation 6) function increase relative risks at low 29 

concentrations and decreases risk ratios at high concentrations such that total disease burden 30 
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estimates increase in the U.S. and decrease in China. In the U.S., a log-linear CRF is almost 1 

equivalent to a linear response because of the low concentrations. In general, the shape of the 2 

concentration response function is more important at low or very high concentrations. 3 

4.4  Comparison of uncertainty 4 

Figure 10 provides a summary of the different sources of uncertainty discussed here is shown in 5 

Figure 10. We show the mortality burdens for respiratory disease, lung cancer and heart disease 6 

associated with chronic exposure to ambient PM2.5 and calculated using annual average model-7 

based and “satellite-based” values (from MISR and MODIS) for both the U.S. and China. We 8 

show here that the satellite-based estimates suggest slightly higher national burdens in the U.S. 9 

and slightly lower in China. However, our values using these different annual average 10 

concentrations fall within the range of values found in the literature (Table 1).  11 

We further contrast these estimates to the range in uncertainty associated with our observations 12 

and methodology. The difference between the burden calculated using strictly the model or the 13 

satellite-based approach is greater than the uncertainty range in the satellite AOD, suggesting that 14 

this difference is outside of the scope of measurement limitations and errors. However, the 15 

potential uncertainty in the satellite-based estimate due to the conversion from AOD to surface 16 

PM2.5 (represented by the model ƞ) is substantially larger, larger even than the difference between 17 

model-derived and satellite-derived estimates.  Therefore, while constraining the model estimate 18 

of PM2.5 by actual observations should improve our health effect estimates, the uncertainty in the 19 

required model information may limit the accuracy of this approach. Again, we stress that these 20 

are “potential” model uncertainties which may overestimate the true uncertainty in regions where 21 

the model accurately represents the composition and distribution of aerosols. We also 22 

acknowledge that we have investigated a limited set of factors; additional biases may exacerbate 23 

these uncertainties.  However, adding additional observational data and model estimates can also 24 

help to better constrain these satellite-based PM2.5 estimates (Brauer et al., 2012, 2015; van 25 

Donkelaar et al., 2015a, 2015b). 26 

Figure 10 also conveys the range in mortality estimates for the U.S. and China that can result 27 

from varying choices for the risk ratio or shape of the concentration response. While 28 

epidemiology studies attempt to statistically account for differences in populations and 29 
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confounding variables, there is still a large spread in determined risk ratios. Just as important, or 1 

perhaps more so than determining ambient concentrations, applying response functions is a 2 

determining factor in quantifying the burden of mortality due to outdoor air quality. Differences 3 

in exposure estimates can be overshadowed by these different approaches. As an added example, 4 

we calculated the mortality burden using only populated places, similar to Lelieveld et al. (2013) 5 

and Cohen et al. (2004) and find that for the U.S. this decreased the burden by 13%, (satellite-6 

based, 18% for model). For China, this reduces the burden estimate by 72%. Differences in our 7 

estimates here and those found in the literature can be partly attributed to differences in 8 

application of the CRF function, along with differences in baseline mortalities and population 9 

estimates. Disease burdens estimated in various studies can therefore only be truly compared 10 

when the methodology is harmonized. 11 

 12 

5 Conclusions 13 

Calculating health burdens is an extremely important endeavor for informing air pollution policy, 14 

but literature estimates cover a large range due to differences in methodology regarding both the 15 

measurement of ambient concentrations and the health impact assessment. Satellite observations 16 

have proved useful in estimating exposure and the resulting health impacts (van Donkelaar et al., 17 

2015b; Yao et al., 2013). However, there remain large uncertainties associated with these satellite 18 

measurements and the methods for translating them into surface air quality that needs to be 19 

further investigated.  Our goal with this work is to explore how mortality burden estimates are 20 

made and how choices within this methodology can explain some of these discrepancies. We also 21 

aim to provide a context for interpreting the quantification of PM2.5 chronic exposure health 22 

burdens.  23 

While we have discussed several potential sources for uncertainty in calculating health burdens 24 

with satellite-based PM2.5, there are still a significant number of other sources of uncertainty that 25 

we did not explore. There are processes that could impact the AOD to PM2.5 relationship in the 26 

model, such as different emissions and removal processes. Additionally, our sensitivity test 27 

results are likely partly tied to the spatial resolution of the model and the satellite AOD, and their 28 

ability to capture finer spatial variations in pollution in regions with high populations. 29 
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However,Thompson et al., (2014) suggest that uncertainty in the CRF will likely still have a 1 

larger impact than uncertainties in population-weighted concentrations due to model resolution.    2 

Satellite measurements have provided great advancements in monitoring global air quality, 3 

providing information in regions with previously few measurements. However, further progress 4 

still needs to be made in determining how to characterize exposure to ambient PM2.5 using these 5 

satellite observations, especially as they are becoming more widely used in epidemiological 6 

studies and health impact assessments. Reducing uncertainty, even at the lower concentrations 7 

observed in the U.S., is important if these methods and datasets are to be used for policy 8 

assessment or air quality standards. However, as air pollution is a leading environmentally-9 

related cause of premature mortality, the difficulties in applying this data should not negate the 10 

importance of this endeavor. Overcoming sampling limitations in satellite observations and better 11 

accounting for regional biases could help to reduce the uncertainty in satellite-retrieved AOD and 12 

adding additional observational data and model estimates can help to better constrain satellite-13 

based PM2.5 estimates (Brauer et al., 2012, 2015; van Donkelaar et al., 2015a, 2015b). Future 14 

geostationary satellites will also be critical to advance this methodology and will provide 15 

extremely valuable information for daily monitoring and tracking of air quality. Furthermore, 16 

these geostationary observations, in concert with greater surface monitoring, will offer new 17 

constraints for epidemiological studies to develop health risk assessments and lessen the 18 

uncertainty in applying concentration-response functions and determining health burdens.   19 
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Table 1 Premature mortality from PM2.5 exposure by all-cause (All), heart disease (heart), and 1 

lung cancer (LC) as estimated in other studies for the globe, U.S. (or North America), and China 2 

(or Asia). Values are for (x 1000 deaths per year). All cause values for this study are calculated as 3 

the sum of heart disease, lung cancer, and respiratory disease deaths (as opposed to calculating 4 

this based on an all-cause CRF).  *Study provides several estimates determined using different 5 

CRFs. **Study provides several estimates from 14 different models. Table 3 provides additional 6 

information on the data sources and concentrations response functions used in these studies.  7 

Study U.S. (North America) 
China (Asia/Western 

Pacific, East Asia) 
Global 

Year for 

estimate 

 All Heart LC All Heart LC All Heart LC  

Evans et al., 2013* (WHO 

region) 
      2640-4220 1123-1669 176-264 

2004 

Fann et al., 2012* (U.S.) 
130-

320 
        

2005 

Anenberg et al., 2010* 

(continents) 
141 124 17 2736 2584 152 2077-7714 

3499 

1800-4549 

222 

39-336 

2000 

Lelieveld et al., 2013(U.S. and 
China) 

55 46 9.1 1006 898 108 2200 2000 186 
2005 

Cohen et al., 2004*  (WHO 

region) 
28 3-55 1-12 355 192-504 22-53 799 474-1132 39-105 

2000 

Lim et al., 2012 (GBD 2010, 

U.S. and China) 
86 58 20 858 563 185 3100   

2010 

Forouzanfar et al., 2015 (GBD 
2013, U.S. and China) 

78 54 17 916 600 201 2900   
2013 

WHO, 2014 (WHO region) 152   1669   3700 1505 227 2012 

Fang et al., 2013 (North 

America and East Asia) 
 38 4.4  661 53  1532 95 

2000 

Silva et al., 2013** 

(continents) 

12.2-

77 
  

908-

1240 
  1880-2380   

2000 

U.S. EPA, 2010* (U.S.) 
26-
360 

        
2005 

U.S. Environmental Protection 

Agency, 2009 (U.S.) 
144         

 

Punger and West, 2013 (U.S.) 66 61 9.9       2005 

Lelieveld et al., 2015 (U.S. and 

China) 
55   1357   3297   

2010 

Sun et al., 2015  (U.S.) 103.3 68.3 15.4       2000 

Rohde and Muller, 2015 
(China) 

   1600      
2014 

           

           

This Study: Satellite (U.S. and 

China) with Burnett et al., 2014 
50 38 5 1271 9 138    

2004-

2011 
This Study: Model (U.S. and 

China) with Burnett et al., 2014 
43 32 4 1300 931 144    

2004-

2011 

8 
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 Table 2. List of model sensitivity tests and descriptions with results shown in Figure 8. 1 

Sensitivity Test Description 

AvgAOD AOD is held constant through season while Ƞ 

varies daily. 

AvgEta AOD varies daily, while Ƞ is held constant 

through season. 

AvgProf Column mass varies daily, but shape of vertical 

profile is held constant for season. AOD and Ƞ 

vary daily but are re-calculated for redistributed 

mass.   

AvgRH AOD and Ƞ vary daily but are re-calculated 

assuming relative humidity remains constant 

throughout season. 

2x2.5 Ƞ values are calculated for simulation run at 

coarser (2°x2.5°) resolution and then regrid to 

nested resolution (0.5°x0.666°). 

SO4 Assume all mass in column is sulfate and 

recalculate Ƞ. 

BC Assume all mass in column is black carbon and 

recalculate Ƞ. 

No NO3 Calculate AOD and Ƞ without the contribution 

of nitrate. 

2 
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Table 3. Input for premature mortality burden estimate sensitivity tests and the resulting percent 1 

change in mortality due to chronic exposure determined from satellite-based concentrations. 2 

Parentheses are for values determined from model simulated concentrations. 3 

RR source Threshold CRF shape 
% Change 

USA 

% Change 

China 
Study using method 

In Fig. 8 

Krewski et al., 

2009 
No Linear 

base base 
 

K-L 

Krewski et al., 

2009 

lowest measured 

level 
Linear 

-56 (-62)  -8 (-8) 
Anenberg et al., 2010 

K-L-LM 

Krewski et al., 

2009 
counterfactual Linear 

-38 (-43)  -6 (-5)  
 

K-L-CF 

Krewski et al., 

2009 

policy relevant 

background 
Linear 

-10 (-11)   
 

K-L-PRB 

Krewski et al., 

2009 
No 

Linear to 30 

ugm-3 

0 (0) -30 (-33)  
Anenberg et al., 2010 

K-L-30 

Krewski et al., 

2009 
No 

Linear to 50 

ugm-3 

0 (0) -4 (-8)  
 

K-L-50 

Krewski et al., 

2009 

lowest measured 

level 

Log-Linear (Eq. 

6) 
-23 (-30)  -13 (-15)  

Evans et al., 2013; Fann 

and Risley, 2013; U.S. 

EPA, 2010 

K-LL-

LML 

Krewski et al., 

2009 
counterfactual 

Log-Linear (Eq. 

6) 

28 (23)  -2 (-4)  
 

K-LL-CF 

Krewski et al., 

2009 
No 

Log-Linear (Eq. 

5) 

10 (10) 26 (26) 
 

K-LL 

Krewski et al., 

2009 

lowest measured 

level 

Log-Linear (Eq. 

5) 

-53 (-59)  14 (16)  
U.S. EPA, 2010 

K-LL-

LML 

Pope et al., 2002 No Power Law 44 (52)  -17 (-18)  Marlier et al., 2013  K-PL 

Pope et al., 2002 
lowest measured 

level 
Power Law 

-8 (-8) -44 (-46)  
 

K-PL-

LML 

Pope et al., 2002 
policy relevant 

background 
Power Law 

21 (35)   
 

K-L-PRB 

Laden et al., 2006 No Linear 105 (108)  47 (45)   L-L 

Laden et al., 2006 
lowest measured 

level 
Linear 

-14 (-24) 38 (36)  Anenburg et al., 2010; 

U.S. EPA, 2010 

L-L-LML 

Laden et al., 2006 counterfactual Linear 32 (24)  51 (49)   L-L-CF 

Burnett et al., 2014 fitted IER base base Lim et al., 2012; Zheng B-IER 
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et al., 2014; Lelieveld et 

al., 2015 

Burnett et al., 2014 fitted IER 

167 (167) 65 (64) *maximum value 

detemined from set of 

coefficeints 

B-IERmax 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3) 
Equation 5 

18 (15) 18 (21) Evans et al., 2013; 

Lelieveld et al., 2013 

K-L5.8 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3), 

ceiling (30 µg m-3) 

Equation 5 

 18 (15) -24 (-26) 

Anenberg et al., 2010 

K-Lc30 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3), 

ceiling (50 µg m-3) 

Equation 5 

90 (93) 6 (4) 

Cohen et al., 2004 

K-Lc50 

Krewski et al., 

2009 

Lowest measured 

level (5.8 µg m-3) 
Equation 6 

143 (167) -6 (-7) 
Evans et al., 2013 

K-LL5.8 

Krewski et al., 

2009 

Policy Relevant 

Background 
Equation 5 

134 (158)  
U.S. EPA, 2010 

K-LPR 

Krewski et al., 

2009 
No threshold Equation 5 

169 (200) 52 (55) 
Silva et al., 2013 

K-L0 

Pope et al., 2002 

Lowest measured 

level (5.8 µg m-3), 

ceiling (30 µg m-3) 

Power Law 

134 (158) -26 (-28) 

Marlier et al., 2013 

P-PL5.8c30 

Pope et al., 2002 
Lowest measured 

level (7.5 µg m-3) 
Power Law 

102 (105) -15 (-15) 
Pope et al., 2002 

P-PL7.5 

Laden et al., 2006 
lowest measured 

level (10 µg m-3) 
Equation 5 

-58 (-68) 126 (130) Anenburg et al., 2010; 

U.S. EPA, 2010 

L-L10 

Laden et al., 2006 
lowest measured 

level (10 µg m-3) 
Equation 5 

239 (275)  
U.S. EPA, 2010 

L-LPR 

Laden et al., 2006 

lowest measured 

level (10 µg m-3); 

ceiling (30 µg m-3) 

Equation 5 

 38 (33) 

Anenburg et al., 2010 

L-Lc30 

Pope et al., 2002 
lowest measured 

level (7.5 µg m-3) 
Equation 5 

-55 (-58) -25 (-27) 
 

P-L7.5 

Pope et al., 2002 
lowest measured 

level (7.5 µg m-3) 
Equation 6 

-29 (-28) 1 (1) 
 

P-LL7.5 

1 
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 2 

Figure 1. Population density [per km2] for the year 2000 from the GPWv3 data for (a) the 3 

continental U.S. and (c) China. The projection for increase in population density by the year 2015 4 

for (b) the continental U.S. and (d) China. 5 
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Figure 2. Relative risk ratios from select previous studies for mortality due to chronic exposure to PM2.5 (given as per 10µgm-3 1 

increase) colored by cause of death. Studies applied in this work are highlighted in bold. 2 
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 2 

Figure 3. Long-term average (2004-2011) unconstrained model simulation of PM2.5 for the (a) 3 

continental U.S. and (b) China, along with the (MODIS-Aqua Collection 6) satellite-based PM2.5 4 

for the (c) continental U.S. and (d) China, and the difference between the satellite-constrained 5 

and unconstrained model PM2.5 concentrations. 6 

7 
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Figure 4. GEOS-Chem simulated average surface PM2.5 mass for years 2004-2011 overlaid with 3 

measurements at IMPROVE (circles) and AQS sites (diamonds). 4 

5 
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Figure 5. Percent of the population exposed to different annual PM2.5 concentrations in the U.S. 3 

(a) and China (b). Lines denote estimates using the unconstrained GEOS-Chem simulation (red) 4 

or using satellite-based estimates with MODIS (green) and MISR (blue). Shading represents 5 

potential uncertainty associated with the model η (described in Section 4.2) and dashed black 6 

lines represent national annual air quality standards. 7 
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Figure 6. (a) Percent difference between annual mean AOD from MODIS Collection 6 and 3 

Collection 5 and (b) simulated bias in satellite-derived annual average surface PM2.5 associated 4 

with satellite sampling. 5 

6 



 48 

 1 

Figure 7. Normalized mean bias in AOD between MODIS-Aqua Collection 6 and AERONET 2 

sites for (a) the U.S. and (b) China. 3 

4 
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 1 

Figure 8. Distribution of normalized mean biases in annual average PM2.5 for grid boxes in 2 

different regions of the U.S. (top row) and China (bottom row) determined from sensitivity tests 3 

to investigate the uncertainty in η. Sensitivity tests are described (and abbreviations defined) in 4 

Table 3. 5 

6 
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 3 

Figure 9. Premature mortality estimates for (a) the U.S. and (b) China determined using different 4 

RR, CRFs, and threshold/ceiling values, as described in Table 3. Colors represent cause of death 5 

estimated using PM2.5 concentrations from unconstrained model simulations (solid) and satellite-6 

based estimates (hatched). 7 

8 
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 3 

Figure 10. Burden of mortality due to outdoor exposure to fine particulate matter as determined 4 

in previous studies (Table 1, gray bars with values from individual studies designated by black 5 

lines), calculated using model (GEOS-Chem, solid) and satellite-based (hatched) annual 6 

concentrations (colored by disease, whiskers denote 5th and 95th percentile estimates generated 7 

using the Burnett et al., 2014 coefficients). The uncertainty range on the MODIS-based estimates 8 

due to satellite AOD (taupe), model ƞ (coral), and CRF (blue) are shown on the right. 9 


