Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

H. Petetin¹,*, J. Sciare²,³, M. Bressi², A. Rosso⁴, O. Sanchez⁴, R. Sarda-Estève², J.-E. Petit²,*, and M. Beekmann¹

¹ {LISA/IPSL, Laboratoire Inter-universitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC) and Université Paris Diderot (UPD), France}
² {LSCE, Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ, Gif-sur-Yvette, France}
³ {Energy Environment Water Research Center (EEWRC), The Cyprus Institute, Nicosia, Cyprus}
⁴ {AIRPARIF, Agence de surveillance de la qualité de l’air, Paris, France}
* now at: Laboratoire d’Aérologie, Université Paul Sabatier and CNRS, Toulouse, France
** now at: Air Lorraine, Villers-les-Nancy, France
Correspondence to: H. Petetin (hervepetetin@gmail.com)

Abstract

Secondary inorganic compounds represent a major fraction of fine aerosol in the Paris megacity. The thermodynamics behind their formation is now relatively well constrained, but due to sparse direct measurements of their precursors (in particular NH₃ and HNO₃), uncertainties remain on their concentrations and variability as well as the formation regime of ammonium nitrate (in terms of limited species, among NH₃ and HNO₃) in urban environments such as Paris. This study presents the first urban background measurements of both inorganic aerosol compounds and their gaseous precursors during several months within the city of Paris. Intense agriculture-related NH₃ episodes are observed in spring/summer while HNO₃ concentrations remain relatively low, even during summer, which leads to a NH₃-rich regime in Paris. The local formation of ammonium nitrate within the city appears low, despite high NOₓ emissions. The dataset also allows evaluating the CHIMERE chemistry-transport model (CTM). Interestingly, the rather good results obtained on ammonium nitrates hide significant errors on gaseous precursors (e.g. mean bias of -75 and +195% for NH₃ and HNO₃, respectively). This leads to a mis-representation of the nitrate formation regime
through a highly underestimated Gas Ratio metric (introduced by Ansari and Pandis (1998)) and a much higher sensitivity of nitrate concentrations to ammonia changes. Several uncertainty sources are investigated, pointing out the importance of better assessing both NH$_3$ agricultural emissions and OH concentrations in the future. These results finally remind the caution required in the use of CTMs for emission scenario analysis, highlighting the importance of prior diagnostic and dynamic evaluations.

1 Introduction

Atmospheric particulate matter (PM) consists in a complex mixture of various organic and inorganic compounds known for causing serious adverse effects on human health (Chow, 2006; Pope et al., 2009), in particular close to primary sources in urban environments. Through acidic deposition, it also affects both ecosystems (Camargo and Alonso, 2006; Grantz et al., 2003) and monuments (Lombardo et al., 2013). It plays a crucial but still uncertain role in climate change through interactions with radiation and clouds formation, leading at a global scale to a radiative forcing estimated between -1.9 and -0.1 W.m$^{-2}$ at a 95% confidence interval (IPCC, 2013). Among the various chemical constituents of PM, nitrate (NO$_3^-$) contributes significantly in the form of semi-volatile ammonium nitrate to the fine (PM with aerodynamic diameter below 2.5 µm) and coarse (between 2.5 and 10 µm) aerosol modes, with mean contributions in Europe around 6-16 and 6-20%, respectively (Putaud et al., 2010). Several studies have reported increasing ammonium nitrate relative contributions with increasing PM mass concentrations at urban sites, thus underlying their importance in exceedances of PM European standards (Putaud et al., 2010; Yin and Harrison, 2008). Such a pattern has been evidenced for the city of Paris by Sciare et al. (2010), Bressi et al. (2013) and Petit et al. (2015) and clearly points to the need for a better understanding of the processes controlling the formation of ammonium nitrate.

Ammonium nitrate formation primarily results from both the formation of nitric acid (HNO$_3$) and the emission of ammonia (NH$_3$) under favorable thermodynamic conditions. NO$_2$ is converted into HNO$_3$ through the oxidation by the OH radical (homogeneous direct pathway) or ozone (through the formation of several intermediate compounds, including nitrate radical NO$_3$ and nitrogen pentoxide N$_2$O$_5$; heterogeneous indirect pathway) (Seinfeld and Pandis, 2006). The first pathway is expected to dominate during daytime, when OH concentrations are the highest (Matsumoto and Tanaka, 1996). Conversely, due to the very short lifetime of the NO$_3^-$ radical in the presence of solar irradiation (Vrekoussis et al., 2004), the second pathway mainly acts during nighttime, favored by decreasing temperature and increasing relative humidity (RH), or during fog events ((Platt et al., 1981); Dall’Osto et al., 2009; Healy et al., 2012). Additionally, some HNO$_3$ may also be directly emitted by both anthropogenic (e.g. industry) and natural (e.g. volcanoes, Mather et al., 2004) sources. NH$_3$ is mainly emitted by agricultural activities (at 93% in France, CITEPA (2013)), with
several other minor sources including industry, traffic (e.g. Kean et al., 2009; Bishop et al., 2010; Carslaw and Rhys-Tyler, 2013; Yao et al., 2013) or sewage disposal (Sutton et al., 2000). In the presence of NH$_3$ available after the neutralization of sulfate, a thermodynamic equilibrium is engaged between both gaseous compounds (HNO$_3$ and NH$_3$), potentially leading to the formation of NH$_4$NO$_3$ in the aqueous or solid phase, depending on temperature, RH and sulfate concentrations (Ansari and Pandis, 1998; Mozurkewich, 1993). In marine environments, HNO$_3$ may also adsorb onto NaCl salts and react to form sodium nitrate (NaNO$_3$) in the coarse fraction (Harrison and Pio, 1983; Ottley and Harrison, 1992). The relationship between nitrate aerosols and its gaseous precursors is thus highly non-linear (Ansari and Pandis, 1998), and the calculation of nitrate concentrations requires the use of thermodynamic models able to determine the partitioning of inorganic compounds between the gaseous and aerosol (aqueous or solid) phases depending on the temperature and RH conditions (see Fountoukis and Nenes, 2007 for a review).

Considering the high contribution of nitrate to fine particulate pollution, both the identification of the limited species (among NH$_3$ and HNO$_3$) in the formation of NH$_4$NO$_3$ and the quantification of the PM response to a given emission reduction of either precursor are crucial information for air quality management authorities in charge of designing efficient PM control strategies. Various approaches have been proposed in the literature to investigate these points, the reliability of results mostly depending on the observational dataset available. As they do not require any measurements, chemistry-transport models (CTMs) simulations and emission reduction scenarios remain the easiest way to provide a first guess of the limited species and PM response to emission changes.

Over Europe, several studies with different CTMs have simulated a HNO$_3$-limited regime (Sartelet et al., 2007 and Kim et al., 2011 with the POLYPHEMUS model; Hamaoui-Laguel et al., 2014 with the CHIMERE model; Pay et al., 2012 with the CALIOPE-EU modelling system). However, such an approach relies on the good performance of CTMs that still suffer from various uncertainties, in particular in their input data (e.g. emission inventories). In respect to these perspectives, comparisons with field observations are highly valuable for evaluating model outputs. When measurements of total nitrate (TNO$_3$=HNO$_3$(g)+NO$_3^-$), total ammonia (TNH$_3$=NH$_3$(g)+NH$_4^+$) and total sulfate (TS=H$_2$SO$_4$(g)+HSO$_4^-$+SO$_4^{2-}$) are available, it is possible to diagnose which precursor is limiting nitrate formation. A first approach relies on the use of the gas ratio (GR) defined as the ratio of free ammonia after sulfate neutralization (FNH$_4$(μmol m$^{-3}$)=NH$_3$+NH$_4^+$-2xSO$_4^{2-}$) over total nitrate (TNO$_3$(μmol m$^{-3}$)=HNO$_3$+NO$_3^-$) (Ansari and Pandis, 1998). GR values above unity indicate a regime mainly limited by HNO$_3$ (e.g. NH$_3$-rich regime) in which there is enough NH$_3$ to neutralize both sulfate and nitrate. Conversely, GR between zero and one indicate that there is enough NH$_3$ to neutralize sulfate but not nitrate, while negative ones correspond to a NH$_3$-poor regime in which NH$_3$ amounts are insufficient to even neutralize sulfate. Based on the EMEP (European Monitoring and Evaluation Program) regional background observations, Pay et al. (2012) have obtained GR
above unity (i.e. a HNO$_3$-limited regime) over continental Europe, in reasonable agreement with the
CALIOPE model. Conversely, a NH$_3$-limited regime was found over ocean and closer to coasts in
some countries (e.g. Spain, England, countries around Baltic Sea) due to ship emissions of SO$_2$ and
NO$_x$ and low NH$_3$ over marine regions. However, the determination of the limited compound based
on GR is valid only under the assumption of a complete transfer (of the limited species) in the
aerosol phase (i.e. at low temperature and high RH). Under ambient conditions favoring a
partitioning between both phases, both NH$_3$ and HNO$_3$ exist in the gas phase and the nitrate
formation may be sensitive to changes in one or the other precursor. A more realistic assessment of
the nitrate formation regime can be obtained by performing sensitivity tests on thermodynamic
models fed by field measurements (concentrations, temperature and RH). Such an approach allows
quantifying the PM response to total reservoir (either TNH$_3$, TNO$_3$ or TS) concentrations reductions
(Ansari and Pandis, 1998 and Takahama et al., 2004 with the GFEMN model; Blanchard and Hidy,
2003 with the SCAPE2 model). These studies rely on the hypothesis that the concentration
reduction of one specific compound does not affect the others, which is not true due to lifetime
differences between gas and aerosol phases induced by contrasted deposition rates; for instance, a
reduction of sulfate increases the amount of FNH$_x$ available for the formation of nitrate that deposit
less than HNO$_3$ (Davidson and Wu, 1990), which finally increases the TNO$_3$ reservoir. These
difficulties may be overcome through the combined use of observations and deposition
parameterizations in observation-based box models (Vayenas et al., 2005). As such, models cannot
integrate the whole complexity at stake in the atmosphere, CTMs are still needed to assess the
nitrate formation regime and the PM response to precursors changes, but require in turn to be
validated by experimental data.

This paper aims at investigating the variability and sources of both HNO$_3$ and NH$_3$, and the
associated NH$_4$NO$_3$ formation regime in the Paris megacity, as well as the ability of the CHIMERE
regional CTM to reproduce it. To this end, an important experimental effort, in the framework of
the PARTICULES and FRANCIPOL projects, has recently made available a large database of fine
aerosol chemical compounds (e.g. nitrate, ammonium, sulfate) and inorganic gaseous precursors
(e.g. HNO$_3$, NH$_3$) in the region of Paris. To our knowledge, this is the first time that simultaneous
measurements of inorganic compounds in both gaseous and aerosol phases, covering most seasons
are performed in France. Experimental aspects are described in Sect. 2. The CHIMERE model and
its setup is then introduced in Sect. 3. Results are shown and discussed in Sect. 4, while overall
conclusions are given in Sect. 5.
2 Experimental

2.1 Fine aerosols measurements

As part of the AIRPARIF-LSCE “PARTICULES” project (Airparif, 2011, 2012), fine aerosol particles (PM$_{2.5}$) were collected every day during 24 h (from 00:00 to 23:59 LT) during one year (from 11 September 2009 to 10 September 2010) using two collocated Leckel low volume samplers (SEQ47/50) running at 2.3 m3 h$^{-1}$. One Leckel sampler was equipped with quartz filters (QMA, Whatman, 47 mm diameter) for carbon analyses, the second with Teflon filters (PTFE, Pall, 47 mm diameter, 2.0 µm porosity) for gravimetric and ion measurements (including NH$_4^+$, NO$_3^-$, SO$_4^{2-}$).

Six sampling sites were implemented, covering the region of Paris. Only the results for the background station located in the city center of Paris (4th district, 48°50'56''N, 02°21'55''E, 20 m above ground level, a.g.l.) will be presented here. More information on the experimental setup and quality control of the datasets is available in Bressi et al. (2013). Note that filter measurements are subject to artefacts, through the evaporation and/or the adsorption of semi-volatile compounds (Pang et al., 2002), and thus mostly affect ammonium nitrate and organic matter concentrations.

Daily chemical mass closure studies and comparisons with on-line artefact-free measurements were performed for that purpose and showed that filter sampling was missing quite systematically about 20% of PM$_{2.5}$ (15% of fine nitrate; Bressi et al., 2013).

2.2 Gaseous precursors measurements

As part of the PRIMEQUAL (Programme de Recherche Interorganisme pour une MEilleure QUalité de l’Air à l’échelle Locale) “FRANCIPOL” project, gaseous precursors (NH$_3$, HNO$_3$, SO$_2$) were monitored in near real-time on the roof platform (14 m a.g.l.) at the Laboratoire d’Hygiène de la Ville de Paris (LHVP) in the heart of Paris (13th district). Gas-phase NH$_3$ measurements were obtained for a 10-month period (May 2010 – February 2011) every 5 min using an AiRRmonia monitor (Mechatronics Instruments BV, The Netherland). The March/April periods (2010 and 2011) were missing due to technical problems of the instrument. Based on conductivity detection of NH$_4^+$, gaseous NH$_3$ were sampled at 1 L min$^{-1}$ using a 1-m long Teflon (1/2 inch diameter) sampling line. Then, it was collected through a sampling block equipped with an NH$_3$-permeable membrane; a demineralized water counter-flow allows NH$_3$ to solubilize in NH$_4^+$. A second purification step was applied by adding 0.5 mM sodium hydroxide, leading to the detection of NH$_4^+$ in the detector block. The instrument has been calibrated regularly (twice per months) using 0 ppb and 500 ppb NH$_4^+$ aqueous solution (NIST standards). Two sets of sampling syringes ensure a constant flow throughout the instrument, but also create a temporal shift, ranging from 10 to 40 min for different studies (Erisman et al., 2001; Cowen et al., 2004; Zechmeister-Boltenstern, 2010; von Brobrutzki et al., 2010). We have taken here a constant value of 30 min for this delay in
time response. Detection limit and precision of the instrument are typically 0.1 µg m\(^{-3}\) and 3 to 10%, respectively (Erisman et al., 2001; Norman et al., 2009). More than 62,000 valid data points of NH\(_3\) - covering 217 days - were obtained with the AiRRmonia instrument and used for this study. HNO\(_3\) and SO\(_2\) were analyzed continuously for an 11-month period (March 2010 – January 2011) using a Wet Annular Denuder (WAD) similar to the one reported in details by Trebs et al. (2004) and coupled with Ion Chromatography (IC). Briefly, whole air was sampled at ∼10 L min\(^{-1}\) in the WAD. This air flowrate – slightly below the 17 L min\(^{-1}\) usually set – was taken to ensure a laminar flow and minimize particle losses onto the walls of the WAD and thus minimize possible artefacts in our IC (anion) measurements that could raise from inorganic salts present in the particulate phase. Following the recommendations by Neuman et al. (1999), our sampling line were made of plastic (PE, 1/2 inch diameter, John Guest, USA) and reduced to 1 m in order to keep a residence time of sampled air below 1 s preventing formation/losses of NH\(_4\)NO\(_3\) (Dlugi 1993). 18.2 MΩ water was used to rinse the WAD at a flowrate of ∼0.40 ml min\(^{-1}\) and feed the IC with the solubilized acid gases. The IC (ICS2000, Dionex) configuration setup is similar to the one reported by (Sciare et al., 2011). Time resolution (chromatogram) was typically 15 min for the major gaseous acidic species (HCOOH, CH\(_3\)COOH, HCl, HONO, HNO\(_3\), SO\(_2\)). Oxidation of SO\(_2\) into SO\(_4^{2-}\) in the liquid flow downstream of the WAD was performed by solubilization of ambient oxidants such as H\(_2\)O\(_2\). Based on these settings, detection limit for acidic gases was typically below 0.1 µg m\(^{-3}\). Uncertainties in ambient concentrations of acidic gases depend on air and liquid flowrates (controlled on a weekly basis) as well as the IC calibration (performed every 2 months). Overall standard deviations (1 σ) of 6%, 15% and 10% were calculated for these 3 parameters (air flowrate, liquid flowrate, IC calibration), respectively, leading a total uncertainty of about 20% for the WAD-IC measurements.

This WAD technique has been successfully intercompared with off-line techniques in (Trebs et al., 2008). Further comparison of the WAD-IC technique was performed during our study with a commercially available SO\(_2\) analyzer (AFM22, Environnement S.A.) for a period of 3 months. Despite the poor detection limit (1 ppb = 2.43 µg m\(^{-3}\)) of the commercially available instrument and the low ambient concentrations recorded at our station with SO\(_2\) monthly means ranging from 0.76 to 3.03 µg m\(^{-3}\) measured with our WAD-IC instrument, quite consistent results were obtained from this intercomparison (slope of 0.73 and r\(^2\)=0.56 for n=1671 hourly averaged data points). More than 24,000 valid data points of SO\(_2\) and HNO\(_3\) - covering 253 days - were obtained with the WAD-IC instrument and used for this study.

2.3 Meteorological parameters measurement

Beside chemical compounds, traditional meteorological parameters — temperature, wind speed and direction, RH — are also measured at the MONTSOURIS station (2.337°E, 48.822°N) in Paris,
close to the LHVP site (~ 2 km). In addition, boundary layer height (BLH) estimations are retrieved from an aerosol lidar at the SIRTA (*Site Instrumental de Recherche par Télédetection Atmosphérique*) site (48.712°N, 2.208°E) (Haeffelin et al., 2012).

This paper will focus on measurements performed from the 1 April to 31 December 2010. Note that all the measurements described in previous sections come from different campaigns and measurement periods that do not entirely overlap. Measurements of secondary inorganic aerosols (NH$_4^+$, NO$_3^-$, SO$_4^{2-}$) are available at the daily scale between the 1 April and the 10 September 2010. NH$_3$ (HNO$_3$) observations are available at the hourly scale from the 20 May (1 April) to the 31 December 2010.

2.4 Representativeness and datasets combination

The purpose of this study is to investigate the relation of NH$_4$NO$_3$ with its gaseous precursors, which ideally requires co-located measurements of all compounds in both phases. This was not the initial purpose of PARTICULES and FRANCIPOL projects, and thus, no such co-located observations are available in Paris. However, we argue here that the two datasets (inorganic aerosols measured in the 4th district of Paris, and gaseous precursors measured in the 13th district) can be reasonably considered as co-located and representative of the urban background of at least the southern half of the Paris city.

Several elements support this hypothesis. First, both sites are only ~3 km away. Second, both sites are located on the rooftop of rather high buildings (20 and 14 m a.g.l.), thus quite far from direct influence of local pollution sources (e.g. traffic) and at a height where the venting of pollution is favored by the absence of obstacles and likely stronger winds (compared to the street level). The height of the LHVP roof site is slightly lower compared to the other site, but the building is located in a public garden, which further limits the possibility of local contamination by surrounding pollution sources. Third, based on the PM$_{2.5}$ chemical speciation measurements performed both inside Paris and at several rural sites all around the Paris region during a whole year, the PARTICULES project has allowed to demonstrate that secondary inorganic aerosols in the Paris urban background are mostly imported from outside the city (Petetin et al., 2014). At the annual scale, the contribution of imports was estimated to 78% for nitrate, 90% for ammonium and 98% for sulfates (see Table 6 in Petetin et al., 2014). This is mostly explained by (i) the presence of strong pollution reservoirs in Europe (e.g. Benelux, eastern Europe) from where large plumes can be advected toward Paris in specific meteorological conditions, (ii) the time necessary for the formation of inorganic aerosols (including the oxidation of NO$_x$ and SO$_2$) is too low to allow a strong local production that thus preferentially occurs downwind in the Paris plume, as observed
during the MEGAPOLI campaign (Freney et al., 2014), and (iii) the limited occurrence of stagnant conditions in Paris (that would let enough time to gaseous precursors to produce inorganic aerosols). The high contribution of imports is confirmed by the comparison of daily inorganic aerosol concentrations between the 4th district site and a traffic site located along the Paris ring 8 km westward, that shows a very good accordance for all inorganic aerosols during the whole year (ammonium: $y=0.95x+0.02$, $R=0.97$, $N=325$; nitrate: $y=0.99x-0.09$, $R=0.98$, $N=325$; sulfate: $y=1.04x+0.01$, $R=0.98$, $N=325$). Thus, concerning secondary inorganic aerosols, the urban background can be considered as rather homogeneous at the scale of the whole Paris agglomeration. And observations in the 4th district of Paris can be reasonably combined to gaseous precursors observations at the other site.

In terms of spatial representativeness for HNO$_3$ and NH$_3$, no other measurements are available to quantitatively assess the homogeneity of their urban background. In particular, some NO$_x$ emitted within the center of the city may be already converted into HNO$_3$ in the borders of the Paris agglomeration, leading to higher concentrations compared to the center of Paris. Thus, one cannot a priori consider that these measurements are representative of the urban background at the scale of the whole Paris agglomeration. However, as we already discussed, considering the morphology and the geographical location of this LHVP site, one can reasonably consider that it is representative of the urban background of at least the southern half of Paris city.

3 Model setup and input data

3.1 CHIMERE model description

Simulations are performed with the CHIMERE CTM (Schmidt and Derognat, 2001; Bessagnet et al., 2009; Menut et al., 2013) (www.lmd.polytechnique.fr/chimere) designed to provide short-term predictions of ozone and aerosols, as well as to help emissions mitigation assessment through emission reduction scenarios. It is used both in research activities and operational air quality monitoring and forecasting at the local, national and European scale (ESMERALDA over the northern part of France; PREVAIR service, www.prevair.org; GMES-MACC program).

The CHIMERE model includes the MELCHIOR2 (ModEle CHImique de l’Ozone à l’échelle Régionale) chemical mechanism (around 40 species and 120 reactions) for the gas-phase chemistry, some aqueous-phase (e.g. aqueous pathways for sulfate production) and heterogeneous (e.g. HNO$_3$ formation on existing particles and fog droplets, including the conversion of N$_2$O$_5$) reactions, and size dependent aerosol compounds (9 bins ranging from 40 nm to 20 µm diameters), including secondary organic and inorganic aerosols. Dry and wet deposition of gaseous and aerosol species is parameterized from three types of sequential resistances following the resistance analogy (Wesely, 1989). An aerodynamical resistance is estimated based on turbulent parameters (e.g. Monin-
Obukhov length, friction velocity, dynamical roughness length). A quasi-laminar boundary layer resistance is calculated based on the molecular diffusivity of water and gaseous species and Prandtl number. The surface resistance of vegetation and soils is estimated from several parallel resistances related to plant surfaces via opening of stomata, and related to non-stomatal deposition at plant and soil surfaces (Erisman et al., 1994). The scavenging of gases and particles, both in clouds and rain droplets, is included in CHIMERE. The scavenging of HNO$_3$ and NH$_3$ by cloud droplets (in rain droplets) is assumed reversible (irreversible). In clouds, particles can be scavenged by coagulation with cloud droplets or by precipitation, or can act as cloud condensation nuclei to form new droplets. Particles can also be scavenged by raining drops below the clouds. More details can be found in (Menut et al., 2013). The model also includes a parameterization of coagulation, absorption and nucleation aerosol processes.

Inorganic species are treated using the ISORROPIA thermodynamic equilibrium model (Nenes et al., 1998), considering only the NH$_3$-HNO$_3$-H$_2$SO$_4$-H$_2$O system. ISORROPIA follows a bulk aerosol approach (without any consideration of the aerosol size distribution) and assumes an instantaneous equilibrium in the gas-aerosol system, as well as no influence of other compounds (in particular, the soluble organic matter). Given the temperature, RH, TNO$_3$, TNH$_3$ and TS (assuming that TS=SO$_4^{2-}$ due to low concentrations of H$_2$SO$_4$ and HSO$_3$ in the aerosol phase), the partitioning coefficient between both aerosol and gas phases at equilibrium is computed and used to drive the system toward the corresponding direction (thus countering the hypothesis of an instantaneous equilibrium assumed in ISORROPIA). For calculation efficiency, the model is not used on-line but through a tabulated version designed to cover a large range of meteorological conditions with temperature ranging from 260 to 312 K (increment +2.5 K), RH from 0.3 to 0.99 (increment +0.05) and TS, TNO$_3$ and TNH$_3$ concentrations from 10^2 to 65 µg m$^{-3}$ (increment x1.5) (Menut et al., 2013).

3.2 Model configuration

As shown in Fig. 1, three nested domains are considered in all simulations — a large (LAR), a medium (MED) and a fine (FIN) domain —, with horizontal resolutions increasing from 0.5 x 0.5° (roughly 50 x 50 km), 9 x 9 km and 3 x 3 km, respectively. A discretization of 8 levels, from 40 m to 5 km a.g.l., is applied on the vertical dimension.
1. Figure 1: Nested domains (the black points in the finest domain indicates Paris). Resolutions are 0.5x0.5° (LAR domain), 9x9 km (MED) and 3x3 (FIN).

2. Meteorological inputs are taken from PSU/NCAR MM5 simulations (Dudhia, 1993) using boundary conditions and large scale data coming from Final Analyses (FNL) data from National Centers for Environmental Prediction (NCEP).

3. Gaseous and aerosol emissions in all domains come from the so-called TNO-MP (MP for MegaPoli) inventory. Developed in the framework of the European MEGAPOLI (Megacity: emission, urban, regional and global atmospheric pollution and climate effect, and integrated tools for assessment and mitigation; www.megapoli.info) project (Baklanov et al., 2010), this highly-resolved (0.125 x 0.0625°, i.e. roughly 7 x 7 km) European inventory is based on the TNO inventory (Gon et al., 2010; Pouliot et al., 2012; Kuenen et al., 2014), but incorporates bottom-up emission data (compiled by local authorities such as Airparif for Paris (Airparif, 2010)) over the four European megacities (Paris, London, Rhine-Ruhr and Po valley) (see Denier van der Gon et al., 2011, for more details). The region of Paris roughly corresponds to the FIN domain. In order to reach the CHIMERE resolution, emissions are downscaled based on the 1x1 km-resolved GLCF (Global Land Cover Facility) land use database (Hansen et al., 2000), and apportioned according to the type of land use (Menut et al., 2013).

4. Boundary and initial conditions come from the LMDz-INCA2 (Folberth et al., 2006) global model for gaseous species and the LMDZ-AERO (Folberth et al., 2006; Hauglustaine, 2004) for particulate species. Biogenic emissions are computed from the MEGAN model using parameterizations from Guenther et al. (2006).

5. This reference simulation will be referred to as the MOD case. A second simulation is performed without any local anthropogenic emissions from the region of Paris (in the three nested domains), in order to assess the influence of imported pollution over the city of Paris. It will be referred to as the MOD-noIDF case (IDF for Ile-de-France which designs the name of the region of Paris). In addition, as NH3 is strongly impacted by dry deposition which is still poorly constrained in current.
CTMs, a third simulation (so-called MOD-nodep) is performed without any NH$_3$ dry deposition over the entire domain in order to investigate its influence on concentrations within Paris.

4 Results

The following subsections present results on sulfate and SO$_2$ (Sect. 4.1), NH$_3$ (Sect. 4.2) and HNO$_3$ (Sect. 4.3). For all compounds, the temporal variability given by measurements is assessed at different scales (monthly, daily and diurnal), as well as the model ability to reproduce the observed concentrations. For the analysis of air mass origins, back-trajectories have been calculated during the whole period with the FLEXTRA model (Stohl et al., 2001) using the same MM5 meteorology already used in the CHIMERE simulations. Calculations are performed every 6 h with 10 particles distributed around the center of Paris, starting at 500 m altitude, which leads to a daily set of 40 back-trajectories. Several uncertainty sources in the model (or input data) are also discussed. The nitrate formation regime in terms of limiting species among NH$_3$ and HNO$_3$, the nitrate simulation in CHIMERE as well as the nitrate response to changes in precursors concentrations are then characterized in Sect. 4.4.

Statistical metrics used in the evaluation of the CHIMERE results compared to observations are defined as follows:

\[\text{Mean bias: } MB = \frac{1}{n} \sum_{i=1}^{n} (m_i - o_i) \]
(1)

\[\text{Normalized mean bias: } NMB = \frac{1}{n} \sum_{i=1}^{n} \frac{(m_i - o_i)}{\sigma} \]
(2)

\[\text{Root mean square error: } RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (m_i - o_i)^2} \]
(3)

\[\text{Normalized root mean square error: } \frac{RMSE}{\sigma} = \frac{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (m_i - o_i)^2}}{\sigma} \]
(4)

\[\text{Correlation coefficient: } R = \frac{\sum_{i=1}^{n} (m_i - \bar{m})(o_i - \bar{o})}{\sqrt{\sum_{i=1}^{n} (m_i - \bar{m})^2} \sqrt{\sum_{i=1}^{n} (o_i - \bar{o})^2}} \]
(5)

With m_i and o_i being the modelled and observed concentrations at time i, respectively, and \bar{m} and \bar{o} their average over a given period.

4.1 Sulfate and SO$_2$

Sulfate daily concentrations in Paris are given in Fig. 2. The variability of sulfate (as of nitrate) during the PARTICULES campaign has been discussed in details in Bressi et al. (2013). Fine
(PM$_{2.5}$) sulfate concentrations range between 0.4 and 5.0 µg m$^{-3}$ (plus one high value at 8.7 µg m$^{-3}$), with an average of 2.0 µg m$^{-3}$ over the studied period (1 April – 10 September). The episodes with highest concentrations are associated to air masses originating from the North/North-East, as previously noticed by Bressi et al. (2013), Petetin et al. (2014) and Petit et al. (2015). Despite a faster SO$_2$-to-sulfate conversion due to higher OH levels in summer, lower concentrations are measured during that season due to a combination of lower SO$_2$ emissions and a dominant marine regime, with relatively clean air masses originating from West and South-West and slightly more polluted ones from North-West.
Figure 2: Observed and modelled daily averaged concentrations (left panel), diurnal profiles (middle panel), and monthly concentrations (right panel). MOD-nodep results are only shown for NH$_3$. Note: CHIMERE monthly concentrations are computed including only days with available observational data. For particulate matter observations, only daily values are available.
During the period of available data (152 days in spring and summer), NH$_3$ levels are high enough to fully neutralize both sulfate and nitrate, as indicated by the linear regression of NH$_4^+$ versus NO$_3^-$ +2SO$_4^{2-}$ daily concentrations in the fine mode that gives a slope of 1.01, a y-intercept of -0.20 ppb and a correlation coefficient (r^2) of 0.97 (n=150; see Fig. S1 in the Supplement). Note that plotting all major cations (Na$^+$+NH$_4^+$+K$^+$+2Ca$^{2+}$+2Mg$^{2+}$) against all major anions (NO$_3^-$+2SO$_4^{2-}$+Cl$^-$) leads to a slope of 1.03, a y-intercept of +0.13 ppb and a correlation of 0.97, demonstrating the neutrality of our fine aerosol.

Figure 3: Observed and modelled (with – MOD case – and without – MOD-noIDF case – emissions over the Paris region) daily S-ratio in Paris.

Statistical results of modelled versus measured concentrations are reported in Table 1. The model partially reproduces the day-to-day variability of sulfate concentrations ($r=0.59$), but gives overestimated concentrations, with a NMB of +48% and a NRMSE of 74%. This does not appear to be related to a too high SO$_2$-to-sulfate conversion since SO$_2$ concentrations are significantly underestimated in Paris, by about a factor of 3 (Table 1). This is also suggested by the simulated S-ratio. This indicator – defined as the ratio of SO$_2$ over SO$_2$+SO$_4^{2-}$, all concentrations being expressed in μg m$^{-3}$ (Hass et al., 2003; Pay et al., 2012) – allows to assess how fresh is a plume containing sulfur. High S-ratios are found in air masses containing freshly emitted SO$_2$, while low S-ratios are associated to older air masses in which more SO$_2$ have already been converted into sulfates. The observed and simulated S-ratios are shown in Fig. 3 (the SO$_2$+SO$_4^{2-}$ time series is shown in Fig. S4 in the Supplement). In the MOD simulation, CHIMERE clearly overestimates the S-ratio (average value of 0.54 against 0.34 in the observations, i.e. a positive bias of +60%), i.e. the simulated air masses contain too much freshly emitted SO$_2$ compared to reality. Such a high bias on SO$_2$ concentrations is not expected, but does not appear representative of the CHIMERE performance at a larger scale. Considering the SO$_2$ observations available at 9 urban background sites (AIRPARIF operational network) in the region of Paris, NMB are lower, ranging from +24 to +160%. As a large part of SO$_2$ is emitted by point sources, the dilution effect in a 3 x 3 km cell
remains a well-known uncertainty source at stations potentially impacted by plumes coming from nearby industrial facilities. However, in our case, large SO$_2$ industrial point sources are relatively far from our background urban station, and emissions from non-point sources (i.e. emissions in road transport and residential sectors) remain important in the center of Paris, which suggests potential errors on the Paris agglomeration emissions (overestimation of total emissions, wrong vertical allocation) and/or the BLH. Indeed, the average SO$_2$ diurnal profile shows maximum discrepancies (up to a factor of 4.8) during the transition from a convective to a nocturnal boundary layer. As this transition occurs too early in the model (see Fig. S3 in the Supplement), this likely explains a noticeable part of the bias on SO$_2$. Conversely, the sulfate overestimation may be due to errors during the transport of air masses from North-Eastern Europe.

Table 1: Statistical results at our urban background sites over the whole period (all statistical metrics are defined at the beginning of Sect. 4; MO is the observed concentration mean, N the data coverage).

<table>
<thead>
<tr>
<th>Species</th>
<th>Case</th>
<th>MO</th>
<th>MB</th>
<th>NMB (%)</th>
<th>RMSE (%)</th>
<th>NRMSE (%)</th>
<th>R</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$* (ppb)</td>
<td>MOD</td>
<td>4.0</td>
<td>-3.0</td>
<td>-75</td>
<td>3.9</td>
<td>99</td>
<td>0.42</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>-3.1</td>
<td>79</td>
<td>4.1</td>
<td>103</td>
<td>0.39</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOD-nodep</td>
<td>-1.8</td>
<td>-46</td>
<td>3.2</td>
<td>82</td>
<td>0.45</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>HNO$_3$* (ppb)</td>
<td>MOD</td>
<td>0.3</td>
<td>+0.5</td>
<td>+195</td>
<td>0.8</td>
<td>320</td>
<td>0.56</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>+0.3</td>
<td>+120</td>
<td>0.6</td>
<td>219</td>
<td>0.36</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>SO$_2$* (ppb)</td>
<td>MOD</td>
<td>0.5</td>
<td>+1.0</td>
<td>+194</td>
<td>1.6</td>
<td>303</td>
<td>0.38</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>-0.1</td>
<td>-20</td>
<td>0.9</td>
<td>170</td>
<td>0.25</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Ammonium (µg m$^{-3}$)</td>
<td>MOD</td>
<td>1.2</td>
<td>+0.4</td>
<td>+35</td>
<td>0.9</td>
<td>70</td>
<td>0.84</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>+0.3</td>
<td>23</td>
<td>0.8</td>
<td>64</td>
<td>0.84</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Nitrate (µg m$^{-3}$)</td>
<td>MOD</td>
<td>2.1</td>
<td>+0.4</td>
<td>+19</td>
<td>2.2</td>
<td>109</td>
<td>0.81</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>+0.0</td>
<td>1</td>
<td>2.1</td>
<td>101</td>
<td>0.81</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Sulfate (µg m$^{-3}$)</td>
<td>MOD</td>
<td>2.0</td>
<td>+1.0</td>
<td>+48</td>
<td>1.5</td>
<td>74</td>
<td>0.59</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>+0.9</td>
<td>42</td>
<td>1.4</td>
<td>69</td>
<td>0.61</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>F-NHx (ppb)</td>
<td>MOD</td>
<td>5.5</td>
<td>-4.1</td>
<td>-75</td>
<td>4.7</td>
<td>87</td>
<td>0.51</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>-4.4</td>
<td>-80</td>
<td>5.0</td>
<td>92</td>
<td>0.48</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>S-ratio</td>
<td>MOD</td>
<td>0.3</td>
<td>+0.2</td>
<td>+60</td>
<td>0.3</td>
<td>73</td>
<td>0.46</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>-0.1</td>
<td>-29</td>
<td>0.2</td>
<td>55</td>
<td>0.33</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>GR (ppb ppb$^{-1}$)</td>
<td>MOD</td>
<td>12.6</td>
<td>-11.4</td>
<td>-90</td>
<td>14.2</td>
<td>112</td>
<td>0.37</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>MOD-noIDF</td>
<td>-11.2</td>
<td>-88</td>
<td>14.0</td>
<td>111</td>
<td>0.33</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>TNH$_3$ (ppb)</td>
<td>MOD</td>
<td>6.4</td>
<td>-3.6</td>
<td>-56</td>
<td>4.4</td>
<td>70</td>
<td>0.43</td>
<td>37</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>MOD-noIDF</td>
<td>-3.9</td>
<td>-61</td>
<td>4.7</td>
<td>74</td>
<td>0.40</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNO$_3$ (ppb)</td>
<td>MOD</td>
<td>1.1</td>
<td>+0.8</td>
<td>+71</td>
<td>1.3</td>
<td>123</td>
<td>0.78</td>
<td>47</td>
</tr>
<tr>
<td>MOD-noIDF</td>
<td>+0.3</td>
<td>+31</td>
<td>1.1</td>
<td>97</td>
<td>0.79</td>
<td>47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistics based on hourly data (otherwise, daily data are used).

4.2 Ammonia

4.2.1 Temporal variability

Daily averaged concentrations and diurnal profiles of NH$_3$ are given in Fig. 2. The model results will be discussed in the next section. According to the review of Reche et al. (2012), NH$_3$ concentrations in worldwide urban environments range between 0.4 and 63.6 ppb, thus spanning over two orders of magnitude. On a logarithmic scale, the average concentration of 4.0 ppb measured in Paris over the whole period is roughly in the middle range of this range. It is also consistent with the values obtained in other European cities: 4.4 ppb in Aveiro (Portugal, August-May), 5.2 ppb in Roma (Italy, May-March), 5.5 ppb in Münster (Germany, May-June), 3.2 in Thessaloniki (Greece, year), 3.9-10.6 in Barcelona (Spain, July and January), 3.1 ppb in Schiedam (The Netherlands, winter) (Reche et al., 2012 and references therein). NH$_3$ concentrations in Paris show a large variability (illustrated by a standard deviation of 2.8 ppb) with several intense episodes in late spring and early summer (hourly concentrations reaching up to 18.5 ppb in June), moderate concentrations in late summer and lower ones in autumn and winter. On average, the observed NH$_3$ diurnal profile (Fig. 2) is rather flat, with slightly increasing concentrations in the morning leading to a maximum at 10:00-13:00 UTC. Concentrations decrease in the afternoon up to a minimum at 20:00 UTC. The diurnal variability of NH$_3$ depends on many factors, including the strength of local emission sources, the dry deposition, the evolution of the BLH, the formation of NH$_4$NO$_3$ during the night promoted by larger RH and its thermodynamically driven evaporation during the daytime (Wichink Kruit et al., 2007). The daytime increase may be partly due to this volatilization of NH$_4$NO$_3$.

4.2.1.1 Influence of temperature

Figure 4 shows the NH$_3$ concentrations in function of the temperature. Both appear clearly linked in Paris, the highest episodes occurring concomitantly with the warmest conditions (see the meteorology evaluation in the Supplement, Sect. S.2). The lower sensitivity to temperature in the model will be discussed later. Such a relation between NH$_3$ and the temperature has already been observed in other cities (e.g. Perrino et al., 2002; Gong et al., 2011; Reche et al., 2012). Temperature and RH strongly influence the equilibrium constant governing the partitioning of inorganic compounds between the gas and aerosol phases, with higher NH$_3$ concentrations expected...
when the temperature is high and the RH is low, due to the volatilization of \(\text{NH}_4\text{NO}_3 \). In addition, several \(\text{NH}_3 \) emission sources may be enhanced by high temperature, including the agricultural (e.g. volatilization of fertilizer) or biological sources.

![Figure 4: Daily observed (respectively modelled) \(\text{NH}_3 \) concentrations against observed (respectively modelled) temperature in Paris (for the model, only days with available observations are plotted).](image)

The link between \(\text{NH}_3 \) and temperature can be illustrated by the early July episode when, in parallel with the temperature increase between 30 June and 2 July, the \(\text{NH}_3 \) baseline progressively increases in Paris, up to 18.5 ppb at the hourly scale (the maximum over the whole FRANCIPOL period). A part of the \(\text{NH}_3 \) increase is likely due to evaporation of \(\text{NH}_4\text{NO}_3 \) but in early July, a similar episode is observed on \(\text{TNH}_3 \), which means that an additional \(\text{NH}_3 \) source is at stake. The \(\text{NH}_3/\text{TNH}_3 \) ratios are shown in Fig. 5. The experimentally determined \(\text{TNH}_3 \) is clearly dominated by \(\text{NH}_3 \) that has a contribution around 55-99\% (83\% on average) (again, model results are discussed in Sect. 4.2.2).

Negative artefacts on \(\text{NH}_4^+ \) filter measurements cannot be excluded (in particular during summertime), but increasing \(\text{NH}_4^+ \) concentrations by 50\% has a very limited impact (\(\text{NH}_3 \) contributions ranging in that case around 45-99\%, and 78\% on average).

![Figure 5: Daily \(\text{NH}_3/\text{TNH}_3 \) ratios in observations (points) and simulations (colored lines).](image)
Several studies have previously addressed the question of the NH$_3$ emitted by the traffic in urban areas, although with more or less contrasted and definitive conclusions depending on the city (e.g. Perrino et al., 2002; Gong et al., 2011). The difficulty notably arises from the short lifetime of NH$_3$ that can quickly deposit on the ground, be diluted or converted into NH$_4^+$. In Paris, the diurnal profile does not show any peak at morning and evening rush hours, even during periods of lower agricultural emissions (e.g. August and September; too few data in winter). This suggests that traffic emissions are probably a relatively minor source during our study. This is supported by the low correlation of BC (mainly emitted by the traffic) and NH$_3$ concentrations measured at the LHVP site ($r=0.20$ over the whole period). However, it is worth noting that during the end of June episode, the hourly time series shows some morning peaks (above an increasing background line likely due to the advection of agricultural NH$_3$) that may be associated to traffic NH$_3$ emissions, as illustrated by the increased correlation with BC ($r=0.60$ between the 21 June and 3 July) (Fig. 6). No similar situation is observed during the rest of the campaign period. In Roma, Perrino et al. (2002) have observed high levels of NH$_3$ at curbside sites with a diurnal profile clearly influenced by traffic emissions. But due to the combined action of dry deposition, dilution after emissions as well as the conversion into particulate NH$_4^+$ (with sulfates and/or nitrates), these concentrations were severely reduced at the urban background scale, about a factor of 5, and the traffic profile type had disappeared. As a result, our urban background conditions may have prevented us from accurately assessing the potential impact of traffic emissions on ambient NH$_3$ concentrations. Investigating the NH$_3$ diurnal variability at the SIRTA site, Petit et al. (2015) noticed a bimodal traffic-like variation but only during spring and not during summer and winter when traffic emissions yet also exist, suggesting that these variations may be related to other processes than traffic.

Figure 6: Observed BC (in red) and NH$_3$ (in black) hourly concentrations at LHVP during the end of June.
4.2.1.3 Influence of agricultural NH$_3$

As previously mentioned, NH$_3$ is emitted by both agricultural and non-agricultural sources. The former clearly dominates at the national scale, as well as at the scale of the Paris region (which includes the rural areas surrounding Paris), while the latter obviously dominates at the scale of the city itself (which includes only urban areas). Considering the role of NH$_3$ in the formation of NH$_4$NO$_3$ and the important contribution of this aerosol compound to the PM$_{2.5}$ pollution in Paris, it is of major importance to assess the relative contribution of both types of sources to the NH$_3$ urban background in the city. Answering that question would ideally require additional NH$_3$ observations in Paris and its surroundings in order to quantify the increment associated to local sources. Without such observations, it is not possible to quantitatively investigate the NH$_3$ budget in Paris.

However, based on the available observations, we argue in this section that among all NH$_3$ emission sources, agriculture is probably the main driver of the day-to-day variability of NH$_3$ concentrations in Paris during the time of the campaign (from spring to autumn) (in conjunction with the thermodynamic equilibrium that drives the partitioning between the gas and aerosol phases).

This is mainly supported by the NH$_3$ (and TNH$_3$) seasonal variations. Although incomplete (due to missing observations in winter and early spring), the NH$_3$ seasonal pattern shows a maximum in spring and early summer, moderate concentrations in late summer and a minimum in autumn. Such a seasonal pattern has been already reported in several studies (e.g. Reche et al., 2012; Skjøth et al., 2011). A roughly similar variability is expected for the fertilizer applications. Yet this emission source represents around 40% of the total agricultural source at the national scale, and this contribution appears even higher around the Paris region (Hamaoui-Laguel et al., 2014; see in particular their Fig. 2a and 2b). The observed increase of NH$_3$ with temperature is also compatible with this source, as increased temperature favors fertilizer evaporation (e.g. Hamaoui-Laguel et al., 2014). Conversely, none of the non-agricultural emission sources is expected to be particularly intense at this period of the year. This was discussed for traffic related emissions in the last section.

Some NH$_3$ may also be emitted by biomass burning (for residential heating) but these emissions are, in any case, low in spring and summer. Emissions from sewage and waste disposal as well as emissions from other biological sources may also contribute to NH$_3$ levels. Interestingly, these latter sources may be influenced by temperature, as the NH$_3$ concentrations measured in Paris. But if they dominate, one would not expect so large differences of concentrations between late May, early June and August (when temperatures were comparable). Additionally, in this case, one would also expect higher NH$_3$ concentrations during stagnant conditions, which is in contradiction with the low correlation between BC and NH$_3$ (given that such stagnant conditions lead to an accumulation of BC). The NH$_3$ diurnal profile shows very limited variations along the day, which is consistent with
the idea of a strong NH$_3$ background originating from agricultural sources around the Paris region. All these elements thus suggest that the agricultural source (and more precisely the fertilizer application) drives a larger part of the NH$_3$ day-to-day variability in Paris than the other emission sources.

4.2.1.4 Geographical origin of the highest NH$_3$ episodes

In this section, we investigate the geographical origin of the air masses associated to major NH$_3$ episodes. Back-trajectories during the 10 days of highest NH$_3$ concentrations (daily averages above 9.2 ppb, the 95th percentile of all daily values) are presented in Fig. 6a. Most NH$_3$ episodes are associated to moderate winds in altitude, air masses at D-1 (one day before reaching Paris) being located in a radius of 50-400 km from Paris. A noticeable exception is found on 9 July in the morning (around 6 UTC) when the wind suddenly changes direction (from Southeast to Southwest) and speed (getting much stronger, with air masses originating from Spain at D-1) while NH$_3$ concentrations increase. Interestingly, some of the highest NH$_3$ episodes (e.g. 10 July) are associated to oceanic air masses (excepted to be relatively clean) that have spent only a limited time above land, which suggests the presence of intense NH$_3$ emissions in the corresponding regions (Normandy). As an overall result of this trajectory analysis, air masses with high NH$_3$ concentrations do not appear to originate from a particular geographical sector. Instead, the highest episodes appear linked to more diffuse NH$_3$ emissions in the northern part of France, associated to anticyclonic conditions with high temperature and moderate winds. This is in accordance with Petit et al. (2015) that suggest, based on NH$_3$ measurements at the SIRTA suburban site (south-west of Paris), a diffuse regional NH$_3$ source, in particular during summer (in spring, some high NH$_3$ episodes associated to E/NE/SE winds are also noticed, but without any clear pattern).

Figure 6: Back-trajectories at D-1 (one day before reaching Paris) associated with highest (a) NH$_3$ (left panel) and (b) HNO$_3$ (right panel) episodes (highest episodes being selected according to daily concentrations above the 97th percentile of all daily measurements, i.e. 9.2 and 0.9 ppb for NH$_3$ and HNO$_3$, respectively). For clarity, only back-trajectories of 7 particles around the center of Paris are plotted, each 6 h (i.e. 28 back-trajectories per day).
4.2.2 Model results

As shown in Fig. 2, NH$_3$ concentrations are significantly underestimated by the CHIMERE model with a NMB of -75% (see statistical results in Table 2). This negative bias not only affects the intense peaks but also the baseline concentrations. In their evaluation of the CALIOPE-EU modelling system, Pay et al. (2012) have reviewed the statistical results of various regional models over Europe (during a whole year for most models). As our study does not cover a whole year, statistical results are not directly comparable, but figures still shed light on the relative performance of our CHIMERE simulation. The negative bias in our study is in the range of those reported from the aforementioned study, where NMB spread from -82 to -15%. Our RMSE (3.9 ppb) is among the best values reported by Pay et al. (2012) (1.6 ppb for the CALIOPE-EU model and 7.6-10.6 ppb for the six other models), as well as the correlation (0.42 against 0.05-0.56). Nevertheless, the CHIMERE model dramatically fails to reproduce the strong spring and summer episodes (and consequently the seasonal variation) during which negative biases on daily concentrations can exceed a factor of 10, despite a monthly distribution of emissions peaking between March and May (spring fertilizer application).

The quite similar results obtained in the MOD and MOD-noIDF cases indicate that most of the simulated NH$_3$ originates from outside the region of Paris. Concentration maps show that simulated NH$_3$ concentrations closely follow the spatial distribution of emissions, with maximum levels over Brittany, North of France and Benelux. Due to both dilution and deposition, NH$_3$ concentrations quickly decrease with distance from these source regions. However, the simulated NH$_3$ lifetime appears high enough to allow imports over the region of Paris. As an illustration, highest simulated concentrations in the city (4.5 ppb, the 29th April) result from an advection of air masses from Eastern Brittany and South-West during the month of maximum emissions (according to monthly factors applied to emissions).

Comparing observations and model results at the MONTSOURIS meteorological station, we highlighted a negative bias on temperature (-1.6°C) and a positive one on RH (+5.9% in absolute) (see Sect. S.2 in the Supplement). This favors the formation of NH$_4^+$ and thus decreases gaseous NH$_3$ in TNH$_3$. However, correcting these errors in the ISORROPIA model (i.e. replacing the simulated temperature and RH values by the measurements, without modifying TNH$_3$, TNO$_3$ and TS concentrations) does not fill the gap with observations, the average NH$_3$ concentrations being increased by only 7% on average. Errors may be larger close to the deliquescence point where the influence of RH is stronger. The deliquescent RH (DRH) of NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ at 298K are 61.8 and 79.9%, respectively (Seinfeld and Pandis, 2006). A mixture of both salts will have a DRH between these two extreme values. Focusing on days where RH ranges between 60 and 80% (i.e. close to the deliquescent point of the mixture), the average NH$_3$ increase is even lower (6%).
reaches 14% when considering RH between 60 and 65%. In any case, the impact remains limited.

As shown in Fig. 5, the fraction of NH$_3$ in TNH$_3$ simulated by CHIMERE is highly variable, ranging from less than 5% to about 90%, in contradiction with observations which show a clear gas phase reservoir during spring and summer (at around 60-100%). The already mentioned overestimation of SO$_4^{2-}$ in CHIMERE (see Sect. 4.1) may directly reduce the amount of NH$_3$ available in the gas phase. However, the bias on TNH$_3$ is only reduced to -56% (against -76% for NH$_3$ alone), which indicates that only a minor part of the negative bias on NH$_3$ can be explained by an erroneous partitioning between both gas and aerosol phases (including errors related to SO$_4^{2-}$).

Although not likely the main NH$_3$ source (see Sect. 4.2.1.3), the traffic can also contribute to the NH$_3$ urban background levels in Paris. Yet in the TNO-MP inventory, these traffic emissions are missing in the Paris region (but not outside this region) (see Table S3 in the Supplement), which may induce an underestimation of modelled NH$_3$ concentrations. The contribution of traffic to ambient NH$_3$ levels in urban environments is highly variable from one city to another, as illustrated by the NH$_3$/\(\text{NH}_3+\text{NO}_x\) emission molar ratios that range from a few percent (Yao et al., 2013) to a few tens of percent (Bishop et al., 2010) which are due to differences in the vehicle fleet (Carslaw and Rhys-Tyler, 2013). Several sensitivity tests were performed with added NH$_3$ traffic emissions, derived from the NO$_x$ traffic emissions with NH$_3$/\(\text{NH}_3+\text{NO}_x\) conversion factors in the range of the values given in the literature: 1, 6, 12 and 18% (not shown). Such additional emissions reduce the bias, but do not improve the correlation between model and measurements. In particular, they induce a clear increase of NH$_3$ concentrations during the morning and evening rush hours, which is not in agreement with the observed diurnal profile. These results thus prevent us from concluding on the importance of these traffic emissions on NH$_3$ urban background levels.

A large part of the model errors probably arises from the representation of NH$_3$ air-surface exchanges (agricultural emissions and deposition) in the CHIMERE model. This representation is by far too simplistic in several respects: (i) the parameterization of NH$_3$ dry deposition is unidirectional and does not take into account the compensation with emissions; (ii) the agricultural emissions are temporally disaggregated based on monthly, day-of-the-week and diurnal factors without taking into account any environmental factor (e.g. air temperature, soil moisture, agricultural practices) known to influence some NH$_3$ emissions (e.g. the volatilization of fertilizers). This likely explains the much lower NH$_3$-temperature correlation obtained in the model in comparison with observations (\(r=0.52\) against 0.72 in observations), as illustrated in Fig. 4. In light of our comparison, the parameterization of the NH$_3$ emissions in CHIMERE cannot represent the high spatio-temporal variability of NH$_3$ concentrations, and in particular fails in reproducing the large NH$_3$ peak values observed during the campaign. Indeed, these emissions result from very complex mechanisms in which numerous environmental parameters are involved, including the
amount of nitrogen fertilizers used over the land; temperature, moisture and pH of the soil; the
amount of soluble carbon; the soil disturbance and compaction; fertilization methods (Ma et al.,
2010; and references therein). More elaborated parameterizations of NH$_3$ bi-directional fluxes have
been proposed to better handle emission and deposition processes in CTMs (Massad et al., 2010;
Zhang et al., 2010; Pleim et al., 2013). Hamaoui-Laguel et al. (2014) have simulated more realistic
NH$_3$ emissions over France during the spring 2007 by combining the one-dimensional mechanistic
model VOLT’AIR (Garcia et al., 2011; Génermont and Cellier, 1997) with agricultural practice and
soil data. They have shown a spatial variability of NH$_3$ emissions mainly driven by the soil pH and
the types and rates of fertilization, while the temporal variability was rather driven by
meteorological conditions and fertilization dates. Compared to the EMEP inventory (quite similar to
TNO-MP for NH$_3$ emissions), the emissions computed with the VOLT’AIR mechanism appear
lower over the Brittany (in the West of France) and higher over the North of France (around a factor
of 2-3). This would suggest a possible underestimation of agricultural NH$_3$ emissions close to the
Paris region.

Dry deposition of NH$_3$ and wet deposition of NH$_4^+$ represent the two major sinks for NH$_3$ and
NH$_4^+$, respectively; the first being dominant near emission sources whereas the second dominates at
a larger scale (Asman et al., 1998). Uncertainties in the parameterization of both dry and wet
deposition in the CHIMERE model may also partly explain the NH$_3$ underestimation. Results from
the MOD-nodep sensitivity test (with no NH$_3$ dry deposition) allow assessing an upper bound of
uncertainties related to dry deposition. On average, more than half of the NH$_3$ reaching Paris is
deposited in the MOD case, as illustrated by the increase of NH$_3$ concentrations by a factor of 2.2
when deposition is removed. The diurnal profile indicates that deposition in CHIMERE more
strongly affects night-time concentrations, likely due to the shallow boundary layer. Daytime
concentrations are also affected but approximately 2 times less than night-time ones. Note that
typical deposition velocities simulated by CHIMERE are around 0.3 cm s$^{-1}$, although it can
substantially vary in time and space. Despite the unrealistic character of this sensitivity test (dry
deposition being one of the dominant NH$_3$ sinks), this appears not sufficient to increase
concentrations towards observed ambient levels (NMB of -46%). Thus, deposition does not appear
as the major source of error in the CHIMERE simulated NH$_3$.

4.2.3 Conclusions on ammonia

Our NH$_3$ urban background measurements in Paris have highlighted several intense episodes in late
spring and early summer. These episodes occur during anticyclonic conditions with high
temperature, expected high agricultural emissions and moderate winds enabling an accumulation of
NH$_3$ and a subsequent advection over the city. We argued that the observed NH$_3$ seasonal pattern
supports the idea of a NH$_3$ day-to-day variability mainly driven by the agricultural source, in
association with the thermodynamic equilibrium controlling the gas-aerosol partitioning.

CHIMERE simulations show a significant negative bias on NH$_3$, both for the baseline
concentrations and the intense episodes. Errors in the partitioning of TNH$_3$ between the gas and
aerosol phases (due to errors in modelled SO$_4^{2-}$, NO$_3^-$ or local meteorology) as well as uncertainties
on deposition can only explain a minor part of the bias. Thus, the simulated NH$_3$ concentrations
appear mainly affected by uncertainties in emissions, and in particular the lack of dynamical
treatment of agricultural emissions as a function of environmental factors (temperature, etc.) in the
CHIMERE model (the annual total emissions being simply disaggregated with a monthly profile).

4.3 Nitric acid

4.3.1 Temporal variability

Daily concentrations and the diurnal profile of HNO$_3$ are shown in Fig. 2. Over the whole period,
the average HNO$_3$ concentration is 0.25 ppb. Several moderate episodes are observed in spring and
early summer, with daily concentrations up to 1.2 ppb at the beginning of July. This leads to a
seasonal pattern characterized by higher values in spring/summer compared to autumn/winter. Such
temporal variations are expected in urban environments close to NO$_x$ emissions due to both the
higher OH triggered HNO$_3$ production in summer and the higher temperatures (as well as the lower
RH) that diminish its condensation into particulate NO$_3^-$. They are also consistent with those found
in other urban studies (Cadle et al., 1982 and Cadle, 1985 in Warren, Michigan, United-States (US);
Solomon et al., 1992 in Los Angeles, California, US; Perrino et al., 2002 in Roma, Italy).

In Paris, the highest HNO$_3$ episodes are associated with high temperatures and low-to-moderate
wind speeds at ground. These conditions increase the atmospheric stratification and the residence
time of NO$_x$ emissions over the agglomeration and allow for a more efficient HNO$_3$ formation via
the NO$_2$+OH reaction. This is confirmed by the fact that many HNO$_3$ peaks follow BC episodes,
these episodes being most of time due to stagnant conditions allowing the accumulation of the BC
emitted by the traffic.
Figure 8: Hourly concentrations of HNO$_3$ at LHVP and wind speed, RH and temperature during early June 2010 (left panel), and associated 48h back-trajectories (one point every 24h) coloured by the day of arrival (i.e. red is for 06/06).

This is illustrated during the first days of June in Fig. 8. The 1st of June is characterized by low wind speed but cloudy conditions that decrease the photooxidation rate of NO$_x$. During the next 2 days, stronger wind speed (above 3 m s$^{-1}$) and increasing temperatures are observed, associated to a moderate increase of HNO$_3$ concentrations. A much higher increase of HNO$_3$ concentrations is observed the 4th and 5th of June concomitantly with high temperatures (up to 30°C) and slow winds. Such stagnant conditions during the night allow the accumulation of NO$_2$, as shown by the NO$_2$ measurements at an AIRPARIF station located right next to the LHVP site (not shown). In the early morning of the 4th (5th) of June, NO$_2$ concentrations reach 83 (110) ppb, and fall below 20 ppb during the afternoon. As for NH$_3$, no additional HNO$_3$ measurements are available upwind of Paris, which prevents us from quantitatively assessing the importance of local formation versus imports. But this specific situation of early June supports the idea of a strong local formation of HNO$_3$. Some HNO$_3$ is also probably (slowly) advected by north-easterly winds but the strong photochemically driven diurnal variation observed during these days (where concentrations reach 1.5 ppb in the afternoon) suggests that this contribution is minor in comparison to the local formation. The episode ends concomitantly with a significant decrease of temperature and more dispersive conditions. The diurnal profile shows maximum HNO$_3$ concentrations in the afternoon at around 14:00-18:00 UTC (Fig. 2). On average, the ratio between daytime and nighttime HNO$_3$ concentrations is close to a factor of 2 (despite the development of the convective boundary layer in the afternoon). A slight decrease of HNO$_3$ is found at around 6:00 UTC, which may be explained by dew formation processes that allows the absorption of water-soluble gases such as HNO$_3$ (Mulawa et al., 1986; Parmar et al., 2001; Pierson et al., 1988).
Figure 9: Daily HNO₃/TNO₃ ratios.

HNO₃ accounts for 51% of TNO₃ on average (Fig. 9) but this fraction appears highly variable. The lowest HNO₃/TNO₃ ratios (a few %) are observed during cold days in mid-May when daily temperatures fall below 8°C (see Fig. S2 in the Supplement), while the highest ratios occur during early summer, with values up to 96%. The correlation between the HNO₃/TNO₃ ratio and the temperature is 0.82, which illustrates the impact of temperature on the thermodynamic equilibrium. Despite rather high temperatures, low ratios (below 40%) are also observed on specific periods during summer, particularly in August. Such a pattern may be due to higher measurement uncertainties occurring for low TNO₃ concentrations, closer to the detection limit (roughly around 0.1 ppb for HNO₃). In August, ratio values below 40% indeed correspond to HNO₃ and TNO₃ concentrations below 0.2 and 0.7 ppb, respectively.

4.3.2 Model results

HNO₃ concentrations are significantly overestimated by CHIMERE, with a NMB of +195%, leading to a large error (NRMSE of 320%), in particular at mid-day where the bias can reach a factor of 4 (as illustrated by the diurnal profile in Fig. 2). The correlation is moderate (r=0.56) when considering hourly concentrations, but is slightly higher with daily values (r=0.68).

Several uncertainties may explain the discrepancies between observed and simulated HNO₃ concentrations: (i) uncertainties in NOₓ emissions at both local and regional scales, (ii) uncertainties in the thermodynamic equilibrium (i.e. the errors on either the other inorganic compounds or the ISORROPIA model itself) that determine the distribution between gas and aerosol phases, (iii) uncertainties in the OH concentrations that directly influence the conversion of NO₂ into HNO₃, (iv) uncertainties on the HNO₃ deposition, and (v) errors in the transport. At the European scale, uncertainties on NOₓ emissions are estimated to be around 30% (Deguillaume et al., 2007; Konovalov et al., 2006) and are thus much lower than the errors obtained for modelled HNO₃. Over the Paris agglomeration, NOₓ emissions from the TNO-MP inventory used in our model have been evaluated during the summer 2009 based on aircraft measurements in the Paris plume, showing no significant bias (Petetin et al., 2014). Dry deposition plays an important role in the HNO₃ budget,
and corresponding parameterizations incorporated in the CHIMERE model have been poorly evaluated so far. In fact, a too low deposition rate modelled by CHIMERE may partly explain the positive bias on HNO₃. In CHIMERE, HNO₃ deposition velocities are typically below 1.5 cm s⁻¹, which appears on the lower end of the values reported in the literature (Brook et al., 1999). However, due to a lack of appropriate data, this hypothesis remains difficult to assess. Finally, important errors on the transport pattern remain unlikely given the good correlations obtained on nitrates between the observations and the model. The next subsections aim to investigate in more details the uncertainties related to the simulated thermodynamic equilibrium and OH radical.

4.3.2.1 Uncertainties associated with thermodynamic equilibrium

Bias and RMSE are much lower for TNO₃ (NMB of +71%, NRMSE of 121%) than for HNO₃, because the CHIMERE model overestimates the HNO₃/TNO₃ fraction (on average 68% for the model against 51% observed from experimental data during the period with available observations of NO₃⁻ and HNO₃). Partitioning errors may derive from uncertainties in the ISORROPIA thermodynamic model (e.g. model formulation, chemical compounds included, activity coefficients treatment) or in its input data. Apart from CHIMERE, the ISORROPIA model is used in many other CTMs, including LOTOS-EUROS (Schaap et al., 2008), REM-CALGRID (Stern, 2003), CAMx, FARM or CMAQ. It has been validated in various studies based on comparisons with observations (Moya et al., 2001) or against other widely used thermodynamic models (Nenes et al., 1999; Carnevale et al., 2012). From these studies, several uncertainty sources emerge: The hypothesis (used in ISORROPIA) of an instantaneous equilibrium between gas and aerosol phases (Aan de Brugh et al., 2012) is without incidence for our study, since the CHIMERE model treats the evolution of inorganic compounds concentrations through a dynamic approach (see Sect. 3.1). The absence of sodium, chloride and other crustal species (Ca²⁺, K⁺, Mg²⁺) in our simulations may also induce errors in the system (Fountoukis and Nenes, 2007), but the contribution of this crustal material remains low in the Paris region, about 5% on average from 1 April to 10 September (with a percentile 95 at 13%), as previously noted by Bressi et al. (2013). This low contribution of crustal species is confirmed by the ion balance obtained considering only ammonium, nitrate and sulfate: NH₄⁺ versus NO₃⁻+2SO₄²⁻ (all species expressed in neq m⁻³) gives a slope of 1.01, an y-intercept of -0.20 and a correlation r²=0.97 (see Fig. S1 in the Supplement).

Therefore, errors in the modelled partitioning are most likely due to errors in the other inorganic compounds involved in the HNO₃-NO₃⁻ equilibrium. In particular, the large negative bias on NH₃ described in Sect. 4.2 can potentially lead to an underestimation of the NH₄NO₃ formation and consequently to an overestimation of HNO₃. A sensitivity test has been performed for that purpose with the ISORROPIA model running alone (i.e. not coupled with CHIMERE) fed by the concentrations previously obtained with CHIMERE for inorganic species except for NH₃ for which
measurements were taken into account. This approach changes HNO₃ concentrations, with for instance a decrease of 29% in May. However, the significant positive bias in HNO₃ in summer persists (HNO₃ concentrations decrease by only 11% between June and August), mainly because during summer, due to high temperatures, NH₄NO₃ is very weak and HNO₃ is the major TNO₃ component.

4.3.2.2 Uncertainties associated with OH concentrations

Assuming that (i) the NO₂+OH reaction is likely the dominant direct homogeneous pathway for HNO₃ formation during the summertime period, (ii) a significant bias is observed for modelled TNO₃, and (iii) the maximum discrepancies between measurements and modelled HNO₃ are found during mid-day, uncertainties on simulated OH could explain a substantial part of the errors on HNO₃. Many studies have attempted to quantify uncertainties on sources and sinks of OH, traditionally through the direct comparison between observations and calculations from detailed chemistry schemes (in box models) fed by ancillary observations of various parameters (e.g. VOC, NOₓ and O₃ concentrations, photolysis rates). In such exercises, uncertainties in daytime OH concentrations usually remain below a factor of 2 (see Kanaya et al. (2007) for a review, where simulated over observed OH daytime concentrations ratios range between 0.5 and 1.5). During summertime, Michoud et al. (2012) have shown in Paris a very low overestimation (5%) of OH concentrations simulated with the Master Chemical Mechanism (MCM) chemistry scheme. However, these results need to be taken as a lower end of OH uncertainties in CTMs where constraints are neither applied on long-lived compounds nor on photolysis rates. This is especially true in an urban environment where concentration gradients of compounds impacting on the OH budget are strong.

In order to assess the influence of OH on HNO₃ formation, a sensitivity test (hereafter designated by MOD-OHx0.5) has been performed (over a period of 35 days in June/early July) by artificially reducing OH concentrations. This is technically performed by decreasing by a factor of 2 the HOₓ (HOₓ=OH+HO₂+RO₂) formation yields (i.e. the stoichiometric coefficient) in several (initiation) reactions, including the photolytic destruction of Ozone, formaldehyde, acetaldehyde, glyoxal and methyl glyoxal. OH and HNO₃ concentrations are then compared with the reference MOD case in Fig. 1. On average, concentrations of OH and HNO₃ are reduced by -36 and -16%, respectively. The changes in NOₓ concentrations remain below 3%, which means that only a minor fraction of NOₓ is oxidized within Paris. These decreases are even more important during mid-day where they reach -42 and -25%, respectively. Over mid-day, the bias between measured and modelled HNO₃ is reduced and equals to +113% (against +154% in the MOD case). Uncertainties in the OH radical may thus explain a significant part of the CHIMERE errors on HNO₃.
Figure 10: HNO₃ and OH hourly concentrations (left panel) and diurnal profiles (right panel) at the LHVP site.

4.3.3 Conclusions on HNO₃

HNO₃ concentrations experimentally determined in Paris show several intense peaks in late spring and early summer that coincide with high air temperatures and low to moderate winds. The share between local production and imports remains difficult to assess precisely, but local HNO₃ may represent a major source on some specific time-limited episodes. However, uncertainties persist, and the CHIMERE errors are unfortunately too high to help the investigation of HNO₃ origin. Indeed, the model largely overestimates measured HNO₃ concentrations, approximately by a factor 3, with the highest biases observed in the middle of the day. The negative bias between measured and modelled NH₃ explains a part of the poor model performance for HNO₃, but still fails to explain errors during summertime when TNO₃ is mostly in the gas phase. Uncertainties on NOₓ emissions are much lower than errors obtained on HNO₃ and cannot explain the results of the model. Uncertainties related to the dry deposition of HNO₃ cannot be assessed and could contribute to the discrepancies given by the model. Finally, a too strong NO₂-to-HNO₃ conversion through an overestimation of the OH radical concentrations in CHIMERE could also contribute to the large modelled overestimation of HNO₃ formation. Indeed, uncertainties on simulated OH remain still high in CTMs, probably more than a factor of 2, and reducing OH sources have shown to lead to a significant decrease of OH and HNO₃ concentrations, in particular during the afternoon when NO₂ photooxidation (as well as the HNO₃ bias) is at its maximum.
4.4 Aerosol Nitrate formation

4.4.1 Results of the CHIMERE simulations

Fine particulate pollution with high nitrate contents in Paris consists in intense (up to 16 μg m$^{-3}$ in late spring) and time-limited (a few days) episodes associated with continental wind regimes. Very low levels of nitrate are observed during periods with marine (clean) air masses and during summertime (due to volatilization). Despite the large errors previously highlighted for both NH$_3$ and HNO$_3$, the CHIMERE model provides quite satisfactory results for nitrate with a NMB of +19% and a correlation of 0.81, but still with a large NRMSE (109%). As previously mentioned, in the framework of the PARTICULES campaign, PM$_{2.5}$ chemical constituents have also been measured at 3 rural sites all around the Paris region. Results have been analyzed in terms of local and imported contributions by Petetin et al. (2014). In a few words, concerning sulfates, imports were slightly underestimated by CHIMERE (-17%) while the (low) local production was overestimated (+32%), leading at the end to a moderate negative bias (-17%). For nitrates, a similar but stronger error compensation was underlined between imports and local production (bias of +63 and -109%, respectively), leading to a reasonable bias on concentrations in Paris (+23%). For more details, the reader is invited to look at this previous paper (e.g. statistical results in Table 7).

It is worth noting that the positive bias highlighted here on the urban background concentrations in Paris should partly originate from experimental (negative) artifacts. Actually, the model may underestimate NO$_3^-$ if the experimental data are corrected for semi-volatile losses. The semi-volatile particulate matter (SVPM) can be deduced from the difference between TEOM-FDMS and TEOM PM$_{2.5}$ concentrations. If we attribute all that SVPM to NH$_4$NO$_3$, the bias between measured and modelled NO$_3^-$ becomes -48%. This corresponds to an upper bound of the bias since SVPM not only contains NH$_4$NO$_3$ but also semi-volatile OA. And actually, semi-volatile OA may contribute the most to SVPM, as suggested by the higher correlation of SVPM with OA in comparison with NH$_4$NO$_3$ (0.59 against 0.32).

As a conclusion, the either positive or negative bias on simulated nitrates and ammonium remains relatively small in comparison with the biases reported previously for precursor species. Such a result is not intuitive, and cannot be trivially explained. An interesting point to illustrate the possible error compensations concerns the saturation condition that needs to be achieved to allow the formation of nitrates. This condition is defined as (Ansari and Pandis, 1998):

(6)

with K the equilibrium constant that depends on various parameters, including temperature and RH. It is obvious here that the errors on TNO$_3$ and TNH$_3$ can thus (partly) compensate each other. On average, the left-hand term is 3.6 and 2.5 ppb2 based on observations and simulation, respectively. It corresponds to a NMB of -31%, thus much lower than the NMB affecting the different species.
(+71%, -56% and +48% for TNO$_3$, TNH$_3$ and TS). This result thus suggests that the formation of nitrates is **slightly more difficult** in the model than in the reality, which would be consistent with a moderate negative bias on nitrates. Due to the possible artefacts, our dataset does not allow a complete assessment of the nitrate formation. It would be useful in the near future to evaluate the CHIMERE model with artefact-free measurements (for instance with aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM)).

4.4.2 Gas Ratio and limiting species for nitrate formation

The Gas Ratio (GR) has been proposed to assess which species among NH$_3$ and HNO$_3$ is the limiting reactant for NH$_4$NO$_3$ formation (Ansari and Pandis, 1998). It is defined as follows (with concentrations expressed in ppb):

$$GR = \frac{[TNH_3] - 2[TS]}{[TNO_3]}$$ \hspace{1cm} (7)

GR values above 1 indicate a regime mainly limited by nitric acid (i.e. NH$_3$-rich regime) in which there is enough NH$_3$ to neutralize both sulfate and nitrate. Conversely, a GR between 0 and 1 indicates that there is enough NH$_3$ to neutralize sulfate but not nitrate, while negative GR corresponds to a NH$_3$-poor regime in which NH$_3$ amounts are insufficient to even neutralize sulfate. Non-linear PM responses to inorganic concentration changes are expected at GR near unity (Ansari and Pandis, 1998).

![GR graph](image.png)

Figure 12: Observed and modelled daily GR.

As shown on Fig. 12, daily GR measurements are available only from the end of May (no NH$_3$ observations before) until the beginning of September (no aerosol observations after). During that period, experimentally determined daily GR values are highly variable (ranging between 2.8 to 56.3) but always remain above unity (12.6 on average), thus indicating that a large amount of ammonia is available for neutralizing nitric acid.

Observed GR may be affected due to the negative artefacts of nitrate filter measurements (Sect. 2.1). If we assume here that all the SVPM is NH$_4$NO$_3$ (see Sect. 4.4.1), one can calculate an
artefact-corrected GR with both evaporated NH$_4^+$ and NO$_3^-$ added to measured TNH$_3$ and TNO$_3$, respectively. Compared to the previous GR, the artefact-corrected GR is reduced to an average value of 7.3 (the median is 3.5), thus still well above 1. In addition, as noticeable amounts of OA are expected to be included in the evaporated part, this artefact-corrected GR has to be considered as a lower estimate of the actual GR values. The nitrate formation in Paris thus appears mainly limited by HNO$_3$. Over Europe, Pay et al. (2012) have also observed GR above 1 in several regions (e.g. Switzerland, Italy, Austria, inland regions of Spain and Denmark; no data in France), but taking into account observations restricted to regional background stations (i.e. enriched by agriculture (NH$_3$) emissions instead of traffic (NO$_x$) emissions). In our study, we show that such a NH$_3$-rich regime is also observed within a large megacity like Paris. Considering the high NO$_x$ emissions in the Paris megacity, such a result is very interesting, but could likely be explained, as previously mentioned in Sect. 4.3.2, by a too slow NO$_x$-to-HNO$_3$ conversion rate compared to the efficient dispersive conditions.

In the CHIMERE model, the negative bias on TNH$_3$ and the positive ones on TNO$_3$ and SO$_4^{2-}$ concur of all them to a significant underestimation of modelled GR. On average, the model simulates a GR slightly above unity (1.2). Daily values continuously alternate between both regimes with, over the period with available observations data (100 days), 48% of simulated daily values remaining below unity (47% considering the whole dataset). The dataset does not show any period with specific (and permanent) pattern for GR. Actually, the diurnal profile given by CHIMERE indicates that the regime changes within a single day, the lowest GR values (below 1) being simulated at 12:00 UTC (between the maximum TNO$_3$ occurring at 8:00 UTC and the minimum TNH$_3$ simulated at 15:00 UTC). Therefore, due to significant errors in gaseous precursors (and to a lesser extent in sulfate), the CHIMERE model fails half of time at retrieving correctly the HNO$_3$-limited regime for nitrate formation in Paris on a daily basis.

4.4.3 Sensitivity to perturbations

The GR value alone does not allow predicting the sensitivity of nitrate formation with respect to changes in gas precursors concentrations. This is due to the inability of GR to take into account neither the need for the atmosphere to be saturated with NH$_3$ and HNO$_3$ (which acts as a threshold effect, see formula 6 in Sect. 4.4.1), nor the influence of temperature and RH. Additional information can be given by the sensitivity coefficient S_x (Takahama et al., 2004) of nitrate formation, defined as:

$$ S_x = \frac{\Delta N O_3}{N O_3} \cdot \frac{x}{\Delta x} \quad (8) $$

where $\Delta N O_3$ refers to the change in nitrate concentrations obtained after a Δx change of the parameter x (e.g. temperature, RH, TNH$_3$, TNO$_3$ or TS).
The ISORROPIA thermodynamic model is used here to compute the sensitivity coefficient S_x as a function of various decreases (-10, -25, -50 and -90%) in TNH$_3$ and TNO$_3$ concentrations. This 0-dimension model requires five inputs – temperature, RH, and TNO$_3$, TNH$_3$ and TS concentrations – and computes the gas-aerosol partitioning coefficient of both TNO$_3$ and TNH$_3$ compounds. Also note that the analysis is local, it is performed for the observed and simulated set of parameters at the urban background site. Decreasing the concentration of a family species – TNO$_3$ or TNH$_3$ in our case – leads to a change in its partitioning between both gaseous and aerosol phases. This change not only depends on the concentration of the family species which is altered but also on the value of all the other parameters of the system. Thus, the CHIMERE errors in the different input parameters propagate to the gas-aerosol partitioning coefficient, which can potentially lead to an erroneous sensitivity of nitrates to a change of TNO$_3$ or TNH$_3$. Calculations are performed for both the measurements and the model, i.e. all inputs are taken from the observations and the model, respectively, at the urban background site. In each case, the (observed or simulated) concentrations of TNH$_3$ or TNO$_3$ are decreased and the sensitivity coefficient is computed to quantify the impact of this change on the nitrate concentrations. Sensitivity coefficient results and corresponding GR are shown as box plots in Fig. 13.

Figure 13: Sensitivity coefficient S_x of nitrate formation due to different changes (-10, -25, -50 and -90%) in TNH$_3$ and TNO$_3$ concentrations (left panel) and resulting GR (right panel) during the period from 15 May to 10 September 2010. Experimental data (OBS) in black, modelled data (MOD) in blue. Box plots indicate 5th, 25th, 50th, 75th and 95th percentiles.
For the experimental data, we do observe a quite similar sensitivity of nitrate formation for changes either in TNH$_3$ or in TNO$_3$ concentrations, with median sensitivity coefficients around 1 (i.e. close to a linear response). Considering the high GR values (except for the -50 and -90% TNH$_3$ cases that lead to negative GR), such a result with similar responses to both precursors changes appears quite counter-intuitive in light of the above definition of GR. However, first, the GR approach considers free NH$_3$, while the sensitivities are calculated with respect to total NH$_3$. Second, as already mentioned, the formation of nitrates requires the saturation condition to be achieved (see formula 6). So for large GR values, but small TNO$_3$ and free NH$_3$ values, nitrate formation will be sensitive to both TNO$_3$ and TNH$_3$. Note that the equilibrium constant K (and thus the nitrate sensitivity) also depends on temperature and RH; this is illustrated in Fig. S6 in the Supplement where the same sensitivity tests are performed after decreasing the temperature by 10°C and increasing the RH by 0.20 in observations, which leads to S_{TNO3} (still close to 1) much higher than S_{TNH3} (below 0.5 for -10 and -25% of TNH$_3$), in accordance with the NH$_3$-rich regime given by GR.

The CHIMERE nitrate response to TNO$_3$ changes is approximately linear (i.e. S_{TNO3} close to 1), in reasonable agreement with observations. However, the model highly overestimates the sensitivity to TNH$_3$ changes, with median S_{TNH3} up to 2.5 for moderate NH$_3$ decreases while observations show a similar response than for TNO$_3$ changes (S_{TNH3} around 1). The model manages to match the observed response only when nitrate formation is severely NH$_3$ limited (negative GR) and when the aerosol nitrate formation is prevented (which corresponds to the -90% TNH$_3$ case).

These results have serious implications on the use of the CHIMERE model for emissions reduction scenarios. As TNH$_3$ concentrations are closely linked to NH$_3$ emissions, they show that the benefits (in terms of fine aerosol concentrations) of reducing these emissions would likely be overestimated by the model, in particular for moderate reductions (below -50%). In addition, in terms of dynamical evaluation, changes in NH$_3$ emissions in the next years may potentially degrade the CHIMERE performance on the simulation of NH$_4$NO$_3$ in Paris if the issues raised here are not solved. This is an important conclusion for the use of the CHIMERE model (in that configuration and input data) and probably other CTMs sharing similar input data and/or parameterizations.

5 Conclusions

Ammonium nitrate is a major contributor to the fine particulate pollution in Europe, and a better characterization of its formation regime and variability (controlled by the availability of its gaseous precursors, NH$_3$ and HNO$_3$) is thus mandatory for setting up relevant PM control strategies.

In this study, long term measurements of inorganic compounds in both gaseous (NH$_3$, HNO$_3$, SO$_2$) and aerosol (NH$_4^+$, NO$_3^-$, SO$_4^{2-}$) fractions have been used to assess the NO$_3^-$ formation regime in the Paris megacity over several months covering the spring/summer period. High episodes of NH$_3$ (up
to 12 ppb on daily average) were observed during late spring and early summer. Considering both the seasonal and diurnal variations, these observations suggest that agricultural activities are a major driver of the NH$_3$ day-to-day variability within the Paris megacity. Rather low HNO$_3$ concentrations were measured (below 1.5 ppb on daily average), despite the large amounts of gas precursors (NO$_x$) emitted by the traffic in the city of Paris. Some HNO$_3$ episodes observed during anticyclonic conditions (high temperature, low-to-moderate wind) and suggest a substantial local formation from the NO$_x$ emitted within Paris. However, our dataset does not allow quantitatively assessing the relative contributions of this local formation as compared to imports. These experimental results lead to a NH$_3$-rich regime in the Paris urban environment (as indicated by high gas ratio values), as already observed in previous studies over Europe but only in rural areas (i.e. closer to agricultural activities). However, sensitivity tests with the ISORROPIA thermodynamic model indicate that, in the specific environment of Paris (in terms of RH, temperature and inorganic compounds concentrations), the NO$_3^-$ formation remains quite equally influenced by decreases of TNH$_3$ and TNO$_3$. Considering the size of the Paris megacity and the intensity of NO$_x$ emissions, one would have primarily expected higher HNO$_3$ and lower NH$_3$ in the Paris center. This work thus sheds a new light on the topical debate relative to the respective responsibility of traffic and agriculture in the formation of NH$_4$NO$_3$, by highlighting substantial amounts of agricultural NH$_3$ and relatively low concentrations of HNO$_3$ in the city.

This detailed experimental dataset has also offered the opportunity to evaluate for the first time the ability of the CHIMERE chemistry-transport model to simulate the NH$_3$-HNO$_3$-NO$_3^-$ system. Comparison between measurements and model have shown significant negative (-75%) and positive (+195%) biases for NH$_3$ and HNO$_3$, respectively. Several sensitivity tests have been performed in order to rank uncertainty sources being responsible for these important biases. The difficulty of the CHIMERE model to match NH$_3$ observations is likely mainly due to erroneous agricultural emissions (in particular their spatio-temporal variability). By comparison, the contribution of NH$_3$ traffic emissions in the Paris agglomeration appears as minor during the studied period but requires a more detailed quantification. Besides the (hardly quantifiable) uncertainties associated with dry deposition, errors on HNO$_3$ can probably be explained by the large uncertainties on OH concentrations, in particular during summertime while the negative bias on NH$_3$ explains a noticeable part of the HNO$_3$ overestimation during spring (by preventing HNO$_3$ to be converted into NO$_3^-$).

Many studies have evaluated the ability of CTMs to simulate inorganic aerosol compounds, but few have evaluated their performances on gaseous precursors. The low performing modelled results on HNO$_3$ and NH$_3$ found here may also exist in other CTMs sharing similar emissions data and/or parameterizations. The sensitivity of NO$_3^-$ formation as a function of decreasing concentrations of
gas precursor have been investigated, highlighting a very high sensitivity to NH$_3$ changes in the
model, in disagreement with observations that give a quasi linear response. Such results may have
important implications on the use of CHIMERE for emission reduction scenarios (at least in the
Paris region) by potentially overestimating the potential benefit of NH$_3$ emission reductions in
terms of PM concentrations. The diagnostic evaluation led in this paper gives first results that need
to be extended, notably with hourly artefact-free (NH$_4$NO$_3$) measurements during all seasons, in
order to assess more precisely the NO$_3^-$ formation regime in the city of Paris. Additional work on
uncertainty sources is also required to reduce the highlighted errors, in particular the NH$_3$
agricultural emissions and the OH uncertainties. In that perspectives, the recent NH$_3$ measurements
provided by IASI (Infrared Atmospheric Sounding Interferometer; Clarisse et al., 2009, 2010) may
offer opportunities to better assess the spatial distribution of NH$_3$ emissions and help building more
accurate emission inventories.

Acknowledgements

This work is funded by a PhD DIM (domaine d’intérêt majeur) grant from the Ile-de-France region.
The PARTICULES project has been funded by the French state, the Ile-de-France region and the
Paris city. The FRANCIPOL projet has received funding from PRIMEQUAL, CNRS, CEA, the Ile-
de-France region, ACTRIS and DIM R2DS. The authors gratefully acknowledge Jean-Charles
Dupont and the SIRTA (sirta.ipsl.fr) for the useful boundary layer height data. The other
meteorological data at Montsouris site have been kindly provided by METEO France.

References

Aan de Brugh, J. M. J., Henzing, J. S., Schaap, M., Morgan, W. T., van Heerwaarden, C. C., Weijers,
E. P., Coe, H. and Krol, M. C.: Modelling the partitioning of ammonium nitrate in the convective
Airparif: Inventaire des émissions en Ile-de-France en 2005. [online] Available from:
Airparif: Origine des particules en Ile-de-France. [online] Available from:
Airparif: Source apportionment of airborne particles in the Ile-de-France region. [online]
Baklanov, A., Lawrence, M., Pandis, S., Mahura, A., Finardi, S., Moussiopoulos, N., Beekmann, M.,
Laj, P., Gomes, L., Jaffrezo, J.-L., Borbon, A., Coll, I., Gros, V., Sciare, J., Kukkonen, J., Galmarini, S.,
Giorgi, F., Grimmond, S., Esau, I., Stohl, A., Denby, B., Wagner, T., Butler, T., Baltensperger, U.,
Builtjes, P., van den Hout, D., van der Gon, H. D., Collins, B., Schluenzen, H., Kulmala, M.,

