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Abstract We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier 16 

Transform InfraRed (FTIR) observations. Observations from Bremen (53.10N, 8.85E), Lauder (45.04S, 17 

169.68E), Reunion (20.9S, 55.50E) and Jungfraujoch (46.55N, 7.98E) were used to illustrate the capabilities of 18 

the method. NH3 mean total columns ranging three orders of magnitude were obtained with higher values at 19 

Bremen (mean of 13.47e15 molecules cm-2) to the lower values at Jungfraujoch (mean of 0.18e15 molecules 20 

cm-2). In conditions with high surface concentrations of ammonia, as in Bremen, it is possible to retrieve 21 

information on the vertical gradient as two layers can be discriminated. The retrieval there is most sensitive to 22 

ammonia in the planetary boundary layer, where the trace gas concentration is highest. For conditions with low 23 

concentrations only the total column can be retrieved. Combining the systematic and random errors we have a 24 

mean total error of 26% for all spectra measured at Bremen (Number of spectra (N) =554), 30% for all spectra 25 

from Lauder (N=2412), 25% for spectra from Reunion (N=1262) and 34% for spectra measured at Jungfraujoch 26 

(N=2702). The error is dominated by the systematic uncertainties in the spectroscopy parameters. Station 27 

specific seasonal cycles were found to be consistent with known seasonal cycles of the dominant ammonia 28 

sources in the station surroundings. The developed retrieval methodology from FTIR-instruments provides a 29 

new way to obtain highly time-resolved measurements of ammonia burdens. FTIR-NH3 observations will be 30 

useful for understanding the dynamics of ammonia concentrations in the atmosphere and for satellite and model 31 

validation. It will also provide additional information to constrain the global ammonia budget. 32 

 33 

34 



1. Introduction 35 

Nitrogen emissions in the form of ammonia (NH3), which largely derive from agriculture, have been associated 36 

with acidification and eutrophication of soils and surface waters (Krupa, 2003; Vitousek et al., 1997), which may 37 

reduce biodiversity in vulnerable ecosystems (Bobbink et al., 1998, 2010). Ammonia also reacts with nitric acid 38 

and sulphuric acid to form ammonium salts, which account for a large fraction of particulate matter concentrations 39 

(Schaap et al., 2004). Particulate matter is a major contributor to smog and is related to negative health impacts 40 

(Pope et al., 2009). Moreover ammonium salts play an important role in the radiance balance of the Earth, thus 41 

having an impact on climate change (Charlson et al., 1991, Erisman et al., 2007). It was shown that reduced 42 

nitrogen also plays a role in the fixation of carbon dioxide (CO2) (Reay et al., 2008). Human activities have 43 

increased the global emissions of reactive nitrogen (Nr) to the atmosphere (Holland et al., 1999). Current global 44 

Nr emissions have been estimated to be almost four times larger compared to pre-industrial levels (Fowler et al., 45 

2013) with NH3 emissions amounting to 49.3Tg in 2008 (EDGAR-Emission Database for Global Atmospheric 46 

Research, 2011). Consequently this has led to large increases in atmospheric nitrogen deposition (Rodhe et al., 47 

2002; Dentener et al., 2006).  Biomass burning was found to account for 11% of the global emission budget of 48 

NH3 (Bouwman et al., 1997). While the agricultural emissions dominate in the Northern Hemisphere, biomass 49 

burning is one of the main sources of the NH3 concentrations in the Southern Hemisphere. 50 

Despite its central role in many environmental threats, little is known about the ammonia budget and its 51 

distribution across the globe. Uncertainties in global and regional emission rates are large with errors of more than 52 

50% (Erisman et al., 2007; Sutton et al., 2013). Ammonia concentrations have a large variability in time and 53 

space, a short lifetime in the order of hours, and the lack of globally distributed observations hamper our 54 

understanding. Surface observations are available, but these are not homogenously distributed over the globe with 55 

most observation sites located in the Northern Hemisphere. Most sites provide data with a poor temporal resolution 56 

(e.g. many observation networks use passive samplers with a sampling time of 2 or 4 weeks (Thijsse et al., 1998; 57 

Puchalski et al., 2011)) whereas emission and deposition dynamics affect concentrations on the scale of hours to 58 

days. Systems with higher sampling frequency such as the AMANDA, MARGA and (denuder) filter packs are 59 

available, but the number of measurement networks using these instruments is limited as they are often costly to 60 

operate (Erisman et al., 2001; Thomas et al., 2009; Mount et al., 2002; Hansen et al., 2003). Moreover, measuring 61 

NH3 is challenging and existing in-situ measurement techniques are often prone to sampling artefacts (Bobrutzki 62 

et al., 2010). Recent advances in open path remote sensing techniques, like (mini-) DOAS systems and open path 63 

Quantum Cascaded Laser instruments show large potential to overcome part of these sampling issues (Volten et 64 

al., 2012; Miller et al.,2014), but are still in the development stage and not widely applied yet. Another aspect is 65 

the lack of vertical information, as most instruments only measure surface concentrations (Erisman et al., 1998, 66 

2007; Van Damme et al. 2014c). Some recent airborne measurements have been made (Nowak et al., 2007, 2010; 67 

Leen et al., 2013), but only during dedicated campaigns with limited temporal and spatial coverage. In short, it is 68 

very difficult to obtain detailed knowledge on the global ammonia budget using currently available field 69 

observations.   70 

Remote sensing products from atmospheric satellite sounders such as the Infrared Atmospheric Sounding 71 

Interferometer (IASI), the Tropospheric Emission Spectrometer (TES) and the Cross-track Infrared Sounder 72 



(CrIS) (Van Damme et al., 2014a; Shephard et al., 2011; 2015a) have become available and show good promise 73 

to improve NH3 concentration monitoring (Van Damme et al. 2014b; Luo et al., 2015; Whitburn et al. 2015). 74 

However, these data sets are constrained by the overpass time of the satellite and the atmospheric conditions 75 

(cloud coverage, thermal contrast, etc.). Moreover, the uncertainties associated to the data are relatively large, 76 

which calls for a detailed evaluation of the data. A recent study (Van Damme et al., 2014c) showed a number of 77 

challenges related to the validation. First, reliable hourly in-situ data is sparse. Second, when not using optimal 78 

estimation satellite product as is the case for the IASI- NH3 retrieval, one has to assume a vertical profile to link 79 

surface concentrations to a column value. Third, the ground-based observations are often influenced by local 80 

sources, whereas satellite observations have a footprint of the order of tens on kilometres. A recent study by 81 

Shephard et al (2015b) shows the potential of an instrument that can be used for profile comparisons. In the study 82 

instruments on an aircraft were used measure a vertical profile of NH3 which were used as a validation tool for 83 

the NH3-profile observations of TES. Hence, a measurement methodology that would provide columnar and 84 

vertical profiles of ammonia concentrations at a high temporal resolution would be highly beneficial for evaluating 85 

the merits of the novel satellite products. Fourier Transform infrared spectrometry (FTIR) provides this 86 

methodology. Atmospheric sounders have a long history for validation of satellite products. FTIR observations 87 

are already commonly used for the validation of satellite products of among others, carbon monoxide (CO), 88 

methane (CH4) and nitrous oxide (N2O) (Wood et al., 2002; Griesfeller et al., 2006; Dils et al., 2006; 89 

Kerzenmacher et al., 2012). 90 

FTIR spectrometry is a well-established remote sensing technique for the observation of atmospheric trace gases 91 

(Rao and Weber, 1992). FTIR has so far been used to estimate ammonia emissions from fires (Yokelson et al., 92 

1997, 2007, Paton-Walsh et al., 2005)), but only on a campaign basis, not long-term monitoring. There are several 93 

monitoring stations with FTIR instruments operated on a regular basis, providing long-term time series for a suite 94 

of key tropospheric and stratospheric species, including Carbon Dioxide (CO2), Carbon Monoxide (CO) and 95 

Ozone (O3). So far nobody has systematically analysed the FTIR measurements for NH3. We have developed a 96 

NH3 retrieval strategies for four Network for detection of Atmospheric Composition Change (NDACC) FTIR 97 

stations, spanning very different concentration conditions (polluted and remote sites), in order to obtain time-98 

series of NH3 total columns and show its value for describing temporal variations.  99 

First we present the measurement sites and the retrieval strategies in section 2. We describe the characteristics of 100 

the retrieval in section 3.1.1 and the uncertainty budget in section 3.1.2. Section 3.2 constitutes of an interpretation 101 

of the results in combination with a comparison with existing datasets of CO total columns and temperature to 102 

distinguish between emission sources. We summarize the results in section 4. 103 

 104 

2. Measurement sites and retrieval strategies 105 

 106 

2.1 Sites description 107 

 108 

Ground-based FTIR instruments measure the solar absorption spectra under cloud-free conditions by using a 109 

Fourier Transform Spectrometer. These spectra can be analysed by using a line by line model (Pougatchev et al., 110 



1995; Hase et al., 2004, 2006), which models the spectroscopic absorption lines by using known parameters 111 

from a spectroscopic database (e.g. HITRAN, Rothman et al., 2013) in combination with the radiative state of 112 

the atmosphere, and an optimal estimation inversion scheme (Rodgers, 2000). Information on vertical 113 

concentration profiles can be retrieved using the pressure broadening of the absorption lines. For the NDACC 114 

network the spectral region measured is the near- to mid-infrared domain (740 to 4250 cm-1, i.e. 13.5 to 2.4 µm) 115 

with a HgCdTe or InSb cooled detector (Zander et al., 2008) and a suite of optical filters are used to optimize 116 

the signal-to-noise ratio in the complementary spectral regions. Instruments in the network are routinely checked 117 

and characterized using laboratory measurements of HBr lines and the linefit software (Hase et al., 1999) to 118 

assess the instrument line shape, alignment and measurement noise levels. Four NDACC stations are used in our 119 

study, two in each hemisphere:  120 

- The site of Bremen (53.10N, 8.85E) is especially suitable to measure variations in ammonia concentrations 121 

as the surrounding state, Lower Saxony, which is a region with intensive agricultural activities with high and 122 

temporal variable emissions (Dämmgen et al., 2005). In short, the ammonia total columns (molecules cm-2) 123 

at Bremen are expected to reach high values compared to background stations. The Universität Bremen 124 

operates a Bruker 125HR spectrometer and a solar tracker by Bruker GmbH, directly on the university 125 

campus.  126 

 127 

- The Jungfraujoch station (46.55N, 7.98E) is a high altitude station (3580 m.a.s.l.) located in Switzerland 128 

(Zander et al., 2008). There are no large emissions sources surrounding the station itself as it is mostly located 129 

in the free troposphere. At Jungfraujoch, a Bruker 120HR instrument is in operation since the early 1990s. 130 

For the current study, specific for the Jungfraujoch site, we used a subset of spectra recorded during the 2004-131 

2013 time period with apparent solar zenith angles (SZA) between 70 and 85˚ to increase the capability to 132 

retrieve the very low ammonia concentrations.  133 

 134 

- The Lauder (45.04S, 169.68E) National Institute of Water and Atmospheric Research (NIWA) atmospheric 135 

research station in Central Otago, New Zealand at an altitude of 370 (m.a.s.l.). Long-term operations started 136 

in 1991 with a Bruker 120M (Griffith et al., 2003). This instrument was replaced with a Bruker 120HR in 137 

October 2001. Ammonia emissions in the surrounding valley are mostly due to livestock grazing on the 138 

pastures and a by-product of seasonal fertilizer application. In recent years there has been an increase in cattle 139 

grazing and crop cultivation (EDGAR-Emission Database for Global Atmospheric Research, 2011).  140 

 141 

- Reunion Island (20.9S, 55.50E) is located in the Indian Ocean to the east of Madagascar. The station is located 142 

at the University campus of St.-Denis on the north side of the island. Agricultural activities are mostly related 143 

to sugar cane production. The island is prone to some local biomass burning and wild fire events, which are 144 

known to emit ammonia. It is also very close to Madagascar, a region with frequent and intense biomass 145 

burning events, and it has been found using backward trajectory that the emissions in Madagascar can be 146 

transported to Reunion Island within one day (Vigouroux et al., 2009). The measurements used in this study 147 

are performed with a Bruker 120M spectrometer. Details on the measurements can be found in Senten et al. 148 

(2008) and Vigouroux et al. (2012). 149 

 150 



These stations are expected to provide significant differences in variability and levels of ammonia, making them 151 

suitable to demonstrate the strength of our retrieval scheme for application across the whole network. A summary 152 

of the station descriptions is given in Table 1. CO columns were obtained from the NDACC database to be used 153 

for comparison in section 3. 154 

 155 

2.2 NH3 Retrieval Strategies 156 

 157 

The ammonia absorption lines from its υ2 vibrational band can be observed in the 700-1350 cm-1 wavenumber 158 

range, which are also used in the retrieval of satellite products of ammonia (e.g. Clarisse et al., 2009, Van Damme 159 

et al., 2014a). In this spectral range the FTIR spectra can be measured using a potassium bromide (KBr) beam-160 

splitter in combination with a mercury cadmium telluride (MCT) nitrogen cooled detector (Zander et al., 2008). 161 

The retrieval scheme of trace gas concentrations from FTIR spectra is built on the use of a set of spectral micro 162 

windows containing absorption lines of the targeted species, with minimum interference by other atmospheric 163 

species or solar lines. Two slightly different set of spectral micro-windows were used at the four stations, but they 164 

both use the same main NH3 absorption lines. The target and interfering species are summarized in Table 2, with 165 

the profile retrieved species indicated in bold. To properly estimate ammonia, interfering species like O3 and water 166 

vapour (H2O) that overlap NH3 lines in the υ2 vibrational band have to be accounted for. Two micro windows 167 

were chosen that contain as little interfering species as possible. In both sets, the first micro window (MW1) 168 

covers the NH3 absorption line at 930.75 cm-1. At Bremen/Lauder, the choice was to use only isolated NH3 169 

absorption features to avoid possible problems due to line mixing, therefore the spectral window MW1 is only 1 170 

cm-1 wide [930.32-931.32, MW1]. Figure 1 shows an example of a synthetic spectrum calculated to fit a 171 

observation that was measured with the 125HR in Bremen on the 19th of April 2010 at 09:59 (UTC) (Solar Zenith 172 

Angle of 45 degrees). The NH3 concentrations on this day were slightly higher than average resulting in slightly 173 

stronger NH3 absorption features in the spectra. The top two figures show the absorption contributions of the 174 

absorbing species in both micro windows. The bottom two panels show an enlarged version of the figure to 175 

distinguish the interfering species with smaller absorption features. At Reunion Island/Jungfraujoch, MW1 was 176 

extended [929.4-931.4, MW1] to cover another NH3 line at 929.9 cm-1. This improved the retrieval for Reunion 177 

Island because at this location the NH3 concentration levels are much lower than at Bremen and the water vapour 178 

concentrations are much higher. In this high humidity condition, the 930.75 cm-1 line is not isolated from H2O, 179 

and it improved the retrieval to add the more isolated one at 929.9 cm-1 (see Figure 2). The main interfering species 180 

in MW1 are CO2, N2O, and H2O. Minor interfering species are SF6 and CFC-12. The second window is spanning 181 

the NH3 line at 967.35 cm-1. Again, different widths are used for Bremen/Lauder [966.97-967.68, MW2] and 182 

Reunion Island/Jungfraujoch [962.7-970, MW2]. The very weak absorption signatures at Reunion Island and 183 

Jungfraujoch are close to the noise level and therefore the whole NH3 absorption shape is retrieved (about 964-184 

968 cm-1, see Figure 2) rather than a single line. The main interfering species in MW2 are O3, CO2 and H2O for 185 

all sites. At Reunion Island HDO is also interfering in MW2 as well as the isotopologue 686 O3 (i.e. 16O-18O-16O), 186 

which has been fitted in addition to the main 666 O3. At Jungfraujoch apart from CO2, two O3 isotopologues (the 187 

most abundant and 686 O3) and water vapour which are the main interferences, N2O, CFC-12, SF6 and HDO 188 

absorptions are also retrieved.  Typical NH3 absorptions are weak, on the order of a few tenths of a percent. The 189 



typical measurement noise (signal-to-noise ratio) differs per spectra and site but ranges between ~250 at Lauder 190 

to ~450 at Bremen. Channelling was not an issue in any of the spectra and did not need to be fitted. 191 

 192 

Except at Jungfraujoch where SFIT2 is used, the retrieval is performed using the more recent SFIT4.0.9.4 193 

algorithm (Pougatchev et al., 1995, Hase et al., 2004, 2006). Both versions use a form of the optimal estimation 194 

method (Rodgers et al., 2000) to retrieve the volume mixing ratios and total columns of NH3 and makes use of 195 

a-priori information (profile and covariance matrix). For Bremen, Lauder and Jungfraujoch the used NH3 a-196 

priori volume mixing ratios are based on balloon observations (Toon et al. 1999, NH3 available in dataset but 197 

not reported). The shape of the balloon measurements profile was kept constant but extended and scaled to 198 

expected surface concentrations. The a-priori surface volume mixing ratio is estimated to be 10 ppb for Bremen 199 

(Dämmgen et al., 2005). Although the shape of NH3 profiles do change through time, the largest share of NH3 is 200 

expected to be in the mixing layer, which is represented by the lowest layers in the calculation (Van Damme et 201 

al 2014c, Nowak et al., 2010). At Reunion Island, the a priori profile was taken from the MOZART model 202 

(Louisa Emmons, private communication). The a-priori profile peaks at a higher altitude (4-5 km) instead of the 203 

boundary layer as in Bremen, as NH3 is expected to originate mainly from transport of biomass burning 204 

emissions at this location. At all stations, the a-priori profiles of the interfering species were taken from the 205 

Whole Atmosphere Community Climate Model (Chang et al., 2008). 206 

 207 

At Bremen and Lauder, the a priori covariance matrices only have diagonal values corresponding to standard 208 

deviations of 100% for all layers with no interlayer correlation, chosen in relation to the large range of possible 209 

concentrations and variations between layers. At Jungfraujoch and Reunion Island, we did not use the a priori 210 

covariance matrix as in optimal estimation but the Tikhonov type L1 regularization (e.g. Sussmann et al., 2009) 211 

was adopted for the Jungfraujoch retrievals. After several tests, values of 50 and 250 were adopted for the alpha 212 

parameter and the signal to noise for inversion, respectively. A Tikhonov regularization with an alpha parameter 213 

value of 50 was also adopted for the Reunion retrievals. The signal to noise ratio is calculated for each spectra, 214 

the mean value being 365. 215 

 216 

Daily temperature and pressure profiles for the meteorological variables were taken from NCEP (National 217 

Center for Environment Prediction). For the radiative transfer calculations the profiles were split into about 50 218 

levels, depending slightly on the station, from ground up to 80 kilometres (100 kilometres in the case of 219 

Jungfraujoch and Reunion Island). The layers have a typical thickness of 500 meters in the troposphere up to 2 220 

km for the higher layers. For the line spectroscopy we use the HITRAN 2012 database (Rothman et al., 2013) in 221 

combination with a number of corrections for CO2 (ATMOS, Brown et al.,1996) (except for Jungfraujoch for 222 

which the HITRAN lines are used) and sets of pseudo lines generated by G.C. Toon (NASA-JPL) to account for 223 

broad unresolved absorptions by heavy molecules (e.g. CFC-12, SF6). 224 

 225 

Figure 3 shows an example of the fit in both micro windows for the same measured spectra as used in Figure 1. 226 

The top two and bottom two panels show the calculated (Green line) and measured spectrum (Blue line) and the 227 

residual of both micro windows. The simultaneous fits are good with a standard deviation of 0.15% in both 228 

cases. 229 



  230 



3. Results of the FTIR retrievals 231 

3.1 Characteristics of the NH3 retrievals 232 

3.1.1 Vertical Information 233 

The retrieved vertical information differs from station to station. The top of Figure 4 shows for the 4 stations the 234 

average NH3 volume mixing ratios (VMR) for each of the retrieved layers (blue line) and the a priori profile that 235 

was used as input in the retrieval (green line). The bottom of Figure 4 shows the averaging kernels for each of the 236 

4 stations averaged over all available observations. As mentioned earlier most of the NH3 at Bremen is in the 237 

lowest layers. In Figure 4 this is also observed as the averaging kernel shows the most sensitivity in the lowest 238 

layers (red and green lines for the layers 0.03-0.5km and 0.5-1km). The combination of the two spectral micro 239 

windows on average contain 1.9 degree of freedom for signal (DOFS) for the Bremen spectra, which means around 240 

two independent vertical layers can be retrieved. The two separate layers consist of a layer covering ground-1km 241 

and one that covers 1 km - 6 km height, which can be observed in Figure 4. It must be taken into account however 242 

that the shown averaging kernels are a mean for all observations and thus the retrievable number of layers and 243 

combined layer depths vary from spectra to spectra. On average, the Lauder spectra have a DOFS of 1.4. There is 244 

only vertical information for multiple layers during periods with increased NH3 total columns, which mostly occur 245 

during summer. Similar to Bremen averaging kernels peak near the surface. At Reunion Island only 1.0 DOFS is 246 

achieved, with almost no vertical information available. All the averaging kernels are peaking at the same altitude 247 

(about 5km), which is also the peak of the a priori profile (Figure 4). Similar to the Reunion spectra the 248 

Jungfraujoch spectra do not have vertical information with a DOF of 1.0.  249 

 250 

3.1.2 Uncertainties Budget 251 

For the error analysis the posteriori error calculation included in the SFIT4 package is used. The error calculation 252 

is based on the error estimation approach by Rodgers (2000). It allows the calculation of the error by attributing 253 

errors to each of the parameters used in the retrieval. The error budget can be divided into three contributions, the 254 

error due to the forward model parameters, the measurement noise and the error due to the vertical resolution of 255 

the retrieval (smoothing error). The assumed uncertainties for the used parameters in the retrieval are listed in 256 

Table 3 for the parameters used in the calculation for Bremen, Lauder and Reunion. For Jungfraujoch, the error 257 

computation was performed using the perturbation method, the spectra of 2009 to 2011 and the Rodger formalism 258 

as explained e.g. in Franco et al., 2015. For Reunion Island, the covariance matrix used for the smoothing error 259 

has diagonal elements representing 150% of variability from the a priori profile. To reflect the error in the NCEP 260 

temperature profiles we assume an uncertainty of about 2 K in the troposphere and a 5 K uncertainty in the 261 

stratosphere. For the uncertainty in the NH3 line parameters we assume values as stated in the HITRAN 2012 262 

database. We assume a conservative 20% uncertainty for the intensity and 10% for both the temperature and 263 

pressure broadening coefficients.  264 

 265 

The results of the error calculation are listed in in Table 4. Combining the systematic and random errors we have 266 

a mean total error of 25.8 % for all the spectra measured at Bremen (N=554), 30.2 % for the spectra from Lauder 267 

(N=2412), 25.2 % for the Reunion spectra (N=1262) and 34.2 for the Jungfraujoch spectra (N=2702).  The errors 268 

are dominated by uncertainties in the spectroscopy. In detail, the random error sources amount to a mean error of 269 

9.1 % for the Bremen spectra, which is mostly due to uncertainty in temperature, measurement noise and the zero 270 



level of the sensor (i.e. an instrument property). In the case of the systematic error, with a mean error of 23.5 %, 271 

the error is for the largest part due to the spectroscopy (i.e. line parameters) with smaller contributions of the 272 

temperature, zero level, phase and the smoothing error. The results are similar for the Lauder, Reunion and 273 

Jungfraujoch spectra with most of the uncertainty coming from the line parameters. Hence, line intensity 274 

parameters of the ammonia absorption lines are critical for the NH3 concentrations.  275 

 276 

3.2 Time series 277 

Figure 5 shows the NH3 total columns retrieved from all available spectra from 2004-2013. Table 5 gives a 278 

summary of statistics of the retrieved NH3 columns. Individual measurements at Bremen (blue) show high 279 

concentrations, especially in spring with an overall mean column total of 13.7e15 molecules NH3 cm-2 and a root 280 

mean square (RMS) of 20.22 indicating a large variability in the observations. The amplitude of the spring peaks 281 

vary throughout the years, with maxima in 2010 and 2013 reaching ~93e15 and 85e15 molecules NH3 cm-2. The 282 

variability through the years is caused by changes in meteorology, emissions and timing of the measurements. 283 

Gaps in the data are due to days with overcast and instrument downtimes. The individual observed columns are 284 

sorted into monthly averages to analyse the seasonal variability and to understand the processes driving the NH3 285 

concentrations. This is shown in Figure 6 together with monthly averages of surface temperature and CO total 286 

columns. NH3 column total concentrations at Bremen (Blue line) have a seasonal cycle with highest levels during 287 

spring, the summer months and autumn. The maximum concentrations occur around April which is consistent 288 

with temporal emission patterns for manure application reported for this region (Friedrich and Reis, 2004; Martin 289 

et al., 2015; Paulot et al., 2014). The baseline variability with higher concentrations in summer can be explained 290 

by an increase in volatilization rates of NH3, emitted from livestock housing, which is driven by animal activity 291 

and temperature (Gyldenkaerne et al., 2005). A comparison with CO is made to distinguish between agricultural 292 

and fire emissions sources. A correlation between NH3 and CO columns is not observed, which is consistent with 293 

agriculture as the dominant source of ammonia. 294 

 295 

On average the measurements at Lauder (Figure 5, red line, top panel) yield a column total of 4.17e15 molecules 296 

NH3 cm-2. These levels are about 1/3rd of the concentrations measured at Bremen (blue, top panel). Spectra from 297 

Lauder are available for most days in the retrieved time series, which makes it easier to discern peaks and 298 

variability. Distinctive peaks are only visible in the summers. Maxima during spring times are not often observed. 299 

The peak values are similar in between years, with maxima typically around 30e15 molecules NH3 cm-2. The RMS 300 

of 5.95 reflects a large variability in the observations between individual retrievals. The average error is 1.34e15 301 

molecules NH3 cm-2, which is around a quarter of the mean.  Figure 6 shows the seasonal cycle of Lauder (red 302 

line, top left panel). The seasonal variation of NH3 coincides with that of the atmospheric temperature (red line, 303 

bottom right panel) and with the livestock emissions in the surrounding region, which are strongly correlated with 304 

temperature. 305 

 306 

The third panel of Figure 5 shows the observations from Reunion (green symbols, bottom panel). The mean 307 

column total observed at Reunion is 0.80e15 molecules NH3 cm-2. The concentrations are low during most of the 308 

year. However, peaks reaching densities of ~6e15 molecules NH3 cm-2 can be observed during the end of each 309 

year. The peaks in September-November coincide with the dry season indicating that emissions are mostly due to 310 



biomass burning and large fire events (Vigouroux et al., 2012). This is supported by the increased CO 311 

concentrations, which are also observed in October and November (see, bottom left panel, Figure 6). NH3 surface 312 

concentration measurements are not available for this region but a recent paper by Van Damme et al. (2015), 313 

which uses IASI-NH3 observations, shows similar seasonal cycles for the south eastern parts of Africa 314 

(Madagascar). Temperature is almost constant throughout the year and not a major factor in the seasonality of 315 

Reunion. 316 

 317 

Observations from Jungfraujoch have the lowest mean concentration of all four stations (Figure 5, orange line), 318 

with a mean of 0.18e15 molecules NH3 cm-2. The low concentrations at Jungfraujoch are expected, as the station 319 

is located in the free troposphere high above the surrounding valleys. Transport of NH3 from the valleys only 320 

occurs sporadically during days with intense vertical mixing. This was also observed in an earlier study of CO 321 

concentrations (Barret et al., 2003).  The Jungfraujoch observations show almost no seasonal effects with only a 322 

minimal increase during the summer months. The low concentrations measured at Jungfraujoch support our 323 

assumption on the vertical distribution of the ammonia concentrations with low values in the troposphere that 324 

were used in our a-priori. 325 

 326 

4. Conclusions and perspectives 327 

 328 

In this study we presented a new method to retrieve ammonia total columns from ground-based FTIR solar spectra. 329 

Observations from four complementary stations were used to illustrate the capabilities of the retrieval method. 330 

NH3 total columns ranging three orders of magnitude were obtained with high abundances at Bremen (mean of 331 

13.7e15 molecules cm-2, with a mean DOFS 1.9) to low columns at Jungfraujoch (mean of 0.18e15 molecules cm-332 

2, with a mean DOFS 1.0). The very low levels obtained at the Jungfraujoch demonstrate the sensitivity of the 333 

retrieval method we developed. A separate error calculation shows random errors in the order of 10% and 334 

systematic errors of 25% for individual observations. The errors are dominated by uncertainties in spectroscopy, 335 

atmospheric temperature and deviations in instrumental parameters. For conditions with high surface 336 

concentrations of ammonia, as in Bremen, it is possible to retrieve information on the vertical gradient as two 337 

layers can be discriminated. At Bremen, the retrieval there is most sensitive to ammonia in the planetary boundary 338 

layer, where most of the ammonia is expected. For conditions with lower concentrations there is not enough 339 

information to discriminate individual layers. Station specific seasonal cycles were found to be consistent with 340 

known seasonal cycles of the dominant ammonia sources in the station surroundings. For example, highest levels 341 

in Bremen were observed during spring time when manure is applied to the fields with column total concentrations 342 

reaching up to 93e15 molecules cm-2.  343 

Remote sensing techniques avoid sampling artefacts common to other techniques such as filter packs (Puchalski 344 

et al., 2011; Bobrutzki et al., 2010). For in-situ observations open path remote sensing techniques, e.g. DOAS and 345 

QCL instruments, are starting to be used (Volten et al., 2010, Miller et al., 2014). The FTIR-NH3 observations 346 

would be an excellent addition to these approaches as it provides the NH3 total column and profiles, including 347 

vertical information for sites sampling high ammonia levels. With a mean error of ~25% for all observations in 348 

high ammonia source areas the accuracy of the FTIR retrievals is comparable to that reported for satellite products 349 

(TES, IASI, CrIS). Compared to the in-situ open path remote sensing methods the FTIR method has a higher 350 



uncertainty, but this is a trade-off for the ability to retrieve vertical information. To improve the accuracy of the 351 

FTIR-NH3 retrieval a reassessment of the spectral line parameters is necessary.  352 

Observations from existing networks commonly represent daily or even monthly averaged concentration values, 353 

which severely complicates any attempt to validate satellite observations. The novel FTIR-NH3 observations 354 

enable a direct validation of satellite products. As the FTIR- NH3 product provides averaging kernels a direct 355 

comparison can be made with optimal estimation satellite retrievals while taking account of the a-priori 356 

information and vertical sensitivity of both instruments (Rogers and Connor, 2003). A dedicated field campaign 357 

was executed at the Cabauw Experimental Site for Atmospheric Remote Sensing (CESAR) in the Netherlands 358 

(spring and summer 2014) to validate the IASI- NH3 using a range of instruments including mini-DOAS 359 

instruments and a Bruker IFS-66 instrument (Dammers et al. in prep). 360 

The uncertainty in the emission distributions hampers the performance and prediction capabilities of air quality 361 

and climate models (Heald et al., 2012). Emissions are usually based on nationally reported yearly emission 362 

inventories (Pouliot et al., 2012) and gridded by distributing the emissions following animal numbers and 363 

agricultural land use (Bouwman et al., 2002, Keunen et al., 2011). To improve on static emission time profiles, a 364 

new direction is to include the impact of meteorological variability of ammonia emissions in modelling systems 365 

(Sutton et al., 2013). Recently, such an improvement was shown to greatly enhance the performance of air quality 366 

models (Skjoth et al., 2011). Satellite observations in combination with chemical transport models (CTM) have 367 

been used to provide a top-down constraint on ammonia emissions (e.g. Zhu et al., 2013). Similar to satellite 368 

observations, FTIR total columns in combination with surface and satellite observations could provide the means 369 

to evaluate the emission modelling through comparing trends and concentration anomalies within and between 370 

years. For this purpose continuous time series are necessary. Due to the lack of continuous data (i.e. more than 371 

one observation per hour) we could not derive a typical diurnal cycle in this study, whereas this would be highly 372 

useful for model evaluation. Improved knowledge on the diurnal cycles may also greatly help to interpret model 373 

evaluation results against satellite data as they provide snapshots, e.g. daily IASI’s observations at 9:30 local time. 374 

Also, the model-measurement comparison would be less sensitive to modelling errors in the turbulent vertical 375 

exchange as the ammonia is integrated over vertical.  376 

The developed retrieval methodology from FTIR-instruments provides a new way to obtain vertically and 377 

temporally resolved measurements on ammonia concentrations. FTIR-NH3 observations may prove very valuable 378 

for satellite and model validation and may provide a complementary source of information to constrain the global 379 

ammonia budget. 380 
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Tables 677 

Table 1 FTIR stations used in the analysis. The location, longitude, latitude and altitude are given for each station 

as well as the instrument used for the measurements. Some station specifics are given in the last column.  

Station Location Longitude Latitude Altitude 

(m.a.s.l.) 

Instrument Station specifics 

Bremen Germany 8.85E 53.10N 27 Bruker 125 HR City, fertilizers, livestock 

Lauder New Zealand 169.68E 45.04S 370 Bruker 120 HR Fertilizers, livestock 

Reunion Indian Ocean 55.5E 20.90S 85 Bruker 120 M Fertilizers, fires 

Jungfraujoch Switzerland 7.98E 46.55N 3580 Bruker 120 HR High altitude, no large sources 

 678 

Table 2 Micro windows used in the NH3 retrieval at the four stations. 

Stations Micro 

window 

Spectral range 

(cm-1) 

Interfering species (Profile 

retrieved species in bold) 

Signal-to-noise ratio 

(SNR) 

Bremen and 

Lauder 

MW1 930.32-931.32 NH3, H2O, O3, CO2, N2O, HNO3, 

SF6, CFC-12, solar lines 

Bremen – Real SNR 

mean value of 450 

MW2 966.97-967.68 NH3, H2O, O3, CO2, N2O, HNO3, 

solar lines 

Lauder  –  Real SNR 

mean value of 250 

Reunion  

 

MW1 929.4-931.4 NH3, H2O, O3, CO2, N2O, HNO3, 

SF6, CFC-12 

Reunion – Real SNR 

mean value of 365 

MW2 962.1-970.0 NH3, H2O, O3, CO2, N2O, HNO3, 

HDO, 686 O3, solar lines 

 

Jungfraujoch MW1 929.4-931.4 NH3, H2O, O3, CO2, N2O, HNO3, 

SF6, CFC-12 

 

MW2 962.1-970.0 NH3, H2O, O3, CO2, N2O, HDO, 

686 O3, solar lines 

Jungfraujoch – Fixed at 

250 

 679 

Table 3 Random and Systematic uncertainties used in the error calculation 680 

Version (Stations) SFIT 4 (Bremen, Lauder, Reunion) Version (Stations) SFIT 2 (Jungfraujoch) 

Parameter 
Random 
uncertainty 

Systematic 
uncertainty 

Parameter 
Random 
uncertainty 

Systematic 
uncertainty 

Temperature 
2 K troposphere  

5 K stratosphere 

2 K troposphere  

5 K stratosphere 
Temperature 

1.5 K 0-20km  

2.0 K 20-30km 
5.0 K 30km - 

  

Solar line shift 0.005 cm-1 0.005 cm-1 Line intensity   20.0% 

Solar line strength 0.1 % 0.1  % Line T broadening   10.0% 

Solar zenith angle 0.01 Degrees 0.01 Degrees Line P broadening   10.0% 

Phase 0.001 Rad 0.001 Rad Interfering species   
HITRAN2012: 

varies 

Zero level 0.01 0.01 Instrumental Line Shape (ILS)   10% 

Background curvature   0.001 cm-2 Influence a priori profiles Calculated   

Field of view   0.001 Solar Zenith Angle (SZA) 0.2 degrees   

Line intensity   20.0%       
Line T broadening   10.0%       



Line P broadening   10.0%      

Interfering species 
HITRAN2012: 

varies 
        

 

Table 4 Mean random and systematic errors for each of the individual NH3 retrieval parameters. The table is split 

into two sections to cover both the error calculation using SFIT4 (Bremen, Lauder, Reunion) and SFIT2 

(Jungfraujoch). At the bottom the errors are summarized into total mean errors for each of the stations. 

Station Bremen Lauder Reunion Jungfraujoch 

Parameter 
Mean 
Random 

Error (%) 

Mean 
Systematic 

Error (%) 

Mean 
Random 

Error (%) 

Mean 
Systematic 

Error (%) 

Mean 
Random 

Error (%) 

Mean 
Systematic 

Error (%) 

Parameter 
Mean 
Random 

Error (%) 

Mean 
Systematic 

Error (%) 

Temperature 4.9 4.9 3.6 3.6  2.7 2.9 Temperature 15.2   

Solar zenith angle 1.6 1.6         Solar zenith angle 1.9   

Phase 1.0 1.0 1.1 1.1     
Instrumental 

lineshape 
 1.4 

Zero level 5.0 5.0 6.8 6.8         

Measurement  
noise 

4.5   8.4    10.9   
Measurement 
noise 

18.2   

Interfering Species 1.3   2.4    0.9 
8.7 (H2O 

line pressure 

broadening)  

Interfering 

species 
  1.4 

Retrieval 

parameters 
0.1   0.1       Model parameters 1.4   

Background 

curvature 
  1.1   1.2    0.3 Forward model   1.0 

Smoothing error    2.8   8.1  10.3   Smoothing 5.4   

Spectroscopy   21.0   22.7    17.8 Spectroscopy   20.1 

       NH3 a priori   6.1 

       

Influence a priori 

profiles (H2O & 

HDO) 

6.6   

Subtotal error 9.1 23.5 12.0 27.0  15.3 20.0  Subtotal error 25.3 23.1 

Total error 25.8 30.2  25.2 Total 34.2 

 

Table 5 Statistics of the NH3 columns. (Nr: number of data points, DOFS: Degree of Freedom for Signal, Mean 

± the error of the mean, RMS: Root Mean Square). Total columns are given in 1e15 molecules NH3 cm-2.  

Station Nr Mean DOFS Mean (molecules x 1e15) Median (molecules x 1e15) RMS (molecules x 1e15) 

Bremen 554 1.9 13.75 ± 4.24  9.51 20.22 

Lauder 2412 1.4 4.17 ± 1.40 2.85 5.95 

Reunion 1262 1.0 0.80 ± 0.54  0.56 1.14 

Jungfraujoch 2702 1.0 0.18 ± 0.07 0.15 0.22 
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Figures 685 

 686 

 687 

Figure 1 Calculated spectrum for both spectral windows measured with the 125HR in Bremen on the 19th of 688 

April 2010 at 09:59 (UTC) corresponding to a total column of 18.83e15 molecules cm-2. The top two panels 689 

show the individual contributions of the different species in the first (MW1) and second (MW2) spectral 690 

windows. The second row show the same calculated spectra but now with the y-axis scaled to show the minor 691 

interfering species. 692 

 693 



694 

 695 

Figure 2 Example of a synthetic atmospheric spectrum for both spectral windows at Reunion Island, computed 

for the 5th June 2011 and a total column of 1.07E15 molecules cm-2. The top panel shows the individual 

contributions of the main species in the first spectral window. The bottom panel shows the second spectral 

window.  
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 697 

Figure 3 Measured and calculated spectrum for both spectral windows measured with the 125HR in Bremen on 698 

the 19th of April 2010 at 09:59 (UTC) corresponding to a total column of 18.83e15 molecules NH3 cm-2. The top 699 

two panels show the observed (blue line) and calculated (green line) spectra for MW1 (left) and MW2 (right). The 700 

bottom two figures show the residuals of the fits in both spectral windows. 701 

 702 

703 

Figure 4 Top panels: the retrieved NH3 profile (blue) and the a-priori profile (green) in order from left to right: 704 

Bremen (Left), Lauder (Left middle), Reunion island (right middle) and Jungfraujoch (right). Horizontal lines 705 

indicate the standard deviation in all observations for each layer. Bottom panels: the normalized averaging kernel 706 

for each of the stations. 707 

 708 



 709 

 710 

 711 

Figure 5 Time series of retrieved NH3 columns (in molecules NH3 cm-2). From top to bottom the figure shows 712 

the Bremen (blue), Lauder (red), Reunion (green) and Jungfraujoch (yellow) total columns. The bars reflect the 713 

errors on the individual observations. 714 

 715 

 716 

Figure 6 2004-2013 monthly averaged columns for NH3, CO and temperature. The top two panels show the 

monthly NH3 column concentrations (molecules NH3 cm-2) for each of the four stations. Vertical lines indicate the 



mean monthly error. The bottom two panels show additional column concentrations of CO (bottom, left) and 

temperature (bottom, right).  
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