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Response to Anonymous Referee #1 

 

(1) The authors report results from measurements of organic aerosol volatility, as characterized 

through measurement of the loss of OA mass due to evaporation as a function of temperature, for 

ambient particles sampled during winter and summer in Paris, France. They present results both 

for the total OA behavior, as well as for the behavior of specific OA “factors” determined from 

positive matrix factorization. They ultimately find that the average OA volatility is not all that 

different between winter and summer in Paris, but that there are distinct differences in the OA 

factor volatilities within a given season and between the same factors in different seasons. These 

differences are discussed briefly in terms of differences in chemical composition, as reflected 

from likely source attributes and obtained mass spectra of the OA factors. Overall, this study 

contributes new information regarding the volatility of ambient OA, but it could do a better job 

of putting their specific results in the context of literature results. Additionally, I believe that the 

data associated with the OA factor volatilities could be presented in a more tangible way to the 

reader, and suggestions are provided as to how to do this. I have some concerns regarding the 

averaging procedures used in terms of how they may/may not introduce any particular biases into 

the analysis. I suggest that this work is ultimately publishable, but should be considered further 

after revision. 

We appreciate the constructive assessment of our paper by the referee. These individual 

comments are addressed below. 

 

Specific comments: 

 

(2) The authors report measurements of the mass fraction remaining, which was determined from 

measurements made alternately every 5 minutes sampling through the TD or ambient particles. 

However, it is not made clear exactly how the ratios were calculated. Were they calculated using 

just measurement pairs (e.g. the measurement at t-1 divided by the measurement at t) or were 

they calculated using an average of TD measurements made before and after each ambient 

measurement? Or an average of ambient measurements made before and after each TD 

measurement? To some extent, all of these details may cancel out after sufficient averaging, but 

the normalization process can certainly impact the apparent amount of atmospheric variability, as 

shown in Fig. S1. The normalization procedure is less of a concern when atmospheric conditions 

are constant, but when things are changing rapidly (and here, rapidly means on 5-15 minute time 

scales) the method used can matter a lot. Can some of the “atmospheric variability” in Fig. S1 be 

explained away as a result of the normalization procedure used? Have the authors considered, for 

example, filtering their measurements based on the extent of change between two sequential 

ambient points? I believe that such considerations are particularly important in the splitting of the 

dataset into high/low concentration periods since visual examination of Fig. 1 suggests that there 

is generally greater atmospheric variability (faster changes) during the high concentration 

periods than during the low concentration periods. Ultimately, I believe that the authors need to 

at minimum be more specific as to how their MFR values were calculated. 

The MFR values were first calculated using measurement pairs (the measurement at interval i 

divided by the measurement at interval i+1) and then they were further averaged resulting in 

Figure 3. The final averages were relatively insensitive, as the reviewer guessed, to the details of 

the individual MFR calculation. However, the variability of the atmospheric conditions, once 

more as the reviewer suggests does introduce variability in the individual MFR estimates. We 
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had the same concern as the referee regarding the variability of the MFR during the high 

concentration periods and this was one of the motivations for splitting the dataset into high and 

low concentration periods. However our analysis did not find any differences for the 

corresponding MFRs during these two types of periods. We have added in the revised 

manuscript the information about the details of the calculations of the MFR and the variability 

that is introduced due to the variation of the atmospheric concentrations. 

 

(3) P22267, L25: The authors mention the flows for the SMPS, stating at the end that the values 

selected “: : :extend[ed] the size-range of measured particle: : :”. Extended relative to what? Had 

the SMPS been operated at 3 lpm sheath, 0.3 lpm sample, the range would have been “extended” 

even further? In other words, I don’t find this statement necessary nor clear. 

We have revised the corresponding sentence simply stating the operational parameters of the 

SMPS during these measurements to avoid unnecessary confusion. 

 

(4) P22268, L26 and Fig. S1: The authors note the “experimental variability” and use this as a 

reason to not split the data set. I believe that this is reasonable, but at the same time it would 

seem to me that Fig. S1 could be presented as, for example, a box and whisker graph or as means 

and medians to help illustrate whether the average (or median) properties differed between the 

high/low periods. There is currently so much atmospheric variability that it is difficult (for me at 

least) to really conclude that there is no “discernable difference.” 

We do agree with the suggestion of the referee. In the revised paper we present the data in 

Figures S1 and S2 as box and whisker plots. The new Figure S1 does illustrate the similarity of 

the two data sub-sets a lot better. 

 

(5) Section 2.2: The authors have ultimately averaged their data into 5 degC bins. It is not clear 

to me what guided this decision, as it is clear in looking at the rawer data (Fig.S1 and S2) that the 

data points are not equally distributed with respect to temperature. There are clearly a few 

temperatures that were favored, i.e. have lots of points, and many temperatures at which there are 

only a few data points. For example, it appears that the 100 degC bin might have 100’s of points 

(or at least many 10s of points), whereas the 80 degC bin will only have a handful of points that 

make up the average. This means that the sampling is not equally weighted at all temperatures 

with respect to sampling period. For the winter data, such potential statistical issues visually look 

like they might not be particularly important, since they data show less overall variability 

compared to the summer data, where the variability can be quite large. Further, it appears that the 

TD operation was different between summer and winter, and thus the number of points sampled 

at especially the higher temperatures is quite different between the two studies, with (for 

example) many points at 150 degC for winter but very few in that same range for summer. I 

believe that the authors need to justify their 5degC bin choice and would actually recommend 

that they actually consider wider bins. Even 10 degC would be more justifiable that 5 degC, in 

my opinion. In any case, given that they have apparently binned their data into 5 degC bins, I am 

somewhat confused by the data presented in Fig. S3, for which the temperature points seem to be 

almost randomly distributed. But, perhaps this is simply an issue of there being some “missing” 

temperature ranges (where there was insufficient data?) that makes it seem like there is not a 

point every 5 degC. However, this still wouldn’t explain why, specifically, the LVOOA 

thermogram has so many fewer points than any of the other thermograms given that the 
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“percentage of measurements above threshold” for this factor is equal to or greater than those for 

HOA and COA, and very similar to that for MOA. 

Our choice of the 5 C as the averaging interval was a compromise between averaging enough 

points at similar conditions and maintaining the dynamic behavior of the thermogram. While the 

choice of 10 C suggested by the reviewer is also reasonable, the corresponding analysis does not 

add anything new to the results or our conclusions. There were indeed different numbers of data 

points in each bin. This is taken into account into the calculation of the standard deviation of the 

mean for each temperature bin. During the first campaign we had a lot more measurements in 

specific intervals (e.g. from 80-100 C) in an effort to learn more from the corresponding 

variability. The corresponding efforts did not result in any significant insights and therefore 

during the second campaign we distributed the measurements more uniformly in the various 

temperature ranges. The missing points of the LV-OOA are from temperature bins with few 

measurements and very large corresponding uncertainties.  We have added explanations of these 

points in the revised manuscript.  

 

(6) It is indicated that PMF analysis was performed “combining both ambient and 

thermodenuded spectra” with a reference to Crippa et al. (2013) given. However, in reading 

Crippa et al., although it is noted that the AMS was operated with the TD, it is not clear whether 

the PMF analysis performed in that study was performed using the TD data as well. I suspect it 

was not. That would mean that the PMF analysis mentioned here is a new product, and as such 

the key aspects of the PMF analysis should be provided (perhaps as supplementary material), 

such as how the number of factors were selected, uncertainty estimation, etc.. Was the analysis 

performed here independent, or guided by the results of Crippa et al. already in terms of e.g. the 

number of factors obtained? 

The analysis presented in Crippa et al. (2013) was performed using only the ambient 

measurements. This analysis was repeated for the purposes of this work combining the ambient 

and TD datasets. This second analysis was guided by the original results (e.g. the same number 

of factors was used) and produced for all practical purposes the same results for the ambient data 

for all factors. These are analyzed in great detail in Crippa et al. (2013) and adding the same 

information in the supplementary information here would not provide any additional insights. 

This information about the PMF analysis has been added in the paper. 

 

(7) More information should be provided regarding the removal of MFR measurements. The 

authors state that “to minimize these problems, a minimum ambient mass concentration was 

determined for each PMF factor, based on the concentration range for which several MFR 

measurements exceeded significantly unity.” How many is “several”? Are these continuous in 

time? Or spread throughout the entire campaign? Is this only considered when the TD 

temperature is greater than some value (such that the MFR would be expected to be much less 

than one, which may not be the case when temperature is close to ambient, e.g. <60C). And were 

any MFR values >1 observed above this criterion? If so, were they included or excluded from 

this analysis? It is not clear, but given the data shown in Fig. S1 and the extent of “atmospheric 

variability” for the “Peak Data” I suspect that all MFR >1 have been filtered from the data set. If 

so, this should be stated clearly. And I assume that the “several” criterion was consistently 

applied, but this should be stated and, if not consistently applied, justified. Further, it is not clear 

that the authors have considered the role of atmospheric variability in driving MFR values to be 
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>1 (which is dependent upon the normalization method applied). MFR values greater than unity 

can be an indication of working below the detection threshold, but they can also reflect the 

influence of atmospheric variability. The authors could possibly get at this issue by calculating 

an “effective” MFR value from just the ambient (or TD) measurements, where the “effective” 

MFR is the ratio between sequential ambient measurements, or the ratio between the average of 

two ambient measurements that are around a third and that central value. When this ratio 

deviates substantially from unity, either “atmospheric variability” or operating near the detection 

limit are having an outsized influence on the measurements. I say all this in part because it is 

unclear to me exactly why the threshold concentrations should be different in the winter versus 

the summer campaign. Did something change about the instrument? 

We agree with the reviewer that additional discussion of the details of the removal of MFR 

measurements is needed. During low factor concentration periods the estimated MFR values 

could exceed 2 or they could be practically zero even at low TD temperatures. Also there was 

significant MFR variability from measurement to measurement. All of these are signs of 

problems due to the division of two very uncertain values. These problematic MFR values would 

be during certain periods lasting for a few or sometimes several hours and during all of them the 

corresponding factor concentration was very low. The factor concentration cut-offs corresponded 

to the appearance of MFR values exceeding 1.5 (usually a lot more than this). Small exceedances 

of 1 (say 1.1) were of course observed during measurements at low temperatures and were due to 

the uncertainty introduced by the estimation of the MFR from the ratio of two consecutive 

measurements. All the MFR values corresponding to concentrations lower than the thresholds of 

Table 1 were excluded from the analysis while all there rest (even if the exceeded one were 

used). Please note that the winter thresholds correspond to the left tails of the corresponding 

distributions (they correspond only to a few percent of the values) while the summer thresholds 

are lot closer to the middle of the corresponding concentration distributions. These different 

statistics can probably explain the corresponding small differences in values. Use of the summer 

thresholds for winter would produce practically the same results in our analysis. These important 

points are clarified in the revised paper. 

 

(8) P22270, L9: It is not entirely clear what is meant by “For a fair comparison of volatility 

distributions for these datasets: : :”. Fair in what particular way? It seems to me that these values 

were, to some extent arbitrarily selected. This is fine, as they are both reasonable. But the “fair” 

aspect of this selection should be clarified. 

We agree with the point of the reviewer and we have deleted the first part of the sentence. 

  

(9) The authors use the terms SVOCs, LVOCs, and ELVOCs in the abstract, yet these are not 

defined until P22270 and thus any reader unclear with the specific definitions may find their 

meaning confusing. I suggest the authors be more precise within the abstract. 

We have added the definitions of these groups of compounds in the revised abstract. 

 

(10) Figure 3: Returning to the 5 degC bins, I find some of the points presented in this figure to 

be potentially problematic. The authors report three values (with standard deviations!) for the 

summer campaign in the range 180-200 degC. However, in looking at Fig. S1, it seems clear that 

there are only 4 total data points in this region. Thus, I do not think it is at all appropriate to show 

these points in Fig. 3, and certainly not with error bars as it is entirely unclear where these would 

have come from. Perhaps there is more data than is shown in Fig. S1, in which case perhaps the 
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averaging in this range is appropriate, but then the data presentation in Fig. S1 would be 

misleading. I strongly suggest that the authors change to using at least 10 degC bins (if not even 

15 degC). 

The error bars in two of the data points in Figure 3 were indeed wrong. We do appreciate the 

correction. We have updated Figure 3 and these points are shown without error bars. As 

mentioned above the use of the 10 C bins is reasonable but it does not change the results and the 

conclusions of the paper. For the points in question it also has almost no effect. 

 

(11) Figure 4 and Figure S3: I believe that Fig. S3 must be moved to the main text. The data need 

to be shown, not just the results from the data fitting. The readers need to more easily be able to 

assess the differences between the different thermograms and relate them visually to the bar 

charts shown in Fig. 4. Additionally, it would seem to me that it is possible for the authors to add 

error bars (e.g. standard deviations) to each of the MFR points for the factors, as these seem to be 

the binned values. The data are currently shown in their binned, averaged values, which does not 

give an indication of the variability associated with the factors themselves. I would strongly 

encourage the authors to show, for each factor, all of the data points along with their binned 

values and standard deviations. It would additionally be good if the authors considered both the 

mean and the median values. Are these similar, indicating a normal distribution? Or do they give 

very different results? This type of presentation of the data would allow the reader to judge the 

data quality for themselves. With the data as presented, I can only assume that the variability in 

each of the thermograms for the different factors is similar to that in the total OA MFR. 

However, I suspect that the actual variability is a lot greater than for the total. But perhaps it is 

smaller because the authors have filtered out the low concentration points that may contribute 

disproportionately to the variability in the total OA MFR values shown in Fig. S1 and S2. 

We have followed the suggestion of the referee and added the error bars to each of the MFR 

points for the factors. The corresponding figure does not add much useful information for the 

average reader of such a paper. It is mostly for the few specialists who do similar type of data 

analysis. We believe that it fits better in the Supplementary Material and that Figure 3 provides 

the important information required by the main paper. 

(12) Regarding Fig. 4 itself, I strongly suggest that the authors present the volatility distributions 

using the same x-axis range for all of the figures. As presented, I find that the reader can easily 

miss the different scales. (And I do not think that just stating in the caption that the scales are 

different would be sufficient. The axes ranges should be identical.) 

We have followed the reviewer’s suggestion and now use the same x-axes for all of the figures. 

 

(13) Regarding the ranges shown in Fig. 4, it becomes clear that the different OA factors were 

not fit using the same C* range, but instead using an individual range for each one. Otherwise 

the LV-OOA range is not compatible with the HOA range (for example) if only 6 bins are used. 

This should be made clear in the text. 

We have clarified this point in the revised paper. Different 6-volatility bin solutions were needed 

for the fitting of the thermograms of the various factors. 

 

(14) The authors state that their volatility distributions have been obtained “using the uncertainty 

analysis approach of Karnezi et al. (2014)”. It is, however, not clear from the presentation 

whether this includes experimental uncertainty or, more specifically, if it does include 
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experimental uncertainty how those uncertainty values were established. Standard deviations? 

See comment above regarding Fig. S3. 

We have rephrased this sentence deleting the rather confusing “uncertainty analysis” descriptor. 

The approach of Karnezi et al. (2014) finds multiple volatility distributions that fit reasonably 

well the average values of the thermograms and then weighs them to estimate the predicted 

volatility distribution and its uncertainty. It does not use the experimental uncertainty. 

 

(15) The concentration filtering method of the authors may potentially lead to sampling biases in 

terms of the time of day of the main measurements. For example, looking at the average diurnal 

profile for COA in Crippa et al. (2013) for summer COA, the lowest concentrations tend to be 

found during the day and the highest at night. Thus, the filtering method will oversample 

nighttime behavior for summer. Although the same general diurnal profile is obtained for COA 

in winter, the overall concentrations are much larger and thus fewer points are rejected meaning 

that the time-of-day sampling bias imposed by the filtering criterion will not be as strong. To 

what extent do the authors believe such differences contribute to the apparent seasonal 

differences in volatility? Related to this, the average spectra considered for each of the various 

factors have likely not been weighted to be reflective of the periods excluded from MFR 

analysis. Thus, the spectra may not be fully representative of the actual chemical composition of 

the particles for which MFR values were determined. Has this been considered? 

This is an interesting point. Our approach implicitly assumes that the AMS spectrum of the 

factor remains constant during the period of the measurements and that its volatility distribution 

as a result also does not change. However, there can still be subtle differences that may be 

hidden. It is very difficult to estimate if there is any bias introduced by our inability to determine 

the MFR during very low concentration periods. However, we do not believe that this potential 

bias can explain the significant differences between summer and winter for COA. Our major 

argument is the observed difference in volatility is consistent with the observed difference in the 

AMS mass spectra of the factor during the two seasons. Please note that the AMS analysis 

covers the whole period and no data are excluded.  

 

(16) A comparison with other literature observations is notably absent for the most part. The 

authors ultimately only compare their derived volatility distribution for one OA factor (BBOA) 

to the literature. I strongly suggest that the authors compare their work with some of the 

literature observations that they mentioned in the introduction (p22266). This would facilitate 

broader understanding of their results. 

We have added comparisons with the volatility distributions of Cappa and Jimenez (2010) for 

Mexico City as well as the few other such studies in the literature. 

 

(17) There seem to be somewhat “standard” colors associated with presentation of AMS factor 

data in the literature (including in Crippa et al. (2013)). I encourage the authors to utilize this 

“standard” color scheme to facilitate easier comparison with the literature. 

We have done our best with the selection of the colors. Please note that we are also using in 

Figure 7 different shades to show intensity so we need to be careful to avoid confusion with the 

use of colors for the various factors. 
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(18) Figure 6: I suggest that difference spectra might provide easier viewing of the differences in 

spectra. 

We have constructed the corresponding graphs but on their own they are not that helpful. Given 

that this is not a paper about PMF analysis of AMS results adding two more figures is not 

worthwhile. We believe that Figure 6 is sufficient for the purposes of this work. 

 

(19) The last line of the abstract should be removed, as it is vague yet, as it turns out, extremely 

specific. 

We have deleted the suggested sentence. 

(20) I have some difficulty understanding the specific meaning of statements such as “The 

summer COA was more than one order of magnitude more volatile than the winter COA” 

(P22276, L11), given that the authors actually present volatility distributions, not single values. 

What specifically does it mean to state that a distribution is one order of magnitude more volatile 

than another distribution? That the highest values are different? That the (weighted) mean 

behavior is different? The authors should be precise. 

We now explain that we are comparing the weighed mean volatility that is also shown in Figure 

7 for each factor. 

(21) I find the language that the authors “incorporated the results into the 2D-VBS” a bit 

imprecise. What does it mean to “incorporate” something into the 2D-VBS? My take on what the 

authors did was to place their derived volatility distributions and measured bulk average O:C 

ratios onto a particular graph. But I don’t see how this information has been “incorporated.” 

Further, the authors should more explicitly recognize the limitation of their placement of their 

data onto the 2D-VBS framework, specifically that whereas they have volatility distributions 

they only have bulk average O:C ratios. Thus, they have no information as to how the O:C might 

have varied within each of the volatility bins for each of the factors. Previous results (e.g. for 

laboratory SOA, Kostenidou, ES&T, 2009) suggest that the O:C of a factor may vary with 

temperature, but not necessarily by a substantial amount. Regardless, this limitation should be 

noted more specifically, especially in the context of statements from the authors such as “These 

results indicate that there was not a direct link between the average volatility and the average 

O:C for these OA components.” They can say this is the case between factors, but they do not 

present information that this is true within a given factor. 

These are both good points. We have rephrased the sentence and also stressed the limitation of 

using only the average O:C in this analysis. 

 

 

 

 

 

 

 



 

 

 

8 

Response to Anonymous Referee #2 

 

(1) The manuscript describes measurements of aerosol volatility during summer and winter 

campaigns at an urban background site in Paris. The authors derive volatility basis sets (VBS) for 

the total organic aerosol mass and for different identified organic aerosol fractions (or rather, 

PMF factors), such as HOA, OOA, etc. The presented material is interesting, but there are 

several points regarding data analysis procedure that need to be addressed prior to publication. 

My main concern is with the use of the mass fraction remaining (MFR) to judge aerosol 

volatility, which could have affected the data analysis. I understand that the MFR is currently the 

most popular representation of aerosol volatility. However, it is practically meaningless in terms 

of both thermodynamic or kinetics aspects of aerosol evaporation. It is trivial to show that 

aerosols that have the same thermodynamic properties, but different initial concentrations will 

demonstrate completely different MFR-based “volatilities” at the same experimental conditions 

(i.e., residence time in a TD). Thus, using MFRs to judge differences or similarities between 

groups of observations, for example between low and high concentration observations (e.g., 

p.22268 l.25 and Fig.S1), could be prone to errors. The authors have a model to derive the actual 

volatility properties (VBS). The derived VBSs should be used instead of relying on a vague 

comparison of MFRs (“differences are within experimental variability”, p.22268 l.26). The VBS 

of the two groups may very well be similar, but one needs to do a comparison of the VBS to 

make such a claim. I suggest the authors revisit their data selection criteria using the VBS 

representation of aerosol volatility instead of relying on MFR. 

We do agree with the point of the reviewer and this is exactly what we tried to accomplish in our 

paper. The mass fraction remaining is the measured quantity, but as the reviewer mentions it 

depends not only on the volatility distribution of the aerosol, but, for a given TD, also on the 

particle size distribution, enthalpy of evaporation, any mass transfer resistances to evaporation, 

etc. Our limited discussion of the MFRs was intended only as a zeroth order analysis of our 

measurements. All our conclusions are based on the evaporation model that has been used for the 

interpretation of the MFR measurements. We have made changes to the original manuscript to 

make sure that it does not leave the impression that we rely on the MFR data alone to draw 

conclusions about the volatility distribution of the aerosol. We do clarify in the introduction of 

the paper that the MFR depends on several aerosol properties and of course the TD residence 

time. 

 

Other comments 

 

(2) p.2267, l 21: was the flow through the TD adjusted as a function of temperature or does 25 s 

residence time refer to the flow at room temperature? Is there any reason why the centerline 

residence time is given instead of the mean residence time? I understand that the centerline 

residence time can be used to derive the mean residence time for an ideal laminar flow. The 

actual flows are, however, often non-ideal. I assume that the mean residence time was used in the 

model, thus it would be more appropriate to report its values instead of that for the centerline. 

The flow rate remained constant during the operation of the thermodenuder and the reported 

value corresponds to 298 K. We also report now both the centerline and the mean residence time 

in the TD. We have clarified these important points in the revised manuscript. 
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(3) p. 22268, l.20. The sentence “The correction efficiency…“ does not follow from the previous 

sentences and should be moved up. Was the collection efficiency the same for both campaigns? 

The reported collection efficiency of 0.5 corresponds to the winter campaign (Crippa et al., 

2013a). An average value of 0.38 was estimated for the summer campaign (Crippa et al., 2013b). 

We have moved this sentence about the collection efficiency during winter to a new paragraph 

earlier in the section where we discuss the AMS data analysis for both seasons. 

 

(4) Figure S1 and the accompanying discussion. As discussed above, I do not agree with the 

argument that if MFRs are similar for two groups of observations then the two groups have 

similar volatility properties. Given that the two groups were selected based on the aerosol 

concentration, I would actually expect that similarity in their MFRs indicates differences in their 

volatility (VBS). 

We think that the objection of the referee is due to a rather confusing sentence. We have 

rephrased this to: “To evaluate whether the OA during these higher concentration periods has 

different MFR than during the rest of the campaign, we separated the data in two groups using an 

OA concentration cut-off of 1.5 µg m
-3
”. Please also note that the differences in the absolute 

concentrations are rather small (a few µg m
-3
) and therefore the effect of the organic aerosol 

concentration on the measured MFR is very small in this concentration range.  

 

(5) p. 22269, l.5. I am not sure why the data needed to be averaged to 5-degree temperature bins. 

This brings a question how exactly was the TD operated (was the temperature scanned?). This 

information should be added to section 2.1.  

The TD scanned the temperature range from approximately 20 to 200 C using different 

intermediate sampling points. The small temperature differences in the day to day operation 

during these two month-long campaigns generated data at temperatures differing by a few 

degrees and necessitated the averaging to 5-degree temperature bins. This is now explained in 

Section 2.1. 

 

(6) p. 22269, l.18-20. I do not understand this sentence, especially the part “…for which several 

MFR measurements exceeded significantly unity”. The MFR by definition cannot exceed 1. 

During low factor concentration periods both the numerator and the denominator of the MFR are 

extremely uncertain (one is dividing something close to zero with something else close to zero) 

and therefore values of MFR exceeding unity are sometimes calculated. These are of course 

meaningless and are a clear sign that the factor concentrations are too low to be used in volatility 

measurements. We have taken advantage of this behavior to define the factor concentration 

thresholds (see Table 1) below which the error of both the TD measurements but the 

corresponding PMF analysis do not allow reliable measurement of the MFR. This important 

point is now better explained in the end of Section 2.2. 

 

(7) p. 22271, first paragraph. I suggest the authors compare VBS for the total OA, not the MFRs. 

Given the degree of variability, the statement that “differences are mostly noticeable at the high 

temperatures” needs to be backed by an estimate of statistical significance of the observed 

differences. 

This is a good point. We have added a new figure comparing the OA volatility distributions for 

the summer and winter.  The results suggest that the two volatility distributions are quite similar 

to each other. Considering the uncertainty of the corresponding volatility distributions the 
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differences at high temperatures (e.g., corresponding to the less volatile components) are not 

statistically significant. The corresponding sentence has been deleted. 

 

(8) p. 22271, l.9 and other instances in the text. Just as the MFR, T50 depends on the aerosol 

concentration. The authors use this parameter to compare, for example, volatility of different 

PMF factors, even though concentrations of these factors are quite different (p.22271.25-26). 

Such comparisons are quite meaningless. 

This is a valid point and we have deleted the corresponding sentence about the potential 

similarity of the volatility distributions. This similarity is shown later using the actual estimated 

volatility distributions (see also our response to Comment 7 above). We would like to keep the 

presented T50 values as they do provide a zeroth order summary of the thermogram.  

 

(9) p.22272, l. 11. More information needs to be provided on how VBSs were derived for 

individual factors. It is stated that thermograms for individual factors (Fig.S3) were fitted using 

the model. This suggests that the factors were assumed to be externally mixed. If this is so, how 

justified is this assumption, are all factors assumed to have the same size distribution? If the 

factors were assumed to be internally mixed, then some justification for this procedure, i.e., 

fitting individual thermograms, needs to be provided. I would assume that co-evaporation of 

other factors would affect the thermograms and thus the derived VBSs. 

The reviewer makes an interesting point. Given that the AMS factor analysis is based on bulk 

measurements, we had to assume that all OA components (factors) had the same size 

distribution. The individual fitting of the thermograms of each factor is equivalent to assuming 

an external mixture of the various factors and implicitly neglecting the co-evaporation of these 

factors. These two assumptions are now clearly stated in the revised manuscript. We have added 

a paragraph discussing the sensitivity of our results to these two assumptions. 
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Abstract 19 

Using a mass transfer model and the volatility basis set, we estimate the volatility 20 

distribution for the organic aerosol (OA) components during summer and winter in Paris, 21 

France as part of the collaborative project MEGAPOLI. The concentrations of the OA 22 

components as a function of temperature were measured combining data from a 23 

thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix 24 

Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar 25 

volatility distributions for the summer and winter campaigns with half of the material in 26 

the saturation concentration bin of 10 μg m
-3

 and another 35-40% consisting of low and 27 

extremely low volatility organic compounds (LVOCs with effective saturation 28 

concentrations C* for bins of 10
-3

-, 10
-2 

and 0.1 μg m
-3

 and  and ELVOCs C* less or 29 

equal than for bins equal or less than , 10
-4 

μg m
-3

, respectively). The winter cooking OA 30 

(COA) was more than an order of magnitude less volatile than the summer COA. The 31 

low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest 32 

volatility of all the derived factors and consisted almost exclusively of ELVOCs. The 33 

volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than 34 

that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* 35 
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in the  with bins of 1-, 10 and 100 μg m
-3

 range)) and LVOCs. The oxygenated OA 36 

(OOA) factor in winter consisted of SVOCs (45%), LVOCs (25%) and ELVOCs (30%). 37 

The volatility of marine OA (MOA) was higher than that of the other factors containing 38 

around 60% SVOCs. The biomass burning OA (BBOA) factor contained components 39 

with a wide range of volatilities with significant contributions from both SVOCs (50%) 40 

and LVOCs (30%). Finally, combining the bulk average O:C ratios and volatility 41 

distributions of the various factors, we locatedincorporated our results are placed into the 42 

two-dimensional volatility basis set (2D-VBS) framework. TOur results show that the 43 

OA factors cover a broad spectrum of volatilities with no direct link between the average 44 

volatility and average O:C of the OA components. Agreement between our findings and 45 

previous publications is encouraging for our understanding of the evolution of 46 

atmospheric OA. 47 

 48 

 1. Introduction 49 

Atmospheric aerosols have adverse effects on human health (Caiazzo et al., 2013; Pope et 50 

al., 2009) and contribute to climate change (IPCC, 2013). Over 50% of the submicron 51 

particulate mass is often comprised of organic compounds (Zhang et al., 2007). OA 52 

(organic aerosol) originates from many different natural and anthropogenic sources and 53 

processes. It can be emitted directly, e.g., from fossil fuels and biomass combustion (so-54 

called primary organic aerosol, POA) or can be formed by atmospheric oxidation of 55 

volatile, intermediate volatility and semi-volatile organic compounds (secondary organic 56 

aerosol, SOA). Since the oxidation pathways of organic vapors are complex and the 57 

corresponding reactions lead to hundreds or even thousands of oxygenated products for 58 

each precursor, our understanding of OA formation mechanisms and the OA chemical 59 

and physical properties remains incomplete. Furthermore, a lack of information regarding 60 

the sources along with the physical and chemical properties, and lifetime of organic 61 

aerosol (OA) has made predictions of OA concentrations by chemical transport models 62 

uncertain.  63 

The volatility of atmospheric OA is one of its most important physical properties. It 64 

determines the partitioning of these organic compounds between the gas and particulate 65 

phases, the OA concentration, and the atmospheric fate of the corresponding compounds. 66 
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Measurement of the OA volatility distribution has been recognized as one of the major 67 

challenges in our efforts to quantify the rates of formation of secondary organic 68 

particulate matter (Donahue et al., 2012). Thermodenuders (TD) have been developed to 69 

measure the volatility of ambient aerosol (Burtscher et al., 2001; Wehner et al., 2002, 70 

2004; Kalberer et al., 2004; An et al., 2007). Most TDs consist of two basic parts: a 71 

heated tube where the more volatile particle components evaporate, leaving less volatile 72 

species behind and the denuder tube, containing usuallyusually containing activated 73 

carbon where the evaporated material is adsorbed thus avoiding potential re-condensation 74 

when the sample is cooled to room temperature. The aerosol mass fraction remaining 75 

(MFR) at a given temperature, after passing through the TD, is the most common way of 76 

reporting the TD measurements. The MFR,  is though an indirect metric of volatility  as 77 

for a specific TD operation, it depends alsoalso depends on the aerosol concentration, 78 

size, enthalpy of vaporization, potential resistances to mass transfer, etc (Riipinen et al., 79 

2010). 80 

The two-dimensional volatility basis set (2D-VBS) framework from Donahue et al. 81 

(2012) has been used in order to describe atmospheric OA formation and evolution by 82 

lumping all organic compounds (with the exception of VOCs) into surrogates along two 83 

axes of volatility and the oxygen content (expressed as the O:C ratio or carbon oxidation 84 

state). Using the 2D VBS requires the ability to measure the OA distribution as a function 85 

of volatility and O:C ratio (or carbon oxidation state).  86 

Positive Matrix Factorization (PMF), aims to deconvolve the bulk OA mass spectra 87 

obtained by the aerosol mass spectrometer (AMS) into individual “factors” that give 88 

information about the sources or processing of organic aerosol (Lanz et al., 2007; Ulbrich 89 

et al., 2009; Huffman et al., 2009; Zhang et al., 2011). Typical factors correspond to 90 

either primary sources including HOA (hydrocarbon-like OA), BBOA (biomass burning 91 

OA) and COA (cooking OA) or secondary OA like SV-OOA (semi-volatile oxygenated 92 

OA) and LV-OOA (low volatility oxygenated OA). Although there have been numerous 93 

studies that have identified PMF factors in ambient datasets, there have been few studies 94 

that have attempted to estimate the corresponding factor volatility (Huffman et al., 2009; 95 

Cappa and Jimenez, 2010). Huffman et al. (2009) characterized the volatility of PMF 96 
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factors derived for the MILAGRO campaign in Mexico City and for the SOAR-1 97 

campaign in Riverside, CA. They concluded that BBOA was the most volatile and OOA 98 

was the least volatile component. HOA was more volatile than OOA in almost all cases. 99 

Cappa and Jimenez (2010), using a kinetic evaporation model, estimated the volatility 100 

distributions for the various PMF OA factors for the MILAGRO campaign. Here we 101 

extend this work focusing on another Megacity, Paris. 102 

In this study, we estimate the volatility distributions of PMF factors derived from two 103 

month-long summer and winter campaigns in a suburban background site in Paris. The 104 

data analysis approach is first outlined and the corresponding challenges are discussed. 105 

We use the mass transfer model of Riipinen et al. (2010), together with the approach 106 

introduced by Karnezi et al. (2014) to estimate the volatility distributions for all PMF 107 

factors. We finally synthesize the corresponding OA findings using incorporate the 108 

results into the 2D-VBS framework synthesizing the corresponding OA findings. 109 

2. Methods 110 

2.1 Measurement Site and Sampling 111 

Two comprehensive field campaigns were performed during July of 2009 and 112 

January/February of 2010 at an urban background sampling site, SIRTA (Site 113 

Instrumental de Recherche par Teledetection Atmospherique) (Haeffelin et al., 2005) 114 

located about 20 km southwest of Paris’ city center. The datasets were collected as part of 115 

a collaborative project known as MEGAPOLI (Megacities: Emissions, urban, regional, 116 

and Global Atmospheric POLution and climate effects, and Integrated tools for 117 

assessment and mitigation) (Baklanov et al., 2008; Beekmann et al., 2015). A suite of 118 

instruments were used including a high-resolution time-of-flight aerosol mass 119 

spectrometer (HR-ToF-AMS) from Aerodyne research, Inc. (DeCarlo et al., 2006) for 120 

particle mass and composition, a scanning mobility particle sizer (SMPS) from TSI, Inc. 121 

for particle size and number distributions and the Carnegie Mellon University 122 

thermodenuder (TD) for volatility measurements. 123 

  124 

The TD design was similar to that described in An et al. (2007), consisting of a heated 125 

tube followed by a denuding section, which uses activated charcoal to prevent 126 
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recondensation of organic vapors. The TD was operated at temperatures ranging from 127 

about 20°C to 200°C during both campaigns, yielding thermograms of the organic 128 

aerosol mass remaining as a function of TD temperature. The TD scanned this 129 

temperature range using different temperatures each day.  A centerline residence time of 130 

25 s at 298 K was used for all measurements (Lee et al., 2010). This corresponds to mean 131 

residence time of approximately 50 s at 298 K. 132 

Changes in composition, mass, and size as a result of aerosol evaporation were quantified 133 

by both the SMPS and the HR-ToF-AMS by alternate sampling between the TD and the 134 

ambient sample line, every 5 minutes. The SMPS was operated with a sheath flow of 5 L 135 

min
-1

 and a sample flow rate of 0.5 L min
-1

., extending the size-range of measured 136 

particles sizes while maintaining a 10:1 flow ratio. The HR-ToF-AMS, which measures 137 

the aerosol size-composition distribution of the submicron non-refractory material, was 138 

operated in both the higher sensitivity mode (V-mode) and the higher resolution mode 139 

(W-mode) (DeCarlo et al., 2006). The V-mode data are used in this study. The AMS 140 

collection efficiency was estimated at 0.38 during the summer (Crippa et al., 2013a) and 141 

0.5 during the winter (Crippa et al., 2013b). 142 

 143 

2.2 Data Analysis 144 

TD raw measurements need to be corrected for particle losses due to diffusion of small 145 

particles, sedimentation of larger particles, and thermophoretic losses (Burtscher et al., 146 

2001). To account for these losses, which depend on particle size, TD temperature, and 147 

sample flow rate, Lee (2010) has developed size and temperature dependent corrections 148 

for this particular TD. The organic aerosol concentrations measured after the TD mass 149 

fraction remaining (MFR) measurements were corrected for losses corresponding to the 150 

operating conditions during the campaign. The OA mass fraction remaining (MFR) was 151 

calculated dividing the loss-corrected OA concentration after the TD at time period i with 152 

that of the by-pass line at time period i+1. The fact that the two measurements correspond 153 

to two different 5 min time intervals introduces some uncertainty in the calculated MFR 154 

values because of the variability of the atmospheric concentrations. Some of this 155 

variability is averaged out when average MFR values are calculated for each temperature.  156 
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The preparation of these large datasets for analysis required careful examination of the 157 

ambient OA variability in order to determine the appropriate averaging intervals. The OA 158 

mass concentration data for the summer campaign is shown in Figure 1. Overall, the 159 

particulate matter mass concentration was surprisingly low during this period in Paris, 160 

with a campaign average PM1 OA for SIRTA of only 0.83 μg m
-3

. As expected, there 161 

were several periods during which the OA concentration was much higher than 1 μg m
-3

 162 

reaching levels up to 6 μg m
-3

. The collection efficiency due to particle bounce was 163 

estimated at 0.385 (Crippa et al., 2013a). 164 

To evaluate whether the OA during these higher concentration periods hads different 165 

behaviorMFR values volatility than the rest of the samples, we separated the data in two 166 

groups using an OA concentration cutoff of 1.5 μg m
-3

. Figure S1 in the supplementary 167 

information shows the corresponding MFR measurements for both low and high 168 

concentration periods. Given the experimental variability, there is no discernable 169 

difference in evaporation between the higher and the lower concentration periods and 170 

therefore, these were averaged together for the analysis. The similarity of the average 171 

MFR values during these low and high concentration periods (the latter were often 172 

characterized by higher OA variability) also suggests that our calculation of the MFR 173 

using measurement pairs did not introduce significant bias in the average estimated MFR. 174 

We performed a similar analysis for the winter campaign. Paris during winter, unlike the 175 

summer, was characterized by higher fine PM concentrations with an average PM1 OA 176 

concentration of 3.1 μg m
-3

 (Figure 2). The OA threshold concentration was chosen to be 177 

4.5 μg m
-3

 and again there was no evidence of effects of concentration (in the observed 178 

range) on volatility (Supplementary Information, Fig. S2) and the corresponding MFRs 179 

were averaged together. The collection efficiency due to particle bounce was estimated at 180 

0.5 (Crippa et al., 2013b). Finally, the data points were averaged into temperature bins of 181 

5°C. The calculation of one MFR value every 5
o
C is a compromise between the need to 182 

average more data points at similar temperatures and maintaining the dynamic behavior 183 

of the thermogram. Averaging over wider temperature ranges (e.g. 10
o
C) did not result in 184 

any essential differences in our analysis and conclusions. 185 
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Along with the bulk organic measurements, additional information can be derived from 186 

the HR-ToF-AMS V-mode mass spectra using the PMF analysis technique. The 187 

deconvolved spectra yielded several organic aerosol “factors” for each campaign. A 188 

complete discussion of the PMF analysis of the ambient measurements and the resulting 189 

factors can be found in Crippa et al. (2013a; b). The PMF analysis was 190 

repeatedperformed, combining both ambient and thermodenuded spectra with guidance 191 

from the original analysis of the ambient-only data (e.g., the same number of factors was 192 

used). This second analysis produced The factors derived for this complete dataset 193 

(ambient plus TD) were for all practical purposes the same results for the ambient data set 194 

as thatose of the ambient measurements only and can be found in the corresponding 195 

publications.. 196 

The low OA concentrations especially during the summer resulted in very low 197 

concentrations of the corresponding factors and high resultingthus high MFR uncertainty. 198 

The MFRs of the various factors were, as expected, extremely variable when the factor 199 

concentrations were close to zero. Therefore, to minimize these problems, a minimum 200 

ambient mass concentration was determined for each PMF factor, based on the 201 

concentration range for which several MFR measurements exceeded 1.5significantly 202 

unity. The average ambient concentration and threshold concentration with corresponding 203 

statistical information for each PMF factor is shown in Table 1. The corresponding factor 204 

concentration thresholds during the summer were in the 0.05-0.1 μg m
-3

 range. MFR 205 

measurements of PMF factors with ambient levels less than 0.1 μg m
-3

 are clearly quite 206 

uncertain. All the corresponding MFR values from these low factor concentration periods 207 

were excluded from the analysis. Few MFR measurements were excluded during the 208 

winter period, while 20-50% of the measurements for the various factors were excluded 209 

during the summer. 210 

 211 

2.3 Volatility Distribution Estimation 212 

To estimate the volatility distributions from the corrected thermograms we employed the 213 

dynamic mass transfer model of Riipinen et al. (2010). The model simulates particle 214 

evaporation using experimental inputs including TD temperature and residence time, 215 

initial particle size, and ambient OA concentration. The volatility of these complex 216 
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mixtures is defined using the corresponding effective saturation concentration, C
*
, at 298 217 

K. Along with saturation concentration, two parameters that can affect the evaporation 218 

rate and thus the corresponding volatility estimation are the enthalpy of vaporization and 219 

the mass accommodation coefficient. Unfortunately, these values are currently unknown 220 

for these complex multi-component systems. Often, a mass accommodation coefficient of 221 

unity is assumed. However, mass transfer limitations to evaporation have been observed 222 

in some experimental systems, leading to mass accommodation coefficient values of 223 

much less than one (Saleh et al., 2013). For a fair comparison of volatility distributions 224 

for these datasets, Ttypical values of 100 kJ mol
-1

 and 1.0 are assumed for the enthalpy of 225 

vaporization and accommodation coefficient, respectively.  226 

As described in Donahue et al. (2006), the volatility distribution is represented by 227 

surrogate species with a saturation concentration of Ci
*
. The Ci

*
 bins are logarithmically 228 

spaced, allowing for extremely low and high volatility species to be compared in a single 229 

framework. The analysis here was limited to a 6-consecutive C
*
 bin solution with a 230 

variable mass fraction value for each bin. Different volatility ranges were tested and the 231 

best range was selected for each factor. The “goodness of fit” was quantifiedtested using 232 

the error analysis outlined in Karnezi et al. (2014). The standard error was calculated for 233 

all C
*
 bin-mass fraction combinations. For a given 6-bin solution, the top 2% of mass 234 

fraction combinations with the lowest error was used to find the average mass fraction in 235 

each bin and the corresponding standard deviation.  236 

The OA components are described as semi-volatile (SVOCs with C* of 1, 10, and 100 μg 237 

m
-3

), low volatility (LVOCs with C* of 10
-3

, 10
-2

, and 0.1 μg m
-3

), and extremely low 238 

volatility (ELVOCs with C*≤10
-4 

μg m
-3

) in the rest of the paper (Murphy et al., 2014). 239 

 240 

3. Results and Discussion 241 

3.1 Organic Aerosol Volatility 242 

The average loss-corrected OA thermograms for the two seasons are shown in Figure 3. 243 

The two thermograms seem very similar while differences are mostly noticeable at the 244 

high temperatures. In the winter thermogram an approximate 30% remained at 180
o
C 245 
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while in the summer thermogram less than 10% was present at the same temperature. 246 

This might suggest more ELVOCs being present at winter. However, the summer 247 

thermogram shows that nearly 50% of the mass evaporated at a thermodenuder 248 

temperature of 83
 o

C (T50). The winter measurements suggested a similar T50 value of 88
 

249 

o
C. This crude comparison of volatility through the corresponding thermograms suggests 250 

that the OA in the two seasons could haved similar average volatility distributions. It is 251 

surprising that the seasonal differences in emissions are not reflected in the corresponding 252 

thermogramsvolatility measurements. We will examine the reasons for this similarity in 253 

the subsequent section by analyzing the volatility of the corresponding factors.  254 

 255 

The volatility distributions for the total OA for the two seasons are depicted in Figure 4. 256 

They are quite similar to each other especially considering the corresponding 257 

uncertainties and they are characterized by higher concentrations of components with 258 

C*=10
-4

 and 10 g m
-3

. 259 

 260 

3.2 Volatility of Organic Aerosol Components 261 

Five PMF factors were determined for the summer dataset by Crippa et al. (2013ab). 262 

Hydrocarbon-like OA (HOA) most closely resembles fresh vehicle emissions in that the 263 

mass spectrum resembles that of transportation sources. Cooking OA (COA) was also 264 

observed in the summer campaign, peaking during noon and evening meal times. Marine 265 

OA (MOA) was identified based on relatively high levels of organic sulfur and a strong 266 

correlation with methanesulfonic acid (MSA), which is a product of continued oxidation 267 

of phytoplankton decomposition products. Two SOA factors were also reported: Semi-268 

volatile oxygenated OA (SV-OOA) and low volatility oxygenated OA (LV-OOA). These 269 

two factors were differentiated based on their O:C ratio. The two secondary OA factors 270 

made up 57% of the total OA mass. The remaining factors contributed fairly similar 271 

average fractions of 18% for COA, 12% for HOA, and 13% for MOA. Detailed 272 

discussion of the PMF factors along with verification analysis were provided  by Crippa 273 

et al. (2013ab).  274 

 275 
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The PMF analysis for the winter campaign yielded four factors. The HOA and COA 276 

factors were again present. There was also a single secondary OA factor which was 277 

termed oxygenated OA (OOA). This factor could not be further separated into SV-OOA 278 

and LV-OOA. The final factor reported was biomass burning OA (BBOA), correlating 279 

with known molecular markers for residential wood burning (e.g., levoglucosan). The 280 

OOA factor was found to dominate the organic aerosol mass, contributing nearly 65% on 281 

average. The complete analysis and description of these factors can be found in Crippa et 282 

al. (2013ba).  283 

 284 

Using the mass transfer model from Riipinen et al. (2010) and using the uncertainty 285 

analysis approach of Karnezi et al. (2014) we fitted the corresponding thermograms  286 

(Figure S3), using a C
*
 bin solution with a variable mass fraction value for each bin. 287 

Specifically for each factor we used an individual consecutive 6-bin solution (chosen as 288 

the 6-bin solution with the best fits) resulting  resulting in the volatility distributions, 289 

shown in Figure 54. The modeled thermograms for all factors from both summer and 290 

winter campaigns are shown in Figure 65. Finally, the volatility distributions for each 291 

factor are summarized in Table S1 in the supplementary information. The fitting of 292 

individual factor thermograms implicitly assumes that each factor had the same size 293 

distribution as the total OA and that the factors were present as an external mixture. To 294 

test the uncertainty introduced by this assumption we compared the volatility distribution 295 

of the total OA with the composition weighted sum of the volatility distributions of the 296 

individual OA factors for both summer and winter. The two distributions (total and sum 297 

of factors) agreed within a few percent for both seasons suggesting that the uncertainty is 298 

modest and within the uncertainty limits shown in the corresponding figures. 299 

 300 

The HOA factors for the summer and winter campaigns had very similar thermograms 301 

and volatility distributions with half of the material in the 10 μg m
-3

 bin (Figure 54). 302 

Roughly 40% of the HOA in both seasons consisted of LVOCs and ELVOCs. This 303 

volatility similarity is consistent with the similarity in mass spectra derived by the PMF 304 

analysis (Figure 76a). The angle θbetween the corresponding vectors (treating the AMS 305 

spectra as vectors according to Kostenidou et al. (2009)) was 14° suggesting similar 306 
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chemical fingerprints. This is not surprising for a Megacity where the transportation and 307 

any industrial sources are expected to have chemically similar emissions in both summer 308 

and winter. Similar were also the T50 for the HOA factors with values of 49 
o
C and 54

 o
C 309 

for the summer and winter campaign, respectively. Cappa and Jimenez (2010) also 310 

estimated that the HOA in Mexico City had a wide volatility distribution with 311 

approximately 35% of its mass consisting of LVOCs and ELVOCs while the remaining 312 

65% was SVOCs. Almost 40% of the HOA had C* ≥10 g m
-3

 which compares very 313 

well with the 50% estimated here.  314 

 315 

The situation was quite different for the cooking OA factor. Here the seasonal differences 316 

were more pronounced both for the thermograms (Fig. 65), the estimated volatility 317 

distributions (Fig. 54) and the corresponding mass spectra (Fig. 76b). The winter COA 318 

was substantially less volatile than the summer COA, more than an order of magnitude 319 

based on average logC* values, weighted by the mass fraction of each bin (average C
*
= 320 

10
-2

 μg m
-3 

for the summer campaign and average C
*
= 4x10

-4
 μg m

-3
 for the winter 321 

campaign). The COA factor during the winter campaign did not contain semi-volatile 322 

components while 37% of the summer COA was semi-volatile. The COA winter factor 323 

consisted of ELVOCs (37%) and LVOCs (63%). The COA mass spectra in Figure 76b 324 

show that the winter COA was characterized by a higher fraction of molecular fragments 325 

at higher mass-to-charge (m/z) ratio. This is consistent with organic components of longer 326 

carbon chain which, for the same level of oxidation, are expected to have lower volatility. 327 

The angle θ between the COA spectra was 26°, suggesting a significant chemical 328 

difference. One explanation is that the cooking habits are different in the two seasons 329 

with outdoor cooking (e.g., barbecue) dominating in the summer and indoor cooking 330 

relying more on oil and butter, being more significant in the winter. We also cannot rule 331 

out some imperfect unmixing of OA sources and components. The T50 for the COA 332 

factors were different as well, with values of 91 
o
C and 148

 o
C for the summer and winter 333 

campaign, respectively. 334 

The LV-OOA factor detected in the summer had the lowest volatility (Fig. 54) of all the 335 

derived factors. There was no sign of evaporation until the TD temperature reached 336 
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nearly 150
 o

C (Fig.ure 65). LV-OOA was found nearly non-volatile also in Cappa and 337 

Jimenez (2010) from the MILAGRO campaing. We estimate that this factor consisted 338 

almost exclusively of OA with effective saturation concentrations equal to or lower than 339 

10
-3

 μg m
-3

, which are almost exclusively ELVOCs. The average ambient concentration 340 

of this factor during the summer was 0.12 g m
-3

 and its average C
*
 was equal to 5x10

-6
 341 

μg m
-3

μg m
-3

. Very low volatilities (practically all the OA had C* ≤ 10
-3

 μg m
-3 

) were 342 

also estimated for LV-OOA by Cappa and Jimenez (2010) in Mexico City during the 343 

MILAGRO campaign. 344 

The estimated volatility for the SV-OOA factor is consistent with its naming by Crippa et 345 

al. (2013a) as it was significantly higher than that of the LV-OOA (Fig. 54). We 346 

estimated that roughly half of the SV-OOA was SVOCs while it contained also LVOCs 347 

(42%) and a small amount of ELVOCs (6%). Its T50 was 61
 o

C and its average C
*
 was 348 

roughly 0.2 μg m
-3

. These values are once more generally consistent with the estimates of 349 

Cappa and Jimenez (2010) showing that SVOCs dominated the SV-OOA during 350 

MILAGRO (approximately 40%) with LVOCs contributing another 35%. 351 

The OOA factor determined in the winter had a volatility distribution (Fig. 54), 352 

containing SVOCs (45%), LVOCs (25%) and ELVOCs (30%). The winter OOA and the 353 

summer SV-OOA spectra had a θ angle of 34°, while there was an even larger 354 

discrepancy between the winter OOA and the summer LV-OOA with an angle of 37°. 355 

The T50 was equal to 85
o
C. These differences in mass spectra and T50 are consistent with 356 

the differences in volatility. The average volatility of OOA was much higher than 357 

LVOOA in summer but lower than SVOOA. 358 

The marine OA (MOA) factor was only detected during the summer campaign at an 359 

average concentration of 0.17 μg m
-3

. Its volatility was relatively high (Fig. 65), and 360 

almost all the MOA had evaporated at 100 
o
C. The MOA factor consisted mainly of  361 

SVOCs (61%) and some LVOCs (36%). Its T50  was equal to 58
 o

C and its average C
*
 was 362 

approximately 0.4 μg m
-3

.  363 
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The BBOA factor was present in the winter dataset with an average ambient 364 

concentration of 0.6 μg m
-3

. The corresponding estimated volatility distribution (Fig. 54) 365 

shows that half of the BBOA factor consisted of SVOCs (with most material in the 10 μg 366 

m
-3

 bin) and the other half of LVOCs and ELVOCs. A similar bimodal distribution was 367 

also found by May et al. (2013) with a peak at 0.01 and one at 100 μg m
-3

 for controlled 368 

biomass burning in the laboratory. The difference in the location of the high volatility 369 

peak can probably potentially be explained by the wider range of concentrations in the 370 

experiments analyzed by May et al. (2013) compared to the limited range in the ambient 371 

Paris measurements. The more volatile BBOA components were never in the particulate 372 

phase in our dataset so their abundance cannot be determined. The BBOA T50 was 70
  o

C, 373 

higher than that of HOA and less than those of COA and OOA. Finally, its average C
* 

374 

was approximately 0.1 μg m
-3

. The BBOA in Mexico City was approximately half 375 

LVOCs and half SVOCs (Cappa and Jimenez, 2010) and had a much lower ELVOC 376 

fraction than the wintertime Paris BBOA in the present study.  Differences for BBOA 377 

factor are also found in Cappa and Jimenez (2010), where BBOA factor was found to be 378 

the most volatile factor followed by the factor of HOA and SV-OOA.  379 

 380 

4. Synthesis of Results in the 2D-VBS 381 

We employed the 2-D VBS framework in order to synthesize the above results, 382 

combining the bulk average O:C ratio and volatility distributions of the various factors. 383 

Each of the different factors had obviously a distribution of O:C values, but this 384 

distribution cannot be determined from the AMS measurements. The HOA, BBOA, and 385 

COA factors had all had relatively low O:C values but they covered a wide range of 386 

average volatilities (Fig. 87). The MOA and secondary OA factors for both seasons had 387 

much higher O:C values but they also covered a wide range of volatilities, with LV-OOA 388 

having the lowest one. The HOA during summer, had higher O:C than HOA during 389 

winter, suggesting incomplete separation from aged HOA or difference in the sources, 390 

while their volatility distribution was similar, as discussed earlier. The COA factor during 391 

the summer campaign, had slightly higher O:C and a higher volatility than the COA from 392 

the winter campaign. The OOA during the winter had the highest O:C ratio but also 393 

compared to the less oxidized SVOOA, it had lower average volatility and higher 394 
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volatility compared to LVOOA. These results indicate that there was not a direct link 395 

between the average volatility and the bulk average O:C for these OA components. This 396 

is actually the reason for the introduction of the 2D-VBS: the second dimension is needed 397 

to capture at least some of the chemical complexity of the multitude of organic 398 

compounds in atmospheric particulate matter. 399 

 400 

The broad spectrum of volatilities and extent of oxidation are not surprising. Donahue et 401 

al. (2012) extrapolated from the few available ambient measurements to provide rough 402 

estimates of the factor locations on the 2D-VBS. Superimposition of our factors and those 403 

estimated by Donahue et al. (2012) (Fig S4) indicates that the factor locations agree 404 

surprisingly well. This is quite encouraging both for our results and our current 405 

understanding of the evolution of atmospheric OA.   406 

5. Conclusions 407 

Two month-long field campaigns were conducted at an urban background sampling site, 408 

SIRTA in Paris, France as part of the collaborative project MEGAPOLI. The particulate 409 

matter mass concentration was surprisingly low during summer in Paris, with a campaign 410 

average PM1 OA for SIRTA of only 0.83 μg m
-3

, while during winter it was characterized 411 

by higher fine PM concentrations, with an average PM1 OA concentration of 3.1 μg m
-3

. 412 

The volatility distributions of PMF factors derived during both campaigns were 413 

estimated. Five factors were determined for the summer dataset. Hydrocarbon-like OA 414 

(HOA), cooking OA (COA), marine OA (MOA) and two Secondary OA (SOA) factors 415 

were also identified: Semi-volatile oxygenated OA (SV-OOA) and low volatility 416 

oxygenated OA (LV-OOA). The PMF analysis for the winter campaign determined four 417 

factors. The HOA and COA factors were again identified. There was also a single 418 

secondary OA factor that was termed oxygenated OA (OOA). The final factor observed 419 

was biomass burning OA (BBOA).  420 

The HOA factors for both campaigns had similar volatility distributions with half 421 

material in the 10 μg m
-3

 bin. Both factors contained also LVOCs and ELVOCs with a 422 
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total contribution of around 40% to the HOA mass. This similarity was consistent with 423 

the corresponding mass spectra derived by the PMF analysis.  424 

The summer COA was significantly more than one order of magnitude more volatile than 425 

the winter COA. The weighted-average COA C* during the summer was more than order 426 

of magnitude higher than that in the winter. The winter COA did not contain any semi-427 

volatile organic components (SVOCs) whereas 37% of the summer COA was semi-428 

volatile. LVOCs were significant components of the COA, representing 37% of the COA 429 

in the summer and 63% in the winter. These differences in volatility were consistent with 430 

the differences in AMS spectra and could be due to different seasonal cooking habits. 431 

Also, imperfect separation of the OA components by PMF cannot be excluded. 432 

The LV-OOA factor detected in the summer had the lowest volatility of all the derived 433 

factors. There was no sign of LV-OOA evaporation until the TD temperature reached 150
 

434 

o
C. The LV-OOA factor consisted practically nearly exclusively of ELVOCs (97%). 435 

Roughly half of the SV-OOA mass consisted of SVOCs while the rest was mainly 436 

LVOCs (42%). The OOA factor determined in the winter had a volatility distribution, 437 

containing SVOCs (45%), ELVOCs (30%) and LVOCs (25%). 438 

The marine OA (MOA) factor, only detected during the summer campaign, was relatively 439 

volatile with an average C
*
 of approximately 0.4 μg m

-3
. The MOA factor consisted 440 

mainly of SVOCs (61%) and LVOCs (36%). 441 

The BBOA factor was present in winter with an average ambient concentration of 0.6 μg 442 

m
-3

. Half of the BBOA consisted of SVOCs and the other half of extremely low volatile 443 

and low volatile organic components. The BBOA was less volatile than the HOA factors 444 

but more volatile than COA and OOA. 445 

Finally, combining the O:C ratio and volatility distributions of the various factors, we 446 

placed ourintegrated our incorporated the results into the 2D-VBS synthesizing the 447 

corresponding OA findings. The factor locations agreed well with the location of factors 448 

proposed by Donahue et al. (2012). The HOA, BBOA, and COA factors had all relatively 449 

low O:C but their average volatilities were different by orders of magnitude. The MOA 450 
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for summer and secondary OA factors for both seasons had much higher O:C with a wide 451 

variety of volatilities, where MOA had the highest one and LV-OOA had the lowest one. 452 

The results suggest that the average O:C factor was not directly linked to its average 453 

volatility, underlining the importance of measuring both properties, and that all factors 454 

include compounds with a wide range of volatilities. 455 

The estimated volatility distributions by the use of just TD measurements are 456 

characterized by considerable uncertainties (Karnezi et al., 2014). However, the relative 457 

volatilities of the various factors discussed above should be a lot more robust. The 458 

absolute volatility distributions do depend on the assumed enthalpy of vaporization and 459 

accommodation coefficient (parameterization of mass transfer resistances). They also 460 

depend on the assumptions of similar size distributions and external mixing of the OA 461 

components corresponding to each factor. 462 
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Table 1. Average and threshold ambient concentrations for each PMF factor. 616 

 617 

 618 

PMF 

Factor 

Season Average Mass 

Concentration 

(μg m
-3

) 

Threshold 

Concentration 

(μg m
-3

) 

Percentage of 

Measurements above 

Threshold  

HOA Summer 0.16 0.08 53 

COA 0.25 0.05 69 

MOA 0.17 0.10 73 

SV-OOA 0.65 0.10 82 

LV-OOA 0.12 0.08 69 

     

HOA Winter 0.95 0.20 95 

COA 0.48 0.08 92 

BBOA 0.60 0.07 90 

OOA 3.78 0.40 99 
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Figure 1. Ambient (blue dots) and thermodenuder (red dots) organic mass concentration 672 

measurements for Paris during summer 2009.  673 
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Figure 2. Ambient (blue dots) and thermodenuder (red dots) OA mass time series for the 718 

winter 2010 campaign.  719 
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 756 

 757 
Figure 3. Loss-corrected average OA thermograms for summer (red circles) and winter 758 

(blue squares) campaigns. The error bars correspond to plus/minus 2 standard deviations 759 

of the mean. Points with no error bars correspond to a single measurement. 760 
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 768 

Figure 4. Estimated volatility distributions for summer (left panel) and winter total OA 769 

(right panel). The error bars correspond to the fitting uncertainties according to the 770 

algorithm of Karnezi et al. (2014). 771 
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Figure 54. Estimated volatility distributions for summer PMF factors (left panel) and 813 

winter PMF factors (right panel). The error bars correspond to the fitting uncertainties 814 

according to the algorithm of Karnezi et al. (2014). 815 
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Figure 65. Estimated best-fit thermograms for all PMF factors. The solid lines represent 845 

the thermograms for the summer campaign and the dashed lines the thermograms for the 846 

winter campaign. 847 
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Figure 76. Seasonal mass spectra comparison for (a) HOA and (b) COA in Paris. Red 904 

lines correspond to the summer measurements while blue symbols correspond to the 905 

winter data. 906 
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Figure 87. 2-D VBS representation of the PMF factors for the summer and winter 938 

campaigns. With the red color of the bars we represent the HOA factors, with the pink 939 

color the COA factors, the green the SVOOA and OOA, the blue is for the MOA factor, 940 

the brown for the BBOA factor and the black for the LVOOA factor. The darker shading 941 

of the colored bars denotes a larger mass fraction for a given C* bin. The diamond 942 

represents the average log10(C*) value for a given PMF factor.  943 

 944 


	acp-2015-436-author_response-version2.pdf (p.1-10)
	Paciga_Paris_revised_final.pdf (p.11-41)

