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Abstract 16 

Using a mass transfer model and the volatility basis set, we estimate the volatility 17 

distribution for the organic aerosol (OA) components during summer and winter in Paris, 18 

France as part of the collaborative project MEGAPOLI. The concentrations of the OA 19 

components as a function of temperature were measured combining data from a 20 

thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix 21 

Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar 22 

volatility distributions for the summer and winter campaigns with half of the material in 23 

the saturation concentration bin of 10 μg m-3 and another 35-40% consisting of low and 24 

extremely low volatility organic compounds (LVOCs with effective saturation 25 

concentrations C* of 10-3-0.1 μg m-3 and ELVOCs C* less or equal than 10-4 μg m-3, 26 

respectively). The winter cooking OA (COA) was more than an order of magnitude less 27 

volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor 28 

detected in the summer had the lowest volatility of all the derived factors and consisted 29 

almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-30 

OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile 31 

organic components (SVOCs with C* in the 1-100 μg m-3 range) and LVOCs. The 32 

oxygenated OA (OOA) factor in winter consisted of SVOCs (45%), LVOCs (25%) and 33 

ELVOCs (30%). The volatility of marine OA (MOA) was higher than that of the other 34 
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factors containing around 60% SVOCs. The biomass burning OA (BBOA) factor 35 

contained components with a wide range of volatilities with significant contributions 36 

from both SVOCs (50%) and LVOCs (30%). Finally, combining the bulk average O:C 37 

ratios and volatility distributions of the various factors, our results are placed into the 38 

two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad 39 

spectrum of volatilities with no direct link between the average volatility and average 40 

O:C of the OA components.  41 

 42 
 1. Introduction 43 

Atmospheric aerosols have adverse effects on human health (Caiazzo et al., 2013; Pope et 44 

al., 2009) and contribute to climate change (IPCC, 2013). Over 50% of the submicron 45 

particulate mass is often comprised of organic compounds (Zhang et al., 2007). OA 46 

(organic aerosol) originates from many different natural and anthropogenic sources and 47 

processes. It can be emitted directly, e.g., from fossil fuels and biomass combustion (so-48 

called primary organic aerosol, POA) or can be formed by atmospheric oxidation of 49 

volatile, intermediate volatility and semi-volatile organic compounds (secondary organic 50 

aerosol, SOA). Since the oxidation pathways of organic vapors are complex and the 51 

corresponding reactions lead to hundreds or even thousands of oxygenated products for 52 

each precursor, our understanding of OA formation mechanisms and the OA chemical 53 

and physical properties remains incomplete. Furthermore, a lack of information regarding 54 

the sources along with the physical and chemical properties, and lifetime of organic 55 

aerosol (OA) has made predictions of OA concentrations by chemical transport models 56 

uncertain.  57 

The volatility of atmospheric OA is one of its most important physical properties. It 58 

determines the partitioning of these organic compounds between the gas and particulate 59 

phases, the OA concentration, and the atmospheric fate of the corresponding compounds. 60 

Measurement of the OA volatility distribution has been recognized as one of the major 61 

challenges in our efforts to quantify the rates of formation of secondary organic 62 

particulate matter (Donahue et al., 2012). Thermodenuders (TD) have been developed to 63 

measure the volatility of ambient aerosol (Burtscher et al., 2001; Wehner et al., 2002, 64 

2004; Kalberer et al., 2004; An et al., 2007). Most TDs consist of two basic parts: a 65 
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heated tube where the more volatile particle components evaporate, leaving less volatile 66 

species behind and the denuder tube, usually containing activated carbon where the 67 

evaporated material is adsorbed thus avoiding potential re-condensation when the sample 68 

is cooled to room temperature. The aerosol mass fraction remaining (MFR) at a given 69 

temperature, after passing through the TD, is the most common way of reporting the TD 70 

measurements. The MFR, though an indirect metric of volatility for a specific TD 71 

operation, also depends on the aerosol concentration, size, enthalpy of vaporization, 72 

potential resistances to mass transfer, etc (Riipinen et al., 2010). 73 

The two-dimensional volatility basis set (2D-VBS) framework from Donahue et al. 74 

(2012) has been used in order to describe atmospheric OA formation and evolution by 75 

lumping all organic compounds (with the exception of VOCs) into surrogates along two 76 

axes of volatility and the oxygen content (expressed as the O:C ratio or carbon oxidation 77 

state). Using the 2D VBS requires the ability to measure the OA distribution as a function 78 

of volatility and O:C ratio (or carbon oxidation state).  79 

Positive Matrix Factorization (PMF), aims to deconvolve the bulk OA mass spectra 80 

obtained by the aerosol mass spectrometer (AMS) into individual “factors” that give 81 

information about the sources or processing of organic aerosol (Lanz et al., 2007; Ulbrich 82 

et al., 2009; Huffman et al., 2009; Zhang et al., 2011). Typical factors correspond to 83 

either primary sources including HOA (hydrocarbon-like OA), BBOA (biomass burning 84 

OA) and COA (cooking OA) or secondary OA like SV-OOA (semi-volatile oxygenated 85 

OA) and LV-OOA (low volatility oxygenated OA). Although there have been numerous 86 

studies that have identified PMF factors in ambient datasets, there have been few studies 87 

that have attempted to estimate the corresponding factor volatility (Huffman et al., 2009; 88 

Cappa and Jimenez, 2010). Huffman et al. (2009) characterized the volatility of PMF 89 

factors derived for the MILAGRO campaign in Mexico City and for the SOAR-1 90 

campaign in Riverside, CA. They concluded that BBOA was the most volatile and OOA 91 

was the least volatile component. HOA was more volatile than OOA in almost all cases. 92 

Cappa and Jimenez (2010), using a kinetic evaporation model, estimated the volatility 93 

distributions for the various PMF OA factors for the MILAGRO campaign. Here we 94 

extend this work focusing on another Megacity, Paris. 95 
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In this study, we estimate the volatility distributions of PMF factors derived from two 96 

month-long summer and winter campaigns in a suburban background site in Paris. The 97 

data analysis approach is first outlined and the corresponding challenges are discussed. 98 

We use the mass transfer model of Riipinen et al. (2010), together with the approach 99 

introduced by Karnezi et al. (2014) to estimate the volatility distributions for all PMF 100 

factors. We finally synthesize the corresponding OA findings using the 2D-VBS 101 

framework. 102 

2. Methods 103 

2.1 Measurement Site and Sampling 104 

Two comprehensive field campaigns were performed during July of 2009 and 105 

January/February of 2010 at an urban background sampling site, SIRTA (Site 106 

Instrumental de Recherche par Teledetection Atmospherique) (Haeffelin et al., 2005) 107 

located about 20 km southwest of Paris’ city center. The datasets were collected as part of 108 

a collaborative project known as MEGAPOLI (Megacities: Emissions, urban, regional, 109 

and Global Atmospheric POLution and climate effects, and Integrated tools for 110 

assessment and mitigation) (Baklanov et al., 2008; Beekmann et al., 2015). A suite of 111 

instruments were used including a high-resolution time-of-flight aerosol mass 112 

spectrometer (HR-ToF-AMS) from Aerodyne research, Inc. (DeCarlo et al., 2006) for 113 

particle mass and composition, a scanning mobility particle sizer (SMPS) from TSI, Inc. 114 

for particle size and number distributions and the Carnegie Mellon University 115 

thermodenuder (TD) for volatility measurements. 116 

  117 

The TD design was similar to that described in An et al. (2007), consisting of a heated 118 

tube followed by a denuding section, which uses activated charcoal to prevent 119 

recondensation of organic vapors. The TD was operated at temperatures ranging from 120 

about 20°C to 200°C during both campaigns, yielding thermograms of the organic 121 

aerosol mass remaining as a function of TD temperature. The TD scanned this 122 

temperature range using different temperatures each day.  A centerline residence time of 123 

25 s at 298 K was used for all measurements (Lee et al., 2010). This corresponds to mean 124 

residence time of approximately 50 s at 298 K. 125 
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Changes in composition, mass, and size as a result of aerosol evaporation were quantified 126 

by both the SMPS and the HR-ToF-AMS by alternate sampling between the TD and the 127 

ambient sample line, every 5 minutes. The SMPS was operated with a sheath flow of 5 L 128 

min-1 and a sample flow rate of 0.5 L min-1. The HR-ToF-AMS, which measures the 129 

aerosol size-composition distribution of the submicron non-refractory material, was 130 

operated in both the higher sensitivity mode (V-mode) and the higher resolution mode 131 

(W-mode) (DeCarlo et al., 2006). The V-mode data are used in this study. The AMS 132 

collection efficiency was estimated at 0.38 during the summer (Crippa et al., 2013a) and 133 

0.5 during the winter (Crippa et al., 2013b). 134 

 135 

2.2 Data Analysis 136 

TD raw measurements need to be corrected for particle losses due to diffusion of small 137 

particles, sedimentation of larger particles, and thermophoretic losses (Burtscher et al., 138 

2001). To account for these losses, which depend on particle size, TD temperature, and 139 

sample flow rate, Lee (2010) has developed size and temperature dependent corrections 140 

for this particular TD. The organic aerosol concentrations measured after the TD were 141 

corrected for losses corresponding to the operating conditions during the campaign. The 142 

OA mass fraction remaining (MFR) was calculated dividing the loss-corrected OA 143 

concentration after the TD at time period i with that of the by-pass line at time period i+1. 144 

The fact that the two measurements correspond to two different 5 min time intervals 145 

introduces some uncertainty in the calculated MFR values because of the variability of 146 

the atmospheric concentrations. Some of this variability is averaged out when average 147 

MFR values are calculated for each temperature.  148 

The preparation of these large datasets for analysis required careful examination of the 149 

ambient OA variability in order to determine the appropriate averaging intervals. The OA 150 

mass concentration data for the summer campaign is shown in Figure 1. Overall, the 151 

particulate matter mass concentration was surprisingly low during this period in Paris, 152 

with a campaign average PM1 OA for SIRTA of only 0.83 μg m-3. As expected, there 153 

were several periods during which the OA concentration was much higher than 1 μg m-3 154 

reaching levels up to 6 μg m-3. To evaluate whether the OA during these higher 155 
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concentration periods had different MFR values than the rest of the samples, we 156 

separated the data in two groups using an OA concentration cutoff of 1.5 μg m-3. Figure 157 

S1 in the supplementary information shows the corresponding MFR measurements for 158 

both low and high concentration periods. Given the experimental variability, there is no 159 

discernable difference in evaporation between the higher and the lower concentration 160 

periods and therefore, these were averaged together for the analysis. The similarity of the 161 

average MFR values during these low and high concentration periods (the latter were 162 

often characterized by higher OA variability) also suggests that our calculation of the 163 

MFR using measurement pairs did not introduce significant bias in the average estimated 164 

MFR. 165 

We performed a similar analysis for the winter campaign. Paris during winter, unlike the 166 

summer, was characterized by higher fine PM concentrations with an average PM1 OA 167 

concentration of 3.1 μg m-3 (Figure 2). The OA threshold concentration was chosen to be 168 

4.5 μg m-3 and again there was no evidence of effects of concentration (in the observed 169 

range) on volatility (Supplementary Information, Fig. S2) and the corresponding MFRs 170 

were averaged together. Finally, the data points were averaged into temperature bins of 171 

5°C. The calculation of one MFR value every 5oC is a compromise between the need to 172 

average more data points at similar temperatures and maintaining the dynamic behavior 173 

of the thermogram. Averaging over wider temperature ranges (e.g. 10oC) did not result in 174 

any essential differences in our analysis and conclusions. 175 

Along with the bulk organic measurements, additional information can be derived from 176 

the HR-ToF-AMS V-mode mass spectra using the PMF analysis technique. The 177 

deconvolved spectra yielded several organic aerosol “factors” for each campaign. A 178 

complete discussion of the PMF analysis of the ambient measurements and the resulting 179 

factors can be found in Crippa et al. (2013a; b). The PMF analysis was repeated, 180 

combining both ambient and thermodenuded spectra with guidance from the original 181 

analysis of the ambient-only data (e.g., the same number of factors was used). This 182 

second analysis produced for all practical purposes the same results for the ambient data 183 

set as that of the ambient measurements only and can be found in the corresponding 184 

publications. 185 
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The low OA concentrations especially during the summer resulted in very low 186 

concentrations of the corresponding factors and thus high MFR uncertainty. The MFRs of 187 

the various factors were, as expected, extremely variable when the factor concentrations 188 

were close to zero. Therefore, to minimize these problems, a minimum ambient mass 189 

concentration was determined for each PMF factor, based on the concentration range for 190 

which MFR measurements exceeded 1.5. The average ambient concentration and 191 

threshold concentration with corresponding statistical information for each PMF factor is 192 

shown in Table 1. The corresponding factor concentration thresholds during the summer 193 

were in the 0.05-0.1 μg m-3 range. MFR measurements of PMF factors with ambient 194 

levels less than 0.1 μg m-3 are clearly quite uncertain. All the corresponding MFR values 195 

from these low factor concentration periods were excluded from the analysis. Few MFR 196 

measurements were excluded during the winter period, while 20-50% of the 197 

measurements for the various factors were excluded during the summer. 198 

 199 

2.3 Volatility Distribution Estimation 200 

To estimate the volatility distributions from the corrected thermograms we employed the 201 

dynamic mass transfer model of Riipinen et al. (2010). The model simulates particle 202 

evaporation using experimental inputs including TD temperature and residence time, 203 

initial particle size, and ambient OA concentration. The volatility of these complex 204 

mixtures is defined using the corresponding effective saturation concentration, C*, at 298 205 

K. Along with saturation concentration, two parameters that can affect the evaporation 206 

rate and the corresponding volatility estimation are the enthalpy of vaporization and the 207 

mass accommodation coefficient. Unfortunately, these values are currently unknown for 208 

these complex multi-component systems. Often, a mass accommodation coefficient of 209 

unity is assumed. However, mass transfer limitations to evaporation have been observed 210 

in some experimental systems, leading to mass accommodation coefficient values of 211 

much less than one (Saleh et al., 2013). Typical values of 100 kJ mol-1 and 1.0 are 212 

assumed for the enthalpy of vaporization and accommodation coefficient, respectively.  213 

As described in Donahue et al. (2006), the volatility distribution is represented by 214 

surrogate species with a saturation concentration of Ci
*. The Ci

* bins are logarithmically 215 
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spaced, allowing for extremely low and high volatility species to be compared in a single 216 

framework. The analysis here was limited to a 6-consecutive C* bin solution with a 217 

variable mass fraction value for each bin. Different volatility ranges were tested and the 218 

best range was selected for each factor. The “goodness of fit” was quantified using the 219 

error analysis outlined in Karnezi et al. (2014). The standard error was calculated for all 220 

C* bin-mass fraction combinations. For a given 6-bin solution, the top 2% of mass 221 

fraction combinations with the lowest error was used to find the average mass fraction in 222 

each bin and the corresponding standard deviation.  223 

The OA components are described as semi-volatile (SVOCs with C* of 1, 10, and 100 μg 224 

m-3), low volatility (LVOCs with C* of 10-3, 10-2, and 0.1 μg m-3), and extremely low 225 

volatility (ELVOCs with C*≤10-4 μg m-3) in the rest of the paper (Murphy et al., 2014). 226 

 227 

3. Results and Discussion 228 

3.1 Organic Aerosol Volatility 229 

The average loss-corrected OA thermograms for the two seasons are shown in Figure 3. 230 

The two thermograms seem very similar while differences are mostly noticeable at the 231 

high temperatures. In the winter thermogram an approximate 30% remained at 180oC 232 

while in the summer thermogram less than 10% was present at the same temperature. 233 

This might suggest more ELVOCs being present at winter. However, the summer 234 

thermogram shows that nearly 50% of the mass evaporated at a thermodenuder 235 

temperature of 83 oC (T50). The winter measurements suggested a similar T50 value of 88 236 
oC. This crude comparison of volatility through the corresponding thermograms suggests 237 

that the OA in the two seasons could have similar average volatility distributions. It is 238 

surprising that the seasonal differences in emissions are not reflected in the corresponding 239 

thermograms. We will examine the reasons for this similarity in the subsequent section 240 

by analyzing the volatility of the corresponding factors.  241 

 242 

The volatility distributions for the total OA for the two seasons are depicted in Figure 4. 243 

They are quite similar to each other especially considering the corresponding 244 
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uncertainties and they are characterized by higher concentrations of components with 245 

C*=10-4 and 10 µg m-3. 246 

 247 

3.2 Volatility of Organic Aerosol Components 248 

Five PMF factors were determined for the summer dataset by Crippa et al. (2013a). 249 

Hydrocarbon-like OA (HOA) most closely resembles fresh vehicle emissions in that the 250 

mass spectrum resembles that of transportation sources. Cooking OA (COA) was also 251 

observed in the summer campaign, peaking during noon and evening meal times. Marine 252 

OA (MOA) was identified based on relatively high levels of organic sulfur and a strong 253 

correlation with methanesulfonic acid (MSA), which is a product of continued oxidation 254 

of phytoplankton decomposition products. Two SOA factors were also reported: Semi-255 

volatile oxygenated OA (SV-OOA) and low volatility oxygenated OA (LV-OOA). These 256 

two factors were differentiated based on their O:C ratio. The two secondary OA factors 257 

made up 57% of the total OA mass. The remaining factors contributed fairly similar 258 

average fractions of 18% for COA, 12% for HOA, and 13% for MOA. Detailed 259 

discussion of the PMF factors along with verification analysis were provided by Crippa et 260 

al. (2013a).  261 

 262 

The PMF analysis for the winter campaign yielded four factors. The HOA and COA 263 

factors were again present. There was also a single secondary OA factor which was 264 

termed oxygenated OA (OOA). This factor could not be further separated into SV-OOA 265 

and LV-OOA. The final factor reported was biomass burning OA (BBOA), correlating 266 

with known molecular markers for residential wood burning (e.g., levoglucosan). The 267 

OOA factor was found to dominate the organic aerosol mass, contributing nearly 65% on 268 

average. The complete analysis and description of these factors can be found in Crippa et 269 

al. (2013b).  270 

 271 

Using the mass transfer model from Riipinen et al. (2010) and the approach of Karnezi et 272 

al. (2014) we fitted the corresponding thermograms  (Figure S3), using a C* bin solution 273 

with a variable mass fraction value for each bin. Specifically for each factor we used an 274 

individual consecutive 6-bin solution (chosen as the 6-bin solution with the best fits) 275 
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resulting in the volatility distributions, shown in Figure 5. The modeled thermograms for 276 

all factors from both summer and winter campaigns are shown in Figure 6. Finally, the 277 

volatility distributions for each factor are summarized in Table S1 in the supplementary 278 

information. The fitting of individual factor thermograms implicitly assumes that each 279 

factor had the same size distribution as the total OA and that the factors were present as 280 

an external mixture. To test the uncertainty introduced by this assumption we compared 281 

the volatility distribution of the total OA with the composition weighted sum of the 282 

volatility distributions of the individual OA factors for both summer and winter. The two 283 

distributions (total and sum of factors) agreed within a few percent for both seasons 284 

suggesting that the uncertainty is modest and within the uncertainty limits shown in the 285 

corresponding figures. 286 

 287 

The HOA factors for the summer and winter campaigns had very similar thermograms 288 

and volatility distributions with half of the material in the 10 μg m-3 bin (Figure 5). 289 

Roughly 40% of the HOA in both seasons consisted of LVOCs and ELVOCs. This 290 

volatility similarity is consistent with the similarity in mass spectra derived by the PMF 291 

analysis (Figure 7a). The angle θ between the corresponding vectors (treating the AMS 292 

spectra as vectors according to Kostenidou et al. (2009)) was 14° suggesting similar 293 

chemical fingerprints. This is not surprising for a Megacity where the transportation and 294 

any industrial sources are expected to have chemically similar emissions in both summer 295 

and winter. Similar were also the T50 for the HOA factors with values of 49 oC and 54 oC 296 

for the summer and winter campaign, respectively. Cappa and Jimenez (2010) also 297 

estimated that the HOA in Mexico City had a wide volatility distribution with 298 

approximately 35% of its mass consisting of LVOCs and ELVOCs while the remaining 299 

65% was SVOCs. Almost 40% of the HOA had C* ≥10 µg m-3 which compares very 300 

well with the 50% estimated here.  301 

 302 

The situation was quite different for the cooking OA factor. Here the seasonal differences 303 

were more pronounced for the thermograms (Fig. 6), the estimated volatility distributions 304 

(Fig. 5) and the corresponding mass spectra (Fig. 7b). The winter COA was substantially 305 

less volatile than the summer COA, more than an order of magnitude based on average 306 
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logC* values, weighted by the mass fraction of each bin (average C*= 10-2 μg m-3 for the 307 

summer campaign and average C*= 4x10-4 μg m-3 for the winter campaign). The COA 308 

factor during the winter campaign did not contain semi-volatile components while 37% 309 

of the summer COA was semi-volatile. The COA winter factor consisted of ELVOCs 310 

(37%) and LVOCs (63%). The COA mass spectra in Figure 7b show that the winter COA 311 

was characterized by a higher fraction of molecular fragments at higher mass-to-charge 312 

(m/z) ratio. This is consistent with organic components of longer carbon chain which, for 313 

the same level of oxidation, are expected to have lower volatility. The angle θ between 314 

the COA spectra was 26°, suggesting a significant chemical difference. One explanation 315 

is that the cooking habits are different in the two seasons with outdoor cooking (e.g., 316 

barbecue) dominating in the summer and indoor cooking relying more on oil and butter, 317 

being more significant in the winter. We also cannot rule out some imperfect unmixing of 318 

OA sources and components. The T50 for the COA factors were different as well, with 319 

values of 91 oC and 148 oC for the summer and winter campaign, respectively. 320 

The LV-OOA factor detected in the summer had the lowest volatility (Fig. 5) of all the 321 

derived factors. There was no sign of evaporation until the TD temperature reached 322 

nearly 150 oC (Fig. 6). We estimate that this factor consisted almost exclusively of OA 323 

with effective saturation concentrations equal to or lower than 10-3 μg m-3, which are 324 

almost exclusively ELVOCs. The average ambient concentration of this factor during the 325 

summer was 0.12 µg m-3 and its average C* was equal to 5x10-6 μg m-3. Very low 326 

volatilities (practically all the OA had C* ≤ 10-3 μg m-3 ) were also estimated for LV-327 

OOA by Cappa and Jimenez (2010) in Mexico City during the MILAGRO campaign. 328 

The estimated volatility for the SV-OOA factor is consistent with its naming by Crippa et 329 

al. (2013a) as it was significantly higher than that of the LV-OOA (Fig. 5). We estimated 330 

that roughly half of the SV-OOA was SVOCs while it contained also LVOCs (42%) and 331 

a small amount of ELVOCs (6%). Its T50 was 61 oC and its average C* was roughly 0.2 μg 332 

m-3. These values are once more generally consistent with the estimates of Cappa and 333 

Jimenez (2010) showing that SVOCs dominated the SV-OOA during MILAGRO 334 

(approximately 40%) with LVOCs contributing another 35%. 335 
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The OOA factor determined in the winter had a volatility distribution (Fig. 5), containing 336 

SVOCs (45%), LVOCs (25%) and ELVOCs (30%). The winter OOA and the summer 337 

SV-OOA spectra had a θ angle of 34°, while there was an even larger discrepancy 338 

between the winter OOA and the summer LV-OOA with an angle of 37°. The T50 was 339 

equal to 85oC. These differences in mass spectra and T50 are consistent with the 340 

differences in volatility. The average volatility of OOA was much higher than LVOOA in 341 

summer but lower than SVOOA. 342 

The marine OA (MOA) factor was only detected during the summer campaign at an 343 

average concentration of 0.17 μg m-3. Its volatility was relatively high (Fig. 6), and 344 

almost all the MOA had evaporated at 100 oC. The MOA factor consisted mainly of 345 

SVOCs (61%) and some LVOCs (36%). Its T50  was equal to 58 oC and its average C* was 346 

approximately 0.4 μg m-3.  347 

The BBOA factor was present in the winter dataset with an average ambient 348 

concentration of 0.6 μg m-3. The corresponding estimated volatility distribution (Fig. 5) 349 

shows that half of the BBOA factor consisted of SVOCs (with most material in the 10 μg 350 

m-3 bin) and the other half of LVOCs and ELVOCs. A similar bimodal distribution was 351 

also found by May et al. (2013) with a peak at 0.01 and one at 100 μg m-3 for controlled 352 

biomass burning in the laboratory. The difference in the location of the high volatility 353 

peak can potentially be explained by the wider range of concentrations in the experiments 354 

analyzed by May et al. (2013) compared to the limited range in the ambient Paris 355 

measurements. The more volatile BBOA components were never in the particulate phase 356 

in our dataset so their abundance cannot be determined. The BBOA T50 was 70  oC, higher 357 

than that of HOA and less than those of COA and OOA. Finally, its average C* was 358 

approximately 0.1 μg m-3. The BBOA in Mexico City was approximately half LVOCs 359 

and half SVOCs (Cappa and Jimenez, 2010) and had a much lower ELVOC fraction than 360 

the wintertime Paris BBOA in the present study.   361 

 362 

4. Synthesis of Results in the 2D-VBS 363 

We employed the 2-D VBS framework in order to synthesize the above results, 364 

combining the bulk average O:C ratio and volatility distributions of the various factors. 365 
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Each of the different factors had a distribution of O:C values, but this distribution cannot 366 

be determined from the AMS measurements. The HOA, BBOA, and COA factors all had 367 

relatively low O:C values but they covered a wide range of average volatilities (Fig. 8). 368 

The MOA and secondary OA factors for both seasons had much higher O:C values but 369 

they also covered a wide range of volatilities, with LV-OOA having the lowest one. The 370 

HOA during summer had higher O:C than HOA during winter, suggesting incomplete 371 

separation from aged HOA or difference in the sources, while their volatility distribution 372 

was similar, as discussed earlier. The COA factor during the summer campaign, had 373 

slightly higher O:C and a higher volatility than the COA from the winter campaign. The 374 

OOA during the winter had the highest O:C ratio but compared to the less oxidized 375 

SVOOA, it had lower average volatility and higher volatility compared to LVOOA. 376 

These results indicate that there was not a direct link between the average volatility and 377 

the bulk average O:C for these OA components. This is actually the reason for the 378 

introduction of the 2D-VBS: the second dimension is needed to capture at least some of 379 

the chemical complexity of the multitude of organic compounds in atmospheric 380 

particulate matter. 381 

 382 

The broad spectrum of volatilities and extent of oxidation are not surprising. Donahue et 383 

al. (2012) extrapolated from the few available ambient measurements to provide rough 384 

estimates of the factor locations on the 2D-VBS. Superimposition of our factors and those 385 

estimated by Donahue et al. (2012) (Fig S4) indicates that the factor locations agree 386 

surprisingly well. This is quite encouraging both for our results and our current 387 

understanding of the evolution of atmospheric OA.   388 

5. Conclusions 389 

Two month-long field campaigns were conducted at an urban background sampling site, 390 

SIRTA in Paris, France as part of the collaborative project MEGAPOLI. The particulate 391 

matter mass concentration was surprisingly low during summer in Paris, with a campaign 392 

average PM1 OA for SIRTA of only 0.83 μg m-3, while during winter it was characterized 393 

by higher fine PM concentrations, with an average PM1 OA concentration of 3.1 μg m-3. 394 
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The volatility distributions of PMF factors derived during both campaigns were 395 

estimated. Five factors were determined for the summer dataset. Hydrocarbon-like OA 396 

(HOA), cooking OA (COA), marine OA (MOA) and two Secondary OA (SOA) factors 397 

were also identified: Semi-volatile oxygenated OA (SV-OOA) and low volatility 398 

oxygenated OA (LV-OOA). The PMF analysis for the winter campaign determined four 399 

factors. The HOA and COA factors were again identified. There was also a single 400 

secondary OA factor that was termed oxygenated OA (OOA). The final factor observed 401 

was biomass burning OA (BBOA).  402 

The HOA factors for both campaigns had similar volatility distributions with half 403 

material in the 10 μg m-3 bin. Both factors contained also LVOCs and ELVOCs with a 404 

total contribution of around 40% to the HOA mass. This similarity was consistent with 405 

the corresponding mass spectra derived by the PMF analysis.  406 

The summer COA was significantly more volatile than the winter COA. The weighted-407 

average COA C* during the summer was more than order of magnitude higher than that 408 

in the winter. The winter COA did not contain any semi-volatile organic components 409 

(SVOCs) whereas 37% of the summer COA was semi-volatile. LVOCs were significant 410 

components of the COA, representing 37% of the COA in the summer and 63% in the 411 

winter. These differences in volatility were consistent with the differences in AMS 412 

spectra and could be due to different seasonal cooking habits. Also, imperfect separation 413 

of the OA components by PMF cannot be excluded. 414 

The LV-OOA factor detected in the summer had the lowest volatility of all the derived 415 

factors. There was no sign of LV-OOA evaporation until the TD temperature reached 150 416 
oC. The LV-OOA factor consisted nearly exclusively of ELVOCs (97%). Roughly half of 417 

the SV-OOA mass consisted of SVOCs while the rest was mainly LVOCs (42%). The 418 

OOA factor determined in the winter had a volatility distribution containing SVOCs 419 

(45%), ELVOCs (30%) and LVOCs (25%). 420 
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The marine OA (MOA) factor, only detected during the summer campaign, was relatively 421 

volatile with an average C* of approximately 0.4 μg m-3. The MOA factor consisted 422 

mainly of SVOCs (61%) and LVOCs (36%). 423 

The BBOA factor was present in winter with an average ambient concentration of 0.6 μg 424 

m-3. Half of the BBOA consisted of SVOCs and the other half of extremely low volatile 425 

and low volatile organic components. The BBOA was less volatile than the HOA factors 426 

but more volatile than COA and OOA. 427 

Finally, combining the O:C ratio and volatility distributions of the various factors, we 428 

integrated our results into the 2D-VBS synthesizing the corresponding OA findings. The 429 

factor locations agreed well with the location of factors proposed by Donahue et al. 430 

(2012). The HOA, BBOA, and COA factors had all relatively low O:C but their average 431 

volatilities were different by orders of magnitude. The MOA for summer and secondary 432 

OA factors for both seasons had much higher O:C with a wide variety of volatilities, 433 

where MOA had the highest one and LV-OOA had the lowest one. The results suggest 434 

that the average O:C factor was not directly linked to its average volatility, underlining 435 

the importance of measuring both properties, and that all factors include compounds with 436 

a wide range of volatilities. 437 

The estimated volatility distributions by the use of just TD measurements are 438 

characterized by considerable uncertainties (Karnezi et al., 2014). However, the relative 439 

volatilities of the various factors discussed above should be more robust. The absolute 440 

volatility distributions do depend on the assumed enthalpy of vaporization and 441 

accommodation coefficient (parameterization of mass transfer resistances). They also 442 

depend on the assumptions of similar size distributions and external mixing of the OA 443 

components corresponding to each factor. 444 
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Table 1. Average and threshold ambient concentrations for each PMF factor. 583 
 584 
 585 

PMF 
Factor 

Season Average Mass 
Concentration 

(μg m-3) 

Threshold 
Concentration 

(μg m-3) 

Percentage of 
Measurements above 

Threshold  
HOA Summer 0.16 0.08 53 
COA 0.25 0.05 69 
MOA 0.17 0.10 73 

SV-OOA 0.65 0.10 82 
LV-OOA 0.12 0.08 69 

     
HOA Winter 0.95 0.20 95 
COA 0.48 0.08 92 

BBOA 0.60 0.07 90 
OOA 3.78 0.40 99 
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Figure 1. Ambient (blue dots) and thermodenuder (red dots) organic mass concentration 639 
measurements for Paris during summer 2009.  640 
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Figure 2. Ambient (blue dots) and thermodenuder (red dots) OA mass time series for the 685 
winter 2010 campaign.  686 
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 696 
 697 
Figure 3. Loss-corrected average OA thermograms for summer (red circles) and winter 698 
(blue squares) campaigns. The error bars correspond to plus/minus 2 standard deviations 699 
of the mean. Points with no error bars correspond to a single measurement. 700 
 701 
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Figure 4. Estimated volatility distributions for summer (left panel) and winter total OA 709 
(right panel). The error bars correspond to the fitting uncertainties according to the 710 
algorithm of Karnezi et al. (2014). 711 
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Figure 5. Estimated volatility distributions for summer PMF factors (left panel) and 747 
winter PMF factors (right panel). The error bars correspond to the fitting uncertainties 748 
according to the algorithm of Karnezi et al. (2014). 749 
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Figure 6. Estimated best-fit thermograms for all PMF factors. The solid lines represent 778 
the thermograms for the summer campaign and the dashed lines the thermograms for the 779 
winter campaign. 780 
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Figure 7. Seasonal mass spectra comparison for (a) HOA and (b) COA in Paris. Red 837 
lines correspond to the summer measurements while blue symbols correspond to the 838 
winter data. 839 
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Figure 8. 2-D VBS representation of the PMF factors for the summer and winter 871 
campaigns. With the red color of the bars we represent the HOA factors, with the pink 872 
color the COA factors, the green the SVOOA and OOA, the blue is for the MOA factor, 873 
the brown for the BBOA factor and the black for the LVOOA factor. The darker shading 874 
of the colored bars denotes a larger mass fraction for a given C* bin. The diamond 875 
represents the average log10(C*) value for a given PMF factor.  876 
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