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The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are 33 

significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here 34 

are strongly influenced by changes in the monsoon regime from the southwest quadrant to the 35 

northeast quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban 36 

area using a high volume air sampler at different seasons on 24 h basis. Analysis of trace 37 

elements and water-soluble ions was performed using inductively coupled plasma mass 38 

spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis 39 

of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) 40 

positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively 41 

characterized the health risks posed to human populations through the inhalation of selected 42 

heavy metals in PM2.5. 48% of the samples collected exceeded the World Health 43 

Organization (WHO) 24 h PM2.5 guideline but only 19% of the samples exceeded 24 h US 44 

EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was 45 

slightly higher during the north-east monsoon compared to south-west monsoon. The main 46 

trace metals identified were As, Pb, Cd, Ni, Mn, V and Cr while the main ionsn were SO4
2-

, 47 

NO3
-
, NH4

+
 and Na. The mass closure model identified four major sources of PM2.5 that 48 

accounts for 55% of total mass balance. The four sources are mineral matter (MIN) (35%), 49 

secondary inorganic aerosol (SIA) (11%), sea salt (SS) (7%), and trace elements (TE) (2%). 50 

PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass 51 

burning (31%) were the most dominant, followed by marine/sulfate aerosol (20%), coal 52 

burning (19%), nitrate aerosol (17%), and mineral/road dust (13%). The hazard quotient 53 

(HQ) for four selected metals (Pb, As, Cd and Ni) in PM2.5 mass was highest in PM2.5 mass 54 

from the coal burning source and least in PM2.5 mass originating from the mineral/road dust 55 

source. The main carcinogenic heavy metal of concern to health at the current location was 56 

As; the other heavy metals (Ni, Pb, and Cd) did not pose a significant cancer risk in PM2.5 57 

mass concentration. Overall, the associated lifetime cancer risk posed by the exposure of 58 

hazardous metals in PM2.5 is three to four per 1,000,000 people at this location. 59 

60 
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1    Introduction 61 

Atmospheric fine particles (PM2.5, dP ≤ 2.5 µm), a mixture of many inorganic and organic 62 

components, reside for a long time in the atmosphere and can penetrate deep into the lung. 63 

Prolonged exposure to PM2.5 can cause adverse health impacts and premature mortality in 64 

humans (Betha et al., 2014). Potential health benefits and an improvement in general 65 

mortality could be expected if the control policies were implemented (Boldo et al., 2011). 66 

The adverse effects of PM2.5 can reach intercontinental scales (Anenberg et al., 2014) due to 67 

the potential transport of PM2.5 over hundreds to thousands of kilometers (Seinfeld and 68 

Pandis, 2012). The sources of PM2.5, particularly motor vehicle emissions, are associated 69 

with an increase in hospital admissions (Kioumourtzoglou et al., 2014). A study by Bell et al. 70 

(2014) suggested that controlling some of the sources of PM2.5 could protect public health 71 

more efficiently than the regulation of particle concentration. Thus, the possible reduction in 72 

health risks from the predominant sources of PM2.5 is desired as part of the mitigation 73 

strategy. Diesel emissions and biomass burning, as the primary risk sources of PM2.5, should 74 

be closely monitored and regulated (Wu et al., 2009).  75 

The identification of PM2.5 sources is becoming a widely-recognized way to protect human 76 

health as well as the environment. Multivariate receptor models are very useful in the source 77 

apportionment of PM2.5. Widely used multivariate methods are: a) a chemical mass balance 78 

model (CMB) (Watson et al., 1990), b) positive matrix factorization (PMF) (Paatero, 1997; 79 

Paatero and Tapper, 1994), c) Unmix (Henry, 1987), d) principal component analysis coupled 80 

with absolute principal component score (PCA/APCS) (Thurston and Spengler, 1985), e) 81 

pragmatic mass closure (PMC) (Harrison et al., 2003) and f) a new source-type identification 82 

method for PM2.5 known as Reduction and Species Clustering Using Episodes (ReSCUE) 83 

(Vedantham et al., 2014). PMF is the most reliable method for source-type identification for 84 

the following reasons: i) it uses a weighted least-squares fit and estimates error of the 85 

measured data and can impose non-negativity constraints weighing each data point 86 

individually (Paatero, 1997; Paatero and Tapper, 1994), ii) a priori knowledge of pollutants 87 

is not necessary and iii) it is able to deal with missing values, noisy data, outliers, and values 88 

below detection limit (Baumann et al., 2008; Khan et al., 2012; Khan et al., 2015b; Polissar et 89 

al., 1998a; Polissar et al., 1998b). A recent study by Gibson et al. (2014) suggested that PMF 90 

can resolve PM2.5 concentrations even below 2 µg m
-3 

more accurately compared to PMC and 91 

CMB.  92 
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Source apportionment studies of PM2.5 based on monsoonal seasonal changes in Malaysia are 93 

of widespread interest due to the influence of local sources as well as trans-boundary haze 94 

pollution. This haze pollution reaches its worst level during the south-west (SW) and north-95 

east (NE) monsoons each year. Therefore, the main objectives of this work are to investigate 96 

a) the monsoonal effect on the variability of PM2.5 and its chemical composition, b) factors 97 

influencing the sources of PM2.5 and c) to quantitatively characterize the non-carcinogenic 98 

and carcinogenic risks to the potentially-exposed human populations by selected heavy 99 

metals in PM2.5 released from the particular sources. The PM2.5 mass concentration 100 

contributed by each source will be calculated using PMF 5.0. 101 

 102 

2    Methodologies 103 

2.1    Description of the study area 104 

 Figure 1 shows the sampling location which is on the roof top of the Biology Building of the 105 

Faculty of Science and Technology (FST), University Kebangsaan Malaysia (UKM), 106 

Malaysia (2° 55' 31.91" N, 101° 46' 55.59" E, about 65 m above sea level). This site is less 107 

than 1 km from the main Bangi road.       108 

2.2    Sampling and analysis of PM2.5 samples 109 

Sampling was carried out on a 24 h basis for a period from July to September 2013 and 110 

January to February 2014 for a total of 27 samples. The PM2.5 samples were collected on 111 

quartz microfiber filters (203 mm×254 mm, Whatman
TM

, UK) through a PM2.5 high volume 112 

sampler (HVS, Tisch, USA) at a flow rate of 1.13 m
3
 min

-1
. Several others researchers also 113 

conducted sampling using the quartz microfiber filters for the analysis of trace metals (Li et 114 

al., 2015a; Martins et al., 2016; Kholdebarin et al., 2015; Cusack et al., 2015; Sánchez-115 

Soberón et al., 2015). Prior to use, the filters were preheated at 500 °C for 3 h to remove any 116 

deposited organic compounds. All filter papers either blank or exposed were conditioned in a 117 

desiccator for 24 h before and after sampling prior to weighing using a 5-digit high-resolution 118 

electronic balance (A&D, GR-202, Japan) with a 0.01 mg detection limit. The filter samples 119 

were then stored at -18 °C until the extraction procedure. A microwave-assisted digestion 120 

system (Start D, Milestone, Germany) was employed for the preparation of the trace element 121 

samples. The microwave was operated at two temperature stages, 180 °C for 20 min and 122 

ramping to 220 °C for 15 min. The power was set at 500 watts during the procedure when the 123 
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number of samples ≤ three. However, the power was set at 1000 watts if the number of 124 

samples exceeded three. A 4:1 ratio of 12 mL nitric acid (65%, Mark KGaA, Germany) and 3 125 

mL hydrogen peroxide (40%, Mark KGaA, Germany) was used as the reagent in this 126 

digestion process. A portion of the filter was soaked in the tetrafluoromethaxil (TFM) vessels 127 

(SK-10, Milestone, Germany) of the microwave where total mass of the sample and reagent 128 

was maintained below 0.25 g for quality assurance purposes. Upon completion, the samples 129 

were filtered using a syringe filter (Acrodisc
®

, 0.2 μm, Pall Gelman Laboratory, MI, USA) 130 

with a 50 cc/mL Terumo syringe (Terumo
®
, Tokyo, Japan) before dilution to 25 mL using 131 

ultrapure water (UPW, 18.2 MΩ cm, Easypure
®
 II, Thermo Scientific, Canada). For the 132 

preparation of samples for water-soluble ion analysis, a portion of the filter samples was cut 133 

into small pieces and placed directly into 50 mL centrifuge tubes with UPW. For this 134 

extraction, a combination of ultrasonic vibration, centrifuge and mechanical shaking were 135 

applied. The samples were first sonicated in an ultrasonic bath (Elmasonic S70H, Elma, 136 

Germany) for 20 min. Then, the extraction solutions were centrifuged at 2500 rpm (Kubota 137 

5100, Japan) for 10 min before shaken using a vortex mixer for 10 min. The sonication and 138 

centrifuged steps were repeated for two more times before the extract was filtered through 139 

glass microfiber filters (Whatman
TM

, UK). Both the trace elements and water-soluble ion 140 

extracts were refrigerated at 4 °C until further analysis. The trace elements (Al, Ba, Ca, Fe, 141 

Mg, Pb, Zn, Ag, As, Cd, Cr, Li, Be, Bi, Co, Cu, Mn, Ni, Rb, Se, Sr and V) were determined 142 

by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS, PerkinElmer ELAN 9000, 143 

USA) while the water-soluble ionic composition (Na
+
, NH4

+
, K

+
, Ca

2+
, Mg

2+
, Cl

-
, NO3

-
 and 144 

SO4
2-

) was determined using Ion Chromatography (Metrohm 850 model 881 Compact IC 145 

Pro, Switzerland). Metrosep A-Supp 5-150/4.0 and C4-100/4.0 columns were used in the 146 

determination of cations and anions, respectively. 1.7 mmol L
-1

 nitric and 0.7 mmol L
-1

 147 

dipicolinic acid (Merck KGaA, Germany) were prepared to be used as eluents for cations. 148 

Eluents of 6.4 mmol L
-1

 sodium carbonate (Na2CO3) (Merck KGaA, Germany) and 2.0 mmol 149 

L
-1

 sodium bicarbonate (NaHCO3) (Merck KGaA, Germany) were prepared and used to 150 

measure anions (Cl
-
, NO3

-
 and SO4

2-
) with a flow rate of 0.7 mL min

-1
. 100 mmol L

-1
 151 

Suprapur
®
 sulfuric acid (H2SO4) (Merck KGaA, Germany) was also prepared to use as a 152 

suppressor regenerant and ions were detected by a conductivity detector.   153 

2.3    Quality assurance and quality control (QA/QC)  154 



 6 

As part of QA/QC, the concentrations of the composition of PM2.5 were corrected from the 155 

reagent and filter blanks samples, which were treated with a similar procedure to the exposed 156 

filters. To determine the recovery (%) of the heavy metals, a standard reference material 157 

(SRM), Urban Particulate Matter SRM 1648a obtained from the National Institute of 158 

Standards and Technology (NIST), USA, was treated using the procedures outlined above. 159 

The method detection limit (MDL) for trace elements is calculated as three times the standard 160 

deviation of ten replicates of the reagent blank. Three samples of filter blanks were used to 161 

calculate the MDL of water-soluble ions. Overall MDL were as reported in Table 1. During 162 

the trace element analysis by ICP-MS, two modes of analysis were applied with updated 163 

calibration curves each time. Based on trial runs and SRM1648a, the elements were initially 164 

screened for concentration levels which resulted in two modes analysis: (a) a set of metals 165 

(Al, Ca, Fe, Mg, Zn and Mn) with high concentrations (with several dilution factors); and (b) 166 

a set of metals (Ba, Pb, Ag, As, Cd, Cr, Li, Be, Bi, Co, Cu, Ni, Rb, Se, Sr and V) with low 167 

concentrations.  168 

2.4    Local circulation of wind and biomass fire hotspots 169 

Each year, Peninsular Malaysia experiences two monsoon regimes, the south-west (SW) 170 

monsoon (June-September) and the north-east (NE) monsoon (December-March). During the 171 

SW monsoon, south-west winds dominate the wind pattern in Peninsular Malaysia, inducing 172 

drier weather. During the NE monsoon, strong north-east winds dominate over the Peninsular 173 

Malaysia, bringing more rainfall to the east coast. To investigate this, the regional synoptic 174 

wind field 10 m above the surface and resolution of 0.25 × 0.25° ranging from latitude: -10°, 175 

25° N, longitude: 85°, 125° E was plotted using Open Grid Analysis and Display System 176 

(GrADS version 2.0.2). The wind field used to demonstrate the monsoon regimes in this 177 

study is a gridded product produced by the global atmospheric reanalysis known as ERA-178 

Interim, by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et 179 

al., 2011). 180 

The ERA-Interim 10 m surface wind vectors (January 2004 to June 2014) show the two 181 

opposite monsoon regimes experienced by Peninsular Malaysia (Fig. 2). It can be seen that 182 

the south-west wind, from June to August, blew from Sumatra Island, Indonesia to Peninsular 183 

Malaysia was generally weaker with wind speed around 1-2 m s
-1

. Whereas the north-east 184 

wind, from November to January, was much stronger, with wind speeds of around 5-7 m s
-1

 185 

(Fig. 2). 186 



 7 

Biomass fire hotspots and the travel path of the monthly back trajectories of each season were 187 

also plotted (Fig. 3). The mean clusters of back trajectories were produced using the Hybrid 188 

Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT 4.9), and were re-plotted 189 

using the graphical software, IGOR Pro 6.0.1 (WaveMetrics, OR, USA). A release height of 190 

about 500 m for 120 h back trajectories with 6 h intervals was chosen. Trajectory start time 191 

was chosen at 16:00 (UTC) to represent 24:00 (local time). The cluster mean of trajectories 192 

was regarded by numeral number and colour (1-red, 2-green, 3-turquoise, and 4-purple). The 193 

fire hotspot data of the Moderate Resolution Imaging Spectroradiometer (MODIS) was used 194 

to investigate the biomass burning hotspots in the specific area of interest. The data was 195 

downloaded from the National Aeronautics and Space Administration (NASA)-Land 196 

Atmosphere near Real-Time Capability for Earth Observing System (EOS)-Fire Information 197 

for Resource Management System (NASA LANCE FIRMS) fire archive covering an area 198 

from 15°S to 30°N and 80°W to 130°E. In addition, to investigate the variability of the 199 

boundary layer height around the region of Peninsular Malaysia, ERA-Interim boundary 200 

layer height (BLH) gridded data from January 2000 to December 2014 was downloaded from 201 

the European Centre for Medium-Range Weather Forecasts (ECMWF). The resolution of this 202 

data was 0.5° × 0.5°, covering the domain of the Peninsular Malaysia (lat: 99 – 105°; lon: 0 – 203 

9°). Yearly daily means of the ERA-Interim BLH data were calculated using the Climate Data 204 

Operators (CDO) version 1.6.9 software (https://code.zmaw.de/projects/cdo) developed by 205 

the Max-Plank-Institute, by first calculating the area mean.  206 

2.5    Enrichment Factor (EF) 207 

The EF of the heavy metals was calculated based on the abundance of elements in the Earth’s 208 

crust published by Taylor (1964). The EF of each element can be defined using the following 209 

equation: 210 

𝐸𝐹 =
 
𝐸

𝐴𝑙
 
𝑃𝑀 2.5

 
𝐸

𝐴𝑙
 
𝐶𝑟𝑢𝑠𝑡

         (1) 211 

where E/Al is the concentration ratio of element, E, to the reference metal, Al. Al was 212 

selected as the reference element to calculate the annual and seasonal EF. Several other 213 

researchers also used Al as the reference element (Birmili et al., 2006; Khan et al., 2010a; 214 

Sun et al., 2006). Chester et al. (2000); Cheung et al. (2012); Khan et al. (2010a); Mohd Tahir 215 

et al. (2013); Torfs and Van Grieken (1997) proposed a EF cut-off of ten to differentiate 216 

between  crustal and natural and anthropogenic origins of heavy metals. Thus, we consider 217 
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EF = 10 as the cut-off point. Therefore, a good number of the metals (Zn, Cr, Rb, Be, V, Fe, 218 

Ca, Co, Sr, Pb, As and Bi) in PM2.5 in this study can be assumed to originate from 219 

anthropogenic sources; Fig. 5a. These heavy metals were not natural or from the Earth’s 220 

crust. No seasonal differences were observed in the EF of the heavy metals. 221 

2.6    Mass closure model 222 

A study by Harrison et al. (2003) introduced a PMC model for the source apportionment of 223 

particulate matter, which is the basis for this study. The variables were grouped into the 224 

following four sub-classes: i) mineral matter (MIN), ii) sea salts (SS), iii) secondary 225 

inorganic aerosol (SIA), iv) trace elements (TE) and v) undefined (UD). MIN is derived from 226 

the sum of Al, Mg, K, Ca, and Fe multiplied by the appropriate factors to convert them into 227 

their corresponding oxides as described by the following Eq. (2). Ca was multiplied by a 228 

factor of 1.95 to account for CaO and CaCO3 as this metal is assumed to be present in these 229 

two forms (Remoundaki et al., 2013; Sillanpää et al., 2006; Terzi et al., 2010)  230 

 231 

𝑀𝐼𝑁 = 1.89𝐴𝑙 + 1.66𝑀𝑔 + 1.21𝐾 + 1.95𝐶𝑎 + 1.43𝐹𝑒              (2) 232 

 233 

The contribution of SS was estimated by assuming that soluble Na
+
 in PM2.5 samples 234 

originated solely from the marine source and is based on the composition of seawater, 235 

ignoring potential atmospheric transformation (Seinfeld and Pandis, 2012). Following Terzi 236 

et al. (2010), the composition of sea salt comprised of the following Eq. (3) 237 

  238 

𝑆𝑆 =   𝑁𝑎+ +  𝑠𝑠-𝐶𝑙− +  𝑠𝑠-𝑀𝑔2+ +  𝑠𝑠-𝐾+ +  𝑠𝑠-𝐶𝑎2+ +  𝑠𝑠-𝑆𝑂4
2−    (3) 239 

 240 

where, ss-Cl
-
 = 1.8*Na

+
, ss-Mg

2+
 = 0.12*Na

+
, ss-K

+
 = 0.036*Na

+
, ss-Ca

2+
 = 0.038*Na

+
 and 241 

ss-SO4
2-

 = 0.252*Na
+
. Meanwhile, SIA can be estimated by the sum of non-sea salt-sulfate 242 

(nss-SO4
2-

), NO3
-
 and NH4

+
 as explained by Remoundaki et al. (2013); Terzi et al. (2010) 243 

with the following Eq. (4) 244 

 245 

𝑆𝐼𝐴 =  𝑛𝑠𝑠-𝑆𝑂4
2− +  𝑁𝑂3

− +  𝑁𝐻4
+          (4) 246 

 247 

Finally, TE is calculated by the sum of rest of the metals analysed in this study and UD 248 

represents unidentified gravimetric mass of PM2.5. Therefore, the overall mass closure 249 

equation applied in this work can be expressed as the following Eq (5) 250 

 251 
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𝑃𝑀2.5 𝑀𝐶 = 𝑀𝐼𝑁 1.89𝐴𝑙 + 1.66𝑀𝑔 + 1.21𝐾 + 1.95𝐶𝑎 + 1.43𝐹𝑒 + 

𝑆𝑆   𝑁𝑎+ +  𝑠𝑠-𝐶𝑙− +  𝑠𝑠-𝑀𝑔2+ +  𝑠𝑠-𝐾+ +  𝑠𝑠-𝐶𝑎2+ +  𝑠𝑠-𝑆𝑂4
2−  +252 

𝑆𝐼𝐴  𝑛𝑠𝑠-𝑆𝑂4
2− +  𝑁𝑂3

− +  𝑁𝐻4
+  + 𝑇𝐸 + 𝑈𝐷         (5) 253 

2.7    Source Apportionment of PM2.5 using PMF 254 

Source apportionment of PM2.5 was conducted using the US EPA PMF 5.0 model of the 255 

United States Environmental Protection Agency (US EPA) as suggested by Norris et al. 256 

(2014). The PMF model is a mathematical factor-based receptor model that interprets source 257 

types with a robust uncertainty estimate. Two sets of data were run through the PMF model: 258 

i) concentration and ii) uncertainty. The concentration of each element was pretreated and 259 

validated based on the outliers, missing values and/or values below MDL. In particular, 260 

variables with outliers were excluded. Species with concentrations below MDL were 261 

replaced with the half of the MDL (Baumann et al., 2008; Polissar et al., 1998a; Polissar et 262 

al., 1998b). The uncertainty value of each variable of each sample was calculated following 263 

the empirical formula Eq. (6): 264 

𝜎𝑖𝑗 = 0.01 𝑋𝑖𝑗 + 𝑋𝑗          (6) 265 

Where 𝝈𝒊𝒋 is the estimated measurement error for j
th

 species in the i
th

 sample, 𝑿𝒊𝒋 is the 266 

observed elements concentration and 𝑿𝒋
    is the mean value. The factor 0.01 was determined 267 

through trial and error procedures following by Ogulei et al. (2006a). Thus, the measurement 268 

of uncertainty (𝑺𝒊𝒋) can be computed with Eq. (7) as applied by Chueinta et al. (2000): 269 

𝑆𝑖𝑗 = 𝜎𝑖𝑗 + C𝑋𝑖𝑗         (7) 270 

Where 𝝈𝒊𝒋 the estimation of measurement error (Eq. 6) and C is a constant. In this study, we 271 

used a value of 0.4 for C which, according to Ogulei et al. (2006b), produced the best Q value 272 

as it is the closest to theoretical value and physically interpretable results. Other main 273 

researchers have also applied this procedure for the calculation of uncertainty (Harrison et al., 274 

2011; Hedberg et al., 2005; Khan et al., 2015b). An additional 5% uncertainty was added to 275 

cover any methodological errors during the preparation of filter papers, gravimetric mass 276 

measurements and preparing the calibration curves.  277 

Initially, PMF factors were resolved using the numbers of 20 runs with a seed value of 9. The 278 

number of factors was changed to optimize the goodness-of-fit parameter of Q over the 279 
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theoretical Q. Five factors were decided upon based on the lowest Q (Robust) and Q (True) 280 

value of 180.26 with the Q (true)/Qexp value of 0.50 after 604 computational steps and the 281 

convergence of the PMF results. The Q/Qexp ratio for most of the variables was < 5 to 0.92 282 

which indicates that the Q values were very similar to the expected value. Some of the 283 

variables, however, showed a ratio of 0.5 because the computed Q value were smaller than 284 

the expected Q value. A study by Brown et al. (2012) described this discrepancy as 285 

contributing to the increase of global uncertainty. However, the sharp drop for PM2.5 mass 286 

ratio (0.03) was due to the down-weighting of the signal to noise (S/N) values. To show the 287 

stability of the results, we estimated the error of the concentration for each variable using 288 

bootstrap, displacement (DISP) and a combination of BS-DISP. A comparison of the error 289 

estimates with base model runs are demonstrated in the supplementary Fig. S1. The five-290 

factor results were relatively stable with meaningful physical interpretation and satisfactorily 291 

comparable with the bootstrap analysis. Fe and Cr were reported as outliers and therefore 292 

excluded in the calculation. Referring to Table 2, the overall PM2.5 concentration is well 293 

explained within ±10% by the PMF 5.0 considering the Fpeak = 0.  294 

2.8    Health risk assessment (HRA) of PM2.5 and associated various sources 295 

The human health risk posed by heavy metals may occur through inhalation of PM2.5. We 296 

applied the US EPA supplemented guidance to estimate the risk posed by heavy metals in 297 

PM2.5 mass concentration and their various sources. As part of the HRA, we considered 298 

lifetime non-carcinogenic and carcinogenic risk. USEPA (2011) describes the exposure 299 

concentration (EC) by the following equation: 300 

𝐸𝐶𝑖𝑛𝑕 = 𝐶 ×
𝐸𝑇×𝐸𝐹×𝐸𝐷

𝐴𝑇𝑛
                                                                                     (8) 301 

Where C is the concentration of metals in PM2.5 estimated for each source with μg m
-3

 unit 302 

for the estimation of ECinh; EF is the exposure frequency (151 days year
-1

) representing July, 303 

August, September, January and February; ED is exposure duration (24 years for adult); BW 304 

is the average body weight (70 kg for adult); ET is the exposure time (h/day); ATn is the 305 

average time (ATn = ED × 365 days × 24 h/day for non-carcinogenic and ATn = 70 year × 306 

365 days/year × 24 h/day for carcinogenic risk). ED, BW and AT values are based on the 307 

study by Hu et al. (2012).  308 

 Further, we examined the non-carcinogenic risk (presented by the hazard quotient (HQ)) and 309 

lifetime carcinogenic risk (LCR) of selected heavy metals as classified by the International 310 
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Agency for Research on Cancer (IARC). The following equations were involved for the 311 

calculation of HQ and LCR: 312 

𝐻𝑄 =
𝐸𝐶

 𝑅𝑓𝐶𝑖×1000 𝜇𝑔  𝑚−3 
                                                  (9) 313 

𝐿𝐶𝑅 = 𝐼𝑈𝑅 × 𝐸𝐶                                                      (10) 314 

Where, RfCi is the inhalation reference concentration (mg m
-3

); IUR is the inhalation unit risk 315 

((μg m
-3

)
-1

). The non-carcinogenic risk or HQ represents the observable health effects from 316 

exposure to the PM2.5 based on the dose-response relationship principles. The cut-off point 317 

for significant health risks to the exposed population is HQ > 1. The carcinogenic risk refers 318 

to a person's chance of developing cancer from exposure to any carcinogenic agent. LCR 319 

represents the excess lifetime cancer risk is described in terms of the probability that an 320 

exposed individual will develop cancer because of that exposure by age 70 as defined by US 321 

EPA Risk Communication 322 

(http://www.epa.gov/superfund/community/pdfs/toolkit/risk_communicati-323 

onattachment6.pdf).  The carcinogenic risk from the lifetime exposure of those hazardous 324 

metals is regulated by the acceptable or tolerance level (1 × 10
-6

) set by the US EPA which 325 

corresponds to lifetime exposure to an unpolluted environment (Satsangi et al., 2014). 326 

 327 

 328 

3    Results and Discussions 329 

3.1    Concentration of PM2.5 and its chemical composition 330 

Table 1 summarizes the statistics from the SW monsoon, the NE monsoon and overall 331 

concentrations of PM2.5, heavy metals and major ions. Overall, the 24 h average values of 332 

PM2.5 (avg = 25.13 µg m
-3

) in the study area are slightly higher than that of the WHO 24 h 333 

guideline (25 μg m
-3

) but lower than that of 24 h US EPA National Ambient Air Quality 334 

Standard (NAAQS) (35 μg m
-3

). Of the samples taken during the day, 48% exceeded the 335 

WHO 24 h guideline while 19% of them exceeded the US EPA 24 h NAAQS for PM2.5 336 

(Currently Malaysia has no set guidelines for PM2.5).  If we compare the PM2.5 overall value 337 

of 25.13 µg m
-3

 with yearly mean of US EPA NAAQS (15 µg m
-3

), WHO (10 µg m
-3

), 338 

European Union (EU) (25 µg m
-3

), DoE (Australia) (8 µg m
-3

), the concentration of PM2.5 is 339 

much higher with respect the guideline set by all regulatory bodies. The average value of 340 

PM2.5 during the NE monsoon was slightly higher than the SW monsoon. During the 341 

http://www.epa.gov/superfund/community/pdfs/toolkit/risk_communicati-onattachment6.pdf
http://www.epa.gov/superfund/community/pdfs/toolkit/risk_communicati-onattachment6.pdf
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southwest monsoon season, PM2.5 was mainly carried by the prevailing southwest wind from 342 

the Sumatra Island of Indonesia which is located at the Southwest quadrant of the SEA 343 

region. On the other hand, during the northeast monsoon season, the PM2.5 sources can be 344 

traced back to the Chinese mainland, Indochina region and the Philippines. This is due to the 345 

prevailing northeast wind transporting PM2.5 from these locations to the tropical region of 346 

SEA. The Student T-test for paired independent samples showed that the mean during these 347 

two monsoons varies insignificantly (t = 1.19, p >0.05). However, the monsoonal changes in 348 

this region as displayed in Fig. 3, showed that air masses of different origins transport 349 

different pollutants to the area. The back trajectory plots showed that there were high 350 

numbers of biomass fire hotspots during both seasons but from different regions (Fig. 3). The 351 

period of June to September is the dry season each year in Malaysia and Sumatra of 352 

Indonesia. During this dry season, biomass fire hotspots are densely located in this area due 353 

to the burning of agricultural waste and forest fires. Several other researchers also reported 354 

the high number of biomass fire - related hotspots to these regions (Khan et al., 2015c; 355 

Sahani et al., 2014). On the other hand, December to March is usually the wet season in 356 

Malaysia. However, the backward trajectories showed that air masses were transported from 357 

Mainland China and neighbouring regions. In Mainland China and neighbouring regions, this 358 

is dry season. During the dry season in this region there are a lot of fires, as reported by 359 

Zhang et al. (2015) and Ho et al. (2014), and this influences the pollution of air masses 360 

transported to the present location. This scenario of biomass fire hotspots is commonly 361 

noticed in these two seasons. In past years Malaysia and Singapore have experienced 362 

intensified haze episodes in this particular season, e.g. 1997, 2005, 2013 and 2015. A study of 363 

this area by Kanniah et al. (2014) observed that during the dry season (June to September) 364 

aerosols mainly originated from the west and south-west (i.e. Sumatra, Indonesia), while 365 

during the wet season (November to March), aerosols were mostly associated with the NE 366 

monsoon winds coming from the South China Sea.  Also, the variability of BLH and WS 367 

were able to influence the concentration of the pollutants at a particular location. Fig. 4 shows 368 

the day to day variation of BLH and WS with respect to the 24 h average of PM2.5 369 

concentration. From the plot, it is revealed that the daily average PM2.5 concentration is 370 

inversely proportional to the BLH. Therefore, while factors such as traffic volume, industrial 371 

emissions, power plants, land use and population size can alter the concentration of PM2.5, 372 

meteorological factors which govern the day to day variation of BLH in Peninsular Malaysia 373 

might play a crucial role too. These meteorological factors can include strong local 374 

convection, which is a very common meteorological feature in this region, and also the 375 
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movement of air via a land-sea breeze due to the sea surrounding Peninsular Malaysia. A 376 

study by Lelieveld et al. (2001) reported that strong convection can ventilate the daily BLH. 377 

The small expansion of BLH that was observed during NE monsoon was most likely due to 378 

the higher magnitude of WS to Peninsular Malaysia during this season, as demonstrated in 379 

Fig. 2. 380 

In comparison, our results of PM2.5 here on the west coast of Peninsular Malaysia (avg = 381 

25.13 µg m
-3

) are higher compared to the east coast of Peninsular Malaysia at 14.3 µg m
-3

 382 

(Mohd Tahir et al., 2013). This PM2.5 concentration in this study area was similar to the 383 

annual concentration of PM2.5 measured in Petaling Jaya, Kuala Lumpur (26.85 µg m
-3

) by 384 

Rahman et al. (2011), Petaling Jaya (33 µg m
-3

) and Gombak (28 µg m
-3

) by Keywood et al. 385 

(2003) and Singapore (27.2 µg m
-3

) as reported by Balasubramanian et al. (2003). The yearly 386 

mean value of PM2.5 in the Bandung urban area and suburban location in Lembang of 387 

Indonesia are 14.03 and 11.88 µg m
-3

, respectively (Santoso et al., 2008), which are much 388 

lower concentration compared to the this study. However, Lestari and Mauliadi (2009) 389 

reported that the PM2.5 concentration of 43.5 µg m
-3

 in the Bandung city, Indonesia, was 390 

about 1.7 times larger than that of the current location and by Budhavant et al. (2015) showed 391 

19 µg m
-3

 in Male, Maldives (urban) which is lower as well compared to this study. A 392 

comparative study conducted in Bangkok (34 µg m
-3

), Beijing (136 µg m
-3

), Chennai (44 µg 393 

m
-3

), Bandung (45.5 µg m
-3

), Manila (43.5 µg m
-3

) and Hanoi (78.5 µg m
-3

) showed 394 

consistently higher PM2.5 pollution in the Southeast and South Asian cities as compared to 395 

this study (Kim Oanh et al., 2006). From Table 1, it can be seen that the highest concentration 396 

of anions species was found for SO4
2-

 followed by NO3
-
. A study by Zhang et al. (2012) 397 

suggested that the photochemical conversion of SO2 to H2SO4 is the main reason for the 398 

changes of sulfate concentration in PM2.5 and that higher temperatures reduce the nitrate 399 

concentration by the partitioning of nitrate into the gas phase. However, lower temperatures 400 

and a stable atmosphere favours the formation of NO3
-
 aerosol reacting with NH4

+
, i.e. 401 

shifting the gas phase nitrate into the particle phase (Mariani and de Mello, 2007). The 402 

formation of NH4NO3 normally occurs at high humidity with lower temperatures (Morales 403 

and Leiva, 2006). The average molar ratios of SO4
2-

 to NO3
-
 were 6.0 with a range of 0.16 – 404 

38.24 which suggests that the sulfate aerosol is more dominant over the nitrate aerosol and 405 

may have been transported from trans-boundary sources. A similar observation was found in 406 

a study in the UK by Abdalmogith and Harrison (2006). This ion balance ratio indicates the 407 

possible sources of aerosol, and stationary sources dominate over the mobile sources as 408 
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explained by Arimoto et al. (1996). The average ratio of SO4
2-

 to NH4
+
 was 1.28 which is 409 

much higher than the ratio of NO3
-
 to NH4

+
 (0.63), confirming that the sulfate aerosol is more 410 

stable in tropical conditions as compared to the nitrate aerosol. A study by Maenhaut et al. 411 

(2008) described a similar observation. The formation of ammonium sulfate is favoured in 412 

the fine fraction (Khan et al., 2010b). For the cations, the highest concentration was NH4
+
 413 

followed by Na
+
. However, the average molar ratio of Cl

-
 to Na

+
 did not reflect the seawater 414 

ratio. ―Cl loss‖ may be the cause of the drop in Cl
-
 to Na

+
 ratio. Boreddy et al. (2014) also 415 

noticed a chlorine depletion due to atmospheric processing in the western north Pacific. 416 

According to Finlayson-Pitts and Pitts Jr. (2000), sulfuric and nitric acids have a tendency to 417 

react rapidly with NaCl, the major component of sea salt particles, to produce gaseous HCl 418 

under 50–100% relative humidity conditions. For heavy metals, the predominant metal 419 

reported was Fe with concentrations in the range 2171 - 4567 ng m
-3

. Ca showed the second-420 

highest concentrations with the concentration range of below MDL - 3149 ng m
-3

.  A study 421 

by Yin and Harrison (2008) suggested that Fe originates from non-traffic sources and that 422 

iron and calcium are released into ambient air through the resuspension of surface dust. 423 

Among other heavy metals of particular health concern, the average concentrations of As, Pb, 424 

Cd, Ni, Mn, V and Cr were 5.76, 21.84, 0.54, 4.03, 17.24, 5.13 and 107.68 ng m
-3

, 425 

respectively. The As concentration was nearly equal to the WHO and US EPA guideline 426 

values of 6.6 and 6 ng m
-3

, respectively. Therefore, As may be of significant health concern. 427 

The concentrations of other hazardous metals were well below the WHO and European 428 

commission guidelines. The EF reveals that all metals of PM2.5 can be assumed to originate 429 

from anthropogenic sources with no seasonal differences observed (Fig. 5a).  430 

3.2    Mass closure model 431 

The PM2.5 was reconstructed by the use of a PMC model (Harrison et al., 2003). Employing 432 

the mass closure model outlined in the previous section, the four major classes of chemical 433 

components contributing to PM2.5 were: i) MIN, ii) SIA, iii) SS, iv) TE and UD. As shown in 434 

Fig. 5c, the overall reconstructed masses of MIN, SIA, SS, TE and UD were 8970, 2841, 435 

1727, 626.2 and 11511 ng m
-3

, respectively. MIN is released from soil or crustal sources and 436 

represents the oxide form of the metals (Remoundaki et al., 2013; Sillanpää et al., 2006; Terzi 437 

et al., 2010). The MIN component comprises 35% of the PM2.5 concentration. SIA, which 438 

accounts for 11%, is comprised of the most abundant secondary ions (nss-SO4
2-

, NO3
-
 and 439 

NH4
+
). These are formed in the atmosphere from the precursor gases (SO2, NH3 and NOx) 440 
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through a gas-to-particle conversion (Sillanpää et al., 2006) and therefore are assumed to be 441 

in the form of (NH4)2SO4 and NH4NO3 in the aerosol phase (Joseph et al., 2012). It is 442 

important to mention that the behaviour of the formation pattern of the SIA in this South East 443 

Asia region may differ from other regions due to the nearly constant temperature throughout 444 

the year. SS and TE accounted for 7% and 2% of the PM2.5. The UD, undefined fraction, 445 

accounted for 45% of PM2.5.  446 

The average value of reconstructed PM2.5 by mass closure (MC) is 14.12±4.32 μg m
-3

 with a 447 

minimum of 6.70 μg m
-3 

and a maximum of 24.19 μg m
-3

. On the other hand, the measured 448 

PM2.5 determined gravimetrically by HVS was 25.13±9.21 μg m
-3

 with a range of 7.01 to 449 

42.78 μg m
-3

. A correlation plot of PM2.5 (MC) and measured PM2.5 (HVS) is shown in Fig. 450 

5e. The correlation shows a good fit (r
2
 = 0.98) with a slope of 0.46 and an intercept of 1.93. 451 

The results of the fit parameters suggest that the PM2.5 mass (MC) concentration was 452 

underestimated compared to PM2.5 (HVS). The reported result of the mass closure model is 453 

based on the analyzed chemical components of filter samples (~ 55%). As described in the 454 

mass closure, a large portion of PM2.5 mass (~ 45%) was left unidentified; this unidentified 455 

component is believed to be the organics or carbonaceous species.  Elemental carbon (EC), 456 

organic carbon (OC) and water-soluble organics were not measured due to the lack of 457 

instrumentation. Other possible reasons for the un-identified portion are: i) unaccounted for 458 

mineral oxides as they are abundant in PM2.5, and ii) water associated with salts.  459 

During the SW monsoon, the UD showed the higher concentrations; this can be explained by 460 

the annual biomass haze episodes experienced in this area. Thus, a large proportion of the UD 461 

of PM2.5 is probably formed from the organic fraction. Such findings are consistent with a 462 

study conducted by Abas and Simoneit (1996) which also found that the concentrations of 463 

organic compounds observed were greater during the haze episodes than any other periods in 464 

a year, and that some of them are suspected to be transported from trans-boundary sources.  465 

The seasonal variability of the results obtained from the mass closure model is shown in Fig. 466 

5c. The reconstructed masses of MIN, SIA and SS were higher in the NE than the SW 467 

monsoon. These haze events were very likely caused by the slash-and-burn activities 468 

practiced by the agriculture industries, and the occurrence of forest fires during this dry 469 

season. The regional trans-boundary pollution during the NE and SW monsoon is the 470 

underlying reason for the change in the chemical component concentrations as well as the 471 

overall PM2.5.  472 

 473 



 16 

3.3    Identification and apportionment of PM2.5 sources 474 

Using US EPA PMF 5.0, the five identified sources of PM2.5 were i) mineral and road dust, 475 

ii) motor vehicle emissions and biomass burning, iii) nitrate aerosol, iv) coal burning and v) 476 

marine and sulfate aerosol. Each of the source profiles is shown in Fig. 6a which 477 

demonstrates the concentration and percentage of the variables to each factor. The reported 478 

PMF analysis is based on the chemical components of filter samples. As described in the 479 

mass closure, a large portion of the PM2.5 mass fraction (about 45%) was not apportioned. In 480 

the PMF 5.0 procedure, the contributions of five factors were estimated and then the 481 

integrated contribution of the five factors was regressed over the measured PM2.5 (HVS). The 482 

regression fit line was forced through the origin. Thus, our regression of the PM2.5 (PMF) and 483 

PM2.5 (HVS) showed that the PM2.5 had been reproduced by PMF 5.0 with an error of less 484 

than 10% and the correlation of  PM2.5 (PMF) and PM2.5 (HVS) showed a strong and 485 

significant correlation (slope = 0.91, r
2
 = 0.88, p < 0.01) (Fig. 6b).  To evaluate the results of 486 

the PMF model, the regression between predicted and observed data for each variable is 487 

shown during the operation. A linear correlation between the predicted and measured mass 488 

represents the goodness-of-fit of linear regression. Our values strongly suggested that the five 489 

identified sources could be readily interpreted. 490 

 491 

Factor component one: the predominant tracers are Mg, Zn, Cu, Ni and Ca
2+

. The mineral or 492 

natural fugitive dust component is identified based on the presence of Mg (52% of the Mg 493 

mass), Ca
2+

 (42% of Ca
2+

 mass), Ca (28% of Ca mass) and Al (19% of Al mass), as shown in 494 

Table 2. Many other researchers cite these metals as markers for a mineral dust source 495 

(Dall'Osto et al., 2013; Moreno et al., 2013; Mustaffa et al., 2014; Viana et al., 2008; Waked 496 

et al., 2014). The possible cause of the mineral dust is the rapid development activities such 497 

as construction, renovation of road surface etc, around this suburban region. Airborne soil 498 

and construction material are the key sources of mineral dust (Dai et al., 2013; Gugamsetty et 499 

al., 2012; Huang et al., 2014). Cu, Zn and Ba are associated with road dust due to the release 500 

of these metal markers from cars from non-exhaust sources (Amato et al., 2011). Several 501 

studies identified that Cu is released from brake wear or the brake pads/tailpipes of cars 502 

(Wåhlin et al., 2006) while Zn originates from tire wear (Dall'Osto et al., 2013) and additives 503 

in cars as lubricant (Ålander et al., 2005). A study by Wang and Hopke (2013) suggested that 504 

Ni was emitted from gasoline engine and road dust sources. Ni (18% of Ni mass) and V (20% 505 

of V mass) are moderately presented in this factor component which shows the existence of 506 
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heavy lubricating oil combustion (Amato et al., 2011). The average contribution of mineral or 507 

natural fugitive and road dust sources to the PM2.5 was 3.17 μg m
-3

 or 13%.   508 

Factor component two: contains substantial Pb, NH4
+
 and K

+
. Motor vehicle emissions and 509 

biomass burning sources accounted for 7.47 μg m
-3

 or 31% of the total PM2.5 concentration, 510 

which makes these the largest sources contributing to the PM2.5 concentration. Pb along with 511 

the moderately enriched metals As, Cd, Zn, Ni and V (Fig. 5a, refer to previous section for 512 

detail), represents a motor vehicle emission source (Wu et al., 2007). The brake wear dust of 513 

motor vehicles contains Pb (Garg et al., 2000). A study by Begum et al. (2010) conducted in 514 

Dhaka and by Santoso et al. (2013) at roadsides in Jakarta defined Pb in PM2.5 releasing from 515 

the pre-existing road dust by PMF. Choi et al. (2013) also introduced Pb in PM2.5 as a tracer 516 

for the motor vehicle source. Zn is released from the wear and tear of tyres 517 

(Srimuruganandam and Shiva Nagendra, 2012). Further, Zn in PM2.5 appeared to have a 518 

motor vehicle source as resolved by PMF, due to its use as fuel detergent and anti-wear 519 

additive (Brown et al., 2007). Ni and V were widely reported in the literature as markers for 520 

the combustion of engine oil or residual oil combustion (Gugamsetty et al., 2012; Han et al., 521 

2006; Huang et al., 2014; Yu et al., 2013). Pb is no longer used as an additive in gasoline 522 

fuel. Thus, the Pb does not reflect the emissions from engine combustion but does reflect 523 

those from a non-exhaust traffic source. A study conducted by Rahman et al. (2011) in Kuala 524 

Lumpur investigating Pb in PM2.5 found that it originated from the soil dust source, indicating 525 

the influence of road dust. Also, coal combustion is a predominant source of Pb (Tao et al., 526 

2014). The K
+
 ion has been widely cited in the literature as an excellent tracer representing a 527 

wood or biomass burning source (Dall'Osto et al., 2013; Kim and Hopke, 2007; Mustaffa et 528 

al., 2014; Wahid et al., 2013). The biomass burning source is generally comprised of either 529 

wood burning as residential fuel, agriculture residue/waste, and/or wild forest fires. In Kuala 530 

Lumpur, the biomass burning source was described due to the presence of K from PM2.5 531 

measured by Particle Induced X-ray Emission (Rahman et al., 2011). During the episode of 532 

biomass burning in Chengu, China, K
+
 and other related tracers in PM2.5 were increased by a 533 

factor of 2 -7. In this suburban region, the smoke emissions released due to the burning of 534 

wheat straw, rape straw and other biomass fuel for domestic cooking or heating purposes 535 

(Tao et al., 2013). K
+
 is also mainly emitted from biomass burning in the suburb of 536 

Shenzhen, China (Dai et al., 2013), Beijing, China (Yu et al., 2013; Zhang et al., 2013) and 537 

Colombo, Sri Lanka (Seneviratne et al., 2011). In Seoul, Korea, biomass burning is 538 

characterised by the presence of K and other related markers in PM2.5. The character of 539 

burning in this East Asian city is typically post-harvest field burning, biofuel  burning for 540 
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heating and cooking as well as forest fire from the outside of the city (Heo et al., 2009). Thus, 541 

the local and regional transport of smoke from the burning sources contribute to this factor. 542 

Hong Kong experiences the influence of biomass burning in PM2.5 due to its transboundary 543 

origin (Huang et al., 2014).  During the sampling period in the SW monsoon, the MODIS 544 

detected a very high number of fire counts over the Sumatra Island. In this monsoon season, 545 

the wind will consistently travel from the southwest direction, bringing air masses from these 546 

burning areas to Peninsular Malaysia. During the NE monsoon, on the other hand, the wind 547 

will travel from the northeast direction, bringing air masses from the China mainland, 548 

Indochina and the Philippines to Peninsular Malaysia. In this period of time, a high density of 549 

fire locations were found on the Indo-China and China mainland. Zhang et al. (2015) 550 

demonstrate that during the dry season there is important biomass burning activity in the 551 

Pearl River Delta (China), which can result in trans-border transport and a regional scale 552 

character of biomass burning. Therefore under the north-east monsoonal regime it is possible 553 

that outflow from that area can maybe influence the specific area. A study by Streets et al. 554 

(2003) estimated that China contributes 25% to the total biomass burning in Asia and showed 555 

a good agreement between national estimate of biomass burning and adjusted fire count. 556 

Yang et al. (2013) applied spatial-temporal features of fire counts and observed that the study 557 

area of Heilongjiang Province, China was seriously affected by forest fires during 2000-2011. 558 

Reid et al. (2013) reported a high intensity of fire counts in Vietnam/China region in April  559 

and in Indonesia during September. Khan et al. (2015a) also reported a high density of fire 560 

locations in Thailand, Vietnam and Laos during February and Sahani et al. (2014) reported 561 

many in the same regions during June-September. The biomass burning is the dominant 562 

source of trace gas and particulate matter and the fire emissions are mainly concentrated in 563 

Indonesia, Thailand, Myanmar and Cambodia (Chang and Song, 2010). Further, a 564 

comparison of nss-K
+
 with the respective total K

+
 is shown in Fig. 5b. The correlation of nss-565 

K
+
 as a function of total K

+
 showed a strong correlation coefficient (r

2 
= 0.95) which suggests 566 

that K
+
 can be used as a biomass tracer. K

+
 may also be emitted from local fire sources. 567 

Additionally, the molar equivalent of K
+
 and Na

+
, as shown in Fig 5c, demonstrated 568 

significant correlation (r
2
 = 0.70) with a slope value of 0.34 which is much higher compared 569 

to 0.0225-0.230 and 0.0218, reported by Wilson (1975) and Hara et al. (2012), respectively. 570 

The higher molar ratio of K
+
 and Na

+
 indicates that at the current location, Na

+
 depletion was 571 

high and the K
+
 might  also release from other dominant sources. Additional significant 572 

sources of K
+
 which may attribute to the mass are soil dust, sea salt, vegetation and meat 573 

cooking (Zhang et al., 2010). 574 
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        Factor component three: this factor is mainly dominated by the concentration of the 575 

nitrate ion (75% of NO3
-
 mass) suggesting that this source is strongly related to the formation 576 

of nitrate aerosol. NO3
- 
is mainly formed from the conversion of NOx, which is emitted from 577 

the exhaust of motor vehicles (Dai et al., 2013). Huang et al. (2014) also identified a nitrate 578 

source in PM2.5 by the use of PMF in suburban areas of Hong Kong. In Beijing, a nitrate 579 

source appeared in PM2.5 when source apportionment performed by PMF (Song et al., 2006). 580 

This source is also contributed to by the small amount of Al, Mn and Ca
2+

. Overall, it 581 

accounted for 4.11 μg m
-3

 or about 17% of the PM2.5 concentration.  582 

Factor component four: this fourth source has an abundance of As, Ba and Sr (Se moderately 583 

contributed) and thus is classified as coal burning source.  As constitutes the most to this 584 

fourth component at 53% (of As mass), which gives an indication that this source is related to 585 

the coal combustion. In Malaysia, several power plants are operating on the west coast of 586 

Peninsular Malaysia, e.g. Port Dickson, Kapar and Manjung. The power plants located at Port 587 

Dickson and Kapar are about 50 km far from the sampling station. These plants use coal as 588 

the raw material to generate electric power. Other researchers have also used As a tracer for 589 

the coal burning source (Moreno et al., 2013) and As and Se by Meij and te Winkel (2007); 590 

Querol et al. (1995). As and Se are categorized as of great concern and Ba and Sr are of 591 

moderate environmental concern in the utilization of coal, as reported by Vejahati et al. 592 

(2010). However, Ba is an indicator of brake wear and tear from motor vehicles (Gietl et al., 593 

2010). Overall, the coal burning source accounts for 4.60 μg m
-3

 or about 19% of PM2.5.  594 

Factor component five: this component features Na
+
 (50% of Na

+
 mass), Cl

-
 (46% of Cl

-
 595 

mass) and sulfate (64% of SO4
2-

 mass) suggesting the presence of marine as well as sulfate 596 

aerosol. Begum et al. (2010) identified sea salt in PM2.5 by PMF in Dhaka, based on the 597 

appearance of Na and Cl. Choi et al. (2013) defined a sea salt source in Seoul, Korea due to 598 

the high contribution of Na
+
 and Cl

-
 in PM2.5. Several other studies in East, Southeast and 599 

South Asia assigned a sea salt source in PM2.5 considering Na
+
 and Cl

-
 from the model output 600 

of PMF (Lee et al., 1999; Santoso et al., 2008; Santoso et al., 2013; Seneviratne et al., 2011). 601 

For sulfate, it shows that nss-SO4
2-

 contributed 93% to the total sulfate concentration while 602 

ss-SO4
2-

 accounted for only 6%. Therefore, the sulfate aerosol in PM2.5 is released as a 603 

product from the photochemical conversion of SO2, which mainly originates from 604 

anthropogenic large point sources as observed by Heo et al. (2009) in Seoul, South Korea. A 605 

secondary sulfate source in PM2.5 was also identified by Huang et al. (2014) in a suburban 606 

area of Hong Kong and by Song et al. (2006) in Beijing. The marine and sulfate aerosol, as 607 

the final identified source, accounts for 4.99 μg m
-3

 or about 20% of the total PM2.5 608 
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concentration. A study by Kim and Hopke (2007) defined a sea salt source by the high 609 

concentration of Na
+
 and Cl

-
, while  sulfate sources are based on the high concentration of 610 

sulfate. The secondary aerosol fraction is an important source worldwide, which is also the 611 

case here. It generally constitutes a predominant portion of PM2.5, which splits into two 612 

modes i.e. the nitrate-rich and sulfate-rich factors. Studies by Chen et al. (2007) and 613 

McGinnis et al. (2014) also identified the major contribution of the secondary aerosol 614 

fraction to PM2.5. 615 

3.4    Health risk implications 616 

Table 3 shows the non-carcinogenic (represented as HQ) and carcinogenic risks posed by 617 

several selected metals (Pb, As, Cd, Cu, Mn, Zn and Ni) in PM2.5 mass concentration through 618 

inhalation exposure associating with sources. The HQ values for As and Ni in PM2.5 mass 619 

concentration  are 15.9×10
-2

 and 14.3×10
-2

, respectively, suggesting the non-carcinogenic 620 

health risks posed by these metals might be higher compared to other metals. The HQ for 621 

four selected metals (Pb, As, Cd and Ni) in PM2.5 mass was highest in the PM2.5 mass 622 

originating from the coal burning source and least in PM2.5 originating from the mineral/road 623 

dust source. The cut-off point for significant health risks or the safe level to the exposed 624 

population is HQ > 1. Our results showed that the sum of HQ for each metal are lower than 625 

the safe level (= 1) in PM2.5 mass concentration originating from each source. The sum of HQ 626 

for PM2.5 is 35.7×10
-2

, which is lower than the HQs of PM2.5 reported by Hu et al. (2012) in 627 

Nanjing, China (2.96); Cao et al. (2014) in Shanxi Province, China (1.06×10
+1

); and Taner et 628 

al. (2013) in a non-smoking restaurant in Turkey (4.09). A study by Hu et al. (2012), reported 629 

HQ values for As and Ni in PM2.5 as 4.14×10
-1

 and 1.73×10
-1

, respectively, in Nanjing, 630 

China. However, the HQs of PM2.5 estimated after inhalation at two sites in Nanjing City, 631 

China (0.88 (Xianlin) and 0.79 (Gulou)) were close to the safe level (= 1) according to a 632 

study by Li et al. (2015b). At two urban locations in Yangtze River Delta, China, the HQ for 633 

Cr in PM2.5 was within the acceptable limit but higher for Mn (Niu et al., 2015). Although the 634 

HQ calculated for As was the highest, it was below 1, thus the non-carcinogenic health risk 635 

was estimated to be at a safelevel. In addition, the hazard index (total - hazard quotient) of 636 

PM2.5 calculated for the four heavy metals (As, Cd, Mn, Ni) from the different sources (Table 637 

3) showed an insignificant health risk.   638 

      The carcinogenic risks from the carcinogenic heavy metals Pb, As, Cd and Ni in PM2.5 639 

are shown in Table 3. Similar to the non-carcinogenic risks, the lifetime carcinogenic risk 640 
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level is estimated for PM2.5 mass concentration and may be contributed to by several heavy 641 

metals from different sources: mineral/road dust, motor vehicle emissions/biomass burning 642 

and coal combustion. The total life-time cancer risk (LCR) from heavy metals in the PM2.5 643 

mass concentration was calculated at 3.9×10
-6

 which is a significant cancer risk. The main 644 

carcinogenic heavy metal of concern to the health of people at the current location is As; the 645 

other heavy metals (Ni, Pb, and Cd) did not pose a significant cancer risk. Thus, the LCR 646 

from the PM2.5 mass concentration originating from motor vehicle/biomass and coal burning 647 

sources showed a value of 1×10
-6

, slightly above the acceptable cancer risk level as 648 

recommended by USEPA, while the total LCR from PM2.5 mass concentration from all 649 

sources was estimated to be 4×10
-6 

which is also slightly above the acceptable cancer risk. 650 

The carcinogenic risk posed by As (3.66×10
−3

) in PM2.5 in Shanxi Province, China (Cao et 651 

al., 2014) was higher than the guideline value set by USEPA. A study by Niu et al. (2015) of 652 

PM2.5-bound metals showed a high cancer risk in Yangtze River Delta, China (2.47×10
−4

). A 653 

study by Pandey et al. (2013) conducted in the vicinity of human activities observed that the 654 

concentrations of Cd, Cr, Ni and Pb in PM2.5 showed higher excess cancer risk (ECR) due to 655 

those particle-bound metals compared to guideline level set by USEPA. Satsangi et al. (2014) 656 

also reported a higher cancer risk from Cr, Ni and Cd in PM2.5 compared to the USEPA 657 

guideline. The integrated carcinogenic risk of six metals (Cr, As, Co, Pb, Ni and Cd) in PM2.5 658 

in Tianjin, China were in the range 3.4×10
-3

 – 4.1×10
-3

 which is reportedly beyond the 659 

tolerance level (Zhang et al., 2014). The total ECRs based on the average values of As, Cd, 660 

Cr, Ni and Pb in PM2.5 is 4.34×10
−5

 in Delhi, India, implying that four or five people might 661 

get cancer out of 100,000 people after exposure to toxic metals in PM2.5 (Khanna et al., 662 

2015). Our findings showed that the life-time cancer risk posed by the exposure of heavy 663 

metals in PM2.5 mass concentration is three to four per 1,000,000 people at this location. This 664 

significant cancer risk warrants further investigation. Our findings showed that an 665 

insignificant non-carcinogenic risk and significant cancer risk is posed to the population from 666 

exposure to PM2.5 at this location. Detailed exposure assessment of the PM2.5 at the specific 667 

sources and the health risks posed by individual hazardous elements of concern may help to 668 

improve understanding about the exposure pathways as well as the detailed risk factors 669 

involved in both carcinogenic and non-carcinogenic risk.  670 

 671 

4    Conclusions 672 
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PM2.5 samples were collected using a high volume sampler in a semi-urban site on Peninsular 673 

Malaysia. The results obtained for PM2.5 showed that 48% of the samples exceeded the WHO 674 

24 h guideline and 19% exceeded the US EPA 24 h NAAQS for PM2.5. The average value of 675 

PM2.5 is higher than a previous study carried out on the east coast of Peninsular Malaysia. 676 

PM2.5 concentration during the NE monsoon was slightly higher than the SW monsoon with 677 

air masses from different origins. For the SW monsoon the air masses originated from 678 

Sumatera, Indonesia and for the NE monsoon from Southern China. Major carcinogenic 679 

metals, namely As, Pb, Cr, Ni and Cd, have contributed to PM2.5 by a significant portion. Of 680 

all carcinogenic metals, As was close to the values set by the WHO and EU guidelines. 681 

Results of the EF analysis suggested that a large number of the heavy metals in PM2.5 were 682 

emitted from anthropogenic sources. No seasonal differences were found in the EF of the 683 

heavy metals. The mass closure model results showed higher MIN, SIA and SS in the NE 684 

than the SW monsoon. Further analysis revealed that sulfate is relatively more stable in 685 

tropical climates compared to nitrate aerosol, indicating the dominance of static sources over 686 

mobile sources. However, the average molar ratio of Cl
-
 to Na

+
 does not reflect the seawater 687 

ratio. ―Cl loss‖ may be the cause of the drop in Cl
-
 to Na

+
 ratio. The five sources of PM2.5 688 

obtained by the PMF 5.0 model were dominated by motor vehicle emissions/biomass burning 689 

(7.47 μg m
-3

, 31%). The other four sources were mineral/road dust; nitrate aerosol; coal 690 

burning; and marine-sulfate aerosol with an overall contribution of 3.17 μg m
-3

 (13%), 4.11 691 

μg m
-3

 (17%), 4.60 μg m
-3

 (19%), and 4.99 μg m
-3

 (20%), respectively. 692 

Using the PMF-identified sources as the basis, the hazard quotient (HQ) for four selected 693 

metals (Pb, As, Cd and Ni) in PM2.5 mass was highest in PM2.5 originating from a coal 694 

burning source and least in that originating from a mineral/road dust source. The non-695 

carcinogenic cancer risk posed by the exposure of PM2.5 was at a considerably safer level 696 

compared to the South and East Asian region. The lifetime cancer risk (LCR) followed the 697 

order of As > Ni > Pb > Cd for mineral/road dust, coal burning sources and PM2.5 mass 698 

concentration, and As > Pb > Ni > Cd for motor vehicle/biomass burning. Among the trace 699 

metals studied, As predominantly showed the largest LCR in PM2.5 mass concentration as 700 

well as its associated sources, implying the largest risk after exposure of PM2.5 to people at 701 

the current location. The associated LCR posed by the exposure of the hazardous metals in 702 

PM2.5 mass concentration was three to four per 1,000,000 people at this location. This 703 

significant LCR warrants further investigation. Detailed exposure assessment of the PM2.5 at 704 

the specific sources and the health risks posed by individual hazardous elements may help to 705 

improve understanding about the exposure pathways as well as the detailed risk factors 706 
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involved in both carcinogenic and non-carcinogenic risk. Therefore, the motor vehicle 707 

emissions and regional trans-boundary pollution were the major underlying reasons for the 708 

change in the chemical component of PM2.5 in tropical Peninsular Malaysia, which 709 

potentially leads to different health threats. 710 
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Table 1 The statistical parameters of the PM2.5 and its compositions  

Species 

(ng m-3)  

Overall (n=27)  SWb (n=9)  NEc (n=18)  MDLd Recovery (%) 
Mean±SDa Range  Mean±SD Range  Mean±SD Range  

Al  267.6±145.0 98.48-826.6  203.1±118.42 98.48-416.09  299.8±149.2 101.9-826.6  0.70 70 (54-97) 

Ba 1660±1501 319.2-6092  1372±1480 319.2-5187  1804±1532 447.6-6092  0.02 - 

Ca 1770±725.9 n.d.-3150  1584±325.5 1234-2154  1975±683.4 882.1-3150  2.88 33 (23-47) 

Fe 3052±654.6 2171-4567  2513±239.6 2171-2893  3322±630.4 2530-4567  0.40 80 (69-95) 

Mg 207.6±83.85 34.43-371.7  207.1±72.85 119.0-356.0  207.9±90.86 34.43-371.7  0.17 95 (81-111) 

Pb 21.84±16.30 3.57-76.17  28.06±20.27 13.1-76.17  18.72±13.49 3.57-51.70  0.01 119 (89-134) 

Zn 389.2±179.8 178.8-817.9  526.8±236.3 178.8-817.9  320.4±90.25 184.7-448.2  0.22 102 (84-129) 

Ag 0.09±0.05 n.d.-0.21  0.05±0.04 0.01-0.11  0.10±0.05 0.02-0.21  0.01 120 (97-170) 

As 5.76±4.74 1.10-18.33  5.22±2.93 1.55-9.79  6.04±5.49 1.10-18.33  0.45 88 (81-94) 

Cd 0.54±0.29 0.13-1.15  0.44±0.22 0.13-0.81  0.58±0.32 0.17-1.15  <0.01 85 (81-89) 

Cr 107.68±18.57 82.32-152.62  91.06±7.52 82.32-104.4  115.9±16.78 91.17-152.6  0.02 56 (31-87) 

Li 0.22±0.12 0.04-0.43  0.11±0.06 0.04-0.21  0.28±0.10 0.07-0.43  0.09 - 

Be 0.01±0.01 n.d.-0.03  0.003±0.01 n.d.-0.01  0.01±0.01 n.d.-0.03  <0.01 - 

Bi 0.76±0.60 0.08-2.08  0.67±0.35 0.13-1.17  0.80±0.70 0.08-2.08  0.03 - 

Co 0.85±0.47 0.39-2.36  1.16±0.61 0.39-2.36  0.70±0.30 0.39-1.38  0.08 96 (87-109) 

Cu 28.33±11.02 16.83-62.55  32.39±10.08 19.78-49.27  26.30±11.17 16.83-62.55  0.30 101 (96-105) 

Mn 4.03±1.91 0.23-7.18  3.13±2.07 0.23-6.08  4.49±1.71 1.46-7.18  0.95 126 (114-147) 

Ni 17.24±8.55 7.86-46.70  23.59±11.11 7.86-46.70  14.06±4.66 8.84-27.03  0.67 91 (82-99) 

Rb 3.59±1.08 1.74-6.16  4.14±1.29 2.23-6.16  3.32±0.87 1.74-4.69  0.13 78 (52-113) 

Se 0.65±0.33 0.20-1.24  0.36±0.10 0.20-0.53  0.79±0.31 0.39-1.24  0.09 94 (78-110) 

Sr 40.25±31.05 13.75-120.93  35.88±32.10 13.75-118.47  42.43±31.22 15.72-120.9  0.38 91 (75-125) 

V 5.13±3.05 0.63-13.16  3.70±2.47 0.63-7.82  5.85±3.12 2.21-13.16  <0.01 85 (77-93) 

Na+ 532.1±262.0 n.d.-1029.07  363.9±185.6 159.9-778.8  606.90 23.66-1029.1  62.68 - 

NH4
+ 598.9±399.2 82.60-1622.17  542.5±320.8 82.60-1141.4  627.2±439.0 105.5-1622.2  - - 

K+ 343.3±183.2 70.18-696.04  307.8±103.5 175.6-484.6  361.1±212.7 70.18-696.0  2.35 - 

Ca2+ 255.9±84.22 87.55-455.55  295.1±95.8 186.4-455.6  236.3±72.84 87.55-360.4  23.21 - 

Mg2+ 42.26±17.57 12.70-77.60  32.61±18.32 12.70-71.94  47.09±15.49 15.65-77.60  23.71 - 

Cl- 56.71±44.94 4.67-151.18  67.63±24.21 40.07-107.18  51.25±52.13 4.67-151.2  0.98 - 

NO3
- 926.9±1031.8 98.66-3523.7  194.8±73.63 98.66-311.3  1293±1095 136.5-3524  16.51 - 

SO4
2+ 2127±2068 n.d.-6211  n.d. n.d.  2127±2068 350.5-6211  1.82 - 

ePM2.5 25.13±9.21 7.01-42.28  22.16±9.14 7.01-35.73  26.61±9.14 12.76-42.28  - - 
a
SD: standard deviation, 

b
SW: south-westerly monsoon, 

c
NE: north-westerly monsoon, 

d
MDL: method detection limit, 

 e
PM2.5 (μg m

-3
), n.d.: not detected, “-“: no 

data 
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Table 2 The contribution of sources to PM2.5 and the compositions estimated by PMF 5.0  

Variables Mineral/road dust 

(Mean±SD
a
) 

 Motor vehicle emissions/ 

biomass 

(Mean±SD) 

 Nitrate aerosol 

(Mean±SD) 

 Coal burning 

(Mean±SD) 

 Marine/sulfate aerosol 

(Mean±SD) 
 

ng m
-3

 %  ng m
-3

 %  ng m
-3

 %  ng m
-3

 %  ng m
-3

 % 

PM2.5 3.17±0.15** 13±1  7.47±1.26** 31±5  4.11±0.47** 17±2  4.60±0.37** 19±2  4.99±0.67** 20±3 

Al 42.65±3.17 19±1  45.37±3.85 20±2  69.06±2.45 31±1  29.84±1.73 13±1  36.71±2.51 16±1 

Ba 269.3±205.9 22±17  32.85±146.9 3±14  166.9±71.90 13±6  661.7±246.9 52±19  117.8±116.8 10±11 

Ca 445.1±32.07 28±2  235.43±37.76 15±2  350.6±35.82 22±2  303.4±30.14 19±2  267.1±26.00 17±2 

Mg 92.36±5.02 52±3  47.59±21.66 27±12  25.43±12.33 14±7  10.32±6.11 6±3  1.23±5.50 1±3 

Pb 3.56±0.79 20±4  9.11±2.32 50±13  0.58±0.40 3±2  3.61±0.42 20±2  1.25±1.36 7±8 

Zn 157.7±17.09 48±5  45.66±30.11 14±9  60.74±21.74 18±7  50.56±19.46 15±6  14.33±8.53 4±3 

As 0.18±.35 4±7  1.76±0.55 41±14  0.05±0.10 1±2  2.37±0.65 53±13  0.05±0.22 1±6 

Cd 0.03±0.01 6±2  0.22±0.06 44±12  0.07±0.02 13±3  0.13±0.02 27±3  0.05±0.02 10±5 

Cu 12.38±0.59 50±2  3.55±2.37 14±10  4.20±1.45 17±6  3.27±1.16 13±5  1.45±0.42 6±2 

Mn - -  0.84±0.27 25±8  1.16±0.19 35±6  0.62±0.26 18±7  0.71±0.09 21±3 

Ni 7.21±0.50 48±4  2.79±1.18 18±8  1.70±0.77 11±5  3.11±0.80 20±5  0.36±0.23 2±2 

Rb 1.33±0.07 38±2  0.76±0.20 22±6  0.45±0.14 13±4  0.67±0.10 19±3  0.26±0.04 7±1 

Se 0.05±0.01 8±2  0.14±0.03 24±6  0.14±0.02 23±3  0.11±0.02 19±3  0.16±0.01 27±1 

Sr 8.26±4.51 25±14  1.19±3.18 4±11  4.60±1.80 14±6  15.05±5.05 45±15  3.59±2.40 11±9 

V 0.19±0.08 5±2  0.81±0.24 20±6  1.25±0.20 30±6  0.59±0.32 14±7  1.28±0.17 31±4 

Na
+
 88.10±28.60 19±6  17.28±56.76 4±12  120.8±10.99 26±3  7.93±4.69 2±1  234.2±20.31 50±5 

Ammonium 59.48±30.60 11±6  241.1±61.51 44±11  82.56±18.67 15±4  8.55±16.10 2±3  156.2±48.24 28±8 

K
+
 65.10±18.20 20±6  91.08±16.94 28±5  50.69±6.14 16±2  9.53±3.42 3±1  108.4±16.41 33±5 

Ca
2+

 99.79±3.69 42±1  50.52±18.74 21±8  47.25±9.79 20±4  12.39±6.67 5±3  26.39±4.03 11±2 

Mg
2+

 8.18±1.46 23±4  6.96±1.06 19±3  9.27±0.31 26±1  1.92±0.38 5±1  9.72±0.32 27±1 

Cl
-
 15.88±4.06 36±10  1.83±2.95 4±8  - -  5.90±0.73 13±2  20.58±6.45 46±13 

Nitrate 90.86±36.16 11±4  6.66±21.39 1±2  611.0±27.43 75±3  5.75±16.39 1±2  103.4±53.25 13±7 

Sulfate 307.2±142.1 21±10  58.02±152.1 4±11  74.23±33.91 5±2  89.77±10.15 6±1  935.1±112.5 64±7 

**unit: μg m
-3, SD

a
: standard deviation, “-“: no data 
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Table 3. Hazard quotient (HQ) or non-carcinogenic risk and lifetime carcinogenic risk (LCR) for selected heavy metals in PM2.5 based on their 

various sources 

Inhalation Mineral/road dust  Motor vehicle/biomass  Coal burning  PM2.5 

 HQ LCR  HQ LCR  HQ LCR  HQ LCR 

Pb - 4.0×10
-8

  - 1.0×10
-7

  - 4.1×10
-8

  - 2.5×10
-7

 

As 1.8×10
-3

 1.1×10
-7

  4.9×10
-2

 1.1×10
-6

  6.6×10
-2

 1.5×10
-6

  15.9×10
-2

 3.5×10
-6

 

Cd 4.6×10
-4

 8.2×10
-9

  9.1×10
-3

 5.6×10
-8

  5.5×10
-3

 3.4×10
-8

  2.2×10
-2

 1.4×10
-7

 

Cu - -  - -  - -  - - 

Mn - -  7.0×10
-3

 -  5.1×10
-3

 -  3.3×10
-2

 - 

Zn - -  - -  - -  - - 

Ni 2.0×10
-2

 2.5×10
-7

  2.3×10
-2

 9.5×10
-8

  2.6×10
-2

 1.1×10
-7

  14.3×10
-2

 5.9×10
-7

 

THR (HI 

and LCR) 2.3×10
-2

 1.6×10
-7

 

 

8.8×10
-2

 1.2×10
-6

 

 

10.2×10
-2

 1.5×10
-6

 

 

35.7×10
-2

 3.9×10
-6

 

Pb*: pb (acetate), As*: As (Inorganic), Cd*: Cd (Diet), Mn*: Mn (Diet), Zn*: Zn (Metallic), Ni*: Ni (Refinery Dust), ”-”: no data, THR: Total Health Risk, HI: Hazard Index, LCR: Lifetime Cancer Risk 
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                 Figure 1 Map of the study area showing the sampling site and nearby line sources 
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                      Figure 2 Monthly climatology wind vector from January 2004 to June 2014  
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Figure 3 The location of biomass fire hotspots and the monthly mean cluster of backward trajectories 

by HYSPLIT 4.9 model for 120 h and 500 m releasing height starting from 16:00 UTC during the 

south-westerly and the north-easterly monsoon 
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Figure 4 Time series of 24 h averages of PM2.5, wind speed (m s
-1

) and yearly daily mean of the 

boundary layer height (BLH) over the region of Malaysian Peninsula 
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Figure 5 (a) Enrichment factor (EF) of heavy metals in PM2.5, (b) correlation plot of nss-K
+
 and total-

K
+
, (c) reconstructed mass concentration of PM2.5 by mass closure model, (d) correlation plot of K

+
 

and Na
+
, and (e) correlation plot of estimated PM2.5 (MC) and measured PM2.5 (HVS) 
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Figure 6 (a) The source profiles of PM2.5 prediction by positive matrix factorization model and 

(b) comparison of modeled PM2.5 (PMF) and measured PM2.5 (HVS). 

 

 

 

 


