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Figure S1. Simulated trend in (a) gross primary productivity (GPP), (b) net primary
productivity (NPP), and (c) net ecosystem productivity (NEP), and (d-f) dominant drivers
for these changes during 1982-2011. Simulations are performed with MERRA
reanalyses. Only the significant trends (p < 0.05) are presented. Three factors,
meteorological forcing, CO, fertilization, and land use change, are considered as the
potential drivers of flux trends. For each grid, the factor that generates the largest (either
maximum or minimum) trend with the same sign as the net change (a-c) is selected as the

driving factor.



(a) Trend in Temperature ( 0.28 °C) (b) Trend in PAR ( 0.07 W m?)
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Figure S2. Trends in the annual mean (a) surface air temperature, (b) photosynthetically
active radiation (PAR), (c) surface specific humidity, and (d) soil wetness at 1.5 m from
the WFDEI reanalyses for 1982-2011. Values are shown only for trends with significance
level p < 0.05. The global average trends are shown in the title brackets. The units of

trends are (a) °C decade™, (b) W m™ decade™, (c) g kg decade™, and (d) decade™.



(a) Trend in Temperature ( 0.25 °C) (b) Trend in PAR (-0.37 W m?)
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Figure S3. Trends in the annual mean (a) surface air temperature, (b) photosynthetically
active radiation (PAR), (c) surface specific humidity, and (d) soil wetness at 1.5 m from
the MERRA reanalyses for 1982-2011. Values are shown only for trends with
significance level p < 0.05. The global average trends are shown in the title brackets. The

units of trends are (a) °C decade™, (b) W m™ decade™, (c) g kg decade™, and (d) decade”
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(a) Isoprene PS_BVOC (b) Isoprene MEGAN (c) Monoterpene
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Figure S4. Simulated trends of (a, b) isoprene and (c) monoterpene, and (d-f) the
dominant drivers for these changes during 1982-2011. Simulations are performed with
MERRA reanalyses. Isoprene emissions are simulated with (a) PS BVOC and (b)
MEGAN schemes. Three factors, meteorological forcing, CO, effects, and land use
change, are considered as the potential drivers of flux trends. For each grid, the factor
generating the largest (either maximum or minimum) trend with the same sign as the net
change (a-c) is selected as the driving factor. Only significant trends (p < 0.05) are

presented.



(a) GPP trend of LAI_ONLY (b) GPP trend of PHEN_ONLY
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(d) NPP trend of PHEN_ONLY
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(f) Isop PS_BVOC of PHEN_ONLY
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Figure S5. Predicted trends of (a, b) GPP, (¢, d) NPP, and (e, f) Isoprene from PS BVOC
for 1982-2011 for simulations (a, c, ¢) LAl ONLY and (b, d, f) PHEN ONLY. Only
significant trends (p < 0.05) are presented. Isoprene emissions with MEGAN scheme (not

shown) exhibit very similar responses to LAI and phenological changes as that with

PS BVOC scheme.



(a) Trend in spring budburst date
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(b) Trend in autumn dormancy onset date
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Figure S6. Predicted trends in (a) budburst date, (b) dormancy onset date, and (c)
growing season length during 1982-2011. Simulated phenological dates in each grid
square are the composite results from DBF, tundra, shrubland, and grassland based on
PFT fraction and LAI in that grid box. Simulations are performed with WFDEI

reanalysis.



(a) Trend in JAN temperature
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(c) Trend in SEP temperature
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Figure S7. Trends in the surface air temperature of (a) January, (b) April, and (c)
September from the WFDEI reanalyses for 1982-2011. Significant trends (p < 0.05) are
denoted with dots.
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Figure S8. Simulated monthly trends and their drivers at six regions for 1982-2011.
Different colors indicate simulations with all forcings (MET+CQO?2, black), meteorology
alone (red), and CO, fertilization (green). Isoprene emissions are simulated with
PS BVOC scheme. Significant trends (p < 0.05) are denoted with filled points and vise

versa.



(a) LAl trend from LAI3g (b) LAI trend from MODIS
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(c) GPP trend from J2009 (d) GPP trend from MODIS
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Figure S9. Comparison of observed trends in (a, b) leaf area index (LAI) and (c, d) GPP
for 2000-2011 derived from different products. LAl measurements include data from (a)
LAI3g retrieved based on the Normalized Difference Vegetation Index (NDVI) from
Global Inventory Modeling and Mapping Studies (GIMMS) (Zhu et al., 2013) and (b) the
Moderate Resolution Imaging Spectroradiometer (MODIS http://modis.gsfc.nasa.gov/).

GPP measurements include data (c) upscaled from FLUXNET data with a biosphere
model (Jung et al., 2009) and (d) that from MODIS (Zhao et al., 2005). Only the

significant trends (p < 0.1) are presented.



(a) GPP responses to CO2 (19.8) (b) NPP responses to CO2 (27.3)
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Figure S10. Percentage changes in (a) GPP, (b) NPP, (c) PS BVOC isoprene, and (d)
MEGAN isoprene emissions in response to elevated [CO,]. At each grid square, the year-
to-year total fluxes (or emissions) from simulation CO2 ONLY are linearly regressed
against [CO;] for 30 years. The ratios between the regression coefficients and the 30-year
average fluxes (or emissions) are calculated as the responses of fluxes (or emissions) to
the changes in [CO;]. Only the significant (p<0.1) responses are presented. The global

average responses are shown in the brackets.



(a) GPP responses to TEMP (-0.7) (b) NPP responses to TEMP (-3.5)
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Figure S11. Similar to Fig. S10 but for responses to temperature based on simulation

TEMP ONLY.



(a) GPP responses to PAR ( 0.3) (b) NPP responses to PAR ( 0.5)

(c) Isop PS_BVOC responses to PAR ( 0.9) (d) Isop MEGAN responses to PAR ( 0.5)

I 1 ] . .
3 ) -1 0 1 2 3 (%BW'md)

Figure S12. Similar to Fig. S10 but for responses to PAR based on simulation
PAR ONLY.



(a) GPP responses to SOILW ( 4.7) (b) NPP responses to SOILW ( 5.5)

(c) Isop PS_BVOC responses to SOILW ( 2.9) (d) Isop MEGAN responses to SOILW (1.7)
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Figure S13. Similar to Fig. S10 but for responses to soil wetness at 1.5 m based on

simulation SOILW_ONLY.



Table S1. Summary of simulated trends of global carbon fluxes (Tg C a™) from different
experiments. Simulations are using MERRA meteorology.

Simulations GPP NPP NEP Ra Rh
CO2_MET LUC 346 239.4 58.5 106.5 181.2
CO2 ONLY 345.1 250.3 52.6 94.8 199.7

MET ONLY 16.1 -1.6 -3.7 17.6 33
LUC ONLY -12.8 -8.1 -27.2 -4.6 21.5
TEMP_ONLY -7.5 -38.6 21 31.1 -56.6

PAR ONLY -11.4 9.1 9.1 -2.4 2.7

SOILW_ONLY -94.9 -52.5 -13.5 -42.4 -37.2
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