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Figure S1. Simulated trend in (a) gross primary productivity (GPP), (b) net primary 

productivity (NPP), and (c) net ecosystem productivity (NEP), and (d-f) dominant drivers 

for these changes during 1982-2011. Simulations are performed with MERRA 

reanalyses. Only the significant trends (p < 0.05) are presented. Three factors, 

meteorological forcing, CO2 fertilization, and land use change, are considered as the 

potential drivers of flux trends. For each grid, the factor that generates the largest (either 

maximum or minimum) trend with the same sign as the net change (a-c) is selected as the 

driving factor. 
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Figure S2. Trends in the annual mean (a) surface air temperature, (b) photosynthetically 

active radiation (PAR), (c) surface specific humidity, and (d) soil wetness at 1.5 m from 

the WFDEI reanalyses for 1982-2011. Values are shown only for trends with significance 

level p < 0.05. The global average trends are shown in the title brackets. The units of 

trends are (a) °C decade-1, (b) W m-2 decade-1, (c) g kg-1 decade-1, and (d) decade-1. 
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Figure S3. Trends in the annual mean (a) surface air temperature, (b) photosynthetically 

active radiation (PAR), (c) surface specific humidity, and (d) soil wetness at 1.5 m from 

the MERRA reanalyses for 1982-2011. Values are shown only for trends with 

significance level p < 0.05. The global average trends are shown in the title brackets. The 

units of trends are (a) °C decade-1, (b) W m-2 decade-1, (c) g kg-1 decade-1, and (d) decade-

1. 
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Figure S4. Simulated trends of (a, b) isoprene and (c) monoterpene, and (d-f) the 

dominant drivers for these changes during 1982-2011. Simulations are performed with 

MERRA reanalyses. Isoprene emissions are simulated with (a) PS_BVOC and (b) 

MEGAN schemes. Three factors, meteorological forcing, CO2 effects, and land use 

change, are considered as the potential drivers of flux trends. For each grid, the factor 

generating the largest (either maximum or minimum) trend with the same sign as the net 

change (a-c) is selected as the driving factor. Only significant trends (p < 0.05) are 

presented.  
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Figure S5. Predicted trends of (a, b) GPP, (c, d) NPP, and (e, f) Isoprene from PS_BVOC 

for 1982-2011 for simulations (a, c, e) LAI_ONLY and (b, d, f) PHEN_ONLY. Only 

significant trends (p < 0.05) are presented. Isoprene emissions with MEGAN scheme (not 

shown) exhibit very similar responses to LAI and phenological changes as that with 

PS_BVOC scheme. 
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Figure S6. Predicted trends in (a) budburst date, (b) dormancy onset date, and (c) 

growing season length during 1982-2011. Simulated phenological dates in each grid 

square are the composite results from DBF, tundra, shrubland, and grassland based on 

PFT fraction and LAI in that grid box. Simulations are performed with WFDEI 

reanalysis.  

 
(a) Trend in spring budburst date

0o

30oN

60oN

90oN

180o 120oW 60oW 0o 60oE 120oE 180o

 

 
(b) Trend in autumn dormancy onset date

0o

30oN

60oN

90oN

180o 120oW 60oW 0o 60oE 120oE 180o

 

 
(c) Trend in growing season length

0o

30oN

60oN

90oN

180o 120oW 60oW 0o 60oE 120oE 180o

 

       -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 (day a-1)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7. Trends in the surface air temperature of (a) January, (b) April, and (c) 

September from the WFDEI reanalyses for 1982-2011. Significant trends (p < 0.05) are 

denoted with dots.  
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Figure S8. Simulated monthly trends and their drivers at six regions for 1982-2011. 

Different colors indicate simulations with all forcings (MET+CO2, black), meteorology 

alone (red), and CO2 fertilization (green). Isoprene emissions are simulated with 

PS_BVOC scheme. Significant trends (p < 0.05) are denoted with filled points and vise 

versa.   
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Figure S9. Comparison of observed trends in (a, b) leaf area index (LAI) and (c, d) GPP 

for 2000-2011 derived from different products. LAI measurements include data from (a) 

LAI3g retrieved based on the Normalized Difference Vegetation Index (NDVI) from 

Global Inventory Modeling and Mapping Studies (GIMMS) (Zhu et al., 2013) and (b) the 

Moderate Resolution Imaging Spectroradiometer (MODIS http://modis.gsfc.nasa.gov/). 

GPP measurements include data (c) upscaled from FLUXNET data with a biosphere 

model (Jung et al., 2009) and (d) that from MODIS (Zhao et al., 2005). Only the 

significant trends (p < 0.1) are presented. 
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Figure S10. Percentage changes in (a) GPP, (b) NPP, (c) PS_BVOC isoprene, and (d) 

MEGAN isoprene emissions in response to elevated [CO2]. At each grid square, the year-

to-year total fluxes (or emissions) from simulation CO2_ONLY are linearly regressed 

against [CO2] for 30 years. The ratios between the regression coefficients and the 30-year 

average fluxes (or emissions) are calculated as the responses of fluxes (or emissions) to 

the changes in [CO2]. Only the significant (p<0.1) responses are presented. The global 

average responses are shown in the brackets. 
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Figure S11. Similar to Fig. S10 but for responses to temperature based on simulation 

TEMP_ONLY. 
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Figure S12. Similar to Fig. S10 but for responses to PAR based on simulation 

PAR_ONLY. 
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Figure S13. Similar to Fig. S10 but for responses to soil wetness at 1.5 m based on 

simulation SOILW_ONLY. 
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Table S1. Summary of simulated trends of global carbon fluxes (Tg C a-1) from different 
experiments. Simulations are using MERRA meteorology. 
 

Simulations GPP NPP NEP Ra Rh 

CO2_MET_LUC 346 239.4 58.5 106.5 181.2 

CO2_ONLY 345.1 250.3 52.6 94.8 199.7 

MET_ONLY 16.1 -1.6 -3.7 17.6 3.3 

LUC_ONLY -12.8 -8.1 -27.2 -4.6 21.5 

TEMP_ONLY -7.5 -38.6 21 31.1 -56.6 

PAR_ONLY -11.4 -9.1 -9.1 -2.4 2.7 

SOILW_ONLY -94.9 -52.5 -13.5 -42.4 -37.2 
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