Anonymous Referee #1

We thank the Referee for the thorough review of the manuscript and the constructive comments,
which contributed to the improvement of this manuscript.

In response, the manuscript is substantially revised with the following:

1) Updated analysis of global W data to develop W(U10) parameterization.

2) Extended analysis of regional W data to develop W(U10,T) parameterization with SST explicitly
included; this was done for both quadratic and cubic wind exponents.

3) Analysis for statistical significance (with Student’s T-statistics and ANOVA) of new and previous W
parameterizations.

4) Extended ‘Methods’ section to justify and clarify approach, data, and implementations.

5) Revised and extended ‘Results and Discussion’ section to clearly describe results and give
substantive and quantitative interpretations and conclusions.

The table of contents of the revised manuscript is added after the responses for reference.
Manuscript revisions with track changes are provided in a separate pdf file.

Several comments and questions are similar in all 3 reviews (e.g., uncertainty not reduced, quadratic
wind speed exponent, embedded secondary forcing, intercept interpretation). To avoid repetitions,
we attempted combining responses to these common points in one file. We found, however, that
one-fits-all responses do not always address the reviewers’ comments and questions fully. Thus,
risking some repetitions, we proceeded with a specific response to each comment.

Responses are presented below in sequence: (1) the original comment from the Referee (in bold
italic), there are 10 comments; (2) our response; (3) changes in manuscript.

1.1 In general, the manuscript has poor flow. The authors jump from topic to topic with little flow
between main points. There is a lot of redundancy in the text that makes it hard to follow.

1.2 We can see how a perception of “poor flow” of the manuscript can arise. The study and results
presented in the manuscript are on three somewhat distinct yet interweaved topics, namely:
(i) assessment of satellite-based W data; (ii) parameterization of W; and (iii) application of new W
parameterization to predict SSA production. Being well aware of this, we gave a roadmap of our
approach in the end of the Introduction (page 21225, lines 3-16) and occasionally listed the points
considered in each subsection in short preamble (e.g., p. 21225, lines 18-20).

1.3 The manuscript is now extensively revised. The flow is different and we believe much improved.

2.1 There is no independent verification of the parameterization. Without comparison with other
measured, remotely sensed or modeled data | do not see sizable contribution to scientific progress
in the field.

2.2 Our intended verification of the performance of the new W(U10) parameterization was given
with Fig. 12 and its discussion (old Sect. 4.2.2) as well as the extensive comparison and discussion of
the SSA production estimates obtained with the new W(U10) parameterization to previous SSA
production estimates (old Sect. 4.3).



2.3 We added new Fig. 13a to compare W values, obtained with new parameterizations W(U10) and
W(U10,T) for 10 and 37 GHz, to in situ and WindSat W data. Description and discussion of Fig. 13a
are added in new Sect. 3.3.2.

Comparisons to the published in situ W data demonstrate order-of-magnitude consistency of the W
values from the new parameterizations. Because there are no other remotely-sensed W data except
those from WindSat, the most we can do at the moment is to evaluate how well the new
parameterizations can replicate the trend and the spread of the satellite-based W. Recently, W
values from a global wave model were compared to W from MOMS80 and WindSat by Leckler et al.
(2013), so one can evaluate where modeled W values stand in the comparison of data and
parameterizations of W. All parameterized W values shown in Fig. 13a are calculated using U;pand T
from the whitecap database, i.e., U;o from QuikSCAT and T from GDAS.

3.1 While the proposed parameterization for W has fair agreement with other parameterizations,
the authors fail to distinguish the proposed formulation from previously proposed
parameterizations after using similar retrieval algorithms (i.e. SAL13).

3.2 We do not expect to prove/show a distinctly different parameterization from that of SAL13
because, indeed, we and SAL13 use the same W data. What we show in this study (and have said in
the initial text on p. 21243, lines 3-7) is that a different analysis (a ‘top down’ approach from global
to regional scales) gives similar results and this proves that the outcome is robust. What is added
with this work to previous analysis of the whitecap database (i.e., SAL13) is the analysis and
qguantification of the possible intrinsic correlation in the W data and how this could affect W
predictions with the new W(U10) expressions.

3.3 For the revised manuscript, in addition to the above, we extended the analysis to derive a
W(U10,T) parameterization from regional W data sets in addition to the W(U10) parameterizations
at 10 and 37 GHz from the global W data set. We discuss/justify the approach for the
parameterizations (new Sect. 2.1) and its implementation (new Sect. 2.3) and present the results in
Sect. 3.2. The comparison to previous parameterizations, including to those of SAL13, is now
extended using two metrics—percent difference between different parameterizations and tests for
significant differences (new Sect. 3.3).

4.1 When applying the new parameterization to a global model which predicted SSA flux, the
authors showed their parameterization reduced SSA emissions in polar regions while increasing
emissions in tropical regions. Model analyzes were in the context of mass concentration and was
limited to supermicron sized SSA. The argument for using supermicron sized aerosols (i.e., that sub-
micron size range additionally includes organic material) does not hold water. Organic enrichment
becomes important for particles with <200 nm in diameter. Such particles do not contribute
considerably to overall mass. At the end, the point of this exercise is not well explained.

4.2 We agree with the Referee that the justification with the organic content is not strong and
acknowledge that we should have explained our choices for estimating SSA emissions better.

4.3 We revised Sect. 2.4 in Methods to give justification for our choice of size distribution with the
following arguments (new Sect. 2.4.2).

Generally, the division of the SSA particles into small, medium, and large sizes is well warranted
when one considers the climatic effect to be studied. For example, submicron particles are
important for scattering by SSA (direct effect) and CCN formation (indirect effect), while
supermicron particles are important for heat exchange (via sensible and latent heat fluxes) and



heterogeneous chemical reactions (which need surface and volume to proceed effectively). For the
purposes of this study, we do not focus on how the choice of the size distribution will affect the SSA
estimates. Rather, at a fixed distribution, we want to see how W data (and W parameterizations
based on them), which carry information for the influences of many factors, would affect SSA
estimates. In this sense, we can use any size distribution.

The size range of 1 to 10 um that we have chosen is in the range of medium (supermicron) SSA
particles (e.g., de Leeuw et al., 2011, §8). This is the range for which Monahan et al. (1986, or M86)
size distribution is valid. Table 3 in Textor et al. (2006) shows that the M86 size distribution, in its
original or modified forms, is widely used. Also, Table 2 of Grythe et al. (2014) shows that this size
range is a recurring part of the size ranges used in all SSSFs. As the Referee has noted, the SSA
particles below r80 = 0.1 um contribute little to the overall mass (~¥1% according to Fachini et al.
(2008)). We quantify the expected discrepancy due to neglecting particles for 0.1 <r80 < 1 um to be
14% using Grythe et al. (2014) estimates of SSA with M86 over two different sizes. We use this
assessment in our subsequent analysis of SSA emissions (Sect. 3.4).

5.1 The total predicted sea spray aerosol mass varies by several orders of magnitude. So if the
emissions inferred by the current parameterization are within this range, does that prove its
validity?

5.2 Yes, it does. That emissions inferred by our new parameterization are within this range shows
that our modified SSSF gives consistent estimates, which effectively proves its validity. Certainly, we
do not want to be an outlier among SSA emission estimates, especially for a variability range of 2
orders of magnitude. What is more important, however, is that the spatial distribution of this total
SSA emission is significantly different from those of previous SSSF predictions. Our new Fig. 14 (old
Figs. 10-11) illustrates the global spatial distribution of SSA emissions and a difference map with SSA
estimate using MOMBS80 parameterization.

5.3 We added the following text in new Sect. 3.4.

Previously modeled total dry SSA mass emissions vary by two orders of magnitude because of a
variety of uncertainty sources (Sect. 1): (2.2-22)x10" kg yr™* (Textor et al., 2006, their Fig. 1a; de
Leeuw et al., 2011, their Table 1); and (2-74)x10" kg yr™ for long-term averages (over 25 years)
(G14, their Table 2, excluding 3 outliers). The impact of the modeling method used has to be
acknowledged too. Grythe et al. (2014) suggest that the spread in published estimates of global
emission based on the same M86 SSSF (Eq. (4)), from 3.3x10" to 11.7x10™ kg yr™* (Lewis and
Schwartz, 2004), can be attributed to differences in model input data and resolution differences. An
example of the same SSSF yielding different results when applied in different models is also seen in
the work of de Leeuw et al. (2011, their Table 1).

For a meaningful comparison of our results to SSA emissions obtained with other SSSFs, we attempt
to remove (or at least minimize) the impact of the modeling method. As in this study (see Sect. 3.4),
G14 used the same model (i.e., input data and configuration) to evaluate 21 SSSFs, including that of
M86, against measurements. We thus can infer a “modelling” factor using our and G14 results
obtained with M86 SSSF. We find that the G14 estimate of SSA emission from M86 (4.51x10" kg yr')
is 1.55 times larger than our estimate of 2.9x10" kg yr™* from M86 and MOMS80. We apply this factor
of 1.55 to our SSA emission estimated with the new W/(Uy, T) parameterization and obtain a “model
scaled” value of 6.75x10" kg yr". Our “model scaled” estimate of the SSA emission is close to the
median 5.91x10™ kg yr' of the SSA emission reported by G14. This shows that an SSSF with a
magnitude factor derived from satellite-based W data provides reasonable and realistic predictions
of the SSA emission.



6.1 The submicron range is the most likely size range influencing direct and indirect radiative
forcing. The authors’ analysis of SSA emissions with the new parameterization fails to highlight
this reality.

6.2 We are well aware of this reality. This is seen on page 21224 where we have mentioned the
importance of SSA for the direct and indirect radiative effects on climate in Lines 1-4. The
importance of SSA to other climate processes is listed in the same paragraph. We have not
mentioned specific sizes of the SSA suitable for each of these processes, because in Lines 1-2 on
page 21225 we state that for the objective of the study we focus on the effect of W on SSA estimate.

6.3 We revised the last paragraph on page 21224 (Sect. 1) to more clearly state the focus of this
study on W (the magnitude factor in the SSSF), not on the size distribution (the shape factor in the
SSSF); the magnitude and shape factors are now clearly introduced in Sect. 1. Specific sizes for
specific climate effects are now mentioned in our justification for the chosen size distribution (new
Sect. 2.4.2) (see our response to comment 4).

7.1 There are lots of speculations in the paper that are not supported by the facts. For example,
the discussion regarding 37GHz vs 10 GHz intercept is not convincing.

7.2 We agree with the Referee that our discussion on this subject could have been presented better.
Yes, the interpretation of the y-intercept was speculative at the moment, and we did admit this on
page 21231 (lines 21-22). Still, by providing data points globally and over all seasons, the satellite-
based W data offer possibilities for new insights. The observation of different W variability for active
and decaying whitecaps (approximated by W values at 10 and 37 GHZ, respectively) is one example
for such new insight.

7.3 We revised the manuscript to introduce the currently accepted interpretation of negative y-
intercept (Sect. 2.1). Then in Sect. 3.1.1, we propose broader interpretation of the y-intercept in
W(U10) expressions, be it negative or positive. Briefly, we promote the hypothesis that positive y-
intercept could be interpreted as a measure of the capacity of seawater with specific characteristics,
such as SST (thus viscosity), salinity, and surfactant concentration, to affect the extent of W. These
secondary factors do not create whitecaps per se. Rather, they prolong the lifetime of the whitecaps
thus contribute to W by altering the characteristics of submerged and surface bubbles such as
stabilization and persistence by surfactants or rise velocity variations that replenishing the foam on
the surface at different rates. These processes ultimately augment or decrease W and the y-
intercept can be thought of as a mathematical expression of this static forcing (as opposed to
dynamic forcing from the wind). In this light, our data showing negative y-intercept for W values at
10 GHz is consistent with our and SAL13 analysis that active whitecaps are less affected by secondary
factors. However, secondary factors do affect strongly residual whitecaps and the positive y-
intercept for our W values at 37 GHz can be interpreted and used to quantify this static influences.
This is a hypothesis which is worth promoting for consideration, debate, and further verification by
the community.

8.1 The discussion about the “secondary factors” being “imbedded in the exponent of the wind
speed dependencies” is misleading. The influence of secondary factors can only be ascertained by
the satellite based estimates of W augmented by additional data sets for directional wave spectra,
currents (speed and direction), and proxies for surfactants such as ocean color, chlorophyll a, or
oceanic primary production. Such studies should be conducted as case studies on regional scales.



8.2 We agree with the Referee that the most rigorous way to fully parameterize the influence of
secondary factors on W is to have a large database of W values concomitant with additional
variables such as those the Referee has listed. The need for such a database has justified the work of
Anguelova and Webster (2006, their Sect. 2 and specifically §16 and §22) on obtaining W from
satellite-borne radiometric measurements. Initial version of the database of W and additional
variables built by Anguelova et al. (2010, https://ams.confex.com/ams/pdfpapers/174036.pdf ) and
described by SAL13 (their Sect. 3.1) is used in this study.

We respectfully disagree with the Referee’s descriptor “misleading.” Our approach to
parameterize secondary forcing is now extended and clearly presented in new Sect. 2.1. We show
the concept that the variability of W caused by secondary factors is expressed as a change of the
wind speed exponent is not new. The Monahan and O’Muircheartaigh (1986) analysis of five data
sets showed that the variability of W caused by SST (and the atmospheric stability) affect
significantly the coefficients in the wind speed dependence W(U10), especially the wind speed
exponent. The survey of W(U10) parameterizations by Anguelova and Webster (2006, their Tables 1
and 2) also clearly shows that each campaign conducted in different regions and conditions comes
up with a specific wind speed exponent. This strongly suggests that the influence of secondary
factors is expressed as a change of the wind speed exponent.

8.3 We extended our regional analysis to develop W(U10,T) parameterizations using empirical
(adjusted) and cubic wind exponents. We used significance tests (Student’s T-statistics and ANOVA)
to establish similarity and differences between W(U10) and W(U10,T) with both empirical and cubic
exponents. We found that the W(U10) trend predicted with a quadratic wind speed exponent does
not differ significantly from the W(U10) trend predicted either with quadratic or cubic W(U10, T).
This result clearly shows that to a large extent, the adjusted wind exponent accounts for the change
in the trend caused by SST and other secondary influences. Our new Sect. 3.3.2 shows that explicitly
accounting of SST (and eventually other factors) helps to model the spread, not the trend, of the W
data.

We describe our approach in Sect. 2.1, the significance test used in Sect. 2.3, and give the results
regarding differences between parameterizations that account for variability implicitly or explicitly in
Sect. 3.3. Through the text, with each new result presented, we drive the point that the adjustment
from cubic to quadratic wind exponent accounts to a large extent for secondary forcing.

9.1 The new parameterization fails to reduce uncertainty in predicting sea-spray aerosol (SSA) flux.
To what degree is the uncertainty in SSA flux attributed to uncertainty in predicting W versus other
aspects of traditional sea-spray source functions (SSSF)?

9.2 Indeed, we do not report reduced uncertainty in predicting SSA flux. There are many uncertainty
sources yielding wide spread of predicted SSA emissions. With our study, we address only one of the
uncertainty sources—that associated with the natural variability of the whitecaps.

The Referee’s question prompted us to use comparisons between our and Grythe et al. (2014)
results for SSA fluxes to examine and quantify variations of SSA emissions attributed to magnitude
and/or shape factors.

9.3 New Sect. 3.4 is revised and extended to give our new results.

These results are summarized in the Conclusions as follows:

With or without the SST effect included in the SSSF, SSA emissions obtained with the new W(U,,, T)
parameterization vary by ~50%. Different approaches to account for SST effect yield ~67% variations.
Different models for the size distribution applied to different size ranges lead to 13%-42% variations
in SSA emissions.


https://ams.confex.com/ams/pdfpapers/174036.pdf

We conclude Sect. 3.4 with the following:

On the basis of these assessments, we can state that the inclusion of the SST effect in the magnitude
factor and/or the choice of the shape factor (size range and model for the size distribution) in the
SSSF can explain 13%-67% of the variations in the predictions of SSA emissions. The spread in SSA
emission can thus be constrained by more than 100% when improvements of both the magnitude
and the shape factor are pursued. Our results on the W parameterization (Fig. 13a) suggest that
accounting for more secondary forcing in the magnitude factor would explain more fully the spread
among SSA emissions. Because, after wind speed, the most important secondary factor that
accounts for variability in W is the wave field (SAL13), efforts to include wave parameters in W
parameterizations are well justified.

10.1 Figures appear to have been generated with different software packages.

10.2 Yes, indeed. We have used Python, IDL, and Excel. Respectfully, we do not see this as a problem
in presenting our results and drawing conclusions.

10.3 No changes were made regarding comment 10.

Specific Comments

Page 21221; Line 1: Awkwardly worded first sentence which fails to highlight the importance of
reducing uncertainty of SSA flux.

Agreed. We removed it. The importance of reducing the uncertainty of the SSA flux is mentioned on
page 21223 lines 24-25 and page 21224 lines 1-14.

Page 21223; Line 15: Acronym SSA used prior to defining SSA. SSA acronym is defined on Page 5,
Line 24.
Now fixed, acronym SSA introduced on first use of “sea spray aerosols” in the Introduction.

Page 21224; Line 11: Neither evidence nor citation is made to support this statement. Suggest this
as an explanation versus declaring as fact.

Yes, this was our explanation. The extensive investigation of Salisbury et al. (2013) on the W
variability using year-long satellite-based W data was cited in Line 12 as a basis for this explanation.
With the extensive revisions of the manuscript, this statement now is lost.

Page 21225; Line 23: Continue to use whitecap fraction instead of “W”. Authors flip back and forth
(e.g. Page 7; Line 24) on notation. Please use W to represent whitecap fraction after defining
whitecap fraction as W.

Yes, we use both “W” and “whitecap fraction” depending on the context. Following the Referee’s
comment, the specific example and other cases have been changed from “whitecap fraction” to “W”

Page 2138; Line 27: Please reword.
This text is removed.
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Anonymous referee #2

General impression: The paper is presenting an extensive effort of data treatment, but the results and
conclusions are rather limited. The authors need to better articulate conceptual aspects of the
methods used, some of which | found misinterpreted. Overall, the paper has its potential and may
become publishable, but needs additional work.

We thank the Referee for the thorough review of the manuscript and the constructive comments, which
contributed to the improvement of this manuscript.

In response, the manuscript is substantially revised with the following:

1) Updated analysis of global W data to develop W(U10) parameterization.

2) Extended analysis of regional W data to develop W(U10,T) parameterization with SST explicitly
included; this was done for both quadratic and cubic wind exponents.

3) Analysis for statistical significance (with Student’s T-statistics and ANOVA) of new and previous W
parameterizations.

4) Extended ‘Methods’ section to justify and clarify approach, data, and implementations.

5) Revised and extended ‘Results and Discussion’ section to clearly describe results and give substantive
and quantitative interpretations and conclusions.

The table of contents of the revised manuscript is added after the responses for reference.

Manuscript revisions with track changes are provided in a separate pdf file.

Several comments and questions are similar in all 3 reviews (e.g., uncertainty not reduced, quadratic
wind speed exponent, embedded secondary forcing, intercept interpretation). To avoid repetitions, we
attempted combining responses to these common points in one file. We found, however, that one-fits-
all responses do not always address the reviewers’ comments and questions fully. Thus, risking some
repetitions, we proceeded with a specific response to each comment.

Responses are presented below in sequence: (1) the original comment from the Referee (in bold italic),
there are 8 comments; (2) our response; (3) changes in manuscript.

1.1 The main advantage over other similar W parameterisations is a quadratic form of a new
parameterisation. Regardless of the well correlated linear fits of sqrt(W) there is little justification why
it should be quadratic. The resulting good correlation cannot justify it. Perhaps it can be reduced to
quadratic form after careful consideration of the uncertainties, but choosing it upfront is a thing of the
past when analytical approaches were limited due to computing power.

1.2 We agree with the Referee that we could have given a better justification of the approach that
yielded quadratic wind speed exponent. To clarify, we didn’t choose the quadratic relationship upfront.
It was suggested by: (1) the data (e.g., old Fig. 3), to which we tried to fit different functional forms; and
(2) our aim to apply the same approach to W data at both 10 and 37 GHz.

The finding of weaker (quadratic) wind speed dependence here is not a precedent. The first
reported W(U,,) relationship of Blanchard (1963) was quadratic. With careful statistical considerations,
Bondur and Sharkov (1982) derived a quadratic W(U,,) relationship for residual W (strip-like structures,
in their terminology). Parameterizations of W in waters with different SST have also resulted in wind
speed exponents around 2 (see Table 1 in Anguelova and Webster, 2006). Quadratic wind speed
dependence is also consistent with the wind speed exponents of SAL13.



1.3 To address the Referee’s concern, we have included justification for using wind speed exponent
adjusted by the data in new Sects. 2.1 and 2.3. We also extended the data analysis to include
parameterization using cubic wind speed dependence and compare it to the empirical quadratic
expression. We report the results in new sects. 3.1.1 and 3.2.2.

2.1 Following the above the progress over the extensively referenced Salisbury et al. papers is poorly
documented or highlighted.

2.2 We have stated how this work relates to the work of SAL13 in two places. In Lines 17-19 on page
21242, we state that we see the current work as complimenting the work of SAL13. In Lines 3-7 on page
21243, we point out a difference.

To recap, besides using different analyses (e.g., regional analysis), we also added analysis and
guantification of the possible intrinsic correlation in the W data and how this could affect W predictions
with the new W(U10) expressions. We also assessed the utility of using the satellite-based W data to
estimate SSA production rate.

Yet, we agree with the Referee that we could have distinguished the two studies more clearly.

2.3 As noted at the beginning, we extended our analysis. The results on new W(U10,T) parameterization
at both quadratic and cubic wind exponents (revised Sect. 3.2) and the investigation of significant
differences (revised Sect. 3.3) add to the results listed above and clearly set this study apart from the
analysis done in SAL13.

3.1 The main advantage of the paper might be exploration of regional differences, but the regions of
extreme variability in global map (Fig.9) are poorly represented, namely, high latitude S. Atlantic, high
latitude N. Pacific, high latitude North Atlantic, S. Indian Ocean. Five out of seven regions were in
subtropical 60deg band. Was it due to limited clear skies? If so, that was a significant limitation of the
exploratory effort.

3.2 We appreciate that the Referee acknowledges the advantage of performing regional analysis. The
comment suggests that we have not presented our reasoning for the choice of the regions well. Here
are some clarifications.

The cloudiness doesn’t play role in the choice of the regions because radiometric measurements at
microwave frequencies, used to obtain W estimates, penetrate most clouds. Radiometric observations
at the ocean surface could be limited by very thick clouds (with a lot of liquid water content) and by
precipitation. Such cases are flagged in the WindSat algorithm and are not used to obtain W values.

The number of samples was one of the criteria we had when choosing the regions (Line 28 on page
21227 and Line 1 on page 21228). By this criterion, there are fewer samples for latitudes above 60°S or
N (see Fig. 3), mostly because WindSat and QuikSCAT have fewer matching points there (Sect. 2.1).

The latitudes between 40°S and 50°S are known as “The Roaring Forties” for the strong westerly
winds there. Our region 5 is chosen in these latitudes. And because the conditions in the Southern
Ocean are relatively uniform (due to lack of land masses), region 5 represents the Roaring Forties well.
The regions at subtropical latitudes are placed within the Trade winds zone. These are persistent
easterly winds blowing over different fetches in different oceans with different salinity and surfactants.
So regions 2, 3, and 7 are representative of different cases.

Still, to address the Referee’s comment, we analyzed W data in more regions.



3.3 Additional regions were chosen (updated Fig. 2); climatology for different conditions is given (new
Fig. 3); extended text to justify the region choices is included (new sect. 2.2.2); and results from the
extended regional analysis are given (new sect. 3.2).

4.1 The use of a chosen coarse mode SSA tool to prove usefulness of a new W parameterization is
quite useless considering that available SS source functions range several orders of magnitude and
would likely swamp any variability between different W parameterisations or, certainly, the impacts
of secondary factors. That part is redundant in the paper as it adds very little useful knowledge. Fig. 12
is sufficient for the purpose.

4.2 We respectfully disagree with the Referee’s comment because, while our modified SSSF predicts SSA
production which falls within the range of variability of previously used SSSFs, we consider as an
important result the fact that our SSA estimates have quite a different spatial distribution thanks to the
satellite-based W data.

We updated our previous comparisons (old sect. 4.3) with additional comparisons between our and
Grythe et al. (2014) results for SSA fluxes (new sect. 3.4). This gave us the possibility to examine and
quantify variations of SSA emissions attributed to magnitude and/or shape factors of the SSSF.

4.3 The new results are summarized in the Conclusions as follows:

With or without the SST effect included in the SSSF, SSA emissions obtained with the new W(U, T)
parameterization vary by ~50%. Different approaches to account for SST effect yield ~67% variations.
Different models for the size distribution applied to different size ranges lead to 13%-42% variations in
SSA emissions.

We conclude Sect. 3.4 with the following:

On the basis of these assessments, we can state that the inclusion of the SST effect in the magnitude
factor and/or the choice of the shape factor (size range and model for the size distribution) in the SSSF
can explain 13%-67% of the variations in the predictions of SSA emissions. The spread in SSA emission
can thus be constrained by more than 100% when improvements of both the magnitude and the shape
factor are pursued. Our results on the W parameterization (Fig. 13a) suggest that accounting for more
secondary forcing in the magnitude factor would explain more fully the spread among SSA emissions.
Because, after wind speed, the most important secondary factor that accounts for variability in W is the
wave field (SAL13), efforts to include wave parameters in W parameterizations are well justified.

5.1 1 disagree with the author’s interpretation of the intercepts arising from 10 and 37GHz datasets.
Negative intercept of 10GHz dataset is physically meaningful (contrary to what authors say) as it is
pointing at onset of white-capping. Contrary to what authors say, positive intercept of 37GHz dataset
is meaningless, suggesting white cap at negative wind speed. Reference to residual foam is wrong as
residual foam does not produce SSA as it lingers for hours, does not relate to wind speed (no bubble
plume can be produced at 2m/s) and, therefore, has nothing in common with actively generated foam
by bubble plumes only occurring above 3-4 m/s wind speed. A surfactant related foam while lasting a
little longer is forming (and dissipating thereafter within seconds, not hours) at significant wind
speeds. While data below 3m/s have little impact on W it should at least be correctly discussed.

5.2 We agree with the Referee that we didn’t convey well our interpretation of the y-intercept.

5.3 We revised the manuscript to introduce the currently accepted interpretation of negative y-
intercept (Sect. 2.1). Then in Sect. 3.1.1, we propose broader interpretation of the y-intercept in W(U10)



expressions, be it negative or positive. Briefly, we promote the hypothesis that positive y-intercept could
be interpreted as a measure of the capacity of seawater with specific characteristics, such as SST (thus
viscosity), salinity, and surfactant concentration, to affect the extent of W. These secondary factors do
not create whitecaps per se. Rather, they prolong the lifetime of the whitecaps thus contribute to W by
altering the characteristics of submerged and surface bubbles such as stabilization and persistence by
surfactants or rise velocity variations that replenishing the foam on the surface at different rates. These
processes ultimately augment or decrease W and the y-intercept can be thought of as a mathematical
expression of this static forcing (as opposed to dynamic forcing from the wind). In this light, our data
showing negative y-intercept for W values at 10 GHz is consistent with our and SAL13 analysis that
active whitecaps are less affected by secondary factors. However, secondary factors do affect strongly
residual whitecaps and the positive y-intercept for our W values at 37 GHz can be interpreted and used
to quantify this static influences. This is a hypothesis which is worth promoting for consideration,
debate, and further verification by the community.

6.1 I disagree with the concept of avoiding intrinsic correlation of W and U10 substituting QSCAT wind
speed by ECMWEF wind. In fairness, W should have been fitted directly to ECMWF data of whatever
resolution because a large scatter (regardless of good overall correlation) between two wind speed
datasets could have produced discernible differences in W. In conclusion the approach does not allow
comparing statistical parameters of W fits.

6.2 Please note that we had done what the Referee suggests should have been done. We did make
direct fit between the WindSat W values and the ECMWF wind speed values; it was presented in Fig. 8b.
We assessed the differences between U10 from QSCAT and ECMWEF; it was presented in Fig. 8a. Also,
we did assess how much W values from parameterizations using QSCAT or ECMWF winds differ (Sect.
4.2.1, Lines 13-29 on p. 21240 and Lines 1-14 on p. 21241). The Referee’s comment shows that we didn’t
present these results clearly.

6.3 New Sect. 2.2.3 more clearly describes the independent data set. New sect. 3.1.2 with results for
intrinsic correlation is revised for completeness and clarity.

7.1 Another conceptual flaw was speculating over secondary factors influencing W quadratic
relationship. The authors should have at least demonstrated that any two arbitrary chosen secondary
factors were cancelling each other’s influence before drawing any conclusion (or speculation in this
case).

7.2 We respectfully disagree that the concept of accounting for secondary factors via change of the wind
speed exponent is flawed.

Our approach to parameterize secondary forcing is now extended and clearly presented in new
Sect. 2.1. In it, we show the concept that the variability of W caused by secondary factors is expressed as
a change of the wind speed exponent is not new. The Monahan and O’Muircheartaigh (1986) analysis of
five data sets showed that the variability of W caused by SST (and the atmospheric stability) affect
significantly the coefficients in the wind speed dependence W(U10), especially the wind speed
exponent. The survey of W(U10) parameterizations by Anguelova and Webster (2006, their Tables 1 and
2) also clearly shows that each campaign conducted in different regions and conditions comes up with a
specific wind speed exponent. This strongly suggests that the influence of secondary factors is expressed
as a change of the wind speed exponent.



As said in the text (Lines 5-6 on p. 21234), the secondary effects could act in opposite ways. For
instance, the low viscosity of cold waters (e.g., in the Southern ocean) acts to decrease the sea surface
roughness, this delays the wave growth, leading to less frequency of wave breaking, and thus decreasing
W. At the same time, the high productivity of cold waters yields higher surfactant concentrations, which
stabilizes the submerged and surface bubbles, so though less often created, the whitecaps in such places
persist thus increasing W. The net effect of these two processes could be nominal (i.e., no change),
more, or fewer whitecaps. Monahan and O’Muircheartaigh (1986) and Scott (1986, The effect of organic
films on water surface motions, in Oceanic Whitecaps, edited by E. Monahan and G. Niocaill, pp. 159-
166) have presented this physical reasoning, and Anguelova and Webster (2006) have shown that such
interplay of the secondary effects may explain the spatial distribution of satellite-based W values.

While we are quite interested in investigating and quantifying the net result of such interplay, it
cannot be verified with the database we have. Data for seawater properties (including surfactants,
which are difficult to measure), sea surface roughness, bubble lifetime in submerged plumes, and
whitecap decay times are necessary for such an investigation. Still, being well aware that such interplay
is physically probable, we used it to explain the small variations between W(U10) expressions derived
for different regions. We, therefore, do not see this as a flaw of our approach, but more as a realization
that there is much more to do to understand the natural whitecap variability and that the W database is
only a start in this direction.

7.3 Because with our extended analysis we now clearly show that the effect of a secondary factor, such
as SST, on W trend can be accounted for to a large extent by change of the wind speed exponent, we do
not use the idea of the opposite action of the secondary factors.

Note that with our extended regional analysis, we have develop W(U10,T) parameterization
using both empirical (adjusted quadratic) and cubic wind exponents. We used significance tests
(Student’s T-statistics and ANOVA) to establish similarity and differences between W(U10) and W(U10,T)
with both empirical and cubic exponents. We found that the W(U10) trend predicted with a quadratic
wind speed exponent does not differ significantly from the W(U10) trend predicted either with
guadratic or cubic W(U10, T). This result clearly shows that to a large extent, the adjusted wind
exponent accounts for the change in the trend caused by SST and other secondary influences. Our new
sect. 3.3.2 shows that explicitly accounting of SST (and eventually other factors) helps to model the
spread, not the trend, of the W data.

The changes in the manuscript to address this comment include: Description of the approach in
Sect. 2.1, the significance test used in Sect. 2.3, and give the results regarding differences between
parameterizations that account for variability implicitly or explicitly in Sect. 3.3. Through the text, with
each new result presented, we drive the point that the adjustment from cubic to quadratic wind
exponent accounts to a large extent for secondary influences on the trend of W with U10.

8.1 | have additional comment regarding leveling of W relationship at very high wind speeds. While
increasing wind energy is favoring more of air entrainment and consequently larger foams the wind is
also blowing directly into the foam disrupting it in the process. Such process has not been quantified
yet, but is obvious in even the simplest table top experiment.

8.2 Fully agree with the Referee’s comment—the leveling of W (and air-sea interaction processes
associated with W) at high winds, while observed is not yet well understood and quantified. While
appreciative of the comment, we decided to not speculate on the leveling off in the revised manuscript
because we have a lot of new material.

The referee’s suggestion, if we understand it correctly—that disruption of whitecap foam
moving against the wind could explain the leveling of (at least partially)—is an interesting one and,



frankly, new to us. Perhaps this is akin to spume droplets, just relates to the spume (synonymous of
froth and foam) itself, not to the droplets formed from the spume. In any case, this is an idea which
should be promoted by the Referee.
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Interactive comment by lan Brooks and Dominic Salisbury:

We thank our colleagues lan Brooks and Dominic Salisbury for the thorough review of the
manuscript and the constructive comments, which contributed to the improvement of this
manuscript.

In response, the manuscript is substantially revised with the following:

1) Updated analysis of global W data to develop W(U10) parameterization.

2) Extended analysis of regional W data to develop W(U10,T) parameterization with SST explicitly
included; this was done for both quadratic and cubic wind exponents.

3) Analysis for statistical significance (with Student’s T-statistics and ANOVA) of new and previous W
parameterizations.

4) Extended ‘Methods’ section to justify and clarify approach, data, and implementations.

5) Revised and extended ‘Results and Discussion’ section to clearly describe results and give
substantive and quantitative interpretations and conclusions.

The table of contents of the revised manuscript is added after the responses for reference.
Manuscript revisions with track changes are provided in a separate pdf file.

Several comments and questions are similar in all 3 reviews (e.g., uncertainty not reduced, quadratic
wind speed exponent, embedded secondary forcing, intercept interpretation). To avoid repetitions,
we attempted combining responses to these common points in one file. We found, however, that
one-fits-all responses do not always address the reviewers’ comments and questions fully. Thus,
risking some repetitions, we proceeded with a specific response to each comment.

Responses are presented below. The original comments are in bold italic; we enumerated those (23
comments) for easy reference.

General comments:

1. This paper aims to improve the accuracy of sea spray source function defined via the whitecap
method — where the source flux is defined as the product of whitecap fraction, W, and the aerosol
produced per unit area whitecap over the lifetime of the whitecap. It aims to improve the accuracy
of this approach by reducing the uncertainty in the parameterization of W “by better accounting
for its natural variability”. We feel it fails to demonstrate such a reduction in uncertainty.

We acknowledge that as formulated, our objective was not met. We revised Sect. 1 to introduce
magnitude and shape factors comprising the SSSF and how uncertainties from each factor contribute
to the uncertainty of the SSSF. This allows us to clearly define our objective as “a study investigating
the second of these two routes, namely—how using W values carrying information for secondary
factors would influence the SSA production flux.”

We use comparisons between our and Grythe et al. (2014) results for SSA fluxes to examine and
quantify variations of SSA emissions attributed to magnitude and/or shape factors. The results are in
new Sect. 3.4. These results are summarized in the Conclusions as follows: With or without the SST
effect included in the SSSF, SSA emissions obtained with the new W(Uy,, T) parameterization vary by
~50%. Different approaches to account for SST effect yield ~67% variations. Different models for the
size distribution applied to different size ranges lead to 13%-42% variations in SSA emissions.

We conclude Sect. 3.4 with the following:



On the basis of these assessments, we can state that the inclusion of the SST effect in the magnitude
factor and/or the choice of the shape factor (size range and model for the size distribution) in the
SSSF can explain 13%-67% of the variations in the predictions of SSA emissions. The spread in SSA
emission can thus be constrained by more than 100% when improvements of both the magnitude
and the shape factor are pursued. Our results on the W parameterization (Fig. 13a) suggest that
accounting for more secondary forcing in the magnitude factor would explain more fully the spread
among SSA emissions. Because, after wind speed, the most important secondary factor that
accounts for variability in W is the wave field (SAL13), efforts to include wave parameters in W
parameterizations are well justified.

2. While the paper focuses on the issue of parameterizing W, it is worth noting that this is not the
only source of uncertainty in the parameterization of the sea spray source function by this method;
there is also uncertainty in the aerosol produced per unit area whitecap — this is inherently
assumed here to be a constant, but is almost certainly not. A study on which one of the co-authors
here is also a coauthor (Norris et al. (2013)) has demonstrated that the aerosol flux per unit area
whitecap varies with the wind/wave conditions.

We fully agree with Brooks and Salisbury comment and are well aware of the limitation of the
whitecap method, specifically its basic assumptions. We included new Sect. 2.4.1 to more fully
discuss the uncertainties coming from the whitecap method. However, the whitecap method (in the
form of Monahan et etl., 1986, or M86) has been widely used in many models for SSA flux (e.g.,
Table 3 in Textor et al., 2006). Therefore, to those who have worked with M86 until now, a
meaningful way to demonstrate how the new satellite-based W data and new parameterizations
W(U10) or W(U10,T) based on them would affect estimates of SSA flux is to held constant the shape
factor and clearly show differences caused solely by the use of the new expressions.

3. Much of the material in the paper is very similar to that presented in Salisbury et al. (2013, 2014
—both widely cite throughout). The authors could use this to their advantage by removing repeated
background material, most notably in section 2.

We mentioned this fact in Line 25 on p. 21225 and consciously proceeded to “briefly” describe the
W database (as said in Line 1 on p. 21226). The comment here suggests that we should shorten
Sects. 2.1 and 2.2 even more. We agree: Sects. 2.1 and 2.2 (72 lines) have been combined and
revised to a shorter new Sect. 2.2.1 (41 lines).

4. The recent paper by Paget et al, (2015) needs to be considered too given that it uses the same
data set and one of its main focuses is parameterisation of satellite W. In particular, Paget et al.
address the use of equivalent neutral winds in the satellite W database. Here, the inherent
difference between QuikSCAT winds and ECMWEF winds is an important point, and warrants more
than a passing comment (section 4.2.1).

Paget et al. (2015) didn’t derive W(U10) parameterization from the satellite-based W data. Paget et
al. investigated and quantified variations of W values when different wind speed sources are
employed to derive W(U10) parameterizations. Paget et al. did that by coupling in situ W data with
in situ (thus stability-dependent) and satellite (thus stability-corrected) wind speed values, then
analyzing how the coefficients in W(U10) expressions change. The satellite-based W database was



used to assess differences between W(U10) expressions obtained from in situ W and different wind
sources.

In contrast, we used both satellite-based W data and U10 from the W database to derive
W(U10) expression. For the revised manuscript, we extended our regional analysis to derive also
W(U10,T) parameterization. In the revised manuscript, we cite Paget et al. (2015) in Sect. 2.2.3
regarding stability effects on U10 data sources.

Use of independent wind speed:

5. A novel aspect of the paper, and a key difference from the Salisbury et al. studies, is the aim to
assess the impact of intrinsic correlation between W and the QuikSCAT-derived U;, values used in
the Salisbury et al papers, because the same Uy, data is used in part of the W retrieval. However,
the approach adopted fails to properly address the issue.

To avoid the potential self-correlation of W and Ug,iscar the simple approach would be to fit W to
the independent measure of Uy, Here the ECMWF model values, Ugcywr, are adopted; however,
instead of this, the authors fit W to Uquiscar (€qn 7), then fit Ugcpwr to Uquikscar (€qn 8), rearrange
(8) and substitute Uecywr for Uquickscar in (7) to give (9). There are multiple problems here, both
conceptual, and in implementation.

We plot Ugcmwer VS. Uquikscat to assess how the U10 values from the two sources differ. We find this
necessary as we comment that it is not easy to find truly independent U10 data (Lines 27-28 on p.
21229). The small difference of 5% between Ugcpwr and Uquiscar Prove this point to some extent.
The fit between the Ugcpwr and Uquiscar (Made over approximately 700 000 data points) is useful
because a reader might have either QSCAT or ECMWF data and this fit offers an easy and reliable
conversion between the two wind speed sources.

Implementation issues:

6. 1) A potentially minor issue, but in fitting Ugcywr to Uquikscar the authors adopt a fit forced
through zero, rather than an unconstrained fit. No justification is given for doing so.

We did not need to give a justification because we did both unconstrained and zero-forced fits of
Uquiksca t0 Ugemwe- Both were shown in (old) Fig. 8a with dashed and solid lines, respectively. It is
seen in the figure that the two fits are very close (almost overlap) with corr. coef. almost identical.
The comment suggests that the closeness of the two fits should be clearly pointed out in order to be
noticed. We do that in the new Sect. 2.2.3 and in the figure caption (new Fig. 4).

7. 2) When substituting Uecpwr for Uguickscar in (7), the authors completely neglect the scaling
coefficient with the result that (9) is identically equal to (7) — the authors even note this
themselves, and that it is a result of rounding the coefficients, and that the error introduced is up
to 10%! There is no justification for doing this. In effect the authors are using the parameterization
of W in terms of UQuikSCAT, and claiming it is in terms of an independent UECMWEF.

We acknowledge that this was not the best way to pursue the W(U10) parameterization. Updated
and extended analysis of the data now provides W(U10) on a global scale and W(U10,T) derived
from the regional analysis. New Sect. 2.3 describes the implementation of the parameterizations.
New Sect. 3.1.1 present the updated W(U10) expression. New Sect. 3.2 shows the derivation of
W(U10,T). Revised Sect. 3.3 compares both W(U10) and W(U10,T) to parameterized W values and to
W data.

8. As an aside, equation (8) essentially states “ax=y implies x = y/a” — this is so trivial that it really
shouldn’t need stating.



We agree. We revised Eq. (8) (new Eq. (7)).
Conceptual issues:

9. A serious problem here is that even if the substitution of Uccywe for Uquickscar was correctly done
(no rounding of coefficients), this approach would not give an estimate of W unbiased by any
inherent correlation with Ugicscat, it would simply scale the value of wo? by the coefficient
relating Uecpwr and Uguickscar- In order to achieve what the authors claim to do, W must be fitted to
Uceenue directly. Note that the is considerable scatter between Uecywe and Uqickscar, thus any given
estimate of W is likely to be paired with a different value of Uccywr than Uguickscar and the
functional form of the fit may be different.

This point essentially invalidates one of the stated aims/conclusions of the paper.

The comment suggests that we did not convey clearly what we have done. So, to clarify:

We made time-space matchups between the WindSat W data and wind speed from ECMWEF. For
each W—Uquickscar pair from the original W database, we have a corresponding W —Ugcmwr pair of
data. These data are used to make the scatter plots in (old) Fig. 8.

We did make direct fit between the YW values and the ECMWF wind speed values (it was shown in
Fig. 8b) and used it to obtain W(U10ECMWF). We thus have direct W(U10) parameterizations for the
two wind speed sources.

To address the comment, we revised the text to more clearly present the formation of
“independent” data set (new Sect.2.2.3) and the results (new Sect. 3.1.2).

Functional form of W(U,,) parameterization

10. When fitting W as a function of U, the authors adopt an assumed quadratic relationship. No
justification is given for this assumption, and it is largely unsupported by previous studies. As the
authors themselves noted, Salisbury et al. (2013) found different power laws for W, and W3, (U*?°

and U**°) respectively for the same data set used here.

We agree that we could have given a better justification of the approach that yielded quadratic wind
speed exponent. See below.

11. Cubic or quadratic forms have been forced in previous studies based on theoretical arguments.
But these arguments are based on idealised conditions such as a wind input — wave dissipation
energy balance. If anything, secondary factors could be expected to lead to a deviation from a
strict quadratic or cubic dependence on U10 alone.

We have the same understanding on this and fully agree with this statement.

The presentation of our approach to parameterize secondary forcing is now extended and
clarified in new Sect. 2.1. In it, we show that previous experience strongly suggests that the influence
of secondary factors is expressed as a change of the wind speed exponent. This has guided our
analysis. We didn’t choose the quadratic relationship upfront. It was suggested by: (1) the data (e.g.,
old Fig. 3), to which we tried to fit different functional forms (including cubic); and (2) our aim to
apply the same approach to W data at both 10 and 37 GHz. So the quadratic wind speed exponent is,
in fact, the adjustment which we expect from whatever idealized wind speed dependence there is
(we usually assume cubic) to that dictated by the satellite-based W data. And, in accord with the
previous experience mentioned above, this adjustment does represent some implicit account of
secondary influences.



The finding of weaker (quadratic) wind speed dependence here is not a precedent. The first
reported W(U,o) relationship of Blanchard (1963) was quadratic. With careful statistical
considerations, Bondur and Sharkov (1982) derived a quadratic W(U,) relationship for residual W
(strip-like structures, in their terminology). Parameterizations of W in waters with different SST have
also resulted in wind speed exponents around 2 (see Table 1 in Anguelova and Webster, 2006).
Quadratic wind speed dependence is also consistent with the wind speed exponents of Salisbury et
al. (2013).

To address this comment, we included justification for using wind speed exponent adjusted by
the data in new Sects. 2.1 and 2.3. We also extended the data analysis to include parameterization
using cubic wind speed dependence and compare it to the empirical quadratic expression. We
report the results in new sects. 3.1.1 and 3.2.2.

12. In general making an a priori assumption about the exponent in such relationships is likely to
lead to biases over at least part of the wind speed range. Here it is evident from figure 4 and figure
5(a,b) that the adopted function does not fit the data at either very low or very high wind speeds.
There is no reason why the exponent should be an integer value, and it seems likely that many of
the results and conclusions in this paper (e.g. Section 3.1.2) are a direct result of this unjustified
choice.

Quadratic W(U10) fits well W data for wind speeds from 3 m/s (whitecap inception) to 20 m/s
(chosen to minimize uncertainty of satellite-based W data at higher winds). In the updated analysis
all fits are done for this range (new Fig. 8).

The quadratic wind exponent represents well the weaker wind speed dependence of the
satellite-based W data. We show this in new Fig. 13a described in new Sect. 3.3.2. This confirms that
the quadratic wind exponent is the deviation we expect due to secondary factors. We have checked
with Student’s T-statistics and ANOVA tests that indeed quadric W(U10) parameterization is not
statistically different from the SAL13 W(U10) parameterizations with more specific wind exponents.

13. The authors state (p21232, line 5) that “The VW(U10) values at 10GHz for wind speeds below 3
m s were discarded in the analysis because, as shown in Fig. 4, the linear relationship breaks up
at about this wind speed” — the fact that a portion of the data doesn’t fit a functional form that
has been chosen without justification is not a good reason for discarding it. This is tantamount to
cherry picking data that fits a pre-conceived idea. The fact that the data doesn’t follow the chosen
function is evidence that the function is not appropriate.

Yes, we state this in Line 5 p. 21232. And we continue in the next sentence to state that either
discarding or taking into account these data points, does not significantly influence the position of
the linear fit.

Discarding W data for wind speeds below 3 m s™ is something we all usually do because we all
recognize that this is the wind speed threshold for whitecap formation in most conditions (of course,
the threshold wind speed vary). Moreover, in Line 10 on p. 21243, we give justice to SAL13 that they
more carefully evaluated the W data to be used in their study by discarding those with large std.
deviations. Coincidently, most of these discarded W data were for wind speed below 3 m s™.

More generally, it is well known that W data, whether in situ or satellite-based, have the largest
uncertainty at both low and high winds. Following faithfully their trends at these wind speed regimes
is not always productive. We thus introduce the range of wind speed from 3 to 20 m/s used for all
fits (new Sect. 2.3). So there is no cherry picking of the data here to fit pre-conceived idea, rather we
follow a reasonable and well established practice of quality control of W data.

Regional W distributions



14. The analysis of W(U10) functions by geographical region is a potentially interesting and useful
approach. Both this study and Salisbury et al. (2013, 2014) note the significant difference between
global maps of W parameterized from this data set and by Monahan and O’Muircheartaigh
(1980). The prime reason for that difference is that the Monahan and O’Muircheartaigh (1980)
study used tropical data only, and thus represented a specific wind/wave/water-temperature
regime, and further with a maximum wind speed of order 17 m s-1, much lower than common high
wind speeds at high latitudes. Monahan has emphasised that this is a regionally specific function,
but its widespread adoption in models means it commonly gets applied globally, and at wind
speeds well above its range of validity.

We fully agree with this statement. We state similar understanding in Lines 9-12 on p. 21242.
The revised manuscript has this information too—in Sect. 1 and the end of Sect. 3.3.2.

15. The different functions obtained here for different regions should similarly represent different
wind/wave regimes, and the influence of other environmental factors such as sea surface
temperature (SST), surfactant concentrations, etc. This point is touched on, but then the various
functions are simply averaged to give a single ‘globally applicable’ function. In fact, as is
demonstrated by the differing regional functions, this single function is not truly globally
applicable at all — although the bias in any given region may be modest, it will be a mean bias, not
random variability, and hence potentially significant in terms of global budgets.

We agree. With the extended significance analysis, we found that the slopes and intercepts of the
regional VW to U10 fits are statistically significant; the seasonal variations are not. New Sect. 3.2.1
presents these results; we illustrate the results with Fig. 8 (old Fig. 5) and two additional new figures.

16. The analysis and discussion of the regional/seasonal relationships seems superficial, and
perhaps misleading. The authors suggest that the smaller variability in fits with month of year in
region 5 vs that between all the different regions for the month of march implies “extreme yet
sporadic seasonal values of the major forcing factor such as U10 at a given location contribute less
to the W variations than varying environmental conditions from different locations” — but the
comparison is of dissimilar effects. The regional differences result from differences in mean
conditions (wind/wave regime, SST, surfactant concentrations,...), whereas ‘extreme yet sporadic’
events will by their nature affect only a small fraction of the data points. Further, region 5 is not
necessarily representative of other areas; figure 6 indicates that region 4 (North Atlantic) has a
much larger seasonal cycle than other regions, while region 6 (tropical) has very little seasonal
cycle. The statements cited above thus draw rather general conclusions from a small, and not
necessarily representative, subset of the data.

The “extreme yet sporadic” text is now removed. Analysis is now extended for 12 regions in order to
cover the full range of global oceanic conditions and represent diverse regional conditions. New
Sect. 2.2.2, updated Fig. 2, and additional Fig. 3 describe the regional W data sets.

17. The analysis of regional/seasonal variations presented in figures 6 and 7 seems a curious
approach.

Only the intercepts of the linear fits of VW3, to U, are examined — these are effectively the mean
offsets in VW3, between regions & month of year, the value of VW3, at Uy, = 0. As noted above, the
fits do not represent the data well at low wind speeds, the intercepts thus greatly overestimate W
at U;p = 0 — theoretically W should be zero here.

The justification given for examining the intercept only is that the intercepts show more variability
than the gradients (according to the values given the standard deviation of the gradients is ~3%



and that of the intercepts about 20%). We would question the validity of this. Note that when the
linear fits of VW are expanded to give W, the gradient scales U? while the intercept affects the
mean offset and U. As an example we reproduce figure 5f below, with the two fits with extreme
gradients highlighted in black and green. For reference the black line is copied as a dotted line with
its intercept adjusted to match that of the green line, allowing the relative influence of intercept
and gradient to be assessed — clearly they have a similar overall impact.
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Figure 5f, Green line grodient = 0.0088, black line grodient = 0. 0081, o difference of approximately
8%.

We agree that the initial regional analysis was incomplete. The new analysis is on both slopes and
intercepts, for both 10 and 37 GHz, applied to all 12 regions for all months with both the adjusted
guadratic and the physical cubic relationships. New Sect. 2.3 describes the implementation of the
analysis. New Sect. 3.2.2 gives results for quantifying the SST effect. Parameterization W(U10,T) is
developed as a quadratic (or cubic) wind speed dependence W(U,,) whose coefficients vary with
SST; this is justified in new Sect. 2.1.

18. It is easier to see the true impact if we plot W instead of VW.
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The black and green curves are as in figure 5f above, the difference in gradient more than
compensates for the difference in intercepts. More dramatic is the comparison with the red line-
the ‘global’ function given as eqn 7: VW = 0.01U,,+ 0.02. It is clear here that this ‘global’ function is
far from representative of some of the individual regions for specific seasons.

These equations are now updated (new Egs. (11-12)). The two new parameterizations, W(U10) from
the global data set and the W(U10,T) from the regional analysis, are much closer, almost
overlapping. Student’s T-statistics and ANOVA tests show them to be statistically not different. Note
that this is so for the trend of W with U10 shown in figures like the one above. The new W(U10) and
W(U10,T) parameterizations give statistically different results when used with real U10 and T data
because W(U10,T) is capable to model the spread of the W data while W(U10) only the trend.

19. In their discussion of the variations in gradients the authors give a rather vague description of
why they believe the gradients vary little between regions, suggesting first that the use of a
quadratic fit somehow accounts for the influence of secondary environmental forcing factors,
which is clearly not possible, then suggesting that maybe multiple environmental factors cancel
each other out, which is plausible but pure speculation without any evidence provided. In the
discussion of the intercepts of the fits the authors then contradict the earlier claims by suggesting
that the gradient accounts for the wind-speed dependence and the other environmental factors
are accounted for by the intercept. Again, it is plausible that environmental factors such as SST or
surfactant concentration would affect the mean offset in W3, but no evidence is presented to
support the claim here.

Though the action of secondary factors in opposite directions, and thus cancelling out effects, is
viable (Monahan and O’Muircheartaigh, 1986; Scott, 1986, The effect of organic films on water
surface motions, in Oceanic Whitecaps, edited by E. Monahan and G. Niocaill, pp. 159-166), we do
not use this idea anymore because we cannot show this with our data.

As said above (comments 11 and 12), the quadratic wind exponent is the adjusted
(empirical) wind exponent dictated by the satellite-based W data, so it represents a deviation from
physical cubic due to secondary factors. We now prove that quadratic W(U10,T) replicates the
satellite-based data well, while cubic W(U10,T) cannot. We present extensive discussion on this with
two new figs. 12 and 13 in new sects. 3.3.1 and 3.3.2.



As for the intercept, we revised the manuscript to introduce the currently accepted
interpretation of negative y-intercept (Sect. 2.1). Then in Sect. 3.1.1, we propose broader
interpretation of the y-intercept in W(U10) expressions, be it negative or positive. Briefly, we
promote the hypothesis that positive y-intercept could be interpreted as a measure of the capacity
of seawater with specific characteristics, such as SST (thus viscosity), salinity, and surfactant
concentration, to affect the extent of W. These secondary factors do not create whitecaps per se.
Rather, they prolong the lifetime of the whitecaps thus contribute to W by altering the
characteristics of submerged and surface bubbles such as stabilization and persistence by
surfactants or rise velocity variations that replenishing the foam on the surface at different rates.
These processes ultimately augment or decrease W and the y-intercept can be thought of as a
mathematical expression of this static forcing (as opposed to dynamic forcing from the wind). In this
light, our data showing negative y-intercept for W values at 10 GHz is consistent with our and SAL13
analysis that active whitecaps are less affected by secondary factors. However, secondary factors do
affect strongly residual whitecaps and the positive y-intercept for our W values at 37 GHz can be
interpreted and used to quantify this static influences. This is a hypothesis which is worth promoting
for consideration, debate, and further verification by the community.

20. A relationship with SST is claimed from figure 7, where time series of the intercepts of monthly
mean fits of VW3, to U, are plotted by region, along with similar time series of monthly mean
SSTs. The authors claim an inverse relationship between the intercept and SST. This is (we
presume) inferred by the progression of increasing SST from regions 5 - 4 - 6 and the
corresponding decrease in intercept between the same regions (in a mean sense, there are
individual points that do not follow the trend). However, this assumes all the differences between
regions are a result of SST, and does not allow for the co-variation of, for example, SST and
biology, and hence surfactant concentration, or of SST with latitude and hence wind/wave regime.
Also, it is hard to determine anything but the most general relationship from a plot of overlaid
time series. If you want to determine the relationship between the intercepts and SST, plot a
scatterplot of intercept (y axis) against SST (x axis) and look for a functional relationship.

We now plot the slopes and intercepts of the W(U10) relationships in all regions and for all months
as a function of SST (new Fig. 11). From these plots we derive expressions for the SST variations of
the coefficients in the W(U10) dependence. The figure shows the inverse relationship between the
intercept and SST.

Agree, we cannot account for the interplay between the secondary factors in different
regions with the data we use in this study. However, with new Fig. 13a (in new Sect. 3.3.2) we show
that including SST in the W parameterization explains only part of the spread/variability of the
satellite-based W data. This suggests that besides SST, other secondary factors have to be included
explicitly to fully replicate the variability of the satellite-based W data.

Aerosol Flux

21. The whitecap method for parameterization of the sea spray source flux is built upon the
premise that W can be used as a scaling factor. That is, for a given shape function (the size-
resolved interfacial flux from a unit area whitecap), any change in the production flux is linearly
related to the change in W. Though it has been noted that this premise is likely to be incorrect
(Norris et al. 2013), given the need for relatively simple parameterisations of SSA production rates
in global climate and aerosol models, the community is not yet at the stage where the whitecap
method can be developed to reflect this fact.

Therefore in presenting new globally-averaged estimates (or global maps) of SSA emission rates
calculated via the whitecap method (in its current form), little new information is gained.



We respectfully disagree with this comment because we consider as an important result the fact
that our SSA estimates have quite a different spatial distribution thanks to the satellite-based W
data. To demonstrate these differences, the widely used whitecap-based SSSF in this form is a useful
baseline for comparison; we justify this in new Sect. 2.4.1 (see also comment 2). Also, with our and
previous results, we were able to examine and quantify the variations of SSA emissions attributed to
magnitude and/or shape factors in the whitecap-based SSSF (see comment 1).

22. One could argue that it is worthwhile comparing the resulting new estimates of globally-
averaged SSA production rates with those of previous studies, but often these estimates simply lie
somewhere within the large spread of previous estimates, and no further illuminating conclusions
can be deduced.

That SSA emission inferred by our new parameterization is within the range of previous estimates of
SSA emissions shows that our modified SSSF gives consistent estimates. Certainly, we do not want to
be an outlier among SSA emission estimates, especially knowing their large spread. Again, what is
more important is that the spatial distribution of this total SSA emission is significantly different from
those of previous SSSF predictions. And, again, our estimates of the total SSA emission proved useful
to evaluate variations due to magnitude and/or shape factors in the SSSF (see earlier comments 1, 2,
and 21).

23. All the new and novel information is contained within the new W estimates and their spatial
variation (Figure 9). Figure 10, therefore, adds little to the paper, especially when followed by the
difference map [Figure 11]). We suggest that maps of the difference (bias) between W from the
new parameterisation and those obtained from a previous parameterisation are more easily
interpretable.

Salisbury et al. (2014) show global maps of the new satellite-based W data. Old Figs. 9 and 10
showed global maps from W parameterizations, not W data. In our view, it is informative for the
readers to see global maps of W and SSA with the absolute values obtained with the new W(U10)
parameterization.

Still, we agree that difference maps for W and SSA with reference values from MOMS80 and
M86, respectively, is a more informative and focused way to demonstrate differences. So Fig. 9 (new
Fig. 13b) is revised to show difference between W from MOMS80 and W from our quadratic
W(U10,T). Old Figs. 10 and 11 are combined in a new Figure 14 with top panel showing SSA from the
M86 SSSF using our quadratic W(U10,T), and lower panel showing difference map with M86 SSSF
using MOMS80 W(U10).
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Abstract

In this study the utility of satellite-based whitecap fraction (W) values for the prediction of sea
spray aerosol (SSA) emission rates is explored. More specifically, the study is aimed at
evaluating how an account for natural variability of whitecaps in the W parameterization
would affect SSA mass flux predictions when using a sea spray source function (SSSF) based
on the discrete whitecap method, The starting point is a data set containing W data for 2006,

together with matching wind speed U0, sea surface temperature (SST) T, and statistical data,
Whitecap fraction W was estimated from observations of the ocean surface brightness
temperature Tg by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global
scale assessment of the data set yevealed a quadratic correlation between W and Uy, A new
global W(U1q) parameterization was developed and used to evaluate an intrinsic correlation
between W and U, that could have been introduced while estimating W from Tg, A regional

scale analysis, over different seasons jndicated, significant differences of the coefficients of

regional W(Uq) relationships. The effect of SST on W is explicitly accounted for in a new
W(Uqo, T) parameterization. The analysis of W values obtained with the new W(Uy) and
W(Uy, T) parameterizations indicates that the influence of secondary factors on W is for the

largest part embedded in the exponent of the wind speed dependence. In addition, the W(Ujy,
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T) parameterization is capable to partially model the spread (or variability) of the satellite-

based W data. The satellite-based parameterization W(Ujo, T) was applied in an SSSF to

estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of
44x10" kg yr is within previously reported estimates, however with distinctly different

spatial distribution. ,

1 Introduction

Whitecaps are the surface phenomenon of bubbles near the ocean surface. They form at wind
speeds of around 3 m s and higher, when waves break and entrain air in the water which
subsequently breaks up into bubbles which rise to the surface (Thorpe, 1982; Monahan and
O’Muircheartaigh, 1986). The estimated global average of whitecap cover, i.e., the fraction of
the ocean surface covered with whitecaps W, is 2 to 5% (Blanchard, 1963). Being visibly
distinguishable from the rough sea surface, whitecaps are the most direct way to parameterize
the enhancement of many air-sea exchange processes including gas- and heat transfer
(Andreas, 1992; Fairall et al., 1994; Woolf, 1997; Wanninkhof et al., 2009), wave energy
dissipation (Melville, 1996; Hanson and Phillips, 1999), and the production rate of sea spray
aerosols (SSA),(e.g., Blanchard, 1963; 1983; Monahan et al., 1983; O’Dowd and de Leeuw,

2007, de Leeuw et al., 2011), because all these processes involve wave breaking and bubbles.

Measurements of the whitecap fraction W are usually extracted from photographs and
video images collected from ships, towers, and air planes (Monahan, 1971; Asher and
Wanninkhof, 1998; Callaghan and White, 2009; Kleiss and Melville, 2011). Whitecap
fraction is commonly parameterized in terms of wind speed at a reference height of 10 m, Uy.
Wind speed is the primary driving force for the formation and variability of W (Monahan and
O’Muircheartaigh, 1986; Salisbury et al., 2013, hereafter SAL13). Whitecap fractions
predicted with conventional W(U,,) parameterizations show a large spread between reported
W values (Lewis and Schwartz, 2004; Anguelova and Webster, 2006). Part of these variations
is due to differences in methods of extracting W from still and video images. Indeed, the
spread of W values has decreased in recently published in situ data sets as image processing
improved and data volume increased (de Leeuw et al., 2011). However, an order-of-
magnitude scatter of W values remains, suggesting that U;o alone cannot fully predict the W
variability. Other factors such as atmospheric stability (often expressed in terms of air-sea
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temperature difference), sea surface temperature (SST) T or friction velocity (combining wind
speed and thermal stability (e.g., Wu, 1988; Stramska and Petelski, 2003)) have been
indicated to affect W with implications for the SSA production. Thus, parameterizations of W
that use different, or include additional (secondary), forcing parameters to better account for
W variability have been sought (Monahan and O’Muircheartaigh, 1986; Zhao and Toba, 2001;
Goddijn-Murphy et al., 2011; Norris et al., 2013h; Ovadnevaite et al., 2014; Savelyev et al.,

2014).

An alternative approach to address the variability of W is to use whitecap fraction
estimates from satellite-based observations of the sea state, because such observations provide
long-term global data sets which encompass a wide range of meteorological and
environmental conditions, as opposed to local measurement campaigns during which a limited
variation of conditions is usually encountered. Brightness temperature Tg of the ocean surface
measured from satellite-based radiometers at microwave frequencies has been successfully
used to retrieve geophysical variables, including wind speed (Wentz, 1997; Bettenhausen et
al., 2006; Meissner and Wentz, 2012). The feasibility of estimating W from Tg has also been
demonstrated (Wentz, 1983; Pandey and Kakar, 1982; Anguelova and Webster, 2006).
Anguelova et al. (2006; 2009) used WindSat data (Gaiser et al., 2004) to further develop the
method of estimating W from Tg, and compiled a database of satellite-based W accompanied
with additional variables. Figure 1a shows an example of the global W distribution from
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WindSat for a randomly chosen day.

Salisbury et al. (2013) showed that satellite-based W values carry a wealth of
information on the variability of W. In particular, these authors showed that the global
distribution of satellite-based W values differs from that obtained using a conventional W(U ()
parameterization with important implications for modeling SSA production rate in global
climate models (GCMs) and chemical transport models (CTMs) (Salisbury et al., 2014).
Salisbury et al. (2013) proposed a new W(Uj) parameterization in power law form using
satellite-based W data over the entire globe for a full year. They derived wind speed

exponents which are approximately quadratic for different data sets:
W,, =4.6x107° xU2*; 2<Up<20ms™,

2 1.59 -1 (1)
W,, =3.97x107° xU,7"; 2<Uyp=<20ms" ,
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where W is expressed in % and the subscripts denote the Tg frequencies used to obtain W.
These exponents are significantly different from the cubic and higher wind speed

dependences proposed by Callaghan et al. (2008, hereafter CALO08):

W =3.18x10°(U,, —3.70)’; 3.70<Up<1125ms™

)
W =4.82x10*(U,, +1.98)°; 9.25<Uyp<23.09ms* .
and Monahan and O’Muircheartaigh (1980, hereafter MOMZS0):
W(U,,) =384x10 U, 3).

The MOMB80 parameterization was derived on the basis of the data sets of Monahan (1971)
and Toba and Chaen (1973). Most of the wind speed values from these two data sets are up to
12 m s™ with only 10% of the data points for winds up to 19 m s™. The range of SST is from
17 to 31 °C. Monahan and O’Muircheartaigh (1986) emphasized that this is a regionally
specific function, but its widespread adoption in global models led to its application at wind

speeds and SSTs well above its range of validity.

Jn this study we explore the utility of the satellite-based W data from a standpoint of

predicting SSA production rate. Whitecaps are used as a proxy for the amount of bubbles at
the ocean surface. When these bubbles burst, they generate sea spray droplets which in turn
transform to SSA when they equilibrate with the surroundings (Blanchard, 1983). Bursting
bubbles produce film and jet droplets, whereas at high wind speeds, exceeding about 9 m s,
additional sea spray is directly produced as droplets which are blown off the wave crests
(Monahan et al., 1983). These spume droplets are larger than the bubble-mediated SSA
droplets (Andreas, 1992). In this study we will focus on bubble-mediated production of sea

spray.
Sea spray aerosols are important for the climate system because, due to the vast extent

of the ocean, SSA are amongst the largest aerosol sources globally (de Leeuw et al., 2011).

SSA particles contribute, to the scattering of short-wave electromagnetic radiation and thus the

direct radiative effect on climate, Also, having high hygroscopicity, SSA particles are a

source for the formation of cloud condensation nuclei (Ghan et al., 1998; O’Dowd et al.,
1999) and as such influence cloud microphysical properties and thus exert indirect radiative

effects on the climate system. While residing in the atmosphere, SSA provide surface and
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‘ Crutzen, 1997). Through such chemical processes, the SSA, contribute, to the production of

inorganic reactive halogens (Cicerone, 1981; Graedel and Keene, 1996; Keene et al., 1999;

Saiz-Lopez and von Glasow, 2012), participate, in the production or destruction of surface

ozone (Keene et al., 1990; Barrie et al., 1988; Koop et al., 2000), and provide, a sink in the

sulfur atmospheric cycle (Chameides and Stelson, 1992; Luria and Sievering, 1991; Sievering
etal., 1992; 1995).

The modeling of all these processes in GCMs and CTMs starts with calculation of the
production rate of SSA particles (termed also SSA production flux, SSA generation, or SSA
emission), Sea spray source function (SSSF) is used to calculate SSA production flux—the
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commonly used SSSF, proposed by Monahan et al. (1986, hereafter M86), estimates SSA
emission by the indirect, bubble-mediated mechanism. Based on the discrete whitecap'
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In Eq. (4), the timescale is a constant 7= 3.53 s, rg is the droplet radius at a relative humidity

of 80%, and the exponent B is defined as B=(0.38-1gr,,)/0.65. The term dE/dr, associated
with the sea spray size distribution, determines the shape of the SSSF (i.e., shape factor); the
term W/ z is a scaling (or magnitude) factor as it links predetermined SSA production per unit
whitecap area with the amount of whitecapping in different regions at different seasons. Refer
to Lewis and Schwartz (2004), de Leeuw et al. (2011), and Callaghan (2013) for clear

distinction of the discrete whitecap method from the continuous whitecap method.

Estimates of SSA production fluxes using the discrete whitecap method still vary
widely (Lewis and Schwartz, 2004; de Leeuw et al., 2011) precluding reliable estimates of the
direct and indirect effects by SSA in GCMs, as well as the outcome of heterogeneous
chemical reactions taking place in and on SSA particles in CTMs. The wide spread of
predicted SSA emissions is caused by a combination of uncertainties coming from both the
magnitude and the shape factors of the used SSSFs. The uncertainties associated with the
magnitude factor include difficulties of measuring W and zand their natural variability, which

affects the W(Ujo) parameterizations. The assumptions of the discrete whitecap method
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(detailed in Sect. 2.4) also contribute to the uncertainty. Added to these are the uncertainties
associated with the shape factor, such as its natural variability and the model chosen to
parameterize the SSA size distribution. A source of uncertainty is the difficulty of directly
measuring SSA fluxes which are used to develop and/or constrain SSSFs. When
measurements of SSA concentrations are used to develop an SSSF, uncertainty comes from
the deposition velocity model used to convert the concentrations to fluxes (e.g., Smith et al.,
1993; Savelyev et al., 2014).

Aside from addressing uncertainties due to measuring techniques, there are two

possible ways to improve the performance of a whitecap-pased SSSF as regards the physical /

processes involved, One way is to address variations and uncertainties in the size-resolved /
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productivity dE/drgg (i.e., the shape factor in the SSSF), for instance by including the organic
matter contribution to SSA at sub-micron sizes (O’Dowd et al., 2004; Albert et al., 2012)

and/or by accounting for its variations with environmental factors instead of keeping it

constant for all conditions (de Leeuw et al., 2011, Norris et al., 2013a; Savelyev et al., 2014).

Another way is to address the variations and uncertainties in the whitecap fraction W (i.e., the |

magnitude factor in the SSSF) py steady improvements of the W measurements and by

accounting for its natural variability. Both approaches are expected to reduce, or at least to

better account for, the variations and uncertainties in parameterizing SSA flux.

Here we report on a study investigating the second of these two routes, namely—how

using W data, which carry information for secondary factors, would influence the SSA

production flux. The objective is to assess how much of the uncertainty in the SSA flux can

be explained with the natural variability of W. Our approach (Sect. 2) jnvolves three steps, We /

first pssess the satellite-based whitecap database jo evaluate the wind speed dependence of W /

over as wide a range of Ujp values as possible (sect. 3.1.1). In assessing the W database, we

also evaluate the impact of an intrinsic correlation between W and U, which could have been
introduced in the process of estimating W from Tg (SAL13) (Sect. 3.1.2). We next apply the /

established wind speed dependence to W on regional scales in order to gain insights into the |

influence of secondary factors in different locations during different seasons (Sect. 3.2). In

this second step, we use the results of our regional analysjs to derive a new, W,
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3.3). .The utility of the new W(U1o, T) parameterization is evaluated by using it to estimate

SSA emissions and, comparing,to previous predictions of SSA emissions (Sect. 3.4).

2 Methods,
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given location. This approach limits the uncertainty to that of estimating W from satellite
measurements and does not add uncertainty from deriving an expression for W(U1) or W(U o,
T, etc.). However, such an approach would limit global predictions of SSA emissions to
monthly values because a satellite-based W data set does not provide daily global coverage;
i.e., one would need data like that in Fig. 1a for at least two weeks (and more for good

estimates of the uncertainties) in order to have full coverage of the globe.

Alternatively, a parameterization of whitecap fraction derived from satellite-based W

data can provide daily estimates of SSA emissions using readily available daily data of wind
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we proceed with deriving a parameterization for W using the data in the whitecap database
(Sect. 2.2.1).
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factors? Generally, to fully account for the variability of whitecap fraction, a parameterization
of W would involve wind speed and many additional forcings explicitly to derive an
expression W(Uy, T, etc.) (MOMSO0; Monahan and O’Muircheartaigh, 1986; Anguelova and
Webster, 2006), The SAL13 analysis showed substantial variations of W as a function of ,
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The question that arises next is, How to combine the different dependences of W? One
possibility is to use a single-variable regression to extract the W dependence on each variable
separately, e.g., W(Uyo) and W(T). Then, these can be combined to derive an expression for
their effects in concert, e.g., W(Uio, T) = W(U10)W(T). While variables like T, atmospheric
stability, surfactants, etc. influence W, they do not cause whitecapping. So a parameterization
formulated with dedicated W(T) and other expressions may put undue weight on such
influences. This approach can be pursued when we have enough information to judge the
relative importance of each influence (e.g., Anguelova et al., 2010, their Fig. 6) and include it
in a combined expression with a respective weighting factor.

Previous experience points to another possibility to combine causal variables like Uy
and influential variables like T and the likes. The Monahan and O’Muircheartaigh (1986)
analysis of five data sets showed that the variability of W caused by SST (and the atmospheric
stability) affect significantly the coefficients in the wind speed dependence W(U,o), especially
the wind speed exponent. The survey of W(Uyo) parameterizations by Anguelova and Webster
(2006, their Tables 1 and 2) also clearly shows that each campaign conducted in different
regions and conditions comes up with a specific wind speed exponent. This strongly suggests

that the influence of secondary factors is expressed as a change of the wind speed exponent.

On the basis of their principal component analysis, SAL13 also suggested that in describing

the W variability, it is more effective to combine individual variables with wind speed. On
this ground, we proceed to obtain W(Uy, T) as a wind speed dependence W(Uj) whose
regression (or parametric) coefficients vary with SST. This goal can be realized by first
identifying a general wind speed dependence to use as a reference, then quantifying the
variations of its regression coefficients in different regions and seasons.

The important question now is, What functional form should we use for the general
(reference) W(Uyo) dependence? Equations (1)-(3) exemplify the functional forms usually

employed to express W(Ujg):
W=auj, (5a)
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A general W(U,) dependence derived using Eq. (5a) would provide an empirical wind
speed exponent n determined from available data sets, as MOMS8O0 did using the available data
sets at the time (Sect. 1). The wider the range of conditions represented by the data sets is, the
closer the resulting W(U1o) dependence would be to average conditions globally and
seasonally.

A general W(Uyq) dependence derived using Eq. (5b) would provide a physically-

based wind speed exponent n = 3 consistent with dimensional (scaling) arguments. Namely,

because, W is related to the rate at which the wind supplies gnergy to the sea, W should be

proportional to the cube of the friction velocity ux (Monahan and O’Muircheartaigh, 1986;

Wu, 1988), On this basis, Monahan and Lu (1990) related W to Uyo and derived the cubic |

power law in Eq. (5b). Subsequently, this relationship was used successfully in whitecap data k

analyses (e.g., Asher and Wanninkhof, 1998; CAL08). Coefficient b in Eg. (5b) is included
because it is preferable for a W(Uyp) relationship to involve a finite y-intercept (Monahan and
O’Muircheartaigh, 1986). A negative y-intercept determines b from an x-intercept and is
usually interpreted as the threshold wind speed for whitecap inception.

A modified version of Eq. (5) combines the merits of both formulations into the form:

W =a(U,,+b)" (6)

where the wind speed exponent is adjustable and a finite y-intercept is included. A general
W(U10) dependence derived using Eq. (6) would provide a wind speed exponent as dictated by
the whitecap database that is applicable to all satellite-based W data. Being representative of
globally averaged conditions, this general W(Uyo) dependence can be applied with the same n
to different regional scales and seasonal timeframes affording quantification of its variations
with SST via coefficients a and b. Any of the three formulations (Egs. (5 and 6)) can produce
a viable general W(Uyp) dependence, the empirical one representative of the average

conditions of the world oceans and the physical one supported by sound reasoning.
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2.2 Data sets

To implement the approach thus formulated, we use the whitecap database on a global scale
for the general W(Uo) dependence, and regional W subsets extracted from the whitecap
database for the SST analysis. In describing the data sets used, we start with the whitecap
database (Sect. 2.2.1). The considerations given to extract regional data sets from it are
described in Sect. 2.2.2. We also introduce the data from the European Centre for Medium
range Weather Forecasting (ECMWF) used in this study as an independent source to
investigate possible intrinsic correlation among the entries of the whitecap database (Sect.
2.2.3).

2.2.1 Whitecap database

Anguelova and Webster (2006) describe in detail the general concept of retrieving the
whitecap fraction W from measurements of the brightness temperature Tg of the ocean surface
with satellite-borne microwave radiometers. Salisbury et al. (2013) describe the basic points

of the retrieval algorithm estimating W (hereafter referred to as the W(Tg) algorithm). Briefly,
the algorithm obtains W by using measured Tg data for the composite emissivity of the ocean
surface and modelled Tg data for the emissivity of the rough sea surface and areas that are
covered with foam (Bettenhausen et al., 2006; Anguelova and Gaiser, 2013). Minimization of
the differences between the measured and modelled Tg data in the W(Tg) algorithm ensures
minimal dependence of the W estimates on model assumptions and input parameters. An

atmospheric model js necessary to evaluate the contribution, from the atmosphere to Te.

Wind speed Uy is one of the required inputs to the atmospheric, roughness and foam
models (Anguelova and Webster, 2006; Salisbury et al., 2013). Wind speed data come from
the SeaWinds scatterometer on the QuUikSCAT platform or from the Global Data Assimilation
System (GDAS), whichever matches up better with the WindSat data in time and space within
25 km and 60 min; hereafter we refer to both QUiIkSCAT or GDAS wind speed values as Uy
from QuikSCAT or Uiggscar. The use of Ujggscar in the estimates of satellite-based W is
anticipated to lead to some intrinsic correlation when/if a relationship between W and

UlOQSCAT is SOUght.

The W data used in this study are obtained from Tg af, 10 and 37 GHz, Wiy and Wy,

data for 37 GHz are shown in Fig. 1a. The Wy and W37 data approximately represent different

stages of the whitecaps because of different sensitivity of microwave frequencies to foam
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thickness (Anguelova and Gaiser, 2011). Data W, are a upper limit for, predominantly active

wave breaking (stage A whitecaps (Monahan and Woolf, 1989)) partially mixed with
decaying (stage B) whitecaps, while W37 data quantify, both active and decaying whitecaps.

Because decaying foam covers a much larger area of the ocean surface than active whitecaps

(Monahan and Woolf, 1989), W37 data are, larger than Wy data. Comparisons to historic and

contemporary in situ W data in Fig. 1b confirm the approximate representations of stage A
whitecaps (cyan squares) and A + B whitecaps (blue diamonds) by Wi, (green) and Ws;
(magenta), respectively. Anguelova et al. (2009) have quantified the differences between
satellite-based and in situ W data using both previously published measurements and time-

space match-ups of W and discussed possible reasons for the discrepancies.

The satellite-based W data are gridded into a 0.5°x0.5° grid cell together with the

variables accompanying each W data point, namely Uiggscar, T from GDAS, time (average of
the times of all samples falling in each grid cell), and statistical data generated during the
gridding including the root-mean-square (rms) error, standard deviation (SD), and count (the
number of individual samples in a satellite footprint averaged to obtain the daily mean W for a
grid cell). In this study, we used daily match-ups of W, Ujq, and T data for each grid cell for \

the year 2006, Due to Jarge data gaps in both space and time, the daily W data cannot be

interpolated to provide better coverage (Fig. 1a). Therefore, only the available data are used \

without filling the gaps for areas where data are lacking. This global data set was used to |

assess the globally averaged wind speed dependence of W,

2.2.2 Regional data sets

The annual global W distributions show regions with valid data points, ranging from 100 to

300 samples per grid cell per year when both ascending and descending satellite passes are ‘

considered. There are fewer samples for latitudes beyond 60°S or N (see Fig. 1a) because
WindSat and QuikSCAT have fewer matching points there (Sect. 2.2.1). Thus, different

regions were selected using two criteria, namely (i) consider regions with a high number of

northern and southern hemispheres (NH and SH).

With these criteria, 12 regions of interest were selected (Fig. 2) and W, Uy, and T data

for each region were extracted from the whitecap database. The coordinates of the selected
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minimum, maximum, mean, and ymedian values for wind speed and SST for January and July.
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For 90% of the regional and monthly data used in the study, the percent difference (PD,
defined as the difference between two values divided by the average of the two values)
between mean and median values of Ujg and T is less than 4% and 9.5%, respectively. With
medians and means approximately the same, the Uy, and T data have normal distributions;
i.e., outliers, though existing, do not affect the mean values significantly. All analyses
presented here use the mean U and T values. Figure 3 shows the seasonal cycles of the mean
Ui and T values for four of the selected 12 regions visualizing the full range of Ujp and T
data (Table 1).

Regions 2-11 are all in the open ocean, region 1 was selected for its landlocked
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(2, 3, 7, and 8) are at latitudes between 0 and 30°S and N (Tropics and Subtropics)
representing the Trade winds zone with persistent (Easterly) winds blowing over
approximately the same fetches (except region 8) in oceans with different salinity (Tang et al.,
2014) and primary production (Falkowski et al., 1998) (a proxy for surfactant concentrations).
Region 4 is in the NH temperate zone representing long-fetched Westerly winds. Region 5
covers the latitudes between 40°S and 50°S known as “The Roaring Forties” for the strong
Westerly winds there, but is characterized with shorter fetch. Differences in the seasonal
cycles of Ujp and T in regions 4 and 5 (Fig. 3) suggest more uniform conditions and longer
fetches in the SH temperate zone. We have chosen regions 8 and 9 to represent different zonal
conditions and to gauge the effect of narrower range of SST variations (as compared to the
SST range in region 5). Chosen at the same latitude, regions 9-11 have approximately the
same SST, salinity, and surfactants but represent different wind fetches, shortest for region 9
and longest for region 11. Overall, the chosen regions cover the full range of global oceanic

conditions and are representative of diverse regional conditions.
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A major benefit of using satellite-based W data
directly in an SSSF is that these data reflect the
amount and persistence of whitecaps as they are
formed by both primary and secondary forcing
factors acting at a given location. This approach
limits the uncertainty to that of estimating W from
satellite measurements and does not add uncertainty
from deriving an expression for W(U10). However,
such an approach would limit global predictions of
SSA emissions to monthly values because a satellite-
based W data set does not provide daily global
coverage; i.e., one would need data like that in Fig 1
for at least two weeks (and more for good statistics)
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Alternatively, a parameterization of whitecap
fraction derived from satellite-based W data can
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independent sources. The intrinsic correlation between W and U, that might have arisen from
the use of Uy from QUikSCAT in the estimates of W from Tg (Sect. 2.2.1), might affect the
relationship between W and Ujo developed here. To evaluate the magnitude of such intrinsic
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correlation, we used Uy from the ECMWF (Usoecmwe), which is considered to be a more

independent source; note though that even the ECMWF data are generated by assimilating
observational data sets (e.g., from buoys) in a coupled atmosphere-wave model (Goddijn-
Murphy et al., 2011).

To compile this “independent” data set, we made time-space matchups between the
Wio and W7 data and Usgecmwer. In this way, for each W—Ujggscar pair from the original W
because this already provides a statistically significant amount of data, we used only

ascending satellite overpasses, Wind speeds above 35 m s™ were discarded. Besides ECMWF
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wind data, for consistency we also extracted ECMWF SST values,

Figure 4a shows all ECMWF wind speed data that have been matched in time and
space with the available Ujggscar data for March 2006. The majority of the data is clustered
in the range of 5-10 m s™. To characterize the difference between the two wind speed sources,
the correlation between U;g from ECMWF and Uy from QuikSCAT was determined as the
best linear fit forced through zero:

U =0.952U

10ECMWF 10QSCAT (7)

with R? = 0.844. For comparison, the unconstrained fit between Uspgscat and Uigecmwe 1S also
shown in Fig. 4a (dashed line); both fits are very close (they almost overlap) with almost
identical correlation coefficients (R? = 0.845 for the unconstrained fit). Similarly, Fig. 4b
compares T from ECMWEF and GDAS showing almost 1:1 correlation. That is, the two data

sources provide almost the same values for T.

On average, Uy from ECMWEF is about 5% lower than Uy from QUIkSCAT. This Uy

difference _can be explained to some extent with the effect of atmospheric stability because

QuikSCAT provides equivalent neutral wind which accounts for the stability effects on the
wind profile (Kara et al., 2008; Paget et al., 2015), while the ECMWF model gives stability
dependent wind speeds (Chelton and Freilich, 2005).

Having, the correlations between Uy and T from the whitecap database and ECMWF

quantified, one can evaluate differences caused by the use of different data sources. Equation

(7) could also be useful when one decides to use ECMWEF data because of, their availability at
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2.3 Implementation

We aim to develop an expression capable of modeling both the trend of W with Uy and the
spread of the satellite-based W data (see green and magenta symbols in Fig. 1b). We analyze
the global data set of satellite-based Wi and W57 data and derive a general W(U1o) expression
that represents average wind conditions in different geographical environments (i.e., the trend
of W with Ujg). Following Monahan and Lu (1990), we derive an expression in the form of
Eq. (6) by plotting W¥" as a function of Ujggscat- Applying linear regression, we find an

expression:
WY =muU,, +¢ 8

which is then rearranged and raised to the power n providing coefficients a = m" and b = ¢/m
in Eq. (6) (results in Sect. 3.1.1). All linear fits are done on the W data points associated with
Uyo from 3 to 20 m s The lower limit of 3 m s is chosen as a threshold for observing
whitecaps. This restriction is reasonable in light of the SAL13 analysis in which W data with a

relative standard deviation (o, /W) >2 were removed. The discarded W data were about

10% of all W data, mostly in regions with low wind speeds of around 3 m s™. We exclude the
high wind speed regime in order to avoid uncertainty due to (i) fewer data points in this
regime; and (ii) anticipated larger uncertainty in the W data from the W(Tg) algorithm. With
the wind speed threshold imposed in this way, we propose a broader interpretation of

regression coefficient b (sect. 3.1.1).

JFor the intrinsic correlation analysis, the W—U1oecmwr data pairs are used in a similar

fashion to make W"(Uyoecmwe) linear fits and derive from them a relationship between the
satellite-based W data and the ECMWF wind speeds. The two global W(Uj)
parameterizations for the two wind speed sources are then compared to evaluate the

magnitude of the intrinsic correlation (results in Sect. 3.1.2).

Because Eq. (7) gives the possibility to evaluate discrepancies due to the use of
different sources for Ujp and T, we use Uiy and T from the whitecap database in all
subsequent analyses and results. In this way, with the intrinsic correlation characterized, we
restrict the uncertainty in our analyses by using the close matching-up of W, Uy, and T data in
the whitecap database. This decision is reasonable considering that both data sets can be used
in practice for different applications. The collocated data in the whitecap database (involving

QuikSCAT) are most handy for analysis (as done in this study). Meanwhile, W data from the
14
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whitecap database combined with forcing data from a global model (such as ECMWF or

other) are useful for forecasts and climate simulations.

With n for the general wind speed dependence determined, we then apply Eq. (6) with
the same n to the regional monthly sub-sets of Wy and W37 data. All available data per month
were used, ranging from 22 to 31 days of data. Once again, scatter plots of W*"(Uso) were
generated and the best linear fits were determined providing coefficients m and c for each
region for each month for Wy and W37. The regional and seasonal variations of coefficients m
and c, as well as a and b, are analyzed to judge to what extent these variations warrant

parameterization in term of SST a(T) and b(T) (results in Sect. 3.2).

To quantify how a(T) and b(T) are influenced by the functional form of the general
wind speed dependence—our empirically determined wind speed exponent n (Eq. (6)) and the
physically reasoned cubic wind speed dependence (Eg. (5b))—we also analyzed scatter plots
of W3(U10) and derived a respective set of coefficients a(T) and b(T).

We analyzed the variations of coefficients m and ¢ with the Student's T-statistics and
Analysis of variance (ANOVA) tests. The Student test verifies whether two data sets (or
sample populations) have significantly different means by confirming or rejecting the null
hypothesis (the default statement that there is no difference among data sets). A small
significance value (e. g., p < 0.05) for any pair of regional m and c data sets would indicate
that the regional means of coefficients m and c are significantly different. The ANOVA test
essentially does the same but for a group of three or more data sets simultaneously. ANOVA
rejects the null hypothesis if two or more populations differ with statistical significance. In
this sense, an ANOVA test is less specific than a Student test. Because the ANOVA
assumptions (that the data sets are normally distributed and they have approximately equal
variances) may not always be true for our data, the ANOVA results were verified with the
more general Kruskal-Wallis H test (referred to as H test) which does not have any of these

assumptions.

We quantify differences between new and previously published parameterizations
with two metrics (results in Sect. 3.3): (i) the PD between W values obtained with different
parameterizations; and (ii) significance tests (Student, ANOVA, and H) of the differences

between W values obtained with new and previous W parameterizations.
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2.4 Estimation of sea spray aerosol emissions

The newly formulated W(Uyo, T) parameterization is applied to estimate the global annual
SSA emission using SSSF of M86 (Eg. (4)). Dividing Eg. (4) by Eq. (3), we modify the M86

[Deleted: coarse mode

SSSF to clearly separate the magnitude and shape factors (re-written here as Eq. (4')):

dF

d :W(U1°’T)'[3'5755X1°5 1o (L 0.0576%) x 10+ } @)
,Ahso

with B as defined in Sect. 1 and the timescale zabsorbed in the shape factor (the expression in
the brackets). The size range for M86 validity is rgo = 0.8—-8 um. We calculate the SSA flux

for radii rgo ranging from 1 to 10 pm.

2.4.1 Use of discrete whitecap method

The basic assumptions of M86 for the SSSF based on the discrete whitecap method—constant
values for 7 and dE/dr (Sect. 1)—are usually questioned (Lewis and Schwartz, 2004; de
Leeuw et al., 2011; Savelyev et al., 2014). It is not expected for both of these assumptions to
hold for wave breaking at various scales and under different conditions in different locations.
The SSSF proposed by Smith et al. (1993) on the basis of measured size-dependent aerosol
concentrations is one of the first formulations to demonstrate that the shape factor cannot be
constant. Norris et al. (2013a) also demonstrated that the aerosol flux per unit area whitecap

varies with the wind and wave conditions.

Recently, Callaghan (2013) showed that the whitecap timescale is another source of
often overlooked variability in SSSF parameterizations based on M86. Because W typically
includes foam from all stages of whitecap evolution, Callaghan (2013) suggested that the
adequate timescale for the aerosol productivity from a discrete whitecap is not just its decay
time (as in Egs. (4) and (4")), but the sum of the whitecap formation and decay timescales 7",
The value of 7" varies from breaking wave to breaking wave, but an area-weighted mean
whitecap lifetime can be calculated for any given observational period to account for this
natural variability. Analyzing the lifetimes of 552 oceanic whitecaps from a field experiment,
Callaghan (2013) found that the area-weighted mean z’varies by a factor of 2.7 (from 2.2 to
5.9 s). We refer the reader to Callaghan (2013) for an SSSF that accounts for SSA flux

variability by explicitly incorporating whitecap timescale 7
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Despite these questionable assumptions, the SSSF based on the discrete whitecap
method in the form of M86 has been widely used in many models (Textor et al., 2006).
Therefore, to those who have worked with M86 until now, a meaningful way to demonstrate
how the new satellite-based W data, and W parameterizations based on them, would affect
estimates of SSA flux is to hold everything else constant (e.g., the whitecap timescale and
productivity in the shape factor) and clearly show differences caused solely by the use of new
W expression(s) as a magnitude factor. On these grounds, the choice of the SSSF based on the

M86 whitecap method is a suitable baseline for comparisons.

2.4.2 Choice of size distribution

Though the chosen size range of 1-10 um for SSA particles is limited, it is well justified for

the purposes of this study with the following arguments.

[ Deleted: with sizes rg ranging from 1 to 10 um. }

Generally, the division of the SSA particles into sizes of small, medium, and large
modes (de Leeuw et al., 2011, their 88) is well warranted when one considers the climatic
effect to be studied (Sect. 1). For example, sub-micron particles are important for scattering
by SSA (direct effect) and the formation of cloud condensation nuclei (indirect effect), while
super-micron particles are important for heat exchange (via sensible and latent heat fluxes)
and heterogeneous chemical reactions (which need surface and volume to proceed
effectively). However, in this study we do not focus on how the choice of the size distribution
will affect the SSA estimates. Nor do we aim to present estimates of specific forcing of the
climate system. Rather, with a fixed size distribution, we explore how parameterizing W data,
which carry information for the influences of many factors, would affect estimates of SSA
emission (Sect. 1). In this sense, we can choose to use any published size distribution as a

shape factor.

The chosen size range is the range of medium (super-micron) mode of SSA particles.
This is the range for which the size distribution of M86 is valid (Sect. 2.4). The M86 size
distribution, in its original or modified form, is widely used in GCMs and CTMs (Textor et
al., 2006, their Table 3). This size range is a recurrent part of the various size ranges used in
all (or at least most) SSSFs (see Table 2 in Grythe et al. (2014, hereafter G14)).

The chemical composition of the SSA particles is another argument favoring the

chosen size range. The super-micron particles consist, to a good approximation, solely of sea

[ Deleted: in the coarse mode ]

salt, whereas, in biologically active regions, the sub-micron size range additionally includes
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organic material, with an increasing contribution as particle size decreases (O’Dowd et al.,

2004, Facchini et al., 2008; Partanen et al., 2014). Since the organic mass fraction in sub-

micron SSA particles is still highly uncertain (Albert et al., 2012), we focus on,the medium

Jmode SSA emissiong,

We evaluate the discrepancy expected due to neglecting particles below 1 pm using -

the G14 report of SSA production rate for dry particle diameters Dy = rgo obtained with, M86

(
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[Moved (insertion) [23] J

(

5.20x10" kg yr for size range of 0.1 pum < rg < 10 pm, The different size ranges bring a

difference between the two G14 estimates of about 14%. Neglecting particles with rg < 0.1
um would not change significantly the results presented here because they contribute on the

order of 1% to the overall mass (Facchini et al., 2008).

Because total whitecap fraction, rather than only the active breaking crests, provides

bubble-mediated production of SSA, we use Ws; datg to estimate the emission of medium

Deleted: ,...Grythe et al. (2014) report two SSAT . j

Deleted: As suggested by Salisbury et al. (202477 j

Jmode SSA. The calculations, use, a modeljng tool (Albert et al., 2010), in which the W(U1o)

parameterization of MOMBS0, as integrated in Eq. (4), was replaced with the newly derived

W(Uyp, T) parameterization (Eqg. (4')), The resulting size-segregated droplet number emission

rate was converted to mass emission rate using the approximation rgy = 2ryq = Dy, where ry and
D, are, the particle dry radius and diameter, respectively (e.g., Lewis and Schwartz, 2004; de /

Leeuw et al., 2011), and a density of dry sea salt of 2.165 kg m™>.
3 Results and Discussion

The graphs showing our results visualize the W data points available for wind speeds from 0

to 35 m s, but all fits are valid for 3 < Usp < 20 m s (Sect. 2.3).

3.1 Parameterization from global data set,

Figure 5 shows global W data estimated from WindSat measurements for March 2006 as

S

function of Usggscar, at 10 GHz (Fig. 5a) and 37 GHz (Fig. 5p). For comparison, the MOM80

relationship (Eq. (3)) is also plotted in each panel. There are three noteworthy observations in

Fig. 5. First, we note the different variability of Wy and W3; data. The 10 GHz data show far
less variability than those at 37 GHz. The W3, data at a certain wind speed vary over a much

wider range, with the strongest variability for wind speeds of 10-20 m s™. This supports the
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suggestion that other variables, in addition to Uy, influence the whitecap fraction, such as
SST or wave field; SAL13 quantify this variability.

Another observation in Fig. 5 is noted at low wind speeds. The 10 GHz scatter plot
does not show W data for wind speeds lower than about 2 m s™ because at these low wind

[ Deleted: sea state ]
[ Deleted: . Salisbury et al. (2013) J

Deleted: values

speeds no active breaking occurs (Sect. 1), In contrast, hon-zero W5y data are retrieved at wind

speeds Uyo < 2 m s™. Salisbury et al. (2013) suggested that the presence of foam on the ocean
surface at these low wind speeds could be due to residual long-lived foam. This residual foam
might be stabilized by surfactants, which increases its lifetime (Garrett, 1967; Callaghan et
al., 2013). Another explanation could be production of bubbles and foam from biological
activity (Medwin, 1977). However, there is not enough information currently to prove any of

these conjectures.

The comparison of the MOMBS8O0 relationship (Eq. (3)) to Wy and W37 data clearly
reveals the most important feature in Fig. 5—the wind speed dependence of satellite-based W

data deviates from cubic and cubic-like relationship.

3.1.1 Wind speed dependence

Following the arguments of our approach (Sect. 2.1) and trying different expressions, we
found that a quadratic wind speed exponent (n = 2) fits both Wy and W37 data sets best. For

the same data shown in Fig. 5, Fig.6, shows the linear regression of the square root of W

versus Uy,
W =0.01U,,-0.011 10 GHz %a)
W =0.01U,, +0.019 37 GHz ©b)

with coefficients of correlation R? of 0.996 and 0.956, respectively. From Eq. (9), we obtain

the following global average wind speed dependence of W using Uy from QuikSCAT:

W, =1x10"*(U,, -1.1) (10)

Wy, =1x10(U,, +1.9)* (11)

where W is a fraction (not %).

The finding of weaker (quadratic) wind speed dependence here is not a precedent. The

first reported W(U1o) relationship of Blanchard (1963) was quadratic. With careful statistical
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considerations, Bondur and Sharkov (1982) derived a quadratic W(Ujo) relationship for
residual W (strip-like structures, in their terminology). Parameterizations of W in waters with
different SST have also resulted in wind speed exponents around 2 (see Table 1 in Anguelova
and Webster, 2006). Quadratic wind speed dependence is also consistent with the wind speed
exponents of SAL13 in Eq. (1).

.The y-intercept for Wy (Eq. (10)) is negative and, following the usual interpretation,

yields a threshold wind speed of 1.1 m s™ for whitecap inception. This is in the range of
previously published values from 0.6 (Reising et al., 2002) to 6.33 (Stramska and Petelski,
2003). Meanwhile, the positive y-intercept b for W37 (Eqg. (11)) is meaningless at first glance
and intriguing upon some pondering. While foam from biological sources is possible (Sect.
3.1), it is not known whether such mechanism is capable of providing a measurable amount of

foam patches which produce bubble-mediate sea spray efficiently.

We propose broader interpretation of b in Eqgs. (10-11), be it negative or positive.
Generally, it is expected that the atmospheric stability (Kara et al., 2008) and fetch (through
the wave growth and development) cause inception of the whitecaps at lower or higher wind
speed. One can consider the range of values for b mentioned above (0.6 to 6.33) as an
expression of such influences. We suggest that b can also incorporate the effect of the
seawater properties on the extent of W. The net result of all secondary factors may be either

negative or positive b.

Specifically, we promote the hypothesis that a positive y-intercept b can be interpreted
as a measure of the capacity of seawater with specific characteristics, such as viscosity and
surface tension—which are governed by SST, salinity, and surfactant concentration—to affect
W. Undoubtedly, none of these secondary factors creates whitecaps per se. Rather, they
prolong or shorten the lifetime of the whitecaps via processes governed by the seawater
properties. For instance, surfactants and salinity influence the persistence of submerged and
surface bubbles. This yields variations of bubble rise velocity that replenishes the foam on the
surface at different rates. Long-lived decaying foam added to foamy areas created by
subsequent breaking events would augment W; conversely, conditions that shorten bubble

lifetimes would reduce W (or at least not add to W).

A positive y-intercept can be thought of as a mathematical expression of this static

forcing (as opposed to dynamic forcing from the wind) that given seawater properties can

20
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sustain. That is, at any given location, this static forcing acts as though higher wind speed of
magnitude (Uyp + b) is producing more whitecaps than Ui, alone. By parameterizing
coefficients a and b in terms of different variables, one can evaluate how much the static
forcing affects W in different geographic regions. By developing parameterizations a(T) and

b(T) (Sect. 2.1), here we quantify only one static influence.

Jor completeness, we have also investigated the effect of either rising or waning winds -

on the W(Uyg) relationship; increasing-decreasing winds are considered as a proxy for
undeveloped-developed seas (Stramska and Petelski, 2003; CALO08). The rise-wane wind

effect, as detected in this study, is not pronounced compared to findings in previous studies

that use in situ wind speed data, Goddijn-Murphy et al. (2011) studied wind history,and wave
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development dependencies on in situ W data using wave model (ECMWEF), satellite
\
(QUIkSCAT), and, in situ data for Ujo. These authors detected significant effects only with in

\
situ Uyo. The absence of a significant wind history effect in our study might therefore be '

traced back to the method through which Uy was determined: wind speeds from satellites are |

spatial averages of scatterometric or radiometric observations that take a snapshot of the
surface as it is affected by both history and local conditions, whereas in situ data for wind
speed are single point values averaged over a short time and hence representative for a
relatively small area. The effect of the spatial averaging of the satellite data over a much
larger area (i.e., the satellite footprint) might be that information on wind history is lost in the

process. The effect of the wind history, therefore, is not further sought in this study.

3.1.2 Intrinsic correlation

Jo quantify the possible intrinsic correlation in the derived W(U;o) parameterization (Egs.
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(10-11)), we derived W(Uyg) using ECMWF wind speeds instead of the QuikSCAT wind

speeds (Sect. 2,.3). Figure 7 shows a scatter plot of AW]/2 versus Usoecmwr (only data for 37

GHz are shown); dashed and solid lines show unconstrained and zero-forced fits, respectively. |

The linear regression (given in the figure legend) is used to obtain the global average wind

speed dependence using U;p from ECMWEF as follows:

Wi, =8.1x10°(U, +3.33) (12).
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JTo evaluate the significance of the intrinsic correlation, we look at the change of the

correlation coefficient of the W(Uy) relationship when QuikSCAT winds are substituted with

the ECMWF winds. Physically, we expect a strong correlation between wW¥2-and-Uq;-and-we—
see this clearly in Fig. 6b which shows a correlation-coefficient R2-=-0.956-for WY2and- :

Uiogscat. However, the correlation coefficient might not be as high as in Fig. 6-if Usowere-

from a more independent source. We 'seerthisrrwhenreomparinng;ig»:.H6bﬂaﬂdﬁ?'.—'lihywﬁLu-mW
correlation is still strong in Fig. 7 but the plot shows more scatter and-slightly lower-,

orrelation wi

to the W(Uiogscar) relationship which, therefore, is stronger than W(U1oecmwe).

The slopes in Figs. 6b,and 7 differ by about 11%, We evaluate how this translates into

differences in W37 values using Egs. (11) and (12). We found the PD between Ws7 (U1ogscaT) \
and Ws7(Uioecmwe) to be less than + 9% for wind speeds of 7-23 m st Specifically, the W3,
values obtained with Ujogscat and Uigecmwr are equal for wind speed of 11 m s™. Below 11
m s, War(Usoecmwr) is higher than Waz(Usgoscat) by up to 8.8%. Above 11 m s™,
W37(Uroecmwe) is smaller than Wsz(Usogscar) by up to 8.4%. The difference goes up to 30%

for wind speeds of 3 ms™.

While R? values for the regressions in Figs. 6b and 7 suggest that the intrinsic
correlation may contribute to these differences, this is not the only possible reason for the
discrepancies. The difference of about 5% between the Uy values from the two different
sources (Fig. 4a) also contributes to the W discrepancies from Egs. (11) and (12). Of course,

we have to consider these differences in the light of other uncertainties in Egs. (11) and (12)

such as the uncertainties in determining Usooscat and Usoecmwe and the satellite-based W data
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itself. We, therefore, conclude that the effect of the intrinsic correlation alone on W, is most

likely less than about 4%,.

3.2 Regional and seasonal analyses,

3.2.1 Magnitude of regional and seasonal variations

Figure 8 shows examples of the W¥2_ versus Uiogscat for different regions and seasons.

Figures 8a and 8b show scatter plots for the Gulf of Mexico (region 1) at both frequencies for

January 2006. Statistics are presented at the top of the figures and the fit lines are shown in

red. Figures 8c and 8d show the fit lines W¥?(Uy) for 10 and 37 GHz in region 5 for all /
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months, while Figs. 8¢ and 8f demonstrate variations of the fit lines W*?(Uy0) for both

frequencies over all regions for March 2006. Figure 8 shows that the variations of the w¥?

(Ugp) relationships at 10 GHz are smaller than those for 37 GHz, confirming the same
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observation reported by SAL13 but obtained with a different analysis, Focusing on the results

for 37 GHz, we note that geographic differences from region to region for a fixed time period

) _| Deleted: 5

(Fig. 8f) yield more variability in the W** (Uso) relationship than seasonal variations at a fixed

location (Fig. 8d), ,

Figure 9 shows the seasonal cycles of m and ¢ of the W¥2 (Uy) relationships at 37 GHz

\ [ Deleted: Figs. 5d and 5f show

in regions 4, 5, 6, and 12. The annual variations of each curve and the variations between the |

curves confirm the observation from Fig. 8—the variations of m and c over the year are ‘\

smaller than their variations from region to region. Figure 9 also shows that the seasonal
cycles of m and ¢ do not mimic the seasonal cycles of either Uy or T (Fig. 3). This implies

that m and ¢ are not merely scaling and offsetting the W¥2(Uyo) relationships, as Eq. (8)

suggests, but rather carry more information for the regional and seasonal influences.

As anticipated from Figs. 8a, 8c, and 8e, seasonal cycles for the 10 GHz data reveal
much less regional and seasonal influences (not shown). Because the 37 GHz data provide
more information for secondary forcing than the 10 GHz data, the remainder of the data
analysis in this study is illustrated with results for W3; data. Note, however, that all the
procedures and analyses described for Ws; data have been also carried out for the Wy data

and some final results are reported (e.g., sect. 3.3.1).

Figures 8 and 9 show that variations ofAW’/2 caused by Ujp from 3t0 20 m st are much

| || expected, long-leg cruises would provide more
\ || information on the effect of secondary factors, while
|| long-term monitoring at a specific location will be
|| more suitable to capture the wind speed effect alone. {
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larger than the regional and seasonal variations of W¥2. While this is expected (because Uy is

a primary forcing factor), this also points that we need to evaluate whether these regional and
seasonal variations are statistically significant. For this, we grouped the data for m and c, as
well as for a and b, in two ways: (1) by month with the full range of geographical variability
(over all 12 regions) for each month; and (2) by region with the full range of seasonal
variability (over all 12 months) for each region. ANOVA and H tests applied to both groups
showed that the seasonal variations are not statistically significant, while the regional

variations are.

We illustrate this in Fig. 10 with values for b; similar graphs for m, ¢, and a show the

same results. Figure 10a shows the seasonal cycle for the regionally averaged b values with
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error bars (£ one SD) representing the regional variability. It is clear that the seasonal
variations of the regionally averaged b values lay within the regional variability. This suggests
that variations of b from month to month are statistically undistinguishable. Figure 10b
illustrates why variations of b from region to region are significantly different. The graph
shows the annually averaged b values for each region with error bars representing the
seasonal variability. It is clear that overall the geographical variations are not lost in the

seasonal variability.

Note in Fig. 10b that some regional variations might not be distinguished within their
seasonal variability. For example, the annual means for regions 1, 4, 7, 8, and 9 all lay within
their seasonal variability; likewise, for the annual means for regions 5, 9, and 10. To pinpoint
regions with significant differences of b (as well as a, m, and c), we applied the Student test to
all possible pairs of regions; e.g., region 1 paired with each region from 2 to 12, region 2
paired with each region from 3 to 12, and so on to a total of 66 pairings of different regions.
The Student tests showed statistically different values of b from region to region in 78% of all

cases and 58% for a.

3.2.2 Quantifying SST variations

The results of the significance tests give a rationale for developing the SST dependences a(T)
and b(T). Following the data representation in Fig. 10b, we derived a(T) and b(T) for data at
37 GHz by relating annually averaged a and b values to the annually averaged T for each
region (Fig. 11). Figure 11c shows the monthly means of the coefficients b for each region
and thus demonstrates how the data points in Fig. 11b have been formed; a similar procedure
is used for the data points in Fig. 11a. As in Fig. 10b, the error bars (+ one SD) represent the
seasonal variability for SST (horizontal bars) and the coefficients a and b (vertical bars). A
second order polynomial is fitted to the data points in Fig. 11a; a linear fit is applied to the
data in Fig. 11b. The correlation coefficients for the derived SST dependences are R2 = 0.57
for a(T) and R2 = 0.87 for b(T). Such R2 values are consistent with the expectation that SST,

being a static secondary factor, affects W more via the offset b than via the slope a.

To evaluate the effect of using quadratic versus cubic wind speed dependence in Eq.
(8), we also derived the SST dependences a(T) and b(T) for n = 3 following the same
procedure as for the case of n = 2. We applied Eq. (8) with n = 3 (Eq. (5b)) to W37 data for all
months in regions 4, 5, 6, and 12; we verified that differences due to the use of four instead of
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twelve regions are not significant. The absolute values of m and ¢ increase compared to their
values obtained with n = 2. Specifically, the slopes m in each of the four regions change by
30% to 50%, while their regional variability (i.e., SD) increased by a factor of 3. The y-
intercepts c in the four regions become larger than the ¢ values obtained with n = 2 by a factor
of 4.6, with regional variability increasing by a factor of 2. However, put together, the fit lines

W¥3(Uyp) in region 5 for all months and in all four regions for March 2006 (not shown)

behave like those in Figs. 8d and 8f; namely, seasonal variations are smaller than variations
from region to region. Coefficients a and b are calculated from the m and ¢ values and graphs
similar to those in Fig. 11 are produced. Linear fits for both a and b were applied to these
graphs. The correlation coefficients for these fits are R? = 0.87 for a(T) and R2 = 0.91 for b(T),

The reason for the different values of m and c (thus a and b) for different n is that each
set of coefficients (n, m, ¢) accounts for primary (i.e., Uio) and secondary factors differently.
When the expected cubic law is applied to regional data sets which exhibit quadratic wind
speed dependences (following from Figs. 5-6), the large differences are reconciled solely by
m and c; their values are therefore high. Conversely, smaller values for m and ¢ are required to
quantify regional variations when the wind speed exponent is already adjusted to follow the

quadratic trend of the data. This confirms the reasoning in Sect. 2.1 that the change from

cubic to quadratic wind speed exponent js @ major change that the additional parameters

impart on the W(Up) relationship. The question then is which set of parameters—(n = 2, m, c)
or (n = 3, m, ¢)—better reproduce measured W data. In other words, if the wind speed
exponent n is not adjusted but follows the physically determined cubic dependence, can the
parametric coefficients m and c alone account for all observed variations of W? We quantify

and discuss this point in Sect. 3.3. ,
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W =a(T Uy, +b(T)} @3
where

a(T) =ap + a; T + a,T° (14)
b(T) = bo + bsT (14b)
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and the coefficients are:

ap = 8.462x107

a; = 1.625x10°

a, = -3.348x10° (14c)
by = 3.354

by = -6.206x107

The whitecap fraction is calculated with Egs. (10-12 and 13-14) and compared to both
parameterized W values and to W data. The W values from SAL13 (37 GHz) and MOMB0 are
used as references for PD calculations and significance tests (Sect. 2.3).

3.3.1 Comparisons to W parameterizations

All parameterizations shown here are run for wind speeds from 3 to 20 ms™. The global
quadratic W(Uy) (Eq. (11)) is compared to the published parameterizations of SAL13 (at 10
and 37 GHz), CAL08, and MOMS80 (Egs. (1-3)) in Fig. 12a. The PD between the global
quadratic W(Ujo) and SAL13 at 37 GHz ranges from 0.5% to 10% over the wind speed range.
ANOVA and Student tests show that such differences are not statistically significant. That is,
the global quadratic W(U1o) parameterization replicates the trend of the satellite-based W data
as well as the SAL13 parameterization, which has a more specific wind speed exponent. Note
that we do not expect our W(Uy) parameterization to be distinctly different from that of
SAL13 because both studies use the same W database.

The PD between the trends of the global quadratic W(U1g) and MOMB80 W(Usg) is
from 5% up to 175% with the largest PDs for wind speeds below 7 m s™. Though Fig. 12a
shows visibly different trends from both parameterizations, they seem to fall within each other
uncertainties because both ANOVA and Student tests show no significant difference between
them. However, if applied for winds up to 25 m s (Table 1), significant differences occur.
That is, the use of the new global quadratic W(U1o) expression brings important changes to the
trend of W compared to that from MOMB80 W(U,) at high winds.

Figure 12b shows W values from the new W(U1o, T) parameterization at three fixed
SST values (T = 28, 12, and 1 °C); the parameterizations of SAL13 for 37 GHz and MOM80

are shown for reference. Physically (from the SST dependence of the seawater viscosity), at
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the same wind speed, W is expected to be higher in warm waters and lower in cold waters
(Monahan and O’Muircheartaigh, 1986). Figure 12b shows a more complicated behavior of
W. The highest W values (green line) are for moderate SST of 12 to 20 °C. At extreme SSTs
(2 and 28 °C, blue and red lines, respectively), the SST influence on W changes depending on
the wind speed: W is the lowest in cold waters and high winds, but is higher than W in warm
waters at low winds. The trends of coefficients a and b in Fig. 11 suggests that we can expect

such reversal.

According to Fig. 12b, changes of SST from 1 to 28 °C bring relatively small
variations in the wind speed trend of W, PD no more than 15%. Applying Student tests, we
find that the W values at any T remain statistically the same. In addition, W values at any T are
not significantly different from the W predictions of the global quadratic W(U1q)
parameterization. These results support the anticipated notion (Sect. 3.2.2) that by using
quadratic wind speed exponent either in W(Uig) or W(Uy, T), we can indeed account
implicitly (i.e., only via adjustment of the U;o exponent) for most of the SST (and other)

influences.

Figure 12c compares W values obtained with the quadratic and cubic W(Ujo, T)
parameterizations at T = 20 °C; MOMB80 and SAL13 at 37 GHz are shown for reference. With
p > 0.05 for any fixed T, the W values from the cubic W(Uyo, T) parameterization are not
statistically different from those obtained with either the quadratic W(U1o, T) or MOMBSO0.
Still, the different trends of the W values seen in Fig. 12c suggest that accounting explicitly
for SST via a(T) and b(T) in the physically expected cubic wind speed dependence is not
sufficient to replicate the satellite-based W values. That is, when using n = 3, one needs to
include more secondary forcing in order to reproduce the weaker wind speed dependence
from the W database.

3.3.2 Comparisons to W data

Comparisons to the published in situ W data demonstrate order-of-magnitude consistency of
the W values from the new parameterizations. Because there are no other remotely-sensed W
data except those from WindSat, the most we can do at the moment is to evaluate how well
the new parameterizations can replicate the trend and the spread of the satellite-based W.
Recently, W values from a global wave model were compared to W from MOMS80 and

WindSat by Leckler et al. (2013), so one can evaluate where modeled W values stand in the
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comparison of data and parameterizations of W. All parameterized W values shown here are
calculated using Uy and T from the whitecap database, i.e., Ujp from QuikSCAT and T from
GDAS (Sect. 2.2.1).

Figure 13a compares W values predicted with both new parameterizations, W(U,o) and
W(Us0, T), to the same in situ and satellite-based W data for 10 and 37 GHz plotted in Fig. 1b;
comparisons to satellite-based W data on any other day of 2006 are the same. Once again, it is
confirmed that the new global quadratic W(Uyo) parameterizations (black symbols in the
figure) follow closely the wind speed trends of the satellite-based W data. This lends
confidence in the use of the proposed quadratic W(U;o) parameterization to model a W trend

with secondary influences implicitly included.

The W values predicted with the new W(Ujo, T) parameterization (red and cyan
symbols in Fig. 13a) represent the spread of the satellite-based W data fairly well; tests show
that they do not differ significantly. The cluster of W values are, however, statistically
different from both the new quadratic and the MOMB80 W(U4o) parameterizations. This is the
most important result of this study: when we model only the trend of W with Uy, new and old
parameterizations differ significantly only for extreme conditions (e.g., winds above 20 m s*
in cold waters, Sect. 3.3.1). In contrast, when we model both the trend and the spread of the W
values, the result is a significant difference with any, new or old, W(Uyo) parameterization at

any conditions.

In Fig. 13a, one can notice that the new W(Uio, T) parameterization does not predict
the spread of the satellite-based W data entirely. This suggests that accounting explicitly for
SST in a W parameterization is not enough to replicate all the natural variability of W. This is
consistent with our general understanding of the need to explicitly include many secondary

factors in W parameterizations, not just SST (Sect. 2.1).

Though SST entails small variations in the trend of W with Uy (Fig. 12b), the most

important consequence of the, newly derived quadratic W(U;o, T) parameterization is that it

shapes significantly different spatial distribution compared to cubic and higher wind speed \’

dependences like that of the MOMB8Q, The complex behavior seen in Fig. 12b attests to this

because different combinations of SST and U, could be encountered over the globe.
Meanwhile, the recreation of the spread of the satellite-based W data in Fig. 13a confirms that

a W(Up, T) expression can model such situations.
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0.952-U =U —-U
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Figure 13b shows a difference map petween the global annual average W distributions
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3.4 Seaspray aerosol production
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emissions based on SSSFs using these two parameterizations also differ significantly. The

v

two estimates of SSA emissions are calculated using the same modelling tool (Sect. 2.4) and

the same input data (Sect. 2.2.1). Without any change in the shape factor, this guarantees that
the 50% difference is due solely to the explicit accounting for the SST effect on W.
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Previously modeled total dry SSA mass emissions vary by two orders of magnitude
because of a variety of uncertainty sources (Sect. 1): (2.2-22)x10" kg yr (Textor et al.,
2006, their Fig. 1a; de Leeuw et al., 2011, their Table 1); and (2-74)x10* kg yr™* for long-

term averages (over 25 years) (G14, their Table 2, excluding 3 outliers)l,ilih&impaekeﬂhe?

modeking method used has to be acknowledged too. Grythe et al. (2014) suggest that the
spread in published estimates of global emission based-on-the same-M86 g-—(4)),from
3.3x10' to 11.7x10% kg yr (Lewis and Schwartz, 2004), can be-attributed to differences-in
model input data and resolution differences--An-example-of the same ~vieldingdifferen

results when applied in different-models-is-also-seen-in-the-work-of de-Leeuw-et-al—(2011

their Table 1). \

For a meaningful comparison of our results to SSA emissions obtained with other
SSSFs, we attempt to remove (or at least minimize) the impact of the modeling method.M
this study, G14 used the same model (i.e., input data and configuration) to evaluate 21 SSSFs, \
including that of M86, against measurements. We thus can infer a “modelling” factor using
our and G14 results obtained with M86 SSSF. We find that the G14 estimate of SSA emission
from M86 (4.51x10" kg yr™),js 1.55 times larger than our estimate of 2.9x10" kg yr™* from

M86 and MOM80. We apply this factor of 1.55 fo our SSA emission estimated with the new |

W(U1o, T) parameterization and obtain, a “model scaled” value of 6,75x10™ kg yr. Our

“model scaled” estimate of the SSA emission is close to the median 5.91x10" kg yr* of the

SSA emission yeported py G14. This shows that an SSSF with a magnitude factor derived
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G14 study, the salinity weight proposed by Sofiev et al. (2011) is not applied. At a reference
Without the SST
\

salinity of 33 %, S11T estimates an SSA emission of 2.59x10™ kg yr™,
effect (the SST factor set to unity), the SSA emission estimated with, $11 js 5.87x10™ kg yr?,

With everything else the same except for the SST factor in source functions S11 and S11T, |

we evaluate that accounting for the SST effect results in changes by 56%. Correcting for 14%

discrepancy due to extended lower size limit, we infer a 42% change when the SST effect is
included in the SSSF. This is comparable to the 50% change due to SST in our case. We
surmise that parameterizing additional influences on W is a viable way to account and explain

for some of the uncertainty of SSA emissions.

Grythe et al. (2014) used a large data set of ship observations to develop G13T by

changing both the magnitude and the shape factors, The authors modified, the SSSF of Smith
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and Harrison (1998) (a sum of two log-normal distributions) o add,an extra log-normal mode

to cover the accumulation mode. They also added the empirically based SST factor (a third \\

order polynomial) proposed by Jaeglé et al. (2011), With G13T, G14 estimate an SSA
emission of 8.91x10" kg yr*

different. This makes it difficult to evaluate the relative contribution of the magnitude and

shape factors for variations in SSA emissions. Our results can help.

. The functional forms of the magnitude (involving the SST \

\

effect) and shape (modelling the size distribution) factors of G13T and S11T are very |

\| Deleted: )

Deleted: + 0.57
Deleted: ,

Deleted: at a reference salinity of 33 %o and a
reference temperature of 25°C (referred to as S11 in

Moved (insertion) [25]
Deleted: Grythe et al. (2014) SSSF was obtained

Deleted: ying

The shape factors of S11T and our SSSF using W(Up, T) have a similar (not identical)
functional form (that of M86, original and modified), but the functional forms accounting for
SST are different. Our SSA emission estimate is about 62% higher than that of S11T.
Allowing for 14% discrepancy due to the lower size limit, we find that different approaches to
account for SST lead to about 67% variation in SSA emissions. Compared to G13T, our SSSF
using W(Uyp, T) has a different shape factor (that of M86 versus log-normal), and a similar
(but not identical) functional form for the SST effect (polynomial). Our SSA emission
estimate is about 32% lower than that of G13T. Allowing for 14% size discrepancy, we find

that different shape factors lead to about 13% variation in SSA emissions.

On the basis of these assessments, we can state that the inclusion of the SST effect in
the magnitude factor and/or the choice of the shape factor (size range and model for the size
distribution) in the SSSF can explain 13%-67% of the variations in the predictions of SSA
emissions. The spread in SSA emission can thus be constrained by more than 100% when
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improvements of both the magnitude and the shape factor are pursued. Our results on the W

parameterization (Fig. 13a) suggest that accounting for more secondary forcing in the

wind speed, the most important secondary factor that accounts for variability in W is the wave

field (SAL13), efforts to include wave parameters in W parameterizations are well justified.
4 Conclusions

The objective of the study presented here is to evaluate how accounting for natural variability

of whitecaps, jn the parameterization of the whitecap fraction W would affect mass flux

\
predictions when using a sea spray source function based on the discrete whitecap method.

The study uses satellite-based W data estimated from measurements of the ocean surface

brightness temperature Tg by satellite-borne microwave radiometers at frequencies of, 10 and

37 GHz, Wy and W3;. Global and regional data sets comprising Wi and W37 data, wind speed

Ui, and sea surface temperature T for 2006, were used to derive parameterizations W(U;o) and
W(U1g, T). The SSSF of Monahan et al. (1986) combined with the new W(U,, T) was used to \
estimate sea spray aerosol emission. The conclusions of the study are the following.

Assessment of the global W data set yevealed a quadratic correlation between W and*
\

Uy (Egs. (10-11)). The unconventional positive y-intercept for Ws;(Uyo) could be interpreted
as a mathematical expression of the static forcing that given seawater properties (e.g., effects
of SST, salinity, and surfactant concentrations) impart on whitecaps. Parameterization W(U1o)
Herived with an independent data set (Ujo from ECMWEF instead of QUikSCAT) helps to
determine that the intrinsic correlation between W and Uq is most likely less than about 4%. \
The derived W(Uqp) for both Wi and W37 replicate the trend of the satellite-based data well \

(Fig. 13a). That is, the adjusted quadratic wind speed exponent in W(U3g) accounts implicitly

for most of the SST variations, ;The new quadratic W(Uyo) predicts whitecap fraction
significantly different from that obtained with the widely used W(U10) of MOMS80 only at \

extreme conditions (high winds and cold waters),

Applying the global quadratic W(Uo) parameterization on regional scale shows that
the seasonal variations of its regression coefficients a and b are not statistically significant,
while the regional variations are. On this basis, by relating annually averaged a and b values
to the annually averaged T for each region (Fig. 11), the SST dependences a(T) and b(T) for
data at 37 GHz were derived. The new quadratic W(U1o, T) parameterization (Eqgs. (13-14))
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predicts small variations in the trend of W for different SST values (Fig. 12b). However, it
replicates the variability (spread) of the satellite-based W data well (Fig. 13a). The capability
of the new W(Uy, T) parameterization to model both the trend and the spread of the W data
sets it apart from all other W(Uyp) parameterizations. Results show that besides SST, one
needs to include explicitly other secondary factors in order to model the full spread of the
satellite-based W. Including the SST effect via a(T) and b(T) in the physically expected cubic

wind speed dependence is not sufficient to replicate the trend of the satellite-based W values.

Application of the new quadratic W(Uyo, T) parameterization in the Monahan et al.

(1986) SSSF resulted in a total (integrated only over super-micron sizes) SSA mass emission

(

Deleted: supermicron

estimate of 4359.69 Tg yr* (4.4x10" kg yr™) for 2006. Scaled for modeling differences (Sect.

(

Deleted: 082

3.4), this estimate is 6.75x10% kg yr™, which is comparable to previously reported estimates.
Comparing our and previous total SSA emissions, we have been able to assess to what degree
accounting for the SST influence on whitecaps can explain the spread of SSA emissions. With
or without the SST effect included in the SSSF, SSA emissions obtained with the new W(Uyj,
T) parameterization vary by ~50%. Different approaches to account for SST effect yield
~67% variations. Different models for the size distribution applied to different size ranges
lead to 13%-42% variations in SSA emissions. Understanding and constraining the various
sources of uncertainty in the SSSF would eventually improve the accuracy of SSSF
predictions. Including the natural variability of whitecaps in the SSSF magnitude factor is a

viable way toward such accuracy improvement,,

Data availability

The data analysis and the results reported in this study are available from the corresponding
author M.F.M.A. (Monique) Albert (monique.albert@tno.nl).
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Table 1. Coordinates, number of data points, range and mean value for wind speed, and

range and mean value of SST of selected regions (a) for January 2006, (b) for July 2006.

a
Regi Lon. Lat. .
egion Lon at Wind

Number speed™*

of .

samples”  [ms7]

SST* [°C]
Range Mean Median  Range Mean  Median

1. 86°W —95°W 23°N-28°N 18896 1.3-15.7 7.5 7.6 19.4-26.0 23.8 241
2. 1°W — 15°W 1°S-30°S 169128 0.2-12.9 6.4 6.4 21.4-27.8 24.2 241
3. 75°E—-89°E 1°S =30°S 169056 0.0-13.4 7.0 7.2 23.0-29.4 26.8 27.3
4. 11°W —20°W 30°N — 44°N 49760 0.2-19.6 8.0 7.6 13.3-20.4 16.4 16.3
5. 86°W —100°W  31°S - 60°S 200360 0.5-23.0 8.7 8.7 4.8-24.1 12.7 11.7
6. 171°W —180°W  15°S—14°N 123328 0.6-15.6 8.2 8.2 26.2-30.4 284 28.2
7. 31°W = 50°W  10°N - 29°N 90640 0.3-20.0 8.8 9.0 20.1-27.9 249 25.3
8. 140°W — 160°W 20°S —30°S 50040 0.5-16.3 6.8 6.7 22.2-29.1 26.3 26.6
9. 140°W — 160°W  40°S — 50°S 41840 0.1-20.6 6.9 6.5 9.3-18.2 13.2 131
10. 0°W —30°W 40°S - 50°S 133080 0.5-26.4 9.4 9.3 3.2-16.7 9.6 9.3
11. 50°E—-70°E 40°S - 50°S 50784 0.5-21.6 9.6 9.6 3.2-17.4 9.6 9.5
12. 180° E — 180°W  60°S —90°S 576576 0.2-20.9 7.0 6.7 -1.9-8.0 1.8 14

* For January 2006.
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Region Lon. Lat. Wind
Number of Speed™*
samples™ [msY]
SST**[°C]

Range Mean Median Range Mean Median
1. 86°W — 95°W 23°N-28°N 13848 0.4-10.0 4.5 4.4 28.7-30.5 295 29.4
2. 1°W — 15°W 1°S-30°S 189600 0.2-14.0 6.6 6.6 17.7-27.1 23.2 23.7
3. 75°E—89°E 1°S =30°S 195424 0.6-15.4 8.0 8.1 18.8-30.0 254 25.9
4. 11°W —20°W 30°N —44°N 43040 0.7-14.0 6.7 6.6 16.9-23.3 204 20.5
5. 86°W —100°W  31°S-60°S 257496 0.7-22.7 9.8 9.6 25-19.1 9.3 8.3
6. 171°W —180°W  15°S—14°N 133096 0.1-14.8 6.0 6.0 26.9-29.7 28.8 29.0
7. 31°W — 50°W 10°N — 29°N 88304 0.4-13.6 7.4 7.4 23.6-28.0 26.0 26.1
8. 140°W — 160°W 20°S — 30°S 47504 0.7-24.7 6.9 6.2 18.8-27.0 23.2 234
9. 140°W — 160°W  40°S — 50°S 52736 0.5-21.0 10.1 10.3 8.2-14.1 10.9 10.8
10. 0°W —30°W 40°S —50°S 160192 0.9-28.9 10.8 10.8 1.8-14.6 8.3 8.3
11. 50°E—-70°E 40°S —50°S 49344 1.1-28.2 129 12,7 2.1-16.1 8.3 7.8
12. 180° E — 180°W  60°S — 90°S 177240 0.8-29.1 11.7 119 -1.3-43 1.7 1.7
** For July 2006
v ( Deleted: 1
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Figure captions

Figure 1. Satellite retrieved 37 GHz W data for 11 March 2006. a) Map (0.5°x0.5°) of
ascending and descending passes for W at 37 GHz; b) W at 10 and 37 GHz (green and
magenta symbols, respectively) compared to historical photographic data including total W
(diamonds) and active whitecap fraction W, (squares). Parameterization W(U1o) of Monahan
and O’Muircheartaigh (1980, MOMB80) (purple line) is shown for reference.

Figure 2. Selected regions to determine regional variations of W(U1o).

Figure 3. Seasonal cycle for 2006 in different regions as defined in Fig. 2 and Table 1: a)
wind speed Ujp; b) Sea surface temperature (SST) T. The regions represent: 4—Temperate
zone in Northern hemisphere; 5-Temperate zone in Southern hemisphere; 6—Doldrums along
the Equator; 12—Lowest SST.

Figure 4. Scatter plot for March 2006 of (a) global Uigecmwr versus Uiggscar and (b) global T
from ECMWEF versus T from GDAS. In both figures the colors indicate the amount of data
points per hexabin. The black lines are linear fits: the dashed line represents unrestricted fit
and the solid line a fit forced through zero. The linear regressions and respective R? are listed

in each panel.

Figure 5. Global W as function of Uy from QuikSCAT for March 2006 where W is obtained (Deleted:

with 10 GHz (a) and 37 GHz (b) measurement frequency. The red line indicates the Monahan ( Deleted: -

and O’Muircheartaigh (1980 MOMB80) relationship (Eq. (3)). The colors indicate the amount

of data points per hexabin.

Figure 6. Global YW as function of Uy from QuikSCAT for March 2006, where \W is (Deleted: 4
obtained with 10 GHz (a) and 37 GHz (b) measurement frequency. The black line (in both ( Deleted: -

panels) indicates the best linear fit through the data. The red line in Fig. 6b equals the black ( Deleted: the right panel
line in Fig. 6a. The colors indicate the amount of data points per hexabin. ( Deleted: the left panel

Figure 7. Scatter plot of VW versus Usgeemwe for March 20086.

Figure 8. Linear fits of YW versus U for: yegion 1 for January 2006 at 10 GHz (a) and 37

GHz (b); region 5 for all months at 10 GHz (c) and 37 GHz (d); yegions 1-12 for March 2006

at 10 GHz (e) and 37 GHz (f).
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Figure 9. Seasonal cycle for 2006 of regression coefficients in the VW(Uyo) Jinear fits for '
“_ | Deleted: Regional and s

different regions as defined in Fig. 2 and Table 1: a) slope m; b) y-intercept c~ The regions-

represent: 4—Temperate zone in Northern hemisphere; 5-Temperate zone in Southern

hemisphere; 6—Doldrums along the Equator; 12—Lowest SST.

Figure 10. Regional and seasonal variations: a) Regionally averaged b values for each month

with error bars (+ one standard deviation) representing the regional variability; b) Annually

averaged b values for each region with error bars representing the seasonal variability,

Figure 11. Sea surface temperature dependences of a) coefficient a (slope) and b) coefficient b

(intercept) in the W(U0) dependence. Each point is annual mean for different region. The
error bars indicate + 1 standard deviation for SST (horizontal bars) and coefficients (vertical
bars). Panel c¢) shows the monthly means of coefficients b for each region that form one data
point in panel b). Regions in Northern hemisphere (NH) are show with squares; regions in
Southern hemisphere (SH) are shown with circles. The diamonds are for region 6 at the

Equator,,

Figure 12. a) Comparison of the new global W(U,,) parameterization (based on the global W \

data set) to parameterizations from different studies;, SAL13 (10 GHz) and SAL13 (37 GHz) \

are parameterizations from Salisbury et al. (2013) (Eq. (1)), CALO8 are parameterizations
derived by Callaghan et al. (2008) (Eq. (2)); and MOMBO is the parameterization of Monahan
and O’Muircheartaigh (1980) (Eq. (3)).

b) Comparison of the new quadratic parameterization W(U1o, T) (Egs. 13-14) at three
fixed SST values (T = 20 °C, red line; T = 12 °C, green line; T = 2 °C, blue line) to the global
quadratic parameterization W(Uo) (Eq. 11, black solid line) and the parameterizations of
Salisbury et al. (2013) (Eq. (1)) for 10 GHz (dash-dotted line) and 37 GHz (dashed line).

c) Comparison of the new W(Uyo, T) parameterizations with quadratic (Eqgs. 13-14,
purple line) and cubic (red line) wind speed exponents at T = 20 °C to the parameterizations
of Salisbury et al. (2013, SAL13) (Eq. (1)) for 37 GHz (dashed line) and Monahan and
O’Muircheartaigh (1980, MOMBO0) (blue solid line).

Figure 13. a) As Fig. 1b with W values added from W(U;o) for 10 and 37 GHz (black lines,
Egs. (10-11)) and W(U4, T) for 10 (red) and 37 GHz (cyan, Egs. (13-14)). Wind speed and

sea surface temperature from the whitecap database are used for the calculations.
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b) Difference map of annual average W distribution for 2006 calculated from the
Monahan and O’Muircheartaigh (1980, MOMB80) W(U,o) parameterization (Eq. (3)) minus
W(Usp, T) from-Eqgs. (13-14)y Fhe-caleulations-use-wind-speed-Uip-isfromQuikSCAT-in-the-
whitecap database.

Figure 14. a) Annual average super-micron mass emission rate for 2006 in g m? s?

calculated from from Eq. (4")). b) Pifference map between the annual average super-micron
SSA mass emission rate calculated from the Monahan et al. (1986) SSSF and the annual
average super-micron SSA mass emission rate calculated from the Monahan et al. (1986)
SSSF where W is replaced with Egs. (13-14). The calculations use wind speed Uy is & from
QUuiIkSCAT in the whitecap database,
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