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Abstract 12 

In this study the utility of satellite-based whitecap fraction (W) data for the prediction of sea 13 

spray aerosol (SSA) emission rates is explored. More specifically, the study aims at 14 

evaluating how an account for natural variability of whitecaps in the W parameterization 15 

would affect SSA mass flux predictions when using a sea spray source function (SSSF) based 16 

on the discrete whitecap method. The starting point is a data set containing W data for 2006 17 

together with matching wind speed U10 and sea surface temperature (SST) T. Whitecap 18 

fraction W was estimated from observations of the ocean surface brightness temperature TB by 19 

satellite-borne radiometers at two frequencies (10 and 37 GHz). A global scale assessment of 20 

the data set yielded approximately quadratic correlation between W and U10. A new global 21 

W(U10) parameterization was developed and used to evaluate an intrinsic correlation between 22 

W and U10 that could have been introduced while estimating W from TB. A regional scale 23 

analysis over different seasons indicated significant differences of the coefficients of regional 24 

W(U10) relationships. The effect of SST on W is explicitly accounted for in a new W(U10, T) 25 

parameterization. The analysis of W values obtained with the new W(U10) and W(U10, T) 26 

parameterizations indicates that the influence of secondary factors on W is for the largest part 27 

embedded in the exponent of the wind speed dependence. In addition, the W(U10, T) 28 

parameterization is capable to partially model the spread (or variability) of the satellite-based 29 
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W data. The satellite-based parameterization W(U10, T) was applied in an SSSF to estimate the 1 

global SSA emission rate. The thus obtained SSA production rate for 2006 of 4.410
12

 kg yr
-1

 2 

is within previously reported estimates, however with distinctly different spatial distribution.  3 

 4 

1 Introduction 5 

Whitecaps are the surface phenomenon of bubbles near the ocean surface. They form at wind 6 

speeds of around 3 m s
-1

 and higher, when waves break and entrain air in the water which 7 

subsequently breaks up into bubbles which rise to the surface (Thorpe, 1982; Monahan and 8 

Ó’Muircheartaigh, 1986). The estimated annual global average of whitecap cover, i.e., the 9 

fraction of the ocean surface covered with whitecaps W, is 3.4% (Blanchard, 1963). Being 10 

visibly distinguishable from the rough sea surface, whitecaps are the most direct way to 11 

parameterize the enhancement of many air-sea exchange processes including gas- and heat 12 

transfer (Andreas, 1992; Fairall et al., 1994; Woolf, 1997; Wanninkhof et al., 2009), wave 13 

energy dissipation (Melville, 1996; Hanson and Phillips, 1999), and the production rate of sea 14 

spray aerosols (SSA) (e.g., Blanchard, 1963; 1983; Monahan et al., 1983; O’Dowd and de 15 

Leeuw, 2007, de Leeuw et al., 2011), because all these processes involve wave breaking and 16 

bubbles.  17 

Measurements of the whitecap fraction W are usually extracted from photographs and 18 

video images collected from ships, towers, and air planes (Monahan, 1971; Asher and 19 

Wanninkhof, 1998; Callaghan and White, 2009; Kleiss and Melville, 2011). Whitecap 20 

fraction is commonly parameterized in terms of wind speed at a reference height of 10 m, U10. 21 

Wind speed is the primary driving force for the formation and variability of W (Monahan and 22 

Ó’Muircheartaigh, 1986; Salisbury et al., 2013, hereafter SAL13). Whitecap fractions 23 

predicted with conventional W(U10) parameterizations show a large spread between reported 24 

W values (Lewis and Schwartz, 2004; Anguelova and Webster, 2006). Part of these variations 25 

is due to differences in methods of extracting W from still and video images. Indeed, the 26 

spread of W data has decreased in recently published in situ data sets as image processing 27 

improved and data volume increased (de Leeuw et al., 2011). However, an order-of-28 

magnitude scatter (spread) of W data remains, suggesting that U10 alone cannot fully predict 29 

the W variability. Other factors such as atmospheric stability (often expressed in terms of air-30 

sea temperature difference) and/or sea surface temperature (SST) (Monahan and 31 

Ó’Muircheartaigh, 1986), friction velocity (combining wind speed and thermal stability (e.g., 32 
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Wu, 1988; Stramska and Petelski, 2003)), wave field (SAL13), and surfactant activity 1 

(Callaghan et al., 2013) have been indicated to affect W with implications for the SSA 2 

production. Thus, parameterizations of W that use different, or include additional (secondary), 3 

forcing parameters to better model the spread of W data due to natural whitecap variability 4 

have been sought (Monahan and Ó’Muircheartaigh, 1986; Zhao and Toba, 2001; Goddijn-5 

Murphy et al., 2011; Norris et al., 2013b; Ovadnevaite et al., 2014; Savelyev et al., 2014). 6 

An alternative approach to address the variability of W is to use whitecap fraction 7 

estimates from satellite-based observations of the sea state, because such observations provide 8 

long-term global data sets which encompass a wide range of meteorological and 9 

environmental conditions, as opposed to local measurement campaigns during which a limited 10 

variation of conditions is usually encountered. Brightness temperature TB of the ocean surface 11 

measured from satellite-based radiometers at microwave frequencies has been successfully 12 

used to retrieve geophysical variables, including wind speed (Wentz, 1997; Bettenhausen et 13 

al., 2006; Meissner and Wentz, 2012). The feasibility of estimating W from TB has also been 14 

demonstrated (Wentz, 1983; Pandey and Kakar, 1982; Anguelova and Webster, 2006).  15 

Anguelova et al. (2006; 2009) used WindSat data (Gaiser et al., 2004) to further 16 

develop the method of estimating W from TB, and compiled a database of satellite-based W 17 

data accompanied with additional variables (hereafter referred to as whitecap database). An 18 

early version of the whitecap database combines whitecap fraction at two frequencies (W10 for 19 

10 GHz and W37 for 37 GHz), with wind speed U10, wind direction Udir, and SST T. Figure 1a 20 

shows an example of the global W distribution from WindSat for a randomly chosen day from 21 

this whitecap database. An extended version of the whitecap database was compiled later to 22 

include three additional environmental variables: air temperature, significant wave height, and 23 

peak wave period (Anguelova et al., 2010).  24 

Salisbury et al. (2013) analyzed the extended whitecap database and showed that 25 

satellite-based W values carry a wealth of information on the variability of W. In particular, 26 

these authors showed that the global distribution of satellite-based W values differs from that 27 

obtained using a conventional W(U10) parameterization with important implications for 28 

modeling SSA production rate in global climate models (GCMs) and chemical transport 29 

models (CTMs) (Salisbury et al., 2014). Salisbury et al. (2013) proposed a new W(U10) 30 

parameterization in power law form using satellite-based W data over the entire globe for a 31 
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full year. They derived wind speed exponents which are approximately quadratic for different 1 

data sets: 2 
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where W is expressed in %. These exponents are significantly different from the cubic and 5 

higher wind speed dependences proposed by Callaghan et al. (2008, hereafter CAL08):  6 
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and Monahan and O’Muircheartaigh (1980, hereafter MOM80):  9 

41.3
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4

10 1084.3)( UUW           (3). 10 

The MOM80 parameterization was derived on the basis of the data sets of Monahan (1971) 11 

and Toba and Chaen (1973). Most of the wind speed values from these two data sets are up to 12 

12 m s
-1

 with only 10% of the data points for winds up to 17 m s
-1

. The range of SST is from 13 

17 to 31 C. Monahan and O’Muircheartaigh (1986) emphasized that this is a regionally 14 

specific function, but its widespread adoption in global models led to its application at wind 15 

speeds and SSTs well beyond its range of validity.  16 

In this study we explore the utility of the satellite-based W data from a standpoint of 17 

predicting SSA production rate. Whitecaps are used as a proxy for the amount of bubbles at 18 

the ocean surface. When these bubbles burst, they generate sea spray droplets which in turn 19 

transform to SSA when they equilibrate with the surroundings (Blanchard, 1983). Bursting 20 

bubbles produce film and jet droplets, whereas at high wind speeds, exceeding about 9 m s
-1

, 21 

additional sea spray is directly produced as droplets which are blown off the wave crests 22 

(Monahan et al., 1983). These spume droplets are larger than the bubble-mediated SSA 23 

droplets (Andreas, 1992). In this study we will focus on bubble-mediated production of sea 24 

spray.  25 

Sea spray aerosols are important for the climate system because, due to the vast extent 26 

of the ocean, SSA particles are amongst the largest aerosol sources globally (de Leeuw et al., 27 

2011). SSA particles contribute to the scattering of short-wave electromagnetic radiation and 28 

thus to their direct radiative effect on climate. Also, having high hygroscopicity, SSA 29 
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particles are a source for the formation of cloud condensation nuclei (Ghan et al., 1998; 1 

O’Dowd et al., 1999) and as such influence cloud microphysical properties and thus exert 2 

indirect radiative effects on the climate system. While residing in the atmosphere, SSA 3 

provide surface and volume for a range of multiphase and heterogeneous chemical processes 4 

(Andreae and Crutzen, 1997). Through such chemical processes, the SSA contribute to the 5 

production of inorganic reactive halogens (Cicerone, 1981; Graedel and Keene, 1996; Keene 6 

et al., 1999; Saiz-Lopez and von Glasow, 2012), participate in the production or destruction of 7 

surface ozone (Keene et al., 1990; Barrie et al., 1988; Koop et al., 2000), and provide a sink in 8 

the sulfur atmospheric cycle (Chameides and Stelson, 1992; Luria and Sievering, 1991; 9 

Sievering et al., 1992; 1995).  10 

The modeling of all these processes in GCMs and CTMs starts with calculation of the 11 

production rate of SSA particles (termed also SSA production flux, SSA generation, or SSA 12 

emission). Sea spray source function (SSSF) is used to calculate SSA production flux—the 13 

number of SSA particles produced per unit of sea surface area per unit time. The most 14 

commonly used SSSF, proposed by Monahan et al. (1986, hereafter M86), estimates SSA 15 

emission by the indirect, bubble-mediated mechanism. Based on the discrete whitecap 16 

method, the SSSF of M86 is formulated in terms of W(U10), as defined by MOM80 (Eq. (3)), 17 

whitecap decay timescale , and the aerosol productivity per unit whitecap dE/dr: 18 

  2
19.105.1

80
3

80
41.3

10

80

10

80

10)057.01(373.1
BerrU

dr

dEUW

dr

dF  


,    (4) 19 

In Eq. (4), MOM80 had used a constant value for the timescale  = 3.53 s, r80 is the droplet 20 

radius at a relative humidity of 80%, and the exponent B is defined as 65.0/)lg38.0( 80rB  . 21 

The term dE/dr, associated with the sea spray size distribution, determines the shape of the 22 

SSSF (i.e., shape factor); the term W/ is a scaling (or magnitude) factor as it links 23 

predetermined SSA production per unit whitecap area with the amount of whitecapping in 24 

different regions at different seasons. Refer to Lewis and Schwartz (2004), de Leeuw et al. 25 

(2011), and Callaghan (2013) for clear distinction of the discrete whitecap method from the 26 

continuous whitecap method.  27 

Estimates of SSA production fluxes using the discrete whitecap method still vary 28 

widely (Lewis and Schwartz, 2004; de Leeuw et al., 2011) precluding reliable estimates of the 29 

direct and indirect effects by SSA in GCMs, as well as the outcome of heterogeneous 30 

chemical reactions taking place in and on SSA particles in CTMs. The wide spread of 31 
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predicted SSA emissions is caused by a combination of uncertainties coming from both the 1 

magnitude and the shape factors of the used SSSFs. The uncertainties associated with the 2 

magnitude factor include difficulties of measuring W and  and their natural variability, which 3 

affects the W(U10) parameterizations. The assumptions of the discrete whitecap method 4 

(detailed in Sect. 2.4) also contribute to the uncertainty. Added to these are the uncertainties 5 

associated with the shape factor, such as its natural variability and the model chosen to 6 

parameterize the SSA size distribution. A source of uncertainty is the difficulty of directly 7 

measuring SSA fluxes which are used to develop and/or constrain SSSFs. When 8 

measurements of SSA concentrations are used to develop an SSSF, uncertainty comes from 9 

the deposition velocity model used to convert the concentrations to fluxes (e.g., Smith et al., 10 

1993; Savelyev et al., 2014). 11 

Aside from addressing uncertainties due to sea-spray measuring techniques, there are 12 

two possible ways to improve the performance of a whitecap-based SSSF as regards the 13 

physical processes involved. One way is to address variations and uncertainties in the size-14 

resolved productivity dE/dr80 (i.e., the shape factor in the SSSF), for instance by including the 15 

organic matter contribution to SSA at sub-micron sizes (O’Dowd et al., 2004; Albert et al., 16 

2012) and/or by accounting for its variations with environmental factors instead of keeping it 17 

constant for all conditions (de Leeuw et al., 2011, Norris et al., 2013a; Savelyev et al., 2014). 18 

Another way is to address the variations and uncertainties in the whitecap fraction W and 19 

timescale  (i.e., the magnitude factor in the SSSF) by steady improvements of the W and  20 

measurements and by accounting for their natural variability. Both approaches are expected to 21 

reduce, or at least to better account for, the variations and uncertainties in parameterizing SSA 22 

flux.  23 

Here we report on a study investigating the second of these two routes, namely—how 24 

using W data, which carry information for secondary factors, would influence the SSA 25 

production flux. The objective is to assess how much of the uncertainty in the SSA flux can 26 

be explained with the natural variability of W. Using the early version of the whitecap 27 

database (consisting of data for W10, W37, U10, Udir and T), we parameterize the W variability 28 

in terms of U10 and T. Our approach (Sect. 2) involves three steps. We first assess the 29 

satellite-based whitecap database to evaluate the wind speed dependence of W over as wide a 30 

range of U10 values as possible (sect. 3.1.1). In assessing the W database, we also evaluate: (i) 31 

the impact of an intrinsic correlation between W and U10, which could have been introduced 32 
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in the process of estimating W from TB (Sect. 3.1.2); (ii) the influence of the wave field on W 1 

variability using rising and waning wind speeds as proxy for wave development (Sect. 3.1.3). 2 

The W(U10) expression resulting from this analysis adjusts the trend of W with U10 to the 3 

concerted, globally-averaged influence of all secondary factors implicitly. We next apply the 4 

established W(U10) expression to W data on regional scales in order to assess the variability 5 

caused by secondary factors in different locations during different seasons (Sect. 3.2). We 6 

analyze the regional variations of W, remaining after the implicit adjustment with the W(U10) 7 

expression, and parameterize them explicitly in terms of SST. The new W(U10, T) 8 

parameterization is compared to W(U10) of MOM80 and SAL13 (Sect. 3.3) in order to assess 9 

to what extent SST can account for the W variability. Finally, the new W(U10, T) 10 

parameterization is used to estimate SSA emissions and compare results to previous 11 

predictions of SSA emissions (Sect. 3.4).  12 

2 Methods 13 

To achieve the study objective formulated above, the main task is to develop a 14 

parameterization of W that accounts for both the trend and the spread of the W data. 15 

Expressions W(U10) model (predict) the trend of the whitecap fraction with wind speed. The 16 

inclusion of additional variables in W(U10) relationships should be able to model (predict) the 17 

spread of the W data caused by natural variability. The approach described below aims at 18 

deriving an expression W(U10, T) that fulfils these two requirements.    19 

2.1 Approach to derive whitecap fraction parameterization 20 

Reasoning on a series of questions shaped our approach to parameterizing W and justified the 21 

choices we made for its implementation (Sect. 2.3). We first considered, Why do we need to 22 

parameterize W instead of using satellite-based W data directly? A major benefit of using 23 

satellite-based W data directly in an SSSF is that these data reflect the amount and persistence 24 

of whitecaps as they are formed by both primary and secondary forcing factors acting at a 25 

given location. This approach limits the uncertainty to that of estimating W from satellite 26 

measurements and does not add uncertainty from deriving an expression for W(U10) or W(U10, 27 

T, etc.). However, such an approach would limit global predictions of SSA emissions to 28 

monthly values because a satellite-based W data set does not provide daily global coverage; 29 

i.e., one would need data like those in Fig. 1a for at least two weeks (and more for good 30 

estimates of the uncertainties) in order to have full coverage of the globe.  31 
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Alternatively, a parameterization of whitecap fraction derived from satellite-based W 1 

data can provide daily estimates of SSA emissions using readily available daily data of wind 2 

speed and other variables. Importantly, such a parameterization will be globally applicable 3 

because the whitecap fraction data cover the full range of meteorological conditions 4 

encountered over most of the world oceans. Because the availability of a large number of W 5 

data would ensure low error in the derivations of the W(U10) or W(U10, T, etc.) expressions, 6 

we proceed with deriving a parameterization for W using the data in the whitecap database 7 

(Sect. 2.2.1).  8 

The next question to consider was, How to account for the influence of secondary 9 

factors? Generally, to fully account for the variability of whitecap fraction, a parameterization 10 

of W would involve wind speed and many additional forcings explicitly to derive an 11 

expression W(U10, T, etc.) (MOM80; Monahan and Ó’Muircheartaigh, 1986; Anguelova and 12 

Webster, 2006). Using the early version of the whitecap database in this study, we start with 13 

parameterization W(U10, T).  14 

The question that arises next is, How to combine the different dependences of W? One 15 

possibility is to use a single-variable regression to extract the W dependence on each variable 16 

separately, e.g., W(U10) and W(T). Then, these can be combined to derive an expression for 17 

their effects in concert, e.g., W(U10, T) = W(U10)W(T). While variables like T, atmospheric 18 

stability, surfactants, etc. influence W, they do not cause whitecapping. So a parameterization 19 

formulated with dedicated W(T) and other expressions may put undue weight on such 20 

influences. This approach can be pursued when we have enough information to judge the 21 

relative importance of each influence (e.g., Anguelova et al., 2010, their Fig. 6) and include it 22 

in a combined expression with a respective weighting factor.  23 

Previous experience points to another possibility to combine causal variables like U10 24 

and influential variables like T and the likes. The Monahan and O’Muircheartaigh (1986) 25 

analysis of five data sets showed that the variability of W caused by SST (and the atmospheric 26 

stability) affect significantly the coefficients in the wind speed dependence W(U10), especially 27 

the wind speed exponent. The survey of W(U10) parameterizations by Anguelova and Webster 28 

(2006, their Tables 1 and 2) also clearly shows that each campaign conducted in different 29 

regions and conditions comes up with a specific wind speed exponent. This strongly suggests 30 
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that the influence of secondary factors is implicitly expressed as a change of the wind speed 1 

exponent. On the basis of their principal component analysis, SAL13 also suggested that in 2 

describing the W variability, it is more effective to combine individual variables with wind 3 

speed. On this ground, we proceed to obtain W(U10, T) as a wind speed dependence W(U10) 4 

whose regression (or parametric) coefficients vary with SST.  5 

How to realize this goal knowing that the satellite-based W data carry information for 6 

the effect of U10 and all other factors? One possible way to proceed is to: (i) express the mean 7 

trend in the W data associated with the globally-averaged conditions of U10 and all other 8 

factors; then (ii) quantify the fluctuations of regional W data around this mean trend as a 9 

function of a specific secondary factor. Here step (i) implicitly accounts for the effects of all 10 

secondary factors on W, while step (ii) quantifies explicitly the effect of a given factor on W. 11 

That is, the explicit formulation of the parametric coefficients accounts only partially for the 12 

full effect of a given secondary factor; it adds to the implicit account via the mean trend of W 13 

with U10. To realize this concept, we first analyze the global W data set to identify a general 14 

wind speed dependence W(U10) for the mean trend. Then, our analysis of regional W data 15 

helps to asses to what extent can SST account for the variations of the regression coefficients 16 

in a W(U10) dependence. 17 

The important question now is, What functional form should we use for the general 18 

(mean) W(U10) dependence? Equations (1)-(3) exemplify the functional forms usually 19 

employed to express W(U10): 20 

naUW 10            (5a) 21 

 310 bUaW            (5b). 22 

A general W(U10) dependence derived using Eq. (5a) would provide an empirical wind 23 

speed exponent n determined from available data sets, as MOM80 did using the available data 24 

sets at the time (Sect. 1). The wider the range of conditions represented by the data sets is, the 25 

closer the resulting W(U10) dependence would be to average conditions globally and 26 

seasonally.  27 

A general W(U10) dependence derived using Eq. (5b) would provide a physically-28 

based wind speed exponent n = 3 consistent with dimensional (scaling) arguments. Namely, 29 

because W is related to the rate at which the wind supplies energy to the sea, W should be 30 
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proportional to the cube of the friction velocity u* (Monahan and O’Muircheartaigh, 1986; 1 

Wu, 1988). On this basis, Monahan and Lu (1990) related W
1/3

 to U10 and derived the cubic 2 

power law in Eq. (5b). Subsequently, this relationship was used successfully in whitecap data 3 

analyses (e.g., Asher and Wanninkhof, 1998; CAL08). Coefficient b in Eq. (5b) is included 4 

because it is preferable for a W(U10) relationship to involve a finite y-intercept (Monahan and 5 

O’Muircheartaigh, 1986). A negative y-intercept determines b from the x-intercept and is 6 

usually interpreted as the threshold wind speed for whitecap inception.  7 

A modified version of Eq. (5) combines the merits of both formulations into the form:  8 

 nbUaW  10           (6) 9 

where the wind speed exponent is adjustable (i.e., a free parameter) and a finite y-intercept is 10 

included. A general W(U10) dependence derived using Eq. (6) would provide a wind speed 11 

exponent as dictated by the whitecap database. Any of the three formulations (Eqs. (5 and 6)) 12 

can produce a viable general W(U10) dependence, the empirical ones representative of the 13 

average conditions of the world oceans and the physical one supported by sound reasoning.  14 

2.2 Data sets  15 

To implement the approach thus formulated, we use the whitecap database on a global scale 16 

for the general W(U10) dependence, and regional W subsets extracted from the whitecap 17 

database for the SST analysis. In describing the data sets used, we start with the whitecap 18 

database (Sect. 2.2.1). The considerations given to extract regional data sets from it are 19 

described in Sect. 2.2.2. We also introduce the data from the European Centre for Medium 20 

range Weather Forecasting (ECMWF) used in this study as an independent source to 21 

investigate possible intrinsic correlation among the entries of the whitecap database (Sect. 22 

2.2.3).  23 

2.2.1 Whitecap database 24 

Anguelova and Webster (2006) describe in detail the general concept of estimating the 25 

whitecap fraction W from measurements of the brightness temperature TB of the ocean surface 26 

with satellite-borne microwave radiometers. Salisbury et al. (2013) describe the basic points 27 

of the algorithm estimating W (hereafter referred to as the W(TB) algorithm). Briefly, the 28 

algorithm obtains W by using measured TB data for the composite emissivity of the ocean 29 
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surface and modeled TB data for the emissivity of the rough sea surface and areas that are 1 

covered with foam (Bettenhausen et al., 2006; Anguelova and Gaiser, 2013). An atmospheric 2 

model is necessary to evaluate the contribution from the atmosphere to TB. Minimization of 3 

the differences between the measured and modeled TB data in the W(TB) algorithm ensures 4 

minimal dependence of the W estimates on model assumptions and input variables.  5 

Wind speed U10 is one of the required inputs to the atmospheric, roughness and foam 6 

models (Anguelova and Webster, 2006; Salisbury et al., 2013). Wind speed data come from 7 

the SeaWinds scatterometer on the QuikSCAT platform or from the Global Data Assimilation 8 

System (GDAS), whichever matches up better with the WindSat data in time and space within 9 

60 min and 25 km; hereafter we refer to both QuikSCAT or GDAS wind speed values as U10 10 

from QuikSCAT or U10QSCAT. The use of U10QSCAT in the estimates of satellite-based W is 11 

anticipated to lead to some intrinsic correlation when/if a relationship between W and 12 

U10QSCAT is sought.  13 

The W data used in this study are obtained from TB at 10 and 37 GHz, W10 and W37; 14 

data for 37 GHz are shown in Fig. 1a. The W10 and W37 data approximately represent different 15 

stages of the whitecaps because of different sensitivity of microwave frequencies to foam 16 

thickness (Anguelova and Gaiser, 2011). Data W10 are an upper limit for predominantly active 17 

wave breaking (stage A whitecaps (Monahan and Woolf, 1989)) partially mixed with 18 

decaying (stage B) whitecaps, while W37 data quantify both active and decaying whitecaps. 19 

Because decaying foam covers a much larger area of the ocean surface than active whitecaps 20 

(Monahan and Woolf, 1989), W37 data are usually larger than W10 data. Comparisons to 21 

historic and contemporary in situ W data in Fig. 1b confirm the approximate representations 22 

of stage A whitecaps (cyan squares) and A + B whitecaps (blue diamonds) by W10 (green) and 23 

W37 (magenta), respectively. Anguelova et al. (2009) have quantified the differences between 24 

satellite-based and in situ W data using both previously published measurements and time-25 

space match-ups of W and discussed possible reasons for the discrepancies.  26 

The satellite-based W data are gridded into a 0.5×0.5 grid cell together with the 27 

variables accompanying each W data point, namely U10QSCAT, T from GDAS, time (average of 28 

the times of all samples falling in each grid cell), and statistical data generated during the 29 

gridding including the root-mean-square (rms) error, standard deviation (SD), and count (the 30 

number of individual samples in a satellite footprint averaged to obtain the daily mean W for a 31 

grid cell). In this study, we used daily match-ups of W, U10, and T data for each grid cell for 32 
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the year 2006. To reiterate, this data set—consisting of W10 and W37 accompanied with three 1 

environmental variables (U10, Udir and T)—is an early version of the whitecap database; the 2 

extended W database used by SAL13 (Sect. 1) contains three additional variables suitable to 3 

quantify explicitly the effects of wave field and atmospheric stability on W. Due to large data 4 

gaps in both space and time, the daily W data cannot be interpolated to provide better 5 

coverage (Fig. 1a). Therefore, only the available data are used without filling the gaps for 6 

areas where data are lacking. This global data set was used to assess the globally averaged 7 

wind speed dependence of W. 8 

2.2.2 Regional data sets 9 

The annual global W distributions show regions with valid data points ranging from 100 to 10 

300 samples per grid cell per year when both ascending and descending satellite passes are 11 

considered. Thus, different regions were selected using two criteria, namely (i) consider 12 

regions with a high number of valid data points, and (ii) obtain a selection representative of 13 

different conditions in the northern and southern hemispheres (NH and SH).  14 

With these criteria, 12 regions of interest were selected (Fig. 2) and W, U10, and T data 15 

for each region were extracted from the whitecap database. The coordinates of the selected 16 

regions are listed in Table 1, together with the corresponding number of samples (data points) 17 

and minimum, maximum, mean, and median values for wind speed and SST for January and 18 

July. For 90% of the regional and monthly data used in the study, the percent difference (PD, 19 

defined as the difference between two values divided by the average of the two values) 20 

between mean and median values of U10 and T is less than 4% and 9.5%, respectively. With 21 

medians and means approximately the same, the U10 and T data have normal distributions; 22 

i.e., outliers, though existing, do not affect the mean values significantly. All analyses 23 

presented here use the mean U10 and T values.  24 

Figure 3 shows the seasonal cycles of the mean U10 and T values for four of the selected 25 

12 regions (4, 5, 6, and 12) chosen to visualize the full range of regional variations of U10 and 26 

T data. With the large number of samples, the mean U10 and T values plotted in Fig. 3 are 27 

determined within 95% confidence interval (CI) of the order of 10
-2

 (Table 1). That is, any 28 

uncertainty due to sampling is removed, and Fig. 3 represents well seasonal variations, which 29 

we will use in our analyses. Variability of SST within each region is visualized with error bars 30 

( one SD) in Fig. 3b. The distinct regional SST variations suggest the effect of SST can be 31 
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discerned with our data and thus used to parameterize the effect of SST on W. The variability 1 

of U10 within regions is higher (wider error bars are not plotted to avoid clutter), which 2 

suggests that the use of the global data set to obtain a generalized wind speed dependence of 3 

W (Sect. 2.1) is reasonable.   4 

Regions 2-11 are all in the open ocean; region 1 was selected for its landlocked position 5 

(Fig. 2). Region 6 in the Pacific Doldrums is used as a reference for the lower limit of U10 6 

(Fig. 3a), while region 12 is included to represent the lowest T values (Fig. 3b). Four regions 7 

(2, 3, 7, and 8) are at latitudes between 0 and 30S and N (Tropics and Subtropics) 8 

representing the Trade winds zone. These are regions with persistent (Easterly) winds 9 

blowing over approximately the same fetches (except region 8) in oceans with different 10 

salinity (Tang et al., 2014) and primary production (Falkowski et al., 1998) (a proxy for 11 

surfactant concentrations). Region 4 is in the NH temperate zone representing long-fetched 12 

Westerly winds. Region 5 covers the latitudes between 40S and 50S known as “The 13 

Roaring Forties” for the strong Westerly winds there, but is characterized with shorter fetch. 14 

Differences in the seasonal cycles of U10 and T in regions 4 and 5 (Fig. 3) suggest more 15 

uniform conditions and longer fetches in the SH temperate zone. We have chosen regions 8 16 

and 9 to represent different zonal conditions and to gauge the effect of narrower range of SST 17 

variations (as compared to the SST range in region 5). Chosen at the same latitude, regions 9-18 

11 have approximately the same SST, salinity, and surfactants but represent different wind 19 

fetches, shortest for region 9 and longest for region 11. Overall, the chosen regions cover the 20 

full range of global oceanic conditions and, while representative of diverse regional 21 

conditions, each one has distinct regional characteristics.  22 

2.2.3 Independent data source 23 

Ideally, when deriving a W(U10) parameterization, the data for W and U10 should come from 24 

independent sources. The intrinsic correlation between W and U10 that might have arisen from 25 

the use of U10 from QuikSCAT in the estimates of W from TB (Sect. 2.2.1), might affect the 26 

relationship between W and U10 developed here. To evaluate the magnitude of such intrinsic 27 

correlation, we used U10 from the ECMWF (U10ECMWF), which is considered to be a more 28 

independent source. Note though that even the ECMWF data are generated by assimilating 29 

observational data sets (e.g., from buoys) in a coupled atmosphere-wave model (Goddijn-30 

Murphy et al., 2011).  31 
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To compile this “independent” data set, we made time-space matchups between the 1 

gridded W10 and W37 data and U10ECMWF from the 3-hourly ECMWF data for 2006. For each 2 

W–U10QSCAT pair at a time t from the original W database, there is a corresponding W–3 

U10ECMWF pair of data within an interval t  1.5 h. This matching procedure differs from the 4 

WU10QSCAT matching which was done at the WindSat swath resolution, before gridding the 5 

variables for the whitecap database. To speed up calculations, and because this already 6 

provides a statistically significant amount of data, we used only ascending satellite 7 

overpasses. Wind speeds above 35 m s
-1

 were discarded. Besides ECMWF wind data, for 8 

consistency we also extracted ECMWF SST values.  9 

Figure 4a shows all ECMWF wind speed data that have been matched in time and 10 

space with the available U10QSCAT data for March 2006. The majority of the data is clustered 11 

in the range of 5-10 m s
-1

 (dark red). To characterize the difference between the two wind 12 

speed sources, the correlation between U10 from ECMWF and U10 from QuikSCAT was 13 

determined as the best linear fit forced through zero: 14 

QSCATECMWF
UU 1010 953.0          (7) 15 

with a coefficient of determination R
2
 = 0.824. For comparison, the unconstrained fit between 16 

U10QSCAT and U10ECMWF is also shown in Fig. 4a (dashed line); both fits are very close (they 17 

almost overlap) with identical correlation coefficients (R
2
 = 0.824 for the unconstrained fit). 18 

Similarly, Fig. 4b compares T from ECMWF and GDAS showing almost 1:1 correlation. That 19 

is, the two data sources provide almost the same values for T.    20 

On average, U10 from ECMWF is about 5% lower than U10 from QuikSCAT. This U10 21 

difference can be explained to some extent with the effect of atmospheric stability because 22 

QuikSCAT provides equivalent neutral wind which accounts for the stability effects on the 23 

wind profile (Kara et al., 2008; Paget et al., 2015), while the ECMWF model gives stability 24 

dependent wind speeds (Chelton and Freilich, 2005).  25 

Having the correlation between U10 from the whitecap database and U10 from the 26 

ECMWF quantified (as well as for T), one can evaluate differences caused by the use of 27 

different data sources. Equation (7) could also be useful when one decides to use ECMWF 28 

data because of their availability at 6 or 3 h intervals as compared to the availability of W, 29 

U10, and T match-ups twice a day (Sect. 2.2.1).  30 
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2.3 Implementation 1 

We aim to develop an expression capable of modeling both the trend of the satellite-based W 2 

data with U10 and their spread (see green and magenta symbols in Fig. 1b).  3 

2.3.1 Adjusting the wind speed exponent 4 

We first analyze the satellite-based W data to derive a general W(U10) expression (i.e., the 5 

trend of W with U10). We apply Eq. (6) with coefficients (n, a, b) left as free parameters to 6 

global data sets of W10, W37, and both together (W10 & W37). Table 2 shows the results for the 7 

regression coefficients determined from the fitting procedure within 95% CI. Each set of 8 

coefficients (n, a, b) accounts implicitly for U10 and all secondary factors.  9 

To consistently interpret and explicitly quantify regional and seasonal variations of W 10 

data, it is necessary to analyze all W data—global, regional and at different frequencies—with 11 

the same mean trend given by the W(U10) expression. Because Table 2 shows different wind 12 

speed exponents, we need to establish a general (unifying) n value. With sampling uncertainty 13 

removed from the determination of these n values (see the 95% CIs in Table 2), we now 14 

investigate the variations of the wind speed exponents among data sets. The mean of the free-15 

parameter n values in Table 2 is 1.82 with lower and upper limits of the 95% CI of 0.88 and 16 

2.77, respectively. A value of n = 2 is within this 95% CI and is thus a reasonable choice for 17 

such general (unifying) wind speed exponent. We further verified such a choice by applying 18 

two-sample t-test for equal means to the n values in Table 2 and n = 2. The t-test showed that 19 

the mean of the wind speed exponents n determined as free parameters is not statistically 20 

different from n = 2 (p > 0.05). On this ground, we adjust the free-parameter wind speed 21 

exponents to n = 2, a quadratic wind speed dependence of W. 22 

Quadratic wind speed dependence here is not unprecedented. The first reported W(U10) 23 

relationship of Blanchard (1963) was quadratic. With careful statistical considerations, 24 

Bondur and Sharkov (1982) derived a quadratic W(U10) relationship for residual W (strip-like 25 

structures, in their terminology). Parameterizations of W in waters with different SST have 26 

also resulted in wind speed exponents around 2 (see Table 1 in Anguelova and Webster, 27 

2006). Quadratic wind speed dependence is also consistent with the wind speed exponents of 28 

SAL13 in Eq. (1).  29 
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With the adjustment of the free parameter n in Eq. (6) to a general (unifying) wind 1 

speed exponent n = 2 and for all subsequent analyses we use a functional form for W(U10) 2 

modified from Eq. (6) to:  3 

 210 bUaW            (8a).  4 

Following Monahan and Lu (1990), we derive an expression W(U10) in the form of Eq. (8a) 5 

by plotting 21W  as a function of U10QSCAT. Applying linear regression, we find an expression:  6 

cmUW  10
21           (8b) 7 

which is then rearranged and squared to provide coefficients a = m
2
 and b = c/m in Eq. (8a) 8 

(results in Sect. 3.1.1). All linear fits are done on the W data associated with U10 from 3 to 20 9 

m s
-1

. The lower limit of 3 m s
-1

 is chosen as a threshold for observing whitecaps. This 10 

restriction is reasonable in light of the SAL13 analysis in which W data with a relative 11 

standard deviation 2)/( WW  were removed: the discarded W data were about 10% of all W 12 

data, mostly in regions with low wind speeds of around 3 m s
-1

. We exclude the high wind 13 

speed regime in order to avoid uncertainty due to (i) fewer data points in this regime; and (ii) 14 

anticipated larger uncertainty in the W data from the W(TB) algorithm.  15 

2.3.2 Intrinsic correlation analysis 16 

For the intrinsic correlation analysis, the W–U10ECMWF data pairs are used in a similar fashion 17 

to make W
1/2

(U10ECMWF) linear fits and derive from them a relationship between the satellite-18 

based W data and the ECMWF wind speeds. The two global W(U10) parameterizations for the 19 

two wind speed sources are then compared to evaluate the magnitude of the intrinsic 20 

correlation (results in Sect. 3.1.2).  21 

Because Eq. (7) gives the possibility to evaluate discrepancies due to the use of 22 

different sources for U10 and T, we use U10 and T from the whitecap database in all 23 

subsequent analyses and results. In this way, with the intrinsic correlation characterized, we 24 

restrict the uncertainty in our analyses by using the close matching-up of W, U10, and T data in 25 

the whitecap database. This decision is reasonable considering that both data sets can be used 26 

in practice for different applications. The collocated data in the whitecap database (involving 27 

QuikSCAT) are most suitable for analysis (as done in this study). Meanwhile, W data from 28 

the whitecap database combined with forcing data from a global model (such as ECMWF or 29 

other) are useful for forecasts and climate simulations.   30 
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2.3.3 Regional analysis 1 

With n = 2 for the general wind speed dependence determined, we then apply Eq. (8b) to the 2 

regional monthly sub-sets of W10 and W37 data. All available data per month were used, 3 

ranging from 22 to 31 days of data. Once again, scatter plots of W
1/2

(U10) were generated and 4 

the best linear fits were determined providing coefficients m and c for each region for each 5 

month for W10 and W37. The regional and seasonal variations of coefficients a and b are 6 

analyzed to inform us how to parameterize them in terms of SST, a(T) and b(T) (results in 7 

Sect. 3.2).  8 

To quantify how a(T) and b(T) are influenced by different wind speed dependences—9 

our empirically determined (adjusted) wind speed exponent n = 2 (Eq. (8a)) or the physically 10 

reasoned cubic wind speed dependence (Eq. (5b))—we also analyzed scatter plots of 11 

W
1/3

(U10) and derived a respective set of coefficients a(T) and b(T).  12 

We quantify differences between new and previously published parameterizations 13 

with two metrics (results in Sect. 3.3): (i) the PD between W values obtained with different 14 

parameterizations; and (ii) significance tests (Student t-test and ANOVA) of the differences 15 

between W values obtained with new and previous W parameterizations.  16 

2.3.4 Wave field analysis 17 

Efforts to include wave parameters in W parameterizations are well justified because, after 18 

wind speed, the most important secondary factor that accounts for variability in W is the wave 19 

field (SAL13). Lacking wave characteristics, the early version of the whitecap database is not 20 

suitable for deriving an explicit expression for the wave field influence on W. However, we 21 

have investigated the effect of rising and waning winds on the W(U10) relationship (results in 22 

Sect. 3.1.3); increasing-decreasing winds are considered a proxy for undeveloped-developed 23 

seas (Stramska and Petelski, 2003; CAL08).  24 

It is not feasible to determine whether winds are rising or waning from satellite-based 25 

wind speed data because of their low temporal resolution: twice a day at a given location. As 26 

wind speed provided by ECMWF is available every three hours, U10ECMWF values were used 27 

to examine the wind conditions at the satellite overpass time associated with a W data point. 28 

Wind speed difference between two three-hours intervals U10 has been used to detect 29 

changing winds. Wind speed differences U10 from of 1 to 5 m s
-1

 in steps of 1 m s
-1

 were 30 
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used to examine the sensitivity of the analysis to the choice of U10 in identifying rising or 1 

waning winds. Higher U10 values are associated with the passage of stronger atmospheric 2 

low-pressure systems, which come with higher wind speeds and thus stronger wind forcing of 3 

waves. The U10QSCAT values were correlated with W using Eq. (8). Only data for 37 GHz from 4 

the ascending satellite overpass were used.  5 

2.4 Estimation of sea spray aerosol emissions 6 

The newly formulated W(U10, T) parameterization is applied to estimate the global annual 7 

SSA emission using SSSF of M86 (Eq. (4)). Dividing Eq. (4) by Eq. (3), we modify the M86 8 

SSSF to clearly separate the magnitude and shape factors (re-written here as Eq. (4)): 9 
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with B as defined in Sect. 1. While Eq. (4) shows that the timescale  is distinct from the 11 

shape factor dE/dr, for the calculations the value of  is included in the numerical coefficient 12 

in the brackets. The size range for M86 validity is r80 = 0.88 μm. We calculate the SSA flux 13 

for radii r80 ranging from 1 to 10 μm. Refer to Anguelova (2016) for using the W(U10) 14 

parameterization of SAL13 to estimate CO2 transfer velocity and SSA flux for r80 ranging 15 

from 0.4 to 250 μm.   16 

2.4.1 Use of discrete whitecap method  17 

The main assumptions of M86 for the SSSF based on the discrete whitecap method—constant 18 

values for  and dE/dr (Sect. 1)—are usually questioned (Lewis and Schwartz, 2004; de 19 

Leeuw et al., 2011; Savelyev et al., 2014). It is not expected for either of these assumptions to 20 

hold for wave breaking at various scales and under different conditions in different locations. 21 

The SSSF proposed by Smith et al. (1993) on the basis of measured size‐dependent aerosol 22 

concentrations is one of the first formulations to demonstrate that the shape factor cannot be 23 

constant. Norris et al. (2013a) also demonstrated that the aerosol flux per unit area whitecap 24 

varies with the wind and wave conditions. 25 

Recently, Callaghan (2013) showed that the whitecap timescale is another source of 26 

often overlooked variability in SSSF parameterizations based on M86. Because W typically 27 

includes foam from all stages of whitecap evolution, Callaghan (2013) suggested that the 28 

adequate timescale for the aerosol productivity from a discrete whitecap is not just its decay 29 
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time (as in Eqs. (4) and (4)), but the sum of the whitecap formation and decay timescales . 1 

The value of  varies from breaking wave to breaking wave, but an area-weighted mean 2 

whitecap lifetime can be calculated for any given observational period to account for this 3 

natural variability. Analyzing the lifetimes of 552 oceanic whitecaps from a field experiment, 4 

Callaghan (2013) found that the area-weighted mean  varies by a factor of 2.7 (from 2.2 to 5 

5.9 s). We refer the reader to Callaghan (2013) for an SSSF that accounts for SSA flux 6 

variability by explicitly incorporating whitecap timescale .  7 

Despite these questionable assumptions, the SSSF based on the discrete whitecap 8 

method in the form of M86 has been widely used in many models (Textor et al., 2006). 9 

Therefore, to those who have worked with M86 until now, a meaningful way to demonstrate 10 

how the new satellite-based W data, and W parameterizations based on them, would affect 11 

estimates of SSA flux is to hold everything else constant (e.g., the whitecap timescale and 12 

productivity in the shape factor) and clearly show differences caused solely by the use of new 13 

W expression(s) as a magnitude factor. On these grounds, the choice of the SSSF based on the 14 

M86 whitecap method is a suitable baseline for comparisons.  15 

2.4.2 Choice of size distribution 16 

Though the chosen size range of 1–10 m for SSA particles is limited, it is well justified for 17 

the purposes of this study with the following arguments.  18 

Generally, the division of the SSA particles into sizes of small, medium, and large 19 

modes (de Leeuw et al., 2011, their §8) is well warranted when one considers the climatic 20 

effect to be studied (Sect. 1). For example, sub-micron particles are important for scattering 21 

by SSA (direct effect) and the formation of cloud condensation nuclei (indirect effect), while 22 

super-micron particles are important for heat exchange (via sensible and latent heat fluxes) 23 

and heterogeneous chemical reactions (which need surface and volume to proceed 24 

effectively). However, in this study we do not focus on how the choice of the size distribution 25 

will affect the SSA estimates. Nor do we aim to present estimates of specific effect on the 26 

climate system. Rather, with a fixed size distribution, we explore how parameterizing W data, 27 

which carry information for the influences of many factors, would affect estimates of SSA 28 

emission (Sect. 1). In this sense, we can choose to use any published size distribution as a 29 

shape factor.   30 
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The chosen size range is the range of medium (super-micron) mode of SSA particles. 1 

This is the range for which the size distribution of M86 is valid (Sect. 2.4). The M86 size 2 

distribution, in its original or modified form, is widely used in GCMs and CTMs (Textor et 3 

al., 2006, their Table 3). The size range of 1–10 m is a recurrent part of the various size 4 

ranges used in all (or at least most) SSSFs (see Table 2 in Grythe et al. (2014, hereafter G14)). 5 

The chemical composition of the SSA particles is another argument favoring the 6 

chosen size range. The super-micron particles consist, to a good approximation, solely of sea 7 

salt, whereas, in biologically active regions, the sub-micron size range additionally includes 8 

organic material, with an increasing contribution as particle size decreases (O’Dowd et al., 9 

2004, Facchini et al., 2008; Partanen et al., 2014). Since the organic mass fraction in sub-10 

micron SSA particles is still highly uncertain (Albert et al., 2012), we focus on the medium 11 

mode SSA emissions.  12 

We evaluate the discrepancy expected due to neglecting particles below 1 μm using 13 

the G14 report of SSA production rate for dry particle diameters Dp = r80 obtained with M86 14 

over two different size ranges: 4.51×10
12

 kg yr
-1

 for the size range of 0.8 μm < r80 < 8 μm and 15 

5.20×10
12

 kg yr
-1

 for size range of 0.1 μm < r80 < 10 μm. The different size ranges bring a 16 

difference between the two G14 estimates of about 14%. Neglecting particles with r80 < 0.1 17 

μm would not change significantly the results presented here because they contribute on the 18 

order of 1% to the overall mass (Facchini et al., 2008).  19 

Because total whitecap fraction, rather than only the active breaking crests, provides 20 

bubble-mediated production of SSA, we use W37 data to estimate the emission of medium 21 

mode SSA. The calculations use a modeling tool (Albert et al., 2010) in which the W(U10) 22 

parameterization of MOM80, as incorporated in Eq. (4), was replaced with the newly derived 23 

W(U10, T) parameterization (Eq. (4)). The resulting size-segregated droplet number emission 24 

rate was converted to mass emission rate using the approximation r80 = 2rd  Dp, where rd and 25 

Dp are the particle dry radius and diameter, respectively (e.g., Lewis and Schwartz, 2004; de 26 

Leeuw et al., 2011), and a density of dry sea salt of 2.165 kg m
-3

.  27 

3 Results and Discussion 28 

The graphs visualizing our results use all W data available for wind speeds from 3 to 35 m s
-1

. 29 

This range of U10 is beyond the range 3  U10  20 m s
-1

 used for all fits (Sect. 2.3). In 30 

addition, the QuikSCAT instrument, which provided the U10 satellite data used in this study, 31 
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has a decreased sensitivity for wind speeds over 20 m s
-1

 (Quilfen et al., 2007). All results 1 

regarding higher wind speeds should, therefore, be used with caution. 2 

3.1 Global data sets 3 

Figure 5 shows global W data estimated from WindSat measurements for March 2006 as 4 

function of U10QSCAT with linear and logarithmic y-axes at 10 GHz (Fig. 5a and c) and 37 GHz 5 

(Fig. 5b and d). For comparison, the MOM80 relationship (Eq. (3)) is also plotted in each 6 

panel (red curves). There are three noteworthy observations in Fig. 5. First, we note the 7 

different variability of W10 and W37 data. The 10 GHz data show far less variability than those 8 

at 37 GHz. The W37 data at a certain wind speed vary over a much wider range, with the 9 

strongest variability for wind speeds of 10-20 m s
-1

. This observation confirms similar 10 

observation reported and analyzed at length by SAL13 in terms of other variables, in addition 11 

to U10, which influence the whitecap fraction, such as SST, wave field, etc. While SAL13 12 

analyzed this variability, we investigate how well this variability can be parameterized in 13 

terms of available secondary variables, SST in our case.  14 

Another observation in Fig. 5 is noted at low wind speeds. The 10 GHz scatter plots do 15 

not show W data for wind speeds lower than about 2 m s
-1

 because at these low wind speeds 16 

no active breaking occurs (Sect. 1). In contrast, non-zero W37 data are estimated at wind 17 

speeds U10 < 2 m s
-1

. Salisbury et al. (2013) suggested that the presence of foam on the ocean 18 

surface at these low wind speeds could be due to residual long-lived foam. This residual foam 19 

might be stabilized by surfactants, which increases its lifetime (Garrett, 1967; Callaghan et 20 

al., 2013). Another explanation could be production of bubbles and foam from biological 21 

activity (Medwin, 1977). However, there is not enough information currently to prove any of 22 

these conjectures.  23 

The comparison of the MOM80 relationship (Eq. (3)) to W10 and W37 data clearly 24 

reveals the most important feature in Fig. 5—the wind speed dependence of satellite-based W 25 

data deviates from cubic and cubic-like relationship.  26 

3.1.1 Wind speed dependence  27 

Following the arguments of our approach (Sect. 2.1) and evaluating the wind speed exponents 28 

determined as free parameters (Sect. 2.3.1), we found that a quadratic wind speed exponent (n 29 
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= 2) fits reasonably well both W10 and W37 data sets. For the same data shown in Fig. 5, Fig.6 1 

shows the linear regression of the square root of W versus U10:  2 

011.001.0 10
21  UW   10 GHz        (9a) 3 

019.001.0 10
21  UW    37 GHz       (9b) 4 

with coefficients of determination R
2
 of 0.996 and 0.951, respectively. From Eq. (9), we 5 

obtain the following global average wind speed dependence of W using U10 from QuikSCAT: 6 

 210
4

10 1.1101   UW          (10) 7 

 210
4

37 9.1101   UW          (11) 8 

where W is a fraction (not %).   9 

Figure 6c compares W(U10) in Eqs. (10-11) to W(U10) of SAL13. The trends are close 10 

implying that having a different wind speed exponent is largely balanced by corresponding 11 

changes to the parametric coefficients. Indeed, the PD between our quadratic W(U10) and 12 

SAL13 W(U10) at 37 GHz ranges from 0.5% to 10% over the wind speed range of 320 m s
-1

. 13 

ANOVA and Student tests show that these differences are not statistically significant. That is, 14 

the global quadratic W(U10) parameterization approaches the predictions of the SAL13 15 

parameterization, which has a more specific wind speed exponent (n = 1.59). Note that we do 16 

not expect our W(U10) parameterization to be distinctly different from that of SAL13 because 17 

both studies use the same data for W and U10 (though from different versions of the whitecap 18 

database). Rather, we aim to identify general W(U10) trend in order to perform consistent 19 

regional analysis.  20 

The y-intercept for W10 (Eq. (10)) is negative and, following the usual interpretation, 21 

yields a threshold wind speed of 1.1 m s
-1

 for whitecap inception. This is in the range of 22 

previously published values from 0.6 (Reising et al., 2002) to 6.33 (Stramska and Petelski, 23 

2003). Meanwhile, the positive y-intercept b for W37 (Eq. (11)) is meaningless at first glance 24 

and intriguing upon some pondering. While stabilized residual foam and/or foam from 25 

biological sources are possible (Sect. 3.1), it is not known whether such mechanisms are 26 

capable of providing a measurable amount of foam patches which produce bubble-mediate 27 

sea spray efficiently.  28 
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We propose broader interpretation of b in Eqs. (10-11), be it negative or positive. 1 

Generally, it is expected that the atmospheric stability (Kara et al., 2008) and fetch (through 2 

the wave growth and development) cause inception of the whitecaps at lower or higher wind 3 

speed. One can consider the range of values for b mentioned above (0.6 to 6.33) as an 4 

expression of such influences. We suppose that b can also incorporate the effect of the 5 

seawater properties on the extent of W. The net result of all secondary factors may be either 6 

negative or positive b.  7 

Specifically, we promote the hypothesis that a positive y-intercept b can be interpreted 8 

as a measure of the capacity of seawater with specific characteristics, such as viscosity and 9 

surface tension—which are governed by SST, salinity, and surfactant concentration—to affect 10 

W. Undoubtedly, none of these secondary factors creates whitecaps per se. Rather, they 11 

prolong or shorten the lifetime of the whitecaps via processes governed by the seawater 12 

properties. For instance, surfactants and salinity influence the persistence of submerged and 13 

surface bubbles. This yields variations of bubble rise velocity that replenish the foam on the 14 

surface at different rates. Long-lived decaying foam added to foamy areas created by 15 

subsequent breaking events would augment W; conversely, conditions that shorten bubble 16 

lifetimes would reduce W (or at least not add to W).  17 

A positive y-intercept can be thought of as a mathematical expression of this static 18 

forcing (as opposed to dynamic forcing from the wind) that given seawater properties can 19 

sustain. That is, at any given location, this static forcing acts as though higher wind speed of 20 

magnitude (U10 + b) is producing more whitecaps than U10 alone. By parameterizing 21 

coefficients a and b in terms of different variables, one can evaluate how much the static 22 

forcing affects W in different geographic regions. By developing parameterizations a(T) and 23 

b(T) (Sect. 2.1), here we quantify only one static influence.   24 

3.1.2 Intrinsic correlation 25 

To quantify the possible intrinsic correlation in the derived W(U10) parameterization (Eqs. 26 

(10-11)), we derived W(U10) using ECMWF wind speeds instead of the QuikSCAT wind 27 

speeds (Sect. 2.3.2). Figure 7a shows a scatter plot of 
21W  versus U10ECMWF (only data for 37 28 

GHz are shown); dashed and solid lines show unconstrained and zero-forced fits, respectively. 29 

The linear regression (given in the figure legend) is used to obtain the global average wind 30 

speed dependence using U10 from ECMWF as follows:  31 
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 210
5

37 33.3101.8   UW          (12).  1 

The positive intercept here is interpreted as in Sect. 3.1.1. Using Eq. (12), parameterized W 2 

values are plotted as a function of U10ECMWF in Fig. 7b. Increased scatter of the W data is 3 

evident when comparing Figs. 7b and 5d. We use different metrics to detect and evaluate 4 

possible intrinsic correlation. 5 

The change of the coefficient of determination R
2
 of the W(U10) relationship when 6 

QuikSCAT winds are substituted with the ECMWF winds is one sign for the presence of 7 

intrinsic correlation. Physically, we expect a strong correlation between W and U10, and we 8 

see this clearly in Fig. 6b which shows R
2
 = 0.951 for 21W  and U10QSCAT. However, the 9 

correlation coefficient might not be as high as in Fig. 6 if U10 were from a more independent 10 

source. We see this when comparing Figs. 6b and 7a. The 21W –U10 correlation is still strong 11 

in Fig. 7a, but the plot shows more scatter and slightly lower correlation with R
2
 = 0.826.  12 

Figure 8 visualizes the change in the spread of the W data with a plot of the residuals 13 

(biases) between the W data and the derived W parameterizations (Eqs. (11) and (12)) as a 14 

function of wind speed; Fig. 8a is for U10QSCAT and Fig. 8b is for U10ECMWF. Larger biases are 15 

evident when U10ECMWF is used. The root-mean-square deviation between W data and 16 

parameterized W values increases from W = 0.214% for the data set using U10QSCAT to W = 17 

0.367% for the data set using U10ECMWF.  18 

The slopes in Figs. 6b and 7a differ by about 14%. We evaluate how this translates into 19 

differences in W37 values as predicted by Eqs. (11) and (12). We found the PD between 20 

W37(U10QSCAT) and W37(U10ECMWF) to be less than  16% for wind speeds of 4–20 m s
-1

. 21 

Specifically, the W37 values obtained with U10QSCAT and U10ECMWF are approximately equal for 22 

wind speed of 7 m s
-1

. Below 7 m s
-1

, W37(U10ECMWF) is higher than W37(U10QSCAT) by up to 23 

11%. Above 7 m s
-1

, W37(U10ECMWF) is smaller than W37(U10QSCAT) by up to 15.7%. The 24 

difference goes up to 26% for wind speeds of 3 m s
-1

.  25 

While different metrics suggest that the intrinsic correlation is present and may 26 

contribute to these differences, it is not the only reason for the discrepancies. Different 27 

matching procedures (Sect. 2.2.3) and the difference of about 5% between the U10 values from 28 

the two different sources (Fig. 4a) also contribute to the W discrepancies from Eqs. (11) and 29 

(12). We, therefore, conclude from the PD values that the effect of the intrinsic correlation 30 

alone on W is most likely less than about 10% for most frequently encountered wind speeds.  31 
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3.1.3 Wave field effect 1 

Figure 9 shows global W
1/2

 at 37 GHz as function of rising and waning U10 from QuikSCAT 2 

for March 2006; both rising and waning winds were identified with a wind speed difference 3 

U10 = 1 m s
-1

 (Sect. 2.3.4). The lines are fits of the data to Eq. (8); solid lines are zero-forced 4 

fits. Table 3 shows the slopes m and intercepts c together with R
2
 of the fits for rising and 5 

waning winds speeds for U10 from 1 to 5 m s
-1

.  6 

Note the difference between W
1/2

 as a function of rising and waning wind speeds in the 7 

range of 10-20 m s
-1

 (blue colors): more variability is seen at these wind speeds when the 8 

wind is waning than in cases when the wind is rising. Larger variability for waning winds 9 

lowers their R
2
 values compared to R

2
 for rising wind speeds for most U10 (Table 3). For 10 

each, rising and waning wind speeds, R
2
 values decrease with U10 increasing. The reason for 11 

this is that higher U10 threshold selects W
1/2

 values associated with more extreme wind 12 

conditions (Sect. 2.3.4). Because such conditions are rarer, less W
1/2

 values are selected 13 

yielding an increase in the spread of data points.   14 

Table 3 shows that slopes m for both free and zero-forced fits do not differ 15 

substantially for either rising or waning wind speeds for any U10 threshold. The intercepts c 16 

of the free fits increase with the wind threshold for both rising and waning winds. The 17 

intercepts are larger for waning winds than for rising. These results yield rising-versus-18 

waning average PD of 10% and 29% for coefficients a and b, respectively.  19 

The rise-wane wind effect, as detected in this study, is not pronounced compared to 20 

findings in previous studies that use in situ wind speed data. Goddijn-Murphy et al. (2011) 21 

studied wind history and wave development dependencies on in situ W data using wave model 22 

(ECMWF), satellite (QuikSCAT), and in situ data for U10. These authors detected significant 23 

effects only with in situ U10. The limited wave field effect in our study might be traced back 24 

to the method through which U10 was determined: wind speeds from satellites are spatial 25 

averages of scatterometric or radiometric observations that take a snapshot of the surface as it 26 

is affected by both wind history and wind local conditions, whereas in situ data for wind 27 

speed are single point values averaged over a short time and hence representative for a 28 

relatively small area. The effect of the spatial averaging of the satellite data over a much 29 

larger area (i.e., the satellite footprint) might be that information on wind history is lost in the 30 

process. Limited results on the effect of the wave field obtained with a proxy analysis of the 31 
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wind history using data paired with a less-than-optimal matching procedure (Sect. 2.2.3) do 1 

not justify further consideration in this study.  2 

3.2 Regional and seasonal data sets 3 

The wind speed exponent in the W(U10) relationship derived from the global data set (Eqs. 4 

(10-11)) implicitly accounts for the globally-averaged effects of all secondary factors 5 

affecting the satellite-based W data. Now we apply Eq. (8) to regional and seasonal sets of 6 

satellite-based W data using this wind speed exponent. We analyze the deviations of the 7 

parametric coefficients a and b from the globally-averaged trend and parameterize these 8 

fluctuations explicitly in terms of SST.  9 

3.2.1 Magnitude of regional and seasonal variations 10 

Table 4 exemplifies the results from Eq. (8b): listed are the slopes m and the intercepts c for 11 

W
1/2
U10 relationships at 10 and 37 GHz in March 2006 in all 12 regions together with 12 

coefficients of determination R
2
 and 95% CIs from the fitting procedure, as well as mean U10 13 

and T values. The results in Table 4 attest that with satellite-based data sets, the sampling 14 

uncertainty in determining relationships is removed. The remaining geophysical (i.e., regional 15 

and seasonal) variations of coefficients a and b, which are obtained from coefficients m and c, 16 

are investigated here. Figure 10 shows examples of the W
1/2

 versus U10QSCAT relationships for 17 

different regions and seasons. Figures 10a and 10b show scatter plots for the Gulf of Mexico 18 

(region 1) at both frequencies for January 2006. Statistics are presented at the top of the 19 

figures and the fit lines are shown in red. Figures 10c and 10d show the fit lines W
1/2

(U10) for 20 

10 and 37 GHz in region 5 for all months, while Figs. 10e and 10f demonstrate variations of 21 

the fit lines W
1/2

(U10) for both frequencies over all regions for March 2006.  22 

Figure 10 shows that the variations of the W
1/2

(U10) relationships at 10 GHz are 23 

smaller than those for 37 GHz. Focusing on the results for 37 GHz, we note that geographic 24 

differences from region to region for a fixed time period (Fig. 10f) yield more variability in 25 

the W
1/2

(U10) relationship than seasonal variations at a fixed location (Fig. 10d). Because the 26 

37 GHz data provide more information for secondary forcing than the 10 GHz data, the 27 

remainder of the data analysis in this study is illustrated with results for W37 data. Note that all 28 

procedures and analyses described for W37 data have also been carried out for the W10 data 29 

and final results are reported (Sect. 3.3).  30 
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Figure 10 also shows that variations of W
1/2

 caused by U10 from 3 to 20 m s
-1

 are much 1 

larger than the regional and seasonal variations of W
1/2

. While this is expected (because U10 is 2 

a primary forcing factor), this also points that we need to evaluate whether these regional and 3 

seasonal variations are statistically significant. For this, we grouped the values of a and b in 4 

two ways: (1) by month with the full range of geographical variability (over all 12 regions) 5 

for each month; and (2) by region with the full range of seasonal variability (over all 12 6 

months) for each region. ANOVA test applied to both groups showed that the seasonal 7 

variations are not statistically significant, while the regional variations are.  8 

We illustrate this in Fig. 11 with values for b; similar graphs for a show the same 9 

results. Figure 11a shows the seasonal cycle for the regionally averaged b values with error 10 

bars ( one SD) representing the regional variability. It is clear that the seasonal variations of 11 

the regionally averaged b values lay within the regional variability. That is, variations of b 12 

from month to month are statistically undistinguishable. Figure 11b illustrates why variations 13 

of b from region to region are significantly different. The graph shows the annually averaged 14 

b values for each region with error bars representing the seasonal variability. It is clear that 15 

the geographical variations are not lost in the seasonal variability.  16 

3.2.2 Quantifying SST variations 17 

The regional differences in Fig. 11b are the variations that we want to quantify with 18 

coefficients a and b in terms of secondary factors. The deviations of the regional regression 19 

coefficients a and b from the regression coefficients A = 110
-4

 and B = 1.9 of the general 20 

W(U10) dependence (Eq. (11)) give a sense for the magnitude of these variations. The PD 21 

between the annually averaged a and A is about 5% (average for all regions); the average 22 

PD between b and B is 50%. These regional differences can be caused by any or all other 23 

secondary factors. It is not trivial to separate (deconvolve) the effects of different factors 24 

influencing W data. Because our proxy analysis of the wave field effect produced limited 25 

results (Sect. 3.1.3), quantification of the regional differences in terms of wave field with the 26 

data we use is not practical. Meanwhile Fig. 3b shows that SST is a distinct characteristic for 27 

different regions. This suggests that quantifying the variations of coefficients a and b in terms 28 

of SST is a viable possibility. We thus proceed with deriving expressions a(T) and b(T) for 29 

the regional variations of the W data; such results are useful to evaluate how well SST can 30 

account for the regional variations.  31 
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We derived a(T) and b(T) for W data at 37 GHz by relating annually averaged a and b 1 

values to the annually averaged T for each region (Fig. 12). Figure 12c shows the monthly 2 

means of coefficients b for each region and thus demonstrates how the data points in Fig. 12b 3 

have been formed; a similar procedure is used for the data points in Fig. 12a. As in Fig. 11b, 4 

the error bars ( one SD) represent the seasonal variability of SST (horizontal bars) and 5 

coefficients a and b (vertical bars). A second order polynomial is fitted to the data points in 6 

Fig. 12a; a linear fit is applied to the data in Fig. 12b. The correlation coefficients for the 7 

derived SST dependences are R² = 0.57 for a(T) and R² = 0.87 for b(T). Such R² values are 8 

consistent with the expectation that SST, being a static secondary factor, affects W more via 9 

the offset b than via the slope a.  10 

To evaluate the performance of the quadratic versus cubic wind speed dependence in 11 

Eq. (6), we also derived SST dependent coefficients a(T) and b(T) for n = 3 following the 12 

same procedure as for the case of n = 2. We applied Eq. (5b) with n = 3 to W37 data for all 13 

months in regions 4, 5, 6, and 12; we verified that differences due to the use of four instead of 14 

twelve regions are not significant. Coefficients a and b were calculated from the m and c 15 

values and graphs similar to those in Fig. 12 produced. Linear fits for both a and b were 16 

applied to these graphs.   17 

3.3 New parameterization of whitecap fraction  18 

New parameterizations for the whitecap fraction W(U10, T) were obtained from 2006 satellite-19 

based W data by replacing the fixed coefficients in Eqs. (10-11) with SST-dependent 20 

coefficients:   21 

    210 TbUTaW            (13) 22 

where  23 

a(T) = a0 + a1T + a2T
2
         (14a) 24 

b(T) = b0 + b1T          (14b) 25 

and the coefficients for data at 10 and 37 GHz are given in Table 5 together with their 95% 26 

CIs from the fitting procedure. To evaluate the derived W(U10, T) parameterizations, the 27 

whitecap fraction is calculated with Eqs. (13-14) and compared to both parameterized W 28 

values and to satellite-based W data.  29 
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3.3.1 Comparisons to W parameterizations 1 

The W(U10, T) parameterization for 37 GHz is used here. The W values from SAL13 (37 2 

GHz) and MOM80 are used as references for PD calculations and significance tests (Sect. 3 

2.3.3). All parameterizations are run for wind speeds from 3 to 20 m s
-1

.  4 

Figure 13a compares W values from the derived W(U10, T) parameterization at three 5 

fixed SST values (T = 2, 12, and 28 C). Large changes of SST (from 2 to 28 C) bring 6 

relatively small variations between the wind speed trends of W at different T values. The PDs 7 

between the three curves are no more than 15%; indeed, significance tests show that the W 8 

values at any T remain statistically the same. In addition, W values at any T are not 9 

significantly different from the W predictions of the global quadratic W(U10) parameterization.  10 

These results qualitatively illustrate the relative contributions of the implicit and 11 

explicit accounts for SST effect in the derived parameterization. Namely, large part of the 12 

SST and other influences on W is taken care of implicitly by using quadratic wind speed 13 

exponent. Much smaller variations are explicitly expressed with the temperature dependent 14 

coefficients. Taken together, the set of parametric coefficients—n = 2, a(T), and b(T)—15 

accounts for the: (i) full SST effect (i.e., influence on both the trend and the spread of the W 16 

data); and (ii) globally-averaged effects of all other secondary factors (i.e., influences only on 17 

the trend of W data).  18 

We verify the validity of this deduction by comparing in Fig. 13b W values obtained 19 

with the quadratic and cubic W(U10, T) parameterizations at T = 20 C; MOM80 and SAL13 20 

at 37 GHz are shown for reference. The W values from the cubic W(U10, T) parameterization 21 

are not statistically different from those obtained with either the quadratic W(U10, T) or 22 

MOM80 for low winds (< 10 m s
-1

). Different trends of the W values at higher wind speeds 23 

suggest that accounting explicitly for SST via a(T) and b(T) in the physically expected cubic 24 

wind speed dependence is not sufficient to replicate the satellite-based W data. In other words, 25 

when the wind speed exponent n is not adjusted to the data but instead follows the physically 26 

determined cubic dependence, explicit representation of the SST effect alone via the 27 

parametric coefficients a(T) and b(T) cannot account for all observed variations of W. The 28 

implication is that when using cubic wind speed exponent, all secondary factors should be 29 

introduced explicitly.  30 
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The PD between the trends of the derived W(U10, T) and MOM80 W(U10) is from 5% 1 

up to 175% with the largest PDs for wind speeds below 7 m s
-1

. Figure 13 illustrates this with 2 

the different trends of the two parameterizations.  3 

3.3.2 Comparisons to W data 4 

Here we evaluate how well the derived whitecap fraction parameterizations model the trend 5 

and spread of the satellite-based W data. The parameterized W values are calculated using U10 6 

and T from the whitecap database (Sect. 2.2.1).  7 

Figure 14a compares W values predicted with both new parameterizations, W(U10) and 8 

W(U10, T), to the same in situ data plotted in Fig. 1b and to independent satellite-based W data 9 

for 10 and 37 GHz from 17 March 2007. Comparisons to the in situ W data demonstrate 10 

order-of-magnitude consistency of the W values from the new parameterizations. The new 11 

global W(U10) parameterizations (black symbols in the Fig. 14a) follows reasonably well wind 12 

speed trends of the satellite-based W data. The W values predicted with the new W(U10, T) 13 

parameterization (red and cyan symbols in Fig. 14a) are spread as the satellite-based W data. 14 

The cluster of W values predicted with W(U10, T) are statistically different from the MOM80 15 

W(U10) parameterizations. This is the most important result of this study: we demonstrate that 16 

accounting for at least one secondary factor, we are able to model both the trend and the 17 

spread of the W values.  18 

Note in Fig. 14a that the new W(U10, T) parameterization does not predict the spread 19 

of the satellite-based W data entirely. This suggests that accounting explicitly for SST in a W 20 

parameterization is not enough to replicate all natural variability (spread) of W. This is 21 

consistent with our general understanding of the need to explicitly include many secondary 22 

factors in W parameterizations, not just SST (Sect. 2.1).  23 

Though SST entails small variations in the trend of W with U10 (Figs. 13a and 14a), 24 

important consequence of the newly derived W(U10, T) parameterization is that it shapes 25 

significantly different spatial distribution compared to cubic and higher wind speed 26 

dependences like that of the MOM80. Figure 14b shows a difference map between the global 27 

annual average W distributions for 2006. MOM80 relationship yields a wider W range with 28 

higher values in regions with the highest wind speeds. In particular, this occurs between about 29 

40 and 70 in the Southern ocean and in the North Atlantic. The latitudinal variations from 30 

the Equator to the poles are more pronounced when using the MOM80 relationship as 31 
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compared to Eqs. (13-14). The new W(U10, T) parameterization provides a global spatial 1 

distribution with similar patterns, but the absolute values are lower at high latitudes and 2 

higher at low latitudes. Note that in most studies, as in this study, W(U10) of MOM80 is 3 

extrapolated beyond the range of the data from which it was derived (Sect. 1). This could be a 4 

reason for the large differences between the two parameterizations at higher wind speeds (and 5 

especially in cold waters).  6 

3.4 Sea spray aerosol production 7 

The newly derived W(U10, T) parameterization (Eqs. (13-14)) was used to estimate the global 8 

annual average emission of super-micron SSA using M86 SSSF (Eq. (4)). The total (i.e., size 9 

integrated) annual SSA mass emission for 2006 is 4359.69 Tg yr
-1

 (4.410
12

 kg yr
-1

). This is 10 

about 50% larger than that calculated with the M86 SSSF using MOM80 (Eq. (4)), 2915 Tg 11 

yr
-1

 (2.910
12

 kg yr
-1

). Because we have shown that the new W(U10, T) and MOM80 W(U10) 12 

are significantly different (Sect. 3.3.2), we infer that the SSA emissions based on SSSFs using 13 

each parameterization in combination with the same shape factor (Eq. (4)) also differ 14 

significantly. The two estimates of SSA emissions are calculated using the same modelling 15 

tool (Sect. 2.4) and the same input data (Sect. 2.2.1). Keeping everything the same but the 16 

magnitude factor guarantees that the 50% difference is due solely to the account for the SST 17 

effect on W. The spatial distribution of the mass emission rates obtained with SSSFs using the 18 

new W(U10, T) is shown in Fig. 15a. The SSA emissions obtained with the new and the 19 

MOM80 W(U10) parameterizations mimic the patterns of the W distributions. The differences 20 

are mapped in Fig. 15b.   21 

Previously modeled total dry SSA mass emissions vary by two orders of magnitude 22 

because of a variety of uncertainty sources (Sect. 1): (2.2–22)×10
12

 kg yr
-1

 (Textor et al., 23 

2006, their Fig. 1a; de Leeuw et al., 2011, their Table 1); and (2–74)×10
12

 kg yr
-1

 for long-24 

term averages (over 25 years) (G14, their Table 2, excluding 3 outliers). The impact of the 25 

modeling method used has to be acknowledged too. Grythe et al. (2014) suggest that the 26 

spread in published estimates of global emission based on the same M86 SSSF (Eq. (4)), from 27 

3.3×10
12

 to 11.7×10
12

 kg yr
-1

 (Lewis and Schwartz, 2004), can be attributed to differences in 28 

model input data and resolution differences. An example of the same SSSF yielding different 29 

results when applied in different models is also seen in the work of de Leeuw et al. (2011, 30 

their Table 1).  31 
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For a meaningful comparison of our results to SSA emissions obtained with other 1 

SSSFs, we attempt to remove (or at least minimize) the impact of the modeling method. As in 2 

this study, G14 used the same model (i.e., input data and configuration) to evaluate 21 SSSFs, 3 

including that of M86, against measurements. We thus can infer a “modelling” factor using 4 

our and G14 results obtained with M86 SSSF. We find that the G14 estimate of SSA emission 5 

from M86 (4.51×10
12

 kg yr
-1

) is 1.55 times larger than our estimate of 2.910
12

 kg yr
-1

 from 6 

M86 and MOM80. We apply this factor of 1.55 to our SSA emission estimated with the new 7 

W(U10, T) parameterization and obtain a “model scaled” value of 6.7510
12

 kg yr
-1

. Our 8 

“model scaled” estimate of the SSA emission is close to the median 5.9110
12

 kg yr
-1

 of the 9 

SSA emissions reported by G14. This shows that an SSSF with a magnitude factor derived 10 

from satellite-based W data provides reasonable and realistic predictions of the SSA emission.  11 

To narrow down this broad assessment, we now look at the SSSFs evaluated by G14 12 

which account for the SST effect on SSA emissions. There are four such SSSFs in the G14 13 

study (see their Table 2): S11T of Sofiev et al. (2011), G03T of Gong (2003), J11T of Jaeglé 14 

et al. (2011), and G13T of G14. To minimize differences caused by using different size 15 

ranges, we focus on S11T and G13T, both applied to dry SSA diameters Dp = r80 (Sect. 2.4) 16 

from 0.01 to 10 m. The upper limit is the same as in our study, while the lower limit is 17 

extended to sub-micron sizes, which, as we have seen (Sect. 2.4.2), introduces a discrepancy 18 

of about 14%.   19 

The original Sofiev et al. (2011) SSSF is based on the M86 SSSF (Eq. (4)) combined 20 

with data from laboratory experiments by Mårtensson et al. (2003) to account for SST and 21 

salinity effects and a field experiment by Clarke et al. (2006) to extend the size range. In the 22 

G14 study, the salinity weight proposed by Sofiev et al. (2011) is not applied. At a reference 23 

salinity of 33 ‰, S11T estimates an SSA emission of 2.5910
12 

kg yr
-1

. Without the SST 24 

effect (the SST factor set to unity), the SSA emission estimated with S11 is 5.8710
12 

kg yr
-1

. 25 

With everything else the same except for the SST factor in source functions S11 and S11T, 26 

we evaluate that accounting for the SST effect results in changes by 56%. Correcting for 14% 27 

discrepancy due to extended lower size limit, we infer a 42% change when the SST effect is 28 

included in the SSSF. This is comparable to the 50% change due to SST in our case. We 29 

surmise that parameterizing additional influences on W is a viable way to account and explain 30 

some of the uncertainty of SSA emissions.  31 
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Grythe et al. (2014) used a large data set of ship observations to develop G13T by 1 

changing both the magnitude and the shape factors. The authors modified the SSSF of Smith 2 

and Harrison (1998) (a sum of two log-normal distributions) to add an extra log-normal mode 3 

to cover the accumulation mode. They also added the empirically based SST factor (a third 4 

order polynomial) proposed by Jaeglé et al. (2011). With G13T, G14 estimate an SSA 5 

emission of 8.9110
12 

kg yr
-1

. The functional forms of the magnitude (involving the SST 6 

effect) and shape (modelling the size distribution) factors of G13T and S11T are very 7 

different. This makes it difficult to evaluate the relative contribution of the magnitude and 8 

shape factors for variations in SSA emissions. Our results can help.  9 

The shape factors of S11T and our SSSF using W(U10, T) have a similar (not identical) 10 

functional form (that of M86, original and modified), but the functional forms accounting for 11 

SST are different. Our SSA emission estimate is about 62% higher than that of S11T. 12 

Allowing for 14% discrepancy due to the lower size limit, we find that different approaches to 13 

account for SST lead to about 67% variation in SSA emissions. Compared to G13T, our SSSF 14 

using W(U10, T) has a different shape factor (that of M86 versus log-normal), and a similar 15 

(but not identical) functional form for the SST effect (polynomial). Our SSA emission 16 

estimate is about 32% lower than that of G13T. Allowing for 14% size discrepancy, we find 17 

that different shape factors lead to about 13% variation in SSA emissions.  18 

On the basis of these assessments, we can state that the inclusion of the SST effect in 19 

the magnitude factor and/or the choice of the shape factor (size range and model for the size 20 

distribution) in the SSSF can explain 13%-67% of the variations in the predictions of SSA 21 

emissions. The spread in SSA emission can thus be constrained by more than 100% when 22 

improvements of both the magnitude and the shape factor are pursued. Our results on the W 23 

parameterization (Fig. 14a) suggest that accounting for more secondary forcing in the 24 

magnitude factor would explain more fully the spread among SSA emissions.      25 

4 Conclusions  26 

The objective of the study presented here is to evaluate how accounting for natural variability 27 

of whitecaps in the parameterization of the whitecap fraction W would affect mass flux 28 

predictions when using a sea spray source function based on the discrete whitecap method. 29 

The study uses satellite-based W data estimated from measurements of the ocean surface 30 

brightness temperature TB by satellite-borne microwave radiometers at frequencies of 10 and 31 

37 GHz, W10 and W37. Global and regional data sets comprising W10 and W37 data, wind speed 32 
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U10, and sea surface temperature T for 2006 were used to derive parameterizations W(U10) and 1 

W(U10, T). The SSSF of Monahan et al. (1986) combined with the new W(U10, T) was used to 2 

estimate sea spray aerosol emission. The conclusions of the study are the following.   3 

The global W data set can be parameterized reasonably well with a quadratic 4 

correlation between W and U10 (Eqs. (10-11) and Sect. 3.1.1). The unconventional positive y-5 

intercept for W37(U10) could be interpreted as a mathematical expression of the static forcing 6 

that given seawater properties (e.g., effects of SST, salinity, and surfactant concentrations) 7 

impart on whitecaps. Parameterization W(U10) derived with an independent data set (U10 from 8 

ECMWF instead of QuikSCAT) helps to determine that the intrinsic correlation between W 9 

and U10 is most likely less than about 10% (Sect. 3.1.2). Proxy analysis of satellite-based W 10 

data at increasing and decreasing wind speeds (Table 3) yields limited results for the effect of 11 

the wave field on W (Sect. 3.1.3). The derived W(U10) for both W10 and W37 replicate the trend 12 

of the satellite-based data well (Fig. 14a). That is, the adjusted quadratic wind speed exponent 13 

in W(U10) accounts implicitly for most of the SST variations. The new quadratic W(U10) 14 

predicts whitecap fraction significantly different from that obtained with the widely used 15 

W(U10) of MOM80.  16 

Applying the global W(U10) parameterization on regional scale shows that the seasonal 17 

variations of its regression coefficients a and b are not statistically significant, while the 18 

regional variations are. On this basis, by relating annually averaged a and b values to the 19 

annually averaged T for each region (Fig. 12), the explicit SST dependences a(T) and b(T) for 20 

data at 10 and 37 GHz were derived (Sect. 3.3. and Table 5). The new W(U10, T) 21 

parameterization (Eqs. (13-14)) is able to model the variability (spread) of the satellite-based 22 

W data (Fig. 14a). The capability of the new W(U10, T) parameterization to model both the 23 

trend and the spread of the W data sets it apart from all other W(U10) parameterizations (e.g., 24 

MOM80 and SAL13). Results show that besides SST, one needs to include explicitly other 25 

secondary factors in order to model the full spread of the satellite-based W. Including the SST 26 

effect via a(T) and b(T) in the physically expected cubic wind speed dependence is not 27 

sufficient to replicate the trend of the satellite-based W values. While SAL13 analysis of the 28 

satellite-based whitecap database demonstrated the influences of secondary factors on 29 

whitecap fraction, our study goes a step further in using the satellite-based W data to 30 

parameterize one of these influences, that of SST.  31 
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Application of the new W(U10, T) parameterization in the Monahan et al. (1986) SSSF 1 

resulted in a total (integrated only over super-micron sizes) SSA mass emission estimate of 2 

4359.69 Tg yr
-1

 (4.410
12

 kg yr
-1

) for 2006. Scaled for modeling differences (Sect. 3.4), this 3 

estimate is 6.7510
12

 kg yr
-1

, which is comparable to previously reported estimates. 4 

Comparing our and previous total SSA emissions, we have been able to assess to what degree 5 

accounting for the SST influence on whitecaps can explain the spread of SSA emissions. With 6 

or without the SST effect included in the SSSF, SSA emissions obtained with the new W(U10, 7 

T) parameterization vary by ~50%. Different approaches to account for SST effect yield 8 

~67% variations. Different models for the size distribution applied to different size ranges 9 

lead to 13%-42% variations in SSA emissions. Understanding and constraining the various 10 

sources of uncertainty in the SSSF would eventually improve the accuracy of SSSF 11 

predictions. Including the natural variability of whitecaps in the SSSF magnitude factor is a 12 

viable way toward such accuracy improvement.  13 

While the new W(U10, T) parameterization is able to model the trend and the spread of 14 

the satellite-based W data, the SST variations are relatively small. To model the full 15 

variability of W, future work should focus on the parameterization of the wave field effect. 16 

The extended version of the whitecap database contains wave field characteristics and is thus 17 

suitable for such quantification. It is recommended that the extended whitecap database 18 

includes wind speed data from independent source(s) matched in time and space at WindSat 19 

resolution.  20 
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Table 1  1 

Coordinates (longitude and latitude), number of data points are given together with range, mean and median values for wind speed and SST of 2 

all selected regions (a) for January 2006, (b) for July 2006. Confidence intervals (CI) at 95% level are given for regions 4, 5, 6, and 12, whose 3 

seasonal variations are plotted in Fig. 3. 4 

a) For January 2006 5 

Region Lon. Lat. Samples 
Wind speed [m s

-1
] SST [˚C] 

Range Mean 95% CI Median Range Mean 95% CI Median 

1 86°W−95°W 23°N–28°N 18896 1.3−15.7 7.5  7.6 19.4−26.0 23.8  24.1 

2 1°W−15°W 1°S–30°S 169128 0.2−12.9 6.4  6.4 21.4−27.8 24.2  24.1 

3 75°E−89°E 1°S−30°S 169056 0.0−13.4 7.0  7.2 23.0−29.4 26.8  27.3 

4 11°W−20°W 30°N–44°N 49760 0.2−19.6 8.0 2.710
-2 7.6 13.3−20.4 16.4 1.510

-2
 16.3 

5 86°W−100°W 31°S–60°S 200360 0.5−23.0 8.7 1.310
-2

 8.7 4.8−24.1 12.7 2.210
-2

 11.7 

6 171°W−180°W 15°S−14°N 123328 0.6−15.6 8.2 1.210
-2

 8.2 26.2−30.4 28.4 0.610
-2

 28.2 

7 31°W−50°W 10°N–29°N 90640 0.3−20.0 8.8  9.0 20.1−27.9 24.9  25.3 

8 140°W−160°W 20°S−30°S 50040 0.5−16.3 6.8  6.7 22.2−29.1 26.3  26.6 

9 140°W−160°W 40°S−50°S 41840 0.1−20.6 6.9  6.5 9.3−18.2 13.2  13.1 

10 0°W−30°W 40°S−50°S 133080 0.5−26.4 9.4  9.3 3.2−16.7 9.6  9.3 

11 50°E−70°E 40°S−50°S 50784 0.5−21.6 9.6  9.6 3.2−17.4 9.6  9.5 

12 180°E−180°W 60°S−90°S 576576 0.2−20.9 7.0 0.810
-2

 6.7 -1.9−8.0 1.8 0.510
-2

 1.4 



45 

 

 1 

b) For July 2006 2 

Region Lon. Lat. Samples 
Wind speed [m s

-1
] SST [˚C] 

Range Mean 95% CI Median Range Mean 95% CI Median 

1 86°W−95°W 23°N–28°N 13848 0.4−10.0 4.5  4.4 28.7−30.5 29.5  29.4 

2 1°W−15°W 1°S–30°S 189600 0.2−14.0 6.6  6.6 17.7−27.1 23.2  23.7 

3 75°E−89°E 1°S−30°S 195424 0.6−15.4 8.0  8.1 18.8−30.0 25.4  25.9 

4 11°W−20°W 30°N–44°N 43040 0.7−14.0 6.7 2.210
-2

 6.6 16.9−23.3 20.4 1.310
-2

 20.5 

5 86°W−100°W 31°S–60°S 257496 0.7−22.7 9.8 1.410
-2

 9.6 2.5−19.1 9.3 1.610
-2

 8.3 

6 171°W−180°W 15°S−14°N 133096 0.1−14.8 6.0 1.110
-2

 6.0 26.9−29.7 28.8 0.310
-2

 29.0 

7 31°W−50°W 10°N–29°N 88304 0.4−13.6 7.4  7.4 23.6−28.0 26.0  26.1 

8 140°W−160°W 20°S−30°S 47504 0.7−24.7 6.9  6.2 18.8−27.0 23.2  23.4 

9 140°W−160°W 40°S−50°S 52736 0.5−21.0 10.1  10.3 8.2−14.1 10.9  10.8 

10 0°W−30°W 40°S−50°S 160192 0.9−28.9 10.8  10.8 1.8−14.6 8.3  8.3 

11 50°E−70°E 40°S−50°S 49344 1.1−28.2 12.9  12.7 2.1−16.1 8.3  7.8 

12 180°E−180°W 60°S−90°S 177240 0.8−29.1 11.7 1.910
-2

 11.9 -1.3−4.3 1.7 0.410
-2

 1.7 

 3 

 4 
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 1 

Table 2 2 

Regression coefficients n, a, and b with 95% confidence intervals (CI) derived as free 3 

parameters from fitting of Eq. (6) to different global data sets.  4 

Data set n  95% CI  a  95% CI  b 95% CI  

W10  2.22    3.2310
-7

  5.2310
-5

    5.7310
-11

  -0.226    1.5410
-6

 

W37  1.46    6.1510
-7

  6.1710
-4

    1.2110
-9

  -0.957    3.5810
-6

 

W10 & W37  1.79    8.110
-7

 2.0310
-4

    5.4310
-10

 -0.409    4.3610
-6

 

 5 

 6 

  7 
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Table 3 1 

Regression coefficients m (slope) and c (intercept) derived by fitting Eq. (8b) to subsets of W 2 

data associated with rising and waning (increasing and decreasing) wind speeds (a proxy 3 

analysis for wave field development). Different wind speed differences U10, determined 4 

from ECMWF wind speed values, were used to select W data for rising or waning winds. 5 

Given is also coefficient m (slope) for a fit forced though zero (intercept c = 0). Coefficients 6 

of determination R
2
 are also given. 7 

 8 

Wind speed 

difference  

U10 [m s
-1

] 

Slope m 

 

Rise     Wane  

Intercept c 

 

Rise     Wane 

R
2 

 

Rise     Wane 

Slope, m 

zero intercept 

Rise     Wane 

R
2
  

 

Rise     Wane 

1 0.01 0.01 0.021 0.023 0.942 0.947 0.012 0.012 0.887 0.898 

2 0.01 0.009 0.024 0.029 0.924 0.915 0.012 0.012 0.854 0.841 

3 0.009 0.009 0.027 0.035 0.904 0.863 0.012 0.011 0.819 0.753 

4 0.009 0.008 0.028 0.040 0.886 0.794 0.012 0.011 0.789 0.659 

5 0.009 0.008 0.028 0.040 0.890 0.755 0.012 0.010 0.798 0.641 

 9 
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 1 

Table 4 2 

Results for slope (coefficient m) and intercept (coefficient c) with their 95% confidential intervals (CI) from Eq. (8b) applied to satellite-based 3 

W data for March 2006 for all 12 regions for a) 10 GHz data; b) 37 GHz data. Mean wind speed U10 and sea surface temperature (SST) T for 4 

each region are also given. Such data were obtained for all months.  5 

a) 10 GHz 6 

Region Slope m10
2
 95% CI10

8
 Intercept c10

2 
95% CI10

7
 R

2
 mean U10 mean SST Samples 

1 0.983 6.47 -0.766 5.05 0.995 7.4 23.7 21304 

2 0.997 0.84 -0.935 0.56 0.992 6.5 26.5 208560 

3 1.006 0.59 -0.967 0.43 0.996 6.8 27.1 211152 

4 1.027 1.98 -1.077 1.77 0.996 8.2 15.3 64480 

5 1.031 0.55 -1.157 0.57 0.995 9.8 13.3 268320 

6 1.004 0.91 -0.946 0.58 0.996 6.1 28.1 140064 

7 1.005 1.30 -0.937 0.96 0.995 7.0 23.9 105848 

8 1.006 2.82 -0.934 1.95 0.993 6.4 27.5 58112 

9 1.014 2.97 -1.055 2.58 0.994 8.04 13.9 52952 

10 1.021 0.85 -1.091 0.80 0.995 8.8 10.6 161776 

11 1.033 3.12 -1.148 3.07 0.993 9.2 11.5 55200 

12 1.028 0.15 -1.145 0.14 0.994 9.3 1.8 1039264 
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 1 

b) 37 GHz 2 

Region Slope m10
2
 95% CI10

8
 Intercept c10

2 
95% CI10

7
 R

2
 mean U10 mean SST Samples 

1 0.999 22.90 2.270 18.22 0.9574 7.3949 23.7273 18056 

2 1.088 2.67 1.391 1.772 0.9453 6.4370 26.4630 191728 

3 1.032 2.46 1.545 1.812 0.9518 6.6755 27.1823 185224 

4 0.986 7.10 2.623 6.45 0.9604 8.2645 15.3113 55216 

5 1.002 1.68 2.413 1.751 0.9589 9.7181 13.3633 242792 

6 0.985 3.95 1.648 2.49 0.9381 5.9357 28.0589 125632 

7 1.074 3.24 1.886 2.42 0.9784 6.8255 23.8623 96440 

8 0.975 6.59 1.797 4.59 0.9657 6.2512 27.5191 54712 

9 1.008 9.78 2.117 8.67 0.9447 8.0332 13.9375 48888 

10 0.988 2.88 2.474 2.64 0.9521 8.4807 10.6534 150920 

11 0.981 11.21 2.613 10.87 0.9165 9.0372 11.6882 51784 

12 0.963 0.55 2.784 0.53 0.9338 9.0238 1.8538 922080 

 3 

 4 

 5 
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 1 

Table 5 2 

Coefficients for the SST dependence of the parametric coefficients a and b in Eq. (14) with 3 

their 95% confidence intervals (CI) from the fitting procedure. The temperature dependent 4 

parametric coefficients a(T) and b(T) are used in parameterization W(U10, T) (Eq. (13)) 5 

derived from satellite-based W data for 10 and 37 GHz for 2006. 6 

 7 

Data set a0  95% CI a1 95% CI a2 95% CI b0 95% CI b1 95% CI 

W10 1.0810
-4

  

 1.3310
-6

 

-2.4510
-7

 

 1.9110
-7

 

-1.4510
-9

 

 5.7810
-9

 

-1.203 

 1.9110
-2

 

9.961210
-3

 

 9.5310
-4

 

W37 8.4610
-5

 

 3.7510
-6

 

1.6310
-6

 

 5.4610
-7

 

-3.3510
-8

 

 1.6510
-8

 

3.354 

 9.7210
-2

 

-6.210
-2

 

 4.8510
-3

 

 8 

 9 

 10 

 11 

  12 
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Figure captions 1 

Figure 1. Satellite estimates of W data at 37 GHz for 11 March 2006. a) Map (0.50.5) of 2 

ascending and descending passes for W at 37 GHz; b) W at 10 and 37 GHz (green and 3 

magenta symbols, respectively) compared to historical photographic data including total W 4 

(diamonds) and active whitecap fraction WA (squares). Parameterization W(U10) of Monahan 5 

and O’Muircheartaigh (1980, MOM80) (purple line) is shown for reference.   6 

Figure 2. Selected regions to determine regional variations of W(U10). 7 

Figure 3. Seasonal cycle for 2006 in different regions as defined in Fig. 2 and Table 1: a) 8 

wind speed U10; b) Sea surface temperature (SST) T. . The SST error bars in panel (b) are  9 

one standard deviation; the U10 error bars are wider and not plotted in panel (a) for clarity. 10 

The regions represent: 4Temperate zone in Northern hemisphere; 5Temperate zone in 11 

Southern hemisphere; 6Doldrums along the Equator; 12Lowest SST. 12 

Figure 4. Scatter plot for March 2006 of (a) global U10ECMWF versus U10QSCAT and (b) global T 13 

from ECMWF versus T from GDAS. In both figures the colors indicate the amount of data 14 

points per hexabin. The black lines are linear fits: the dashed line represents unrestricted fit 15 

and the solid line a fit forced through zero. The linear regressions and respective R
2
 are listed 16 

in each panel. 17 

Figure 5. Global W as function of U10 from QuikSCAT for March 2006 where W is obtained 18 

with 10 GHz (a) and 37 GHz (b) measurement frequency. Panels c and d plot the data in 19 

panels a and b with logarithmic y-axis. The red line indicates the Monahan and 20 

O’Muircheartaigh (1980, MOM80) relationship (Eq. (3)). The colors indicate the amount of 21 

data points per hexabin. 22 

Figure 6. Wind speed dependence of whitecap fraction W(U10) derived from the global W data 23 

set: a) W
1/2

 as function of U10 from QuikSCAT for March 2006, where W
1/2

 is obtained with 24 

10 GHz measurement frequency; b) same as in panel (a) but for 37 GHz. The black line in 25 

both panels indicates the best linear fit through the data. The red line in (b) equals the black 26 

line in (a). The colors indicate the amount of data points per hexabin. c) Comparison of 27 

derived global W(U10) at 10 GHz (red line) and 37 GHz (black line) to W(U10) 28 

parameterizations of Salisbury et al. (2013) in Eq. (1) for 10 GHz (blue line) and 37 GHz 29 

(magenta). Parameterization W(U10) of Monahan and O’Muircheartaigh (1980, MOM80) in 30 

Eq. (3) (purple line) is shown for reference.  31 
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Figure 7. Scatter plots of W data for 37 GHz versus U10ECMWF for March 2006: a) W
1/2

; b) W 1 

obtained with Eq. (12). The black lines in panel a are linear fits: the dashed line represents 2 

unrestricted fit and the solid line is a fit forced through zero. The linear fits and respective R
2
 3 

are listed. The red line in panel b indicates the Monahan and O’Muircheartaigh (1980, 4 

MOM80) relationship (Eq. (3)). The colors indicate the amount of data points per hexabin. 5 

Figure 8: Scatter plots of residuals W between W data for 37 GHz from the whitecap 6 

database and parameterized W values as a function of wind speed from different sources: a) 7 

Wind speed values U10QSCAT from the whitecap database used with Eq. (11); b) Wind speed 8 

values U10ECMWF from the ECMWF model used with Eq. (12). The rms deviation for each 9 

data set is given in each panel.  10 

Figure 9: Global W
1/2

 for data at 37 GHz as a function of rising (a) and waning (b) U10 from 11 

QuikSCAT for March 2006. The dashed line indicates the best linear fit through the data, 12 

whereas the solid line indicates a linear fit, forced through zero.  13 

Figure 10: Linear fits of W
1/2

 versus U10 for: region 1 for January 2006 at 10 GHz (a) and 37 14 

GHz (b); region 5 for all months at 10 GHz (c) and 37 GHz (d); regions 1-12 for March 2006 15 

at 10 GHz (e) and 37 GHz (f).   16 

Figure 11: Regional and seasonal variations: a) Regionally averaged b values for each month 17 

with error bars ( one standard deviation) representing the regional variability; b) Annually 18 

averaged b values for each region with error bars representing the seasonal variability.  19 

Figure 12: Sea surface temperature dependences of a) coefficient a (slope) and b) coefficient 20 

b (intercept) in the W(U10) dependence. Each point is annual mean for different region. The 21 

error bars indicate  1 standard deviation for SST (horizontal bars) and coefficients (vertical 22 

bars). Panel c) shows the monthly means of coefficients b for each region that form one data 23 

point in panel b). Regions in Northern hemisphere (NH) are show with squares; regions in 24 

Southern hemisphere (SH) are shown with circles. The diamonds are for region 6 at the 25 

Equator.  26 

Figure 13: a) Comparison of the new parameterization W(U10, T) (Eqs. 13-14) at three fixed 27 

SST values (T = 20 C, red line; T = 12 C, green line; T = 2 C, blue line) to the 28 

parameterizations of Salisbury et al. (2013, SAL13) (Eq. (1)) for 37 GHz (magenta line) and 29 

Monahan and O’Muircheartaigh (1980, MOM80) (Eq. (3)) (purple line).  30 
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b) Comparison of the new W(U10, T) parameterizations with quadratic (Eqs. 13-14, 1 

blue line) and cubic (green line) wind speed exponents at T = 20 C to the parameterizations 2 

of Salisbury et al. (2013, SAL13) (Eq. (1)) for 37 GHz (magenta line) and Monahan and 3 

O’Muircheartaigh (1980, MOM80) (purple line). 4 

Figure 14: a) In situ W data as in Fig. 1b (gray symbols) and satellite-based W data for 17 5 

March 2007 at 10 and 37 GHz (green and magenta symbols, respectively) compared to W 6 

values obtained from W(U10) for 10 and 37 GHz (black lines, Eqs. (10-11)) and W(U10, T) for 7 

10 (red) and 37 GHz (cyan, Eqs. (13-14)). Wind speed and sea surface temperature from the 8 

whitecap database are used for the calculations.  9 

b) Difference map of annual average W distribution for 2006 calculated from the 10 

Monahan and O’Muircheartaigh (1980, MOM80) W(U10) parameterization (Eq. (3)) minus 11 

W(U10, T) from Eqs. (13-14). The calculations use wind speed U10 from QuikSCAT in the 12 

whitecap database. 13 

Figure 15: a) Annual average super-micron mass emission rate for 2006 in μg m
-2

 s
-1

 14 

calculated from from Eq. (4)). b) Difference map between the annual average super-micron 15 

SSA mass emission rate calculated from the Monahan et al. (1986) SSSF and the annual 16 

average super-micron SSA mass emission rate calculated from the Monahan et al. (1986) 17 

SSSF where W is replaced with Eqs. (13-14). The calculations use wind speed U10 from 18 

QuikSCAT in the whitecap database.  19 

 20 

  21 
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Figure 12   2 

a =( 0.0003T2 + 0.0163T + 0.8462)104
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