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Abstract

In this study the utility of satellite-based whiggcfraction YV) data for the prediction of sea
spray aerosol (SSA) emission rates is explored.eMgpecifically, the study is aimed at
evaluating how an account for natural variabilityy wehitecaps in the/V parameterization
would affect SSA mass flux predictions when usirgga spray source function (SSSF) based
on the discrete whitecap method. The starting psiiat data set containingy data for 2006
together with matching wind speéH,, sea surface temperature (ST and statistical data.
Whitecap fractionW was estimated from observations of the ocean mmrfarightness
temperaturelg by satellite-borne radiometers at two frequen¢igsand 37 GHz). A global
scale assessment of the data set revealed a qoannatlation betweelV andUo. A new
global W(U10) parameterization was developed and used to eealraintrinsic correlation
betweenwW andU;o that could have been introduced while estimat§om Tg. A regional
scale analysis over different seasons indicatedifgignt differences of the coefficients of
regionalW(U10) relationships. The effect of SST &M is explicitly accounted for in a new
W(U1o, T) parameterization. The analysis \&f values obtained with the neWw(U,) and

W(U10, T) parameterizations indicates that the influenceemfondary factors oW is for the
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largest part embedded in the exponent of the wieegd dependence. In addition, W@,
T) parameterization is capable to partially model fpread (or variability) of the satellite-
basedW data. The satellite-based parameterizaidiy.o, T) was applied in an SSSF to
estimate the global SSA emission rate. The thuaiméd SSA production rate for 2006 of
4.4x10" kg yr' is within previously reported estimates, howevéthvdistinctly different

spatial distribution.

1 Introduction

Whitecaps are the surface phenomenon of bubblesime@acean surface. They form at wind
speeds of around 3 m*&nd higher, when waves break and entrain air énviater which
subsequently breaks up into bubbles which risén¢osurface (Thorpe, 1982; Monahan and
O’Muircheartaigh, 1986). The estimated global ageraf whitecap cover, i.e., the fraction of
the ocean surface covered with whiteca@jsis 2 to 5% (Blanchard, 1963). Being visibly
distinguishable from the rough sea surface, whiie@ae the most direct way to parameterize
the enhancement of many air-sea exchange procéssiesling gas- and heat transfer
(Andreas, 1992; Fairall et al., 1994; Woolf, 199vanninkhof et al., 2009), wave energy
dissipation (Melville, 1996; Hanson and Phillip®99), and the production rate of sea spray
aerosols (SSA) (e.g., Blanchard, 1963; 1983; Monadtaal., 1983; O'Dowd and de Leeuw,

2007, de Leeuw et al., 2011), because all thesmepses involve wave breaking and bubbles.

Measurements of the whitecap fractdhare usually extracted from photographs and
video images collected from ships, towers, and pdéines (Monahan, 1971; Asher and
Wanninkhof, 1998; Callaghan and White, 2009; Kle@ssd Melville, 2011). Whitecap
fraction is commonly parameterized in terms of wapeed at a reference height of 10U,
Wind speed is the primary driving force for thenf@tion and variability oW (Monahan and
O’Muircheartaigh, 1986; Salisbury et al., 2013, dadter SAL13). Whitecap fractions
predicted with conventionAMUo) parameterizations show a large spread betweentegp
W values (Lewis and Schwartz, 2004; Anguelova antb3té, 2006). Part of these variations
is due to differences in methods of extractiWgfrom still and video images. Indeed, the
spread ofW data has decreased in recently published in sita dets as image processing
improved and data volume increased (de Leeuw et28l11). However, an order-of-
magnitude scatter oV data remains, suggesting thady alone cannot fully predict the/
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variability. Other factors such as atmospheric iBtgl{often expressed in terms of air-sea
temperature difference), sea surface temperati8¢€)(Bor friction velocity (combining wind
speed and thermal stability (e.g., Wu, 1988; Stkamand Petelski, 2003)) have been
indicated to affectV with implications for the SSA production. Thusygaeterizations oV
that use different, or include additional (secomyiaiorcing parameters to better account for
W variability have been sought (Monahan and O’'Muattaigh, 1986; Zhao and Toba, 2001;
Goddijn-Murphy et al., 2011; Norris et al., 2018wadnevaite et al., 2014; Savelyev et al.,
2014).

An alternative approach to address the variaboityV is to use whitecap fraction
estimates from satellite-based observations of#iaestate, because such observations provide
long-term global data sets which encompass a widleger of meteorological and
environmental conditions, as opposed to local nreasent campaigns during which a limited
variation of conditions is usually encountered.gBthess temperatuiig of the ocean surface
measured from satellite-based radiometers at mavewrequencies has been successfully
used to retrieve geophysical variables, includingdaspeed (Wentz, 1997; Bettenhausen et
al., 2006; Meissner and Wentz, 2012). The feasjbilf estimatingW from Tg has also been
demonstrated (Wentz, 1983; Pandey and Kakar, 1882uelova and Webster, 2006).
Anguelova et al. (2006; 2009) used WindSat datas@at al., 2004) to further develop the
method of estimatingV from Tg, and compiled a database of satellite-baseatccompanied
with additional variables. Figure la shows an exXangd the globalW distribution from
WindSat for a randomly chosen day.

Salisbury et al. (2013) showed that satellite-ba¥édvalues carry a wealth of
information on the variability ofW. In particular, these authors showed that the ajlob
distribution of satellite-based/ values differs from that obtained using a conaral \W(U1)
parameterization with important implications for deting SSA production rate in global
climate models (GCMs) and chemical transport mod€EMs) (Salisbury et al., 2014).
Salisbury et al. (2013) proposed a néU,q) parameterization in power law form using
satellite-basedW data over the entire globe for a full year. Thegrivbd wind speed
exponents which are approximately quadratic foied#int data sets:

W, = 46x10° xU 2. 2<Up<20mé,

1)
W, = 397x107 xU,2°, 2<Uyp<20méd
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whereWis expressed in % and the subscripts denotégfrequencies used to obtaim
These exponents are significantly different from tbic and higher wind speed
dependences proposed by Callaghan et al. (2008after CALOS8):

W = 318x10°(U,, - 370°%; 3.70 <U;p<11.25m s

(2)
W = 482x10"*(U,, + 198°; 9.25 <Uyp<23.09 m s

and Monahan and O’Muircheartaigh (1980, hereaftéi\i80):
WU, = 384x10°U,,** 3).

The MOMS80 parameterization was derived on the bafibe data sets of Monahan (1971)
and Toba and Chaen (1973). Most of the wind spa&es from these two data sets are up to
12 m $" with only 9% of the data points for winds up to8~h s'. The range of SST is from
17 to 31°C. Monahan and O’Muircheartaigh (1986) emphasized this is a regionally
specific function, but its widespread adoption iabgl models led to its application at wind

speeds and SSTs well above its range of validity.

In this study we explore the utility of the sateltbasedV data from a standpoint of
predicting SSA production rate. Whitecaps are wmed proxy for the amount of bubbles at
the ocean surface. When these bubbles burst, #mgrate sea spray droplets which in turn
transform to SSA when they equilibrate with thersundings (Blanchard, 1983). Bursting
bubbles produce film and jet droplets, whereasgit tvind speeds, exceeding about 9 s
additional sea spray is directly produced as dteplehich are blown off the wave crests
(Monahan et al., 1983). These spume droplets agerlahan the bubble-mediated SSA

droplets (Andreas, 1992). In this study we will descon bubble-mediated production of sea
spray.

Sea spray aerosols are important for the climatgesybecause, due to the vast extent
of the ocean, SSA are amongst the largest aerosotes globally (de Leeuw et al., 2011).
SSA particles contribute to the scattering of slnave electromagnetic radiation and thus to
their direct radiative effect on climate. Also, iy high hygroscopicity, SSA particles are a
source for the formation of cloud condensation eu¢Ghan et al.,, 1998; O’Dowd et al.,
1999) and as such influence cloud microphysicaperiies and thus exert indirect radiative

effects on the climate system. While residing ie Himosphere, SSA provide surface and
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volume for a range of multiphase and heterogenadgsnical processes (Andreae and
Crutzen, 1997). Through such chemical processesS®A contribute to the production of
inorganic reactive halogens (Cicerone, 1981; Graadeé Keene, 1996; Keene et al., 1999;
Saiz-Lopez and von Glasow, 2012), participate & phoduction or destruction of surface
ozone (Keene et al., 1990; Barrie et al., 1988;Kebal., 2000), and provide a sink in the
sulfur atmospheric cycle (Chameides and Stelso®2;1Buria and Sievering, 1991; Sievering
et al., 1992; 1995).

The modeling of all these processes in GCMs and €$tdrts with calculation of the
production rate of SSA particles (termed also S&#dpction flux, SSA generation, or SSA
emission). A sea spray source function (SSSF)esd ts calculate SSA production flux—the
number of SSA particles produced per unit of sedasa area per unit time. The most
commonly used SSSF, proposed by Monahan et al6(18&eafter M86), estimates SSA
emission by the indirect, bubble-mediated mechaniBased on the discrete whitecap
method, the SSSF of M86 is formulated in term¥Wif,o), as defined by MOM8O0 (Eq. (3)),

whitecap decay timescalgand the aerosol productivity per unit whitecigsdr:

dF =W(U10) de - 1373|1U1%41 |]8_03(1+ 0057r8%05 Xlol_lge'B , (4)
drgo T drg

In Eq. (4), the timescale is a constant 3.53 srgois the droplet radius at a relative humidity
of 80%, and the exponeBtis defined asB = (038-Igr,,)/065. The termdE/dr, associated
with the sea spray size distribution, determinessiape of the SSSF (i.e., shape factor); the
termW/ris a scaling (or magnitude) factor as it linksdatermined SSA production per unit
whitecap area with the amount of whitecapping ffedent regions at different seasons. Refer
to Lewis and Schwartz (2004), de Leeuw et al. (20Hhd Callaghan (2013) for clear
distinction of the discrete whitecap method from tlontinuous whitecap method.

Estimates of SSA production fluxes using the discehitecap method still vary
widely (Lewis and Schwartz, 2004; de Leeuw et2011) precluding reliable estimates of the
direct and indirect effects by SSA in GCMs, as wadl the outcome of heterogeneous
chemical reactions taking place in and on SSA @dadiin CTMs. The wide spread of
predicted SSA emissions is caused by a combinatiamcertainties coming from both the
magnitude and the shape factors of the used SS3lesuncertainties associated with the

magnitude factor include difficulties of measurMband r and their natural variability, which
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affects theW(U,9) parameterizations. The assumptions of the discvdtitecap method
(detailed in Sect. 2.4) also contribute to the utadety. Added to these are the uncertainties
associated with the shape factor, such as its alauariability and the model chosen to
parameterize the SSA size distribution. A sourceidertainty is the difficulty of directly
measuring SSA fluxes which are used to develop candbnstrain SSSFs. When
measurements of SSA concentrations are used tdogeae SSSF, uncertainty comes from
the deposition velocity model used to convert tbecentrations to fluxes (e.g., Smith et al.,
1993; Savelyev et al., 2014).

Aside from addressing uncertainties due to meagutathniques, there are two
possible ways to improve the performance of a whjpebased SSSF as regards the physical
processes involved. One way is to address varmt@omd uncertainties in the size-resolved
productivity dE/drgo (i.e., the shape factor in the SSSF), for instdncencluding the organic
matter contribution to SSA at sub-micron sizes (@D et al., 2004; Albert et al., 2012)
and/or by accounting for its variations with enwingental factors instead of keeping it
constant for all conditions (de Leeuw et al., 204 drris et al., 2013a; Savelyev et al., 2014).
Another way is to address the variations and uac#i¢s in the whitecap fractiow (i.e., the
magnitude factor in the SSSF) by steady improvemeftthe W measurements and by
accounting for its natural variability. Both appcbas are expected to reduce, or at least to

better account for, the variations and uncertasntigparameterizing SSA flux.

Here we report on a study investigating the seadrtiese two routes, namely—how
using W data, which carry information for secondary fastowould influence the SSA
production flux. The objective is to assess how Imofcthe uncertainty in the SSA flux can
be explained with the natural variability Wf Our approach (Sect. 2) involves three steps. We
first assess the satellite-based whitecap databasealuate the wind speed dependencéd/of
over as wide a range &f;o values as possible (sect. 3.1.1). In assessingvtbatabase, we
also evaluate the impact of an intrinsic correlati@tweenV andU;o, which could have been
introduced in the process of estimatMgfrom Tg (SAL13) (Sect. 3.1.2). We next apply the
established wind speed dependenc®ton regional scales in order to gain insights i@
influence of secondary factors in different locasaduring different seasons (Sect. 3.2). In
this second step, we use the results of our repiamalysis to derive a newV
parameterization that incorporates the effect of s@rface temperature (SST)on W. The
newW(Uo, T) parameterization is compared to those of MOMS8AIL.@8, and SAL13 (Sect.

6
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3.3). The utility of the newMU,,, T) parameterization is evaluated by using it toneste

SSA emissions and comparing to previous predicttdr&SA emissions (Sect. 3.4).

2 Methods

2.1 Approach to derive whitecap fraction parameterization

Reasoning on a series of questions shaped ouragpto parameterizing/ and justified the
choices we made for its implementation (Sect. 20. first considered, Why do we need to
parameterizeV instead of using satellite-bas®d data directly? A major benefit of using
satellite-basedlV data directly in an SSSF is that these data tefitecamount and persistence
of whitecaps as they are formed by both primary secbndary forcing factors acting at a
given location. This approach limits the uncertaitd that of estimatingV from satellite
measurements and does not add uncertainty frominigian expression faMU10) or W(U o,

T, etc.). However, such an approach would limit glopredictions of SSA emissions to
monthly values because a satellite-ba¥édata set does not provide daily global coverage;
i.e., one would need data like that in Fig. la dbrleast two weeks (and more for good

estimates of the uncertainties) in order to halleciverage of the globe.

Alternatively, a parameterization of whitecap frantderived from satellite-basay
data can provide daily estimates of SSA emissi@nsgureadily available daily data of wind
speed and other variables. Importantly, such anpetexization will be globally applicable
because the whitecap fraction data cover the fatige of meteorological conditions
encountered over most of the world oceans. Bectingsavailability of a large number ¥
data would ensure low error in the derivationshef\W(U10) or W(U1q, T, etc.) expressions,
we proceed with deriving a parameterization Wérusing the data in the whitecap database
(Sect. 2.2.1).

The next question to consider was, How to accoantitie influence of secondary
factors? Generally, to fully account for the vailigp of whitecap fraction, a parameterization
of W would involve wind speed and many additional fogs explicitly to derive an
expressionMUyg, T, etc.) (MOMS80; Monahan and O’Muircheartaigh, 198@iguelova and
Webster, 2006). The SAL13 analysis showed subsianéiriations ofW as a function of
different variables, including SST. Because SST andd speed are readily available

variables, it would be useful to start with parasnigation\W(Uso, T).
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The question that arises next is, How to combieedifferent dependences bf? One
possibility is to use a single-variable regressmextract theV dependence on each variable
separately, e.g\W(Ui0) andW(T). Then, these can be combined to derive an expressr
their effects in concert, e.0MU1o, T) = W(U10)W(T). While variables likeT, atmospheric
stability, surfactants, etc. influen®¥ they do not cause whitecapping. So a parametienza
formulated with dedicatedMT) and other expressions may put undue weight or suc
influences. This approach can be pursued when we baough information to judge the
relative importance of each influence (e.g., Angualet al., 2010, their Fig. 6) and include it
in a combined expression with a respective weighfactor.

Previous experience points to another possibititgdmbine causal variables likig
and influential variables likd and the likes. The Monahan and O’Muircheartaigh86)
analysis of five data sets showed that the variglif W caused by SST (and the atmospheric
stability) affect significantly the coefficients the wind speed dependentgU,o), especially
the wind speed exponent. The survey\§l,o) parameterizations by Anguelova and Webster
(2006, their Tables 1 and 2) also clearly shows$ &a&h campaign conducted in different
regions and conditions comes up with a specifiadvdpeed exponent. This strongly suggests
that the influence of secondary factors is expissea change of the wind speed exponent.
On the basis of their principal component analySisl.13 also suggested that in describing
the W variability, it is more effective to combine indtlaal variables with wind speed. On
this ground, we proceed to obtaW{U,o, T) as a wind speed dependentgU,,) whose
regression (or parametric) coefficients vary witBTS This goal can be realized by first
identifying a general wind speed dependence toassa reference, then quantifying the
variations of its regression coefficients in difat regions and seasons.

The important question now is, What functional foshould we use for the general
(reference)W(U1p) dependence? Equations (1)-(3) exemplify the fonal forms usually
employed to expresa(Uso):

W=aU, (5a)
w=alU,,+b)’ (5b).

8
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A generaW(U) dependence derived using Eq. (5a) would providerapirical wind
speed exponemtdetermined from available data sets, as MOM8Qudidg the available data
sets at the time (Sect. 1). The wider the rangmaotlitions represented by the data sets is, the
closer the resultingMU,g) dependence would be to average conditions glpbafid
seasonally.

A generalW(Uy0) dependence derived using Eq. (5b) would providghgsically-
based wind speed exponent 3 consistent with dimensional (scaling) argureeiamely,
becausel is related to the rate at which the wind suppéasrgy to the sedV should be
proportional to the cube of the friction velocitly (Monahan and O’Muircheartaigh, 1986;
Wu, 1988). On this basis, Monahan and Lu (199Q)teelW* to U., and derived the cubic
power law in Eq. (5b). Subsequently, this relatiopsvas used successfully in whitecap data
analyses (e.g., Asher and Wanninkhof, 1998; CAL@efficientb in Eq. (5b) is included
because it is preferable foM#U,() relationship to involve a finitg-intercept (Monahan and
O’Muircheartaigh, 1986). A negativeintercept determineb from the x-intercept and is
usually interpreted as the threshold wind speedaviutecap inception.

A modified version of Eq. (5) combines the merit9oth formulations into the form:
W=alUy+b) (6)
where the wind speed exponent is adjustable andita y-intercept is included. A general
W(U10) dependence derived using Eq. (6) would providenal speed exponent as dictated by
the whitecap database that is applicable to adlllgatbasedw data. Being representative of
globally averaged conditions, this genafg{lJ,o) dependence can be applied with the same
to different regional scales and seasonal timefsaaffording quantification of its variations
with SST via coefficienta andb. Any of the three formulations (Egs. (5 and 6)) paoduce
a viable generaM(U,q) dependence, the empirical one representativehef daverage

conditions of the world oceans and the physicalsamported by sound reasoning.
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2.2 Data sets

To implement the approach thus formulated, we heenthitecap database on a global scale
for the generaM(U;0) dependence, and region@l subsets extracted from the whitecap
database for the SST analysis. In describing the skets used, we start with the whitecap
database (Sect. 2.2.1). The considerations giveext@act regional data sets from it are

described in Sect. 2.2.2. We also introduce tha ffain the European Centre for Medium

range Weather Forecasting (ECMWF) used in this ystasl an independent source to

investigate possible intrinsic correlation among #ntries of the whitecap database (Sect.
2.2.3).

2.2.1 Whitecap database

Anguelova and Webster (2006) describe in detail geeeral concept of retrieving the
whitecap fractionVV from measurements of the brightness temperdigicé the ocean surface
with satellite-borne microwave radiometers. Saligbet al. (2013) describe the basic points
of the retrieval algorithm estimating (hereafter referred to as t&Tg) algorithm). Briefly,
the algorithm obtain8V by using measurets data for the composite emissivity of the ocean
surface and modelle@s data for the emissivity of the rough sea surface areas that are
covered with foam (Bettenhausen et al., 2006; Alupaeand Gaiser, 2013). Minimization of
the differences between the measured and mod&jethta in theAMTg) algorithm ensures
minimal dependence of th&/ estimates on model assumptions and input parasneer

atmospheric model is necessary to evaluate theilbonon from the atmosphere 1@.

Wind speedJ;p is one of the required inputs to the atmospheoigghness and foam
models (Anguelova and Webster, 2006; Salisburyl.e2@13). Wind speed data come from
the SeaWinds scatterometer on the QuikSCAT platimrinom the Global Data Assimilation
System (GDAS), whichever matches up better withwwhedSat data in time and space within
25 km and 60 min; hereafter we refer to both QuikS©@r GDAS wind speed values bk
from QUIKSCAT orUipgscar The use olUipgscar in the estimates of satellite-bas@dis
anticipated to lead to some intrinsic correlatiohew/if a relationship betweeW and

UlOQSCATiS sought.

The W data used in this study are obtained frograt 10 and 37 GHAN; o andWs7;
data for 37 GHz are shown in Fig. 1a. Mg andWs; data approximately represent different

stages of the whitecaps because of different $eihgiof microwave frequencies to foam

10
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thickness (Anguelova and Gaiser, 2011). Da&fta are a upper limit for predominantly active
wave breaking (stage A whitecaps (Monahan and WdB9)) partially mixed with
decaying (stage B) whitecaps, whilg; data quantify both active and decaying whitecaps.
Because decaying foam covers a much larger ardeeaicean surface than active whitecaps
(Monahan and Woolf, 1989)\;; data are larger thaw,o data. Comparisons to historic and
contemporary in sitW data in Fig. 1b confirm the approximate reprederia of stage A
whitecaps (cyan squares) and A + B whitecaps (diaenonds) byW,, (green) andws;
(magenta), respectively. Anguelova et al. (20099ehquantified the differences between
satellite-based and in sit¥ data using both previously published measuremamtstime-

space match-ups &Y and discussed possible reasons for the discregganci

The satellite-basedlv data are gridded into a 0:.5° grid cell together with the
variables accompanying eadhdata point, namelWiooscas T from GDAS, time (average of
the times of all samples falling in each grid cedlihd statistical data generated during the
gridding including the root-mean-square (rms) erstandard deviation (SD), and count (the
number of individual samples in a satellite foatpaveraged to obtain the daily meatfor a
grid cell). In this study, we used daily match-uh3n, Uy, andT data for each grid cell for
the year 2006. Due to large data gaps in both spadetime, the dailywV data cannot be
interpolated to provide better coverage (Fig. Taerefore, only the available data are used
without filling the gaps for areas where data aeking. This global data set was used to

assess the globally averaged wind speed dependéi¢e

2.2.2 Regional data sets

The annual globalV distributions show regions with valid data poirasging from 100 to
300 samples per grid cell per year when both asegrahd descending satellite passes are
considered. There are fewer samples for latituds®id 60S or N (see Fig. 1a) because
WindSat and QuikSCAT have fewer matching pointsrehgsect. 2.2.1). Thus, different
regions were selected using two criteria, nameglgdgnsider regions with a high number of
valid data points, and (i) obtain a selection esgntative of different conditions in the
northern and southern hemispheres (NH and SH).

With these criteria, 12 regions of interest wereded (Fig. 2) andlV, Uio, andT data
for each region were extracted from the whitecajaluise. The coordinates of the selected

regions are listed in Table 1, together with theresponding number of samples and

11
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minimum, maximum, mean, and median values for vgipgled and SST for January and July.
For 90% of the regional and monthly data used & study, the percent difference (PD,
defined as the difference between two values dividg the average of the two values)
between mean and median valuedJgf andT is less than 4% and 9.5%, respectively. With
medians and means approximately the sameUibend T data have normal distributions;
i.e., outliers, though existing, do not affect thean values significantly. All analyses
presented here use the méhg andT values. Figure 3 shows the seasonal cycles ahten
Uip andT values for four of the selected 12 regions vizuadj the full range ofJ;o andT
data (Table 1).

Regions 2-11 are all in the open ocean, region & salected for its landlocked
position. Region 6 in the Pacific Doldrums is usexda reference for the lower limit bfo
(Fig. 3a), while region 12 is included to represiat lowes T values (Fig. 3b). Four regions
(2, 3, 7, and 8) are at latitudes between 0 ant53&nd N (Tropics and Subtropics)
representing the Trade winds zone with persistdaasterly) winds blowing over
approximately the same fetches (except region 8te@ans with different salinity (Tang et al.,
2014) and primary production (Falkowski et al., 8p@ proxy for surfactant concentrations).
Region 4 is in the NH temperate zone representing-fetched Westerly winds. Region 5
covers the latitudes between°&0and 50S known as “The Roaring Forties” for the strong
Westerly winds there, characterized with long fetstwell. Differences in the seasonal cycles
of UjpandT in regions 4 and 5 (Fig. 3) suggest more unifoomditions and longer fetches in
the SH temperate zone. We have chosen regions 89atw represent different zonal
conditions and to gauge the effect of narrower €a0JSST variations (as compared to the
SST range in region 5). Chosen at the same lafittdgons 9-11 have approximately the
same SST, salinity, and surfactants but represéfeteht wind fetches, shortest for region 9
and longest for region 11. Overall, the chosenamgicover the full range of global oceanic

conditions and are representative of diverse regioconditions.

2.2.3 Independent data source

Ideally, when deriving &U10) parameterization, the data féf andU,o should come from
independent sources. The intrinsic correlation betwV andU;, that might have arisen from
the use olUyp from QuikSCAT in the estimates 9V from Tg (Sect. 2.2.1), might affect the

relationship betweellV andUodeveloped here. To evaluate the magnitude of suicimsic
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correlation, we usetll;o from the ECMWF (i0ecmwr, Which is considered to be a more
independent source. Note though that even the ECMM¥E are generated by assimilating
observational data sets (e.g., from buoys) in glenlatmosphere-wave model (Goddijn-
Murphy et al., 2011).

To compile this “independent” data set, we madesigpace matchups between the
Wi andWs7 data andJioecmwr In this way, for eachV—U;ggscar pair from the originaWV
database, we have a corresponditgJ;oecmwre pair of data. To speed up calculations, and
because this already provides a statistically Sgamt amount of data, we used only
ascending satellite overpasses. Wind speeds atsores were discarded. Besides ECMWF

wind data, for consistency we also extracted ECMY®H values.

Figure 4a shows all ECMWF wind speed data that H@en matched in time and
space with the availabldiogscar data for March 2006. The majority of the datalistered
in the range of 5-10 ni's To characterize the difference between the twalvspeed sources,
the correlation betweed;, from ECMWF andU;o from QuikSCAT was determined as the

best linear fit forced through zero:

U = 0952U

— (7)

10 ECMWF

with R? = 0.844. For comparison, the unconstrained fiveenU:ooscarandUsoecmweis also
shown in Fig. 4a (dashed line); both fits are velgse (they almost overlap) with almost
identical correlation coefficientsRf = 0.845 for the unconstrained fit). Similarly, Figb
comparesl from ECMWF and GDAS showing almost 1:1 correlatidhat is, the two data

sources provide almost the same valued for

On averagey;o from ECMWEF is about 5% lower thds from QuikSCAT. ThidJig
difference can be explained to some extent withetfiect of atmospheric stability because
QuikSCAT provides equivalent neutral wind which @acts for the stability effects on the
wind profile (Kara et al., 2008; Paget et al., 20dshile the ECMWF model gives stability
dependent wind speeds (Chelton and Freilich, 2005).

Having the correlations betwe&hy andT from the whitecap database and ECMWF
quantified, one can evaluate differences causetthdyise of different data sources. Equation
(7) could also be useful when one decides to udd\E data because of their availability at
6 or 3 h intervals as compared to the availabiityw, U;o, and T match-ups twice a day
(Sect. 2.2.1).
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2.3 Implementation

We aim to develop an expression capable of modéloth the trend oW with U, and the
spread of the satellite-bas@ddata (see green and magenta symbols in Fig. 1e)andlyze
the global data set of satellite-bas®dh andWs7 data and derive a genek&(U1p) expression
that represents average wind conditions in diffegaographical environments (i.e., the trend
of W with U;). Following Monahan and Lu (1990), we derive apression in the form of
Eq. (6) by plottingw*" as a function ofJiggscar Applying linear regression, we find an

expression:
W =myp+e (8)

which is then rearranged and raised to the powmoviding coefficientss = m" andb = ¢/m

in Eq. (6) (results in Sect. 3.1.1). All linearsfiare done on the&/ data points associated with
Uso from 3 to 20 m 3. The lower limit of 3 m $ is chosen as a threshold for observing
whitecaps. This restriction is reasonable in lighthe SAL13 analysis in whicWW data with a

relative standard deviatio(q,\,/\/\/) >2 were removed. The discard&d data were about

10% of allW data, mostly in regions with low wind speeds aftend 3 m &. We exclude the
high wind speed regime in order to avoid uncernjaohie to (i) fewer data points in this
regime; and (ii) anticipated larger uncertaintythe W data from theMTg) algorithm. With
the wind speed threshold imposed in this way, wep@se a broader interpretation of

regression coefficiert (sect. 3.1.1).

For the intrinsic correlation analysis, tié-U;oecvwre data pairs are used in a similar
fashion to maker’”(UloECMWF) linear fits and derive from them a relationshigivieen the
satellite-basedW data and the ECMWF wind speeds. The two glos{U1g)
parameterizations for the two wind speed sources then compared to evaluate the

magnitude of the intrinsic correlation (resultsSect. 3.1.2).

Because Eq. (7) gives the possibility to evaluaserdpancies due to the use of
different sources folJ;p and T, we useU;o and T from the whitecap database in all
subsequent analyses and results. In this way, th@hintrinsic correlation characterized, we
restrict the uncertainty in our analyses by ushmegdlose matching-up &, U1o, andT data in
the whitecap database. This decision is reasomaigidering that both data sets can be used

in practice for different applications. The collted data in the whitecap database (involving

14
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QUIkSCAT) are most handy for analysis (as dondis $tudy). Meanwhilé\w data from the
whitecap database combined with forcing data fromiadal model (such as ECMWEF or

other) are useful for forecasts and climate sinmhat

With n for the general wind speed dependence determiveethen apply Eq. (6) with
the samen to the regional monthly sub-sets\Wf, andWs; data. All available data per month
were used, ranging from 22 to 31 days of data. Quzen, scatter plots M*"(Uyo) were
generated and the best linear fits were determprediding coefficientsm andc for each
region for each month faA,o andWs7. The regional and seasonal variations of coefiisim
andc, as well asa andb, are analyzed to judge to what extent these vamstwarrant
parameterization in term of S&{T) andb(T) (results in Sect. 3.2).

To quantify howa(T) andb(T) are influenced by the functional form of the gahe
wind speed dependence—our empirically determined\speed exponent(Eg. (6)) and the
physically reasoned cubic wind speed dependence(fBj)—we also analyzed scatter plots
of W¥(Us0) and derived a respective set of coefficieaf® andb(T).

We analyzed the variations of coefficiemisandc with the Student's T-statistics and
Analysis of variance (ANOVA) tests. The Studentt tesrifies whether two data sets (or
sample populations) have significantly differentame by confirming or rejecting the null
hypothesis (the default statement that there isdifference among data sets). A small
significance value (e. gp < 0.05) for any pair of regionah andc data sets would indicate
that the regional meartf coefficientsm andc are significantly different. The ANOVA test
essentially does the same but for a group of thremaore data sets simultaneously. ANOVA
rejects the null hypothesis if two or more populas differ with statistical significance. In
this sense, an ANOVA test is less specific thantadéht test. Because the ANOVA
assumptions (that the data sets are normally oiged and they have approximately equal
variances) may not always be true for our data,AN®OVA results were verified with the
more general Kruskal-Wallis H test (referred toHagest) which does not have any of these

assumptions.

We quantify differences between new and previoysiplished parameterizations
with two metrics (results in Sect. 3.3): (i) the BBtweenW values obtained with different
parameterizations; and (ii) significance tests @8ti, ANOVA, and H) of the differences

betweenW values obtained with new and previdl'parameterizations.
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2.4 Estimation of sea spray aerosol emissions

The newly formulatedMU,o, T) parameterization is applied to estimate the dlamaual
SSA emission using SSSF of M86 (Eq. (4)). Dividieg (4) by Eg. (3), we modify the M86
SSSF to clearly separate the magnitude and shejpeddre-written here as Eq. ¢

;—F =w(U 10,T)EE3.5755 x10° 0,2 (1+ 0057r.1%%) x 10119 " } (4)
80

with B as defined in Sect. 1 and the timesagaddsorbed in the shape factor (the expression in
the brackets). The size range for M86 validitygs= 0.8-8 um. We calculate the SSA flux

for radiirgo ranging from 1 to 1@m.

2.4.1 Use of discrete whitecap method

The basic assumptions of M86 for the SSSF base¢beodiscrete whitecap method—constant
values forr and dE/dr (Sect. 1)—are usually questioned (Lewis and Sctay&004; de
Leeuw et al., 2011; Savelyev et al., 2014). Itos expected for both of these assumptions to
hold for wave breaking at various scales and udd#asrent conditions in different locations.
The SSSF proposed by Smith et al. (1993) on thes lndisneasured sizéependent aerosol
concentrations is one of the first formulationgdamonstrate that the shape factor cannot be
constant. Norris et al. (2013a) also demonstratatithe aerosol flux per unit area whitecap

varies with the wind and wave conditions.

Recently, Callaghan (2013) showed that the whitdégapscale is another source of
often overlooked variability in SSSF parameterizasgi based on M86. Becaugétypically
includes foam from all stages of whitecap evoluti@allaghan (2013) suggested that the
adequate timescale for the aerosol productivitynfieo discrete whitecap is not just its decay
time (as in Egs. (4) and'§}, but the sum of the whitecap formation and deoagscalesr”.
The value ofr’ varies from breaking wave to breaking wave, butasga-weighted mean
whitecap lifetime can be calculated for any givdsservational period to account for this
natural variability. Analyzing the lifetimes of 5%&teanic whitecaps from a field experiment,
Callaghan (2013) found that the area-weighted nréaaries by a factor of 2.7 (from 2.2 to
5.9 s). We refer the reader to Callaghan (2013)aforSSSF that accounts for SSA flux

variability by explicitly incorporating whitecapniescaler”.
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Despite these questionable assumptions, the SS&#d ln the discrete whitecap
method in the form of M86 has been widely used @mnynmodels (Textor et al., 2006).
Therefore, to those who have worked with M86 umdilv, a meaningful way to demonstrate
how the new satellite-basa&lf data, andWV parameterizations based on them, would affect
estimates of SSA flux is to hold everything els@istant (e.g., the whitecap timescale and
productivity in the shape factor) and clearly shiifferences caused solely by the use of new
W expression(s) as a magnitude factor. On thesendsuhe choice of the SSSF based on the

M86 whitecap method is a suitable baseline for canmspns.

2.4.2 Choice of size distribution

Though the chosen size range of 14h0 for SSA particles is limited, it is well justifiefor

the purposes of this study with the following argunts.

Generally, the division of the SSA particles iniees of small, medium, and large
modes (de Leeuw et al., 2011, their 88) is wellreuated when one considers the climatic
effect to be studied (Sect. 1). For example, sutxoni particles are important for scattering
by SSA (direct effect) and the formation of clouwhdensation nuclei (indirect effect), while
super-micron particles are important for heat ergea(via sensible and latent heat fluxes)
and heterogeneous chemical reactions (which neethceu and volume to proceed
effectively). However, in this study we do not fsoon how the choice of the size distribution
will affect the SSA estimates. Nor do we aim toser® estimates of specific effect on the
climate system. Rather, with a fixed size distridnut we explore how parameteriziigdata,
which carry information for the influences of mafactors, would affect estimates of SSA
emission (Sect. 1). In this sense, we can choosesé¢oany published size distribution as a
shape factor.

The chosen size range is the range of medium (sujpeon) mode of SSA patrticles.
This is the range for which the size distributidnMB6 is valid (Sect. 2.4). The M86 size
distribution, in its original or modified form, midely used in GCMs and CTMs (Textor et
al., 2006, their Table 3). This size range is aim@mnt part of the various size ranges used in
all (or at least most) SSSFs (see Table 2 in Grgtlad. (2014, hereafter G14)).

The chemical composition of the SSA particles isthar argument favoring the
chosen size range. The super-micron particles sprieia good approximation, solely of sea
salt, whereas, in biologically active regions, gub-micron size range additionally includes
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organic material, with an increasing contributicn particle size decreases (O’'Dowd et al.,
2004, Facchini et al., 2008; Partanen et al., 20%#)ce the organic mass fraction in sub-
micron SSA particles is still highly uncertain (&l et al., 2012), we focus on the medium

mode SSA emissions.

We evaluate the discrepancy expected due to negleparticles below Lum using
the G14 report of SSA production rate for dry petidiameters pP= rgo obtained with M86
over two different size ranges: 4.51*%4Rg yr* for the size range of 0;8n < Iz < 8um and
5.20x102 kg yr* for size range of 0.fim < o < 10 um. The different size ranges bring a
difference between the two G14 estimates of abd&%.INeglecting particles withgg < 0.1
um would not change significantly the results préseérhere because they contribute on the

order of 1% to the overall mass (Facchini et &Q8).

Because total whitecap fraction, rather than ohby dctive breaking crests, provides
bubble-mediated production of SSA, we Wg data to estimate the emission of medium
mode SSA. The calculations use a modeling tool €&llet al., 2010) in which thé/(U,o)
parameterization of MOMS80, as integrated in Eq, (as replaced with the newly derived
W(U10, T) parameterization (Eq. ‘(4. The resulting size-segregated droplet numbassaon
rate was converted to mass emission rate usingppeximatiornrg, = 2ry = Dy, whererg and
D, are the particle dry radius and diameter, respelgti(e.g., Lewis and Schwartz, 2004; de
Leeuw et al., 2011), and a density of dry seac$at165 kg n.

3 Results and Discussion

The graphs showing our results visualize Welata points available for wind speeds from O
to 35 m &, but all fits are valid for 3 Uip< 20 m §' (Sect. 2.3).

3.1 Parameterization from global data set

Figure 5 shows globalv data estimated from WindSat measurements for Ma2af6 as
function ofU1ogscas at 10 GHz (Fig. 5a) and 37 GHz (Fig. 5b). For panmson, the MOMS80
relationship (Eg. (3)) is also plotted in each pamhkere are three noteworthy observations in
Fig. 5. First, we note the different variability %, andWs; data. The 10 GHz data show far
less variability than those at 37 GHz. TWg; data at a certain wind speed vary over a much

wider range, with the strongest variability for wispeeds of 10-20 ni'sThis supports the
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suggestion that other variables, in additionUt, influence the whitecap fraction, such as
SST or wave field; SAL13 quantify this variability.

Another observation in Fig. 5 is noted at low wepmkeeds. The 10 GHz scatter plot
does not showV data for wind speeds lower than about 2 hbscause at these low wind
speeds no active breaking occurs (Sect. 1). Irastinon-zerd\Vs; data are retrieved at wind
speedd)io < 2 m §'. Salisbury et al. (2013) suggested that the poesehfoam on the ocean
surface at these low wind speeds could be duestdua long-lived foam. This residual foam
might be stabilized by surfactants, which increasedifetime (Garrett, 1967; Callaghan et
al., 2013). Another explanation could be productadnbubbles and foam from biological
activity (Medwin, 1977). However, there is not egbunformation currently to prove any of

these conjectures.

The comparison of the MOMBSO relationship (Eq. (8)Wio and W57 data clearly
reveals the most important feature in Fig. 5—thedaspeed dependence of satellite-basked

data deviates from cubic and cubic-like relatiopshi

3.1.1 Wind speed dependence

Following the arguments of our approach (Sect. 2rid trying different expressions, we
found that a quadratic wind speed exponent @) fits bothW;o, andW;; data sets best. For

the same data shown in Fig. 5, Fig.6 shows thealimegression of the square root\Wf

versusUio:
JW=001,,-0011 10 GHz (9a)
JW=001),,+001¢ 37 GHz (9b)

with coefficients of correlatio®® of 0.996 and 0.956, respectively. From Eqg. (9),0b&in
the following global average wind speed dependen®® usingU;o from QuikSCAT:

W, :1><104(U10—]_1)2 (10)
W, :1X104(U10 + 19)2 (11)

whereW s a fraction (not %).

The finding of weaker (quadratic) wind speed depaice here is not a precedent. The
first reportedW(U,¢) relationship of Blanchard (1963) was quadratiétiv¢areful statistical

19



a b~ W N P

© 00 N O

10
11
12

13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31

considerations, Bondur and Sharkov (1982) derivedquadratic\W(U,o) relationship for
residualW (strip-like structures, in their terminology). Bareterizations o¥V in waters with
different SST have also resulted in wind speed egpts around 2 (see Table 1 in Anguelova
and Webster, 2006). Quadratic wind speed dependsralso consistent with the wind speed
exponents of SAL13 in Eqg. (1).

The y-intercept forWy, (Eq. (10)) is negative and, following the usudkrpretation,
yields a threshold wind speed of 1.1 i fer whitecap inception. This is in the range of
previously published values from 0.6 (Reising et 2002) to 6.33 (Stramska and Petelski,
2003). Meanwhile, the positiveinterceptb for W57 (Eqg. (11)) is meaningless at first glance
and intriguing upon some pondering. While foam frbiological sources is possible (Sect.
3.1), it is not known whether such mechanism isabépof providing a measurable amount of

foam patches which produce bubble-mediate sea gffiaiently.

We propose broader interpretation ofin Egs. (10-11), be it negative or positive.
Generally, it is expected that the atmosphericilgtalkara et al., 2008) and fetch (through
the wave growth and development) cause inceptidhefvhitecaps at lower or higher wind
speed. One can consider the range of valued forentioned above (0.6 to 6.33) as an
expression of such influences. We suggest thatn also incorporate the effect of the
seawater properties on the extenMfThe net result of all secondary factors may lieeei

negative or positive.

Specifically, we promote the hypothesis that atpasy-interceptb can be interpreted
as a measure of the capacity of seawater with fipetiaracteristics, such as viscosity and
surface tension—which are governed by SST, saliaitg surfactant concentration—to affect
W. Undoubtedly, none of these secondary factorsteseahitecaps per se. Rather, they
prolong or shorten the lifetime of the whitecapa yrocesses governed by the seawater
properties. For instance, surfactants and salinityence the persistence of submerged and
surface bubbles. This yields variations of bubide welocity that replenishes the foam on the
surface at different rates. Long-lived decayingnioadded to foamy areas created by
subsequent breaking events would augm&ntconversely, conditions that shorten bubble
lifetimes would reduc®V (or at least not add ).

A positive y-intercept can be thought of as a mathematicalesgmon of this static

forcing (as opposed to dynamic forcing from the dyithat given seawater properties can
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sustain. That is, at any given location, this stédicing acts as though higher wind speed of
magnitude (o + b) is producing more whitecaps thddsy, alone. By parameterizing
coefficientsa andb in terms of different variables, one can evaluad& much the static
forcing affectsW in different geographic regions. By developinggmaeterizationg(T) and
b(T) (Sect. 2.1), here we guantify only one statituiefice.

For completeness, we have also investigated teetedf either rising or waning winds
on the W(U,0) relationship; increasing-decreasing winds aresictared as a proxy for
undeveloped-developed seas (Stramska and Pet2B6&; CALO08). The rise-wane wind
effect, as detected in this study, is not pronodno@mpared to findings in previous studies
that use in situ wind speed data. Goddijn-Murphglet2011) studied wind history and wave
development dependencies on in sW¥i data using wave model (ECMWF), satellite
(QuikSCAT), and in situ data fdd;0. These authors detected significant effects ont
situ Ujo. The absence of a significant wind history effectour study might therefore be
traced back to the method through whigfy was determined: wind speeds from satellites are
spatial averages of scatterometric or radiomethiseovations that take a snapshot of the
surface as it is affected by both history and lamaiditions, whereas in situ data for wind
speed are single point values averaged over a $inoet and hence representative for a
relatively small area. The effect of the spatiatéraging of the satellite data over a much
larger area (i.e., the satellite footprint) migketthat information on wind history is lost in the

process. The effect of the wind history, therefseyot further sought in this study.

3.1.2 Intrinsic correlation

To quantify the possible intrinsic correlation imetderivedW(U,q) parameterization (Egs.
(10-11)), we derivedMU10) using ECMWF wind speeds instead of the QuikSCARdw
speeds (Sect. 2.3). Figure 7 shows a scatter plat*d versusUioecmwr (Only data for 37
GHz are shown); dashed and solid lines show unnetl and zero-forced fits, respectively.
The linear regression (given in the figure legeisdjised to obtain the global average wind

speed dependence usidg, from ECMWEF as follows:

W,, =81x10°(U,,+ 333 (12).

The positive intercept here is interpreted as ict.S1.1.
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To evaluate the significance of the intrinsic ctatien, we look at the change of the
correlation coefficient of th&/(U;o) relationship when QuikSCAT winds are substituteth
the ECMWF winds. Physically, we expect a strongealation betweemw?*? andU;o, and we
see this clearly in Fig. 6b which shows a correlatcoefficientR? = 0.956 forw*? and
Uiooscar However, the correlation coefficient might not & high as in Fig. 6 1o were
from a more independent source. We see this whaeypaong Figs. 6b and 7. The*?-U1q
correlation is still strong in Fig. 7, but the plshows more scatter and slightly lower
correlation withR? = 0.826. This is a sign that probably some inicimsrrelation contributes

to theW(U1o0scaq) relationship which, therefore, is stronger tN#{1oecmwe)-

The slopes in Figs. 6b and 7 differ by about 11%. &/aluate how this translates into
differences irWs7 values using Egs. (11) and (12). We found the BfwéenWs; (U1ogscan
andWs7(Uzoecmws) to be less tham 9% for wind speeds of 7-23 rif.sSpecifically, theWs;
values obtained withJggscat andU1oecmwr are equal for wind speed of 11 . Below 11
m s, Ws{(Uioecmws) is higher thanWsz(Uipgsca) by up to 8.8%. Above 11 m’s
Ws7(U1oecmwa) is smaller thaVs7(U1ogscan) by up to 8.4%. The difference goes up to 30%

for wind speeds of 3 m's

While R? values for the regressions in Figs. 6b and 7 sigdget the intrinsic
correlation may contribute to these differencess th not the only possible reason for the
discrepancies. The difference of about 5% betwéenJt, values from the two different
sources (Fig. 4a) also contributes to Wealiscrepancies from Egs. (11) and (12). Of course,
we have to consider these differences in the lgldgther uncertainties in Eqgs. (11) and (12)
such as the uncertainties in determinthgoscarandUioecmwre and the satellite-basétl data
itself. We, therefore, conclude that the effectled intrinsic correlation alone AW is most

likely less than about 4% for most wind speeds.

3.2 Regional and seasonal analyses

3.2.1 Magnitude of regional and seasonal variations

Figure 8 shows examples of the*? versusUjogscar for different regions and
seasons. Figures 8a and 8b show scatter plothéoiGulf of Mexico (region 1) at both
frequencies for January 2006. Statistics are ptedeaat the top of the figures and the fit lines
are shown in red. Figures 8c and 8d show thenfisiv¥? (U, ) for 10 and 37 GHz in region 5
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for all months, while Figs. 8e and 8f demonstratgations of the fit linesw¥? (U;q) for both
frequencies over all regions for March 2006. Fig8rghows that the variations of the'2
(Uyg) relationships at 10 GHz are smaller than thoge3fd GHz, confirming the same
observation reported by SAL13 but obtained withfeedent analysis. Focusing on the results
for 37 GHz, we note that geographic differencemfregion to region for a fixed time period
(Fig. 8f) yield more variability in thev*? (U;o) relationship than seasonal variations at a fixed

location (Fig. 8d).

Figure 9 shows the seasonal cycles@ndc of thew*? (U,o) relationships at 37 GHz
in regions 4, 5, 6, and 12. The annual variatidnsagh curve and the variations between the
curves confirm the observation from Fig. 8—the atons ofm and c over the year are
smaller than their variations from region to regiéigure 9 also shows that the seasonal
cycles ofm andc do not mimic the seasonal cycles of eitblgg or T (Fig. 3). This implies
that m and c are not merely scaling and offsetting th&?(Uyo) relationships, as Eq. (8)

suggests, but rather carry more information forrdggonal and seasonal influences.

As anticipated from Figs. 8a, 8c, and 8e, seasoydeés for the 10 GHz data reveal
much less regional and seasonal influences (nawrshhdBecause the 37 GHz data provide
more information for secondary forcing than the GBz data, the remainder of the data
analysis in this study is illustrated with results Ws; data. Note, however, that all the
procedures and analyses describedViby data have been also carried out for Wig data
and some final results are reported (e.g., se2R)3.

Figures 8 and 9 show that variationsvef? caused by from 3 to 20 m$ are much
larger than the regional and seasonal variationg*éf While this is expected (becaudg is
a primary forcing factor), this also points that meed to evaluate whether these regional and
seasonal variations are statistically significdr this, we grouped the data forandc, as
well as fora andb, in two ways: (1) by month with the full range gdographical variability
(over all 12 regions) for each month; and (2) bgioa with the full range of seasonal
variability (over all 12 months) for each regiolN®VA and H tests applied to both groups
showed that the seasonal variations are not #tatlgt significant, while the regional

variations are.

We illustrate this in Fig. 10 with values fby similar graphs fom, ¢, anda show the

same results. Figure 10a shows the seasonal aycltéd regionally averagda values with
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error bars £ one SD) representing the regional variability.idtclear that the seasonal
variations of the regionally averagbdalues lay within the regional variability. Thisggests
that variations ofb from month to month are statistically undistindnaible. Figure 10b
illustrates why variations ob from region to region are significantly differefthe graph
shows the annually averagdxvalues for each region with error bars represgntime
seasonal variability. It is clear that overall theographical variations are not lost in the

seasonal variability.

Note in Fig. 10b that some regional variations rhigbt be distinguished within their
seasonal variability. For example, the annual méansegions 1, 4, 7, 8, and 9 all lay within
their seasonal variability; likewise, for the anhoeeans for regions 5, 9, and 10. To pinpoint
regions with significant differences bf(as well asa, m, andc), we applied the Student test to
all possible pairs of regions; e.g., region 1 mhivath each region from 2 to 12, region 2
paired with each region from 3 to 12, and so oa total of 66 pairings of different regions.
The Student tests showed statistically differemies ofb from region to region in 78% of all

cases and 58% fax

3.2.2 Quantifying SST variations

The results of the significance tests give a ralieror developing the SST dependena@3
andb(T). Following the data representation in Fig. 10, deriveda(T) andb(T) for data at
37 GHz by relating annually averagadandb values to the annually averag&dor each
region (Fig. 11). Figure 11c shows the monthly nseahthe coefficient® for each region
and thus demonstrates how the data points in Big.hhve been formed; a similar procedure
is used for the data points in Fig. 11a. As in BEi@p, the error barg(one SD) represent the
seasonal variability for SST (horizontal bars) dhe coefficientsa andb (vertical bars). A
second order polynomial is fitted to the data moint Fig. 11a; a linear fit is applied to the
data in Fig. 11b. The correlation coefficients floe derived SST dependences B#e= 0.57
for a(T) andR? = 0.87 forb(T). SuchR? values are consistent with the expectation ti&at,S
being a static secondary factor, affedtsnore via the offsdb than via the slopa.

To evaluate the effect of using quadratic versusccwind speed dependence in Eq.
(8), we also derived the SST dependena@y and b(T) for n = 3 following the same
procedure as for the caserof 2. We applied Eq. (8) with = 3 (Eg. (5b)) td\s7 data for all
months in regions 4, 5, 6, and 12; we verified théerences due to the use of four instead of
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twelve regions are not significant. The absoluties ofm andc increase compared to their
values obtained withh = 2. Specifically, the slopawn in each of the four regions change by
30% to 50%, while their regional variability (i.65D) increased by a factor of 3. The
interceptsc in the four regions become larger than¢h&lues obtained with = 2 by a factor
of 4.6, with regional variability increasing by actor of 2. However, put together, the fit lines
W¥(Uyg) in region 5 for all months and in all four regsofor March 2006 (not shown)
behave like those in Figs. 8d and 8f; namely, seaseariations are smaller than variations
from region to region. Coefficientsandb are calculated from tha andc values and graphs
similar to those in Fig. 11 are produced. Linegs for botha andb were applied to these
graphs. The correlation coefficients for theseditsR? = 0.87 fora(T) and Rz = 0.91 fob(T).

The reason for the different valuesmfandc (thusa andb) for differentn is that each
set of coefficientsr, m, c) accounts for primary (i.eU10) and secondary factors differently.
When the expected cubic law is applied to regialsh sets which exhibit quadratic wind
speed dependences (following from Figs. 5-6), #ngd differences are reconciled solely by
m andc; their values are therefore high. Conversely, Bnahlues fom andc are required to
quantify regional variations when the wind speedagent is already adjusted to follow the
quadratic trend of the data. This confirms the oeasy in Sect. 2.1 that the change from
cubic to quadratic wind speed exponent is a maf@nge that the additional parameters
impart on thaMUs) relationship. The question then is which setarfgmeters—{(= 2,m, ¢)
or (n = 3, m, c)—better reproduce measurdd data. In other words, if the wind speed
exponentn is not adjusted but follows the physically detared cubic dependence, can the
parametric coefficientsn andc alone account for all observed variations\éf We quantify

and discuss this point in Sect. 3.3.

3.3 New parameterization of whitecap fraction

A new parameterization for the whitecap fractdkU1o, T) was obtained by replacing the
fixed coefficientsA = 1x10* andB = 1.9 in Eq. (11) with SST-dependent coefficients:

W=aTJU,o+K(T)* (13)
where

a(T) =ap + & T +a,T° (14a)
b(T) =bg + b, T (14b)
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and the coefficients are:

a0 = 8.46X%10°

a; = 1.62510°

a, = -3.34%10° (14c)
bo = 3.354

by = -6.206¢10°

The whitecap fraction is calculated with Egs. (0-dnd 13-14) and compared to both
parameterizedlV values and taV data. TheN values from SAL13 (37 GHz) and MOMS8O0 are

used as references for PD calculations and sigmifie tests (Sect. 2.3).

3.3.1 Comparisons to W parameterizations

All parameterizations shown here are run for wipeesis from 3 to 20 m's The global
quadraticW(Ug) (Eg. (11)) is compared to the published paraneteons of SAL13 (at 10
and 37 GHz), CAL0O8, and MOMS80 (Egs. (1-3)) in Fika. The PD between the global
quadraticM(U;0) and SAL13 at 37 GHz ranges from 0.5% to 10% d¢lermwind speed range.
ANOVA and Student tests show that such differerazesnot statistically significant. That is,
the global quadrati®\(U,o) parameterization replicates the trend of thellgatbasedw data
as well as the SAL13 parameterization, which hasee specific wind speed exponent. Note
that we do not expect oM(U;g) parameterization to be distinctly different fraimat of
SAL13 because both studies use the s@htatabase.

The PD between the trends of the global quadiidig) and MOM80W(U,o) is
from 5% up to 175% with the largest PDs for winéegs below 7 m™s Though Fig. 12a
shows visibly different trends from both parametations, they seem to fall within each other
uncertainties because both ANOVA and Student s&st8v no significant difference between
them. However, if applied for winds up to 25 th @able 1), significant differences occur.
That is, the use of the new global quadréi{t)1) expression brings important changes to the
trend ofW compared to that from MOM8B/(U,) at high winds.

Figure 12b show&V values from the neWMU,,, T) parameterization at three fixed
SST valuesT = 28, 12, and 2C); the parameterizations of SAL13 for 37 GHz an@WBO

are shown for reference. Physically (from the S&pehdence of the seawater viscosity), at
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the same wind speelly is expected to be higher in warm waters and lawezold waters
(Monahan and O’Muircheartaigh, 1986). Figure 12bveia more complicated behavior of
W. The highesWV values (green line) are for moderate SST of 120tdC. At extreme SSTs
(2 and 28°C, blue and red lines, respectively), the SST erflte oW changes depending on
the wind speedW is the lowest in cold waters and high winds, lsubtigher tharWvin warm
waters at low winds. The trends of coefficieatandb in Fig. 11 suggests that we can expect

such reversal.

According to Fig. 12b, changes of SST from 1 to °ZB bring relatively small
variations in the wind speed trend\Wf PD no more than 15%. Applying Student tests, we
find that theW values at any remain statistically the same. In additidvyalues at any are
not significantly different from theW predictions of the global quadratitV(U;o)
parameterization. These results support the aateip notion (Sect. 3.2.2) that by using
quadratic wind speed exponent either W§U1o) or W(U1o, T), we can indeed account
implicitly (i.e., only via adjustment of th&;o exponent) for most of the SST (and other)

influences.

Figure 12c comparedV values obtained with the quadratic and cuWi@U. T)
parameterizations dt= 20°C; MOMS80 and SAL13 at 37 GHz are shown for refeeeith
p > 0.05 for any fixedT, the W values from the cubi®\(U1, T) parameterization are not
statistically different from those obtained withtherr the quadrati®(U.o, T) or MOMBSO0.
Still, the different trends of th&/ values seen in Fig. 12c suggest that accountiptjcely
for SST viaa(T) andb(T) in the physically expected cubic wind speed ddpane is not
sufficient to replicate the satellite-bas@dvalues. That is, when using= 3, one needs to
include more secondary forcing in order to repredtite weaker wind speed dependence

from theW database.

3.3.2 Comparisons to W data

Comparisons to the published in siMidata demonstrate order-of-magnitude consistency of
the W values from the new parameterizations. Becauge e no other remotely-sensad
data except those from WindSat, the most we caatdbe moment is to evaluate how well
the new parameterizations can replicate the tremtthe spread of the satellite-baséd
Recently, W values from a global wave model were comparedMdrom MOMS80 and

WindSat by Leckler et al. (2013), so one can evaluéhere modeledlV values stand in the
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comparison of data and parameterization$VofAll parameterizedV values shown here are
calculated usindJ;o andT from the whitecap database, 183, from QuikSCAT andl from
GDAS (Sect. 2.2.1).

Figure 13a comparéd/ values predicted with both new parameterizatidv$),0) and
W(U10, T), to the same in situ and satellite-ba¥eédata for 10 and 37 GHz plotted in Fig. 1b;
comparisons to satellite-bas@fidata on any other day of 2006 are the same. Qgaia,at is
confirmed that the new global quadrailU,;) parameterizations (black symbols in the
figure) follow closely the wind speed trends of thatellite-based/N data. This lends
confidence in the use of the proposed quad¥&ld,o) parameterization to model tNétrend

with secondary influences implicitly included.

The W values predicted with the neW(U,o, T) parameterization (red and cyan
symbols in Fig. 13a) represent the spread of thelisa-basedVV data fairly well; tests show
that they do not differ significantly. The clustef W values are, however, statistically
different from both the new quadratic and the MOMB@M 1) parameterizations. This is the
most important result of this study: when we mautdly the trend ofV with Uy, new and old
parameterizations differ significantly only for exme conditions (e.g., winds above 20 s
in cold waters, Sect. 3.3.1). In contrast, whemveelel both the trendnd the spread of the/
values, the result is a significant difference wathy, new or oldyW(U1g) parameterization at

any conditions.

In Fig. 13a, one can notice that the n@liJ,o, T) parameterization does not predict
the spread of the satellite-bas@tidata entirely. This suggests that accounting eitiglifor
SST in aW parameterization is not enough to replicate alrthtural variability ofV. This is
consistent with our general understanding of thedn® explicitly include many secondary

factors inW parameterizations, not just SST (Sect. 2.1).

Though SST entails small variations in the trend\bfvith Uy (Fig. 12b), the most
important consequence of the newly derived quadk&lU,o, T) parameterization is that it
shapes significantly different spatial distributioampared to cubic and higher wind speed
dependences like that of the MOMS80. The complexabiein seen in Fig. 12b attests to this
because different combinations of SST ddg¢, could be encountered over the globe.
Meanwhile, the recreation of the spread of thellgatbasedw data in Fig. 13a confirms that

aW(Ujq, T) expression can model such situations.
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Figure 13b shows a difference map between the bobaual averag®V distributions
for 2006. The MOMBSO relationship yields a wid&range with higher values in regions with
the highest wind speeds. In particular, this octietsveen about 40and 70 in the Southern
ocean and in the North Atlantic. The latitudinalisions from the Equator to the poles are
more pronounced when using the MOMBSO relationskipanpared to Egs. (13-14). The new
W(U10, T) parameterization provides a global spatial dstion with similar patterns, but the

absolute values are lower at high latitudes antdrigt low latitudes.

Note that in most studies, as in this stud§U0) of MOMBSO is extrapolated beyond
the range of the data from which it was derivedc{Sg). Therefore, at higher wind speeds
(and especially in cold waters), th&/ values that are obtained using the MOMBS8O0
parameterization are somewhat questionable. As#me time, the QuikSCAT instrument,
which provided thdJy, satellite data used in this study, has a decressesitivity for wind
speeds over 20 m'qQuilfen et al., 2007). All results regarding hégtwind speeds should,
therefore, be handled with caution. Only continucosiparison of directly measur&ddata

to parameterizeV values can help to better constrain predictionstotecap fraction.

3.4 Seaspray aerosol production

The newly derived quadratM(U;o, T) parameterization (Egs. (13-14)) was used to @sém
the global annual average emission of super-miG&8A using M86 SSSF (Eqg.'}% The
total (i.e., size integrated) annual SSA mass eariser 2006 is 4359.69 Tg Yr(4.4x10" kg
yr'Y). This is about 50% larger than that calculatethwhie M86 SSSF using MOMS80 (Eq.
(4)), 2915 Tg yi* (2.9x10™ kg yr'). Because we have shown that the new quadve(fit;o,

T) and MOM80 WU, are significantly different (Sect. 3.3.2), we anfthat the SSA
emissions based on SSSFs using these two paramaéiters also differ significantly. The
two estimates of SSA emissions are calculated usieagame modelling tool (Sect. 2.4) and
the same input data (Sect. 2.2.1). Without any gban the shape factor, this guarantees that
the 50% difference is due solely to the explict@mting for the SST effect A.

The spatial distribution of the mass emission ratagined with SSSFs using the new
W(U1g, T) is shown in Fig. 14a. The SSA emissions obtaingd the new and the MOM80
W(U10) parameterizations mimic the patterns of Whedistributions. The differences are

mapped in Fig. 14b.
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Previously modeled total dry SSA mass emissiong bgrtwo orders of magnitude
because of a variety of uncertainty sources (SBct(2.2—22)x1& kg yr* (Textor et al.,
2006, their Fig. 1a; de Leeuw et al., 2011, theibl€ 1); and (2—74)x1bkg yr’ for long-
term averages (over 25 years) (G14, their Tablex2luding 3 outliers). The impact of the
modeling method used has to be acknowledged togth&ret al. (2014) suggest that the
spread in published estimates of global emissiaed@n the same M86 SSSF (Eg. (4)), from
3.3x10% to 11.7x16° kg yr* (Lewis and Schwartz, 2004), can be attributedifferénces in
model input data and resolution differences. Anmnepla of the same SSSF yielding different
results when applied in different models is alsensm the work of de Leeuw et al. (2011,
their Table 1).

For a meaningful comparison of our results to S®#issions obtained with other
SSSFs, we attempt to remove (or at least minintime)mpact of the modeling method. As in
this study, G14 used the same model (i.e., inpiat dad configuration) to evaluate 21 SSSFs,
including that of M86, against measurements. We ttan infer a “modelling” factor using
our and G14 results obtained with M86 SSSF. We tlad the G14 estimate of SSA emission
from M86 (4.51x1& kg yr') is 1.55 times larger than our estimate ofx2@? kg yr' from
M86 and MOMB80. We apply this factor of 1.55 to &8A emission estimated with the new
W(Uo, T) parameterization and obtain a “model scaled” eabfi 6.7%10" kg yr’. Our
“model scaled” estimate of the SSA emission iselmsthe median 5.%10" kg yr' of the
SSA emissions reported by G14. This shows that 38FSwith a magnitude factor derived
from satellite-basetlV data provides reasonable and realistic predicdiise SSA emission.

To narrow down this broad assessment, we now lodkeaSSSFs evaluated by G14
which account for the SST effect on SSA emissidiere are four such SSSFs in the G14
study (see their Table 2): S11T of Sofiev et ab1({®), GO3T of Gong (2003), J11T of Jaeglé
et al. (2011), and G13T of G14. To minimize diffeces caused by using different size
ranges, we focus on S11T and G13T, both applieiyw&SA diameter®, = rgo (Sect. 2.4)
from 0.01 to 10um. The upper limit is the same as in our study,levkhe lower limit is
extended to sub-micron sizes, which, as we have Eect. 2.4.2), introduces a discrepancy
of about 14%.

The original Sofiev et al. (2011) SSSF is basedhenM86 SSSF (Eq. (4)) combined
with data from laboratory experiments by Martenssoml. (2003) to account for SST and
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salinity effects and a field experiment by Clarkealk (2006) to extend the size range. In the
G14 study, the salinity weight proposed by Sofierle(2011) is not applied. At a reference
salinity of 33 %o, S11T estimates an SSA emissior2.68x<10* kg yr’. Without the SST
effect (the SST factor set to unity), the SSA eioisgstimated with S11 is 5.870"%kg yr™.
With everything else the same except for the SSTofan source functions S11 and S11T,
we evaluate that accounting for the SST effectltesu changes by 56%. Correcting for 14%
discrepancy due to extended lower size limit, Werim 42% change when the SST effect is
included in the SSSF. This is comparable to the ®0%nge due to SST in our case. We
surmise that parameterizing additional influence$\bis a viable way to account and explain

some of the uncertainty of SSA emissions.

Grythe et al. (2014) used a large data set of shgervations to develop G13T by
changing both the magnitude and the shape factbesauthors modified the SSSF of Smith
and Harrison (1998) (a sum of two log-normal disitions) to add an extra log-normal mode
to cover the accumulation mode. They also addecethgirically based SST factor (a third
order polynomial) proposed by Jaeglé et al. (20M4jth G13T, G14 estimate an SSA
emission of 8.9410"* kg yr'. The functional forms of the magnitude (involvitlge SST
effect) and shape (modelling the size distributidajtors of G13T and S11T are very
different. This makes it difficult to evaluate tihelative contribution of the magnitude and

shape factors for variations in SSA emissions. 1@sults can help.

The shape factors of S11T and our SSSF udifidyo, T) have a similar (not identical)
functional form (that of M86, original and modifigdut the functional forms accounting for
SST are different. Our SSA emission estimate isubl&®2% higher than that of S11T.
Allowing for 14% discrepancy due to the lower dingit, we find that different approaches to
account for SST lead to about 67% variation in 8Assions. Compared to G13T, our SSSF
usingW(U1o, T) has a different shape factor (that of M86 verdsgsnormal), and a similar
(but not identical) functional form for the SST exft (polynomial). Our SSA emission
estimate is about 32% lower than that of G13T. wikg for 14% size discrepancy, we find
that different shape factors lead to about 13%ati@n in SSA emissions.

On the basis of these assessments, we can statedhaclusion of the SST effect in
the magnitude factor and/or the choice of the slagi®r (size range and model for the size
distribution) in the SSSF can explain 13%-67% & Wariations in the predictions of SSA
emissions. The spread in SSA emission can thusobstrained by more than 100% when
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improvements of both the magnitude and the shagerfare pursued. Our results on e
parameterization (Fig. 13a) suggest that accountoxgmore secondary forcing in the
magnitude factor would explain more fully the spfr@among SSA emissions. Because, after
wind speed, the most important secondary factdrabeounts for variability iWis the wave
field (SAL13), efforts to include wave parametard\f parameterizations are well justified.

4 Conclusions

The objective of the study presented here is téuat@ how accounting for natural variability
of whitecaps in the parameterization of the whipedaaction W would affect mass flux
predictions when using a sea spray source fundtased on the discrete whitecap method
The study uses satellite-bas®d data estimated from measurements of the oceaacsurf
brightness temperatuiig; by satellite-borne microwave radiometers at fregies of 10 and
37 GHz, Wy andWs7. Global and regional data sets comprisivig andWs7 data, wind speed
Uio, and sea surface temperattiror 2006 were used to derive parameterizatidid,o) and
W(U1o, T). The SSSF of Monahan et al. (1986) combined thighnew\W(U1o, T) was used to

estimate sea spray aerosol emission. The conchusiothe study are the following.

Assessment of the glob®V data set revealed a quadratic correlation betWéemd
Uio (Egs. (10-11)). The unconventional positintercept forWs7(U10) could be interpreted
as a mathematical expression of the static fortiiag) given seawater properties (e.g., effects
of SST, salinity, and surfactant concentrationg)anh on whitecaps. Parameterizati®iJ,o)
derived with an independent data séto(from ECMWEF instead of QuikSCAT) helps to
determine that the intrinsic correlation betw&gandU1o is most likely less than about 4%.
The derivedWM(U,q) for both W;o andWs7 replicate the trend of the satellite-based datkh we
(Fig. 13a). That is, the adjusted quadratic wineespexponent ikM(U0) accounts implicitly
for most of the SST variations. The new quadratflU.g) predicts whitecap fraction
significantly different from that obtained with thveidely usedW(U;o) of MOMBS8O only at

extreme conditions (high winds and cold waters).

Applying the global quadratie\(U1o) parameterization on regional scale shows that
the seasonal variations of its regression coefftsia andb are not statistically significant,
while the regional variations are. On this basisrddating annually averagedandb values
to the annually averagerfor each region (Fig. 11), the SST depende€sandb(T) for
data at 37 GHz were derived. The new quadia{idio, T) parameterization (Egs. (13-14))
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predicts small variations in the trend\Wffor different SST values (Fig. 12b). However, when
used with realJip andT data, the new\M(U1o, T) parameterization replicates the variability
(spread) of the satellite-bas®¥d data well (Fig. 13a). The capability of the n&{Uq, T)
parameterization to model both the trend and theaspof theW data sets it apart from all
other W(U,¢) parameterizations. Results show that besides SB€, needs to include
explicitly other secondary factors in order to motthe full spread of the satellite-bas@d
Including the SST effect via(T) and b(T) in the physically expected cubic wind speed
dependence is not sufficient to replicate the treinthe satellite-based/ values.

Application of the new quadratid(U,, T) parameterization in the Monahan et al.
(1986) SSSF resulted in a total (integrated onlgr®uper-micron sizes) SSA mass emission
estimate of 4359.69 Tg yr(4.4x10™ kg yr?) for 2006. Scaled for modeling differences (Sect.
3.4), this estimate is 6.¥80™ kg yr’, which is comparable to previously reported estirna
Comparing our and previous total SSA emissionshae been able to assess to what degree
accounting for the SST influence on whitecaps cantagn the spread of SSA emissions. With
or without the SST effect included in the SSSF, $8Assions obtained with the néW(U1,,

T) parameterization vary by ~50%. Different appraescitio account for SST effect yield
~67% variations. Different models for the size wligttion applied to different size ranges
lead to 13%-42% variations in SSA emissions. Urtdading and constraining the various
sources of uncertainty in the SSSF would eventuatiprove the accuracy of SSSF
predictions. Including the natural variability ohitecaps in the SSSF magnitude factor is a

viable way toward such accuracy improvement.
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Table 1. Coordinates, number of data points, range and mrahre for wind speed, and
range and mean value of SST of selected regiorfer{danuary 2006, (b) for July 2006.

a
Region Lon. Lat. Wind

Number speed*

ngimple*s [ms]

SST*[°C]
Range Mean Median Range Mean Median

1. 86°W — 95°W  23°N-28°N 188961..3-15.7 75 76 19.4-26.0 23.8 241
2. 1°W - 15°W 1°S - 30°S 169128.2-12.9 64 64 21.4-27.8 24.2 241
3. 75°E-89°E 1°S -30°S 169056.0-13.4 7.0 7.2 23.0-29.4 26.8 27.3
4, 11°W - 20°W  30°N — 44°N 49760 0.2-19.6 8.0 7.6 13.3-20.4 16.4 16.3
5. 86°W —-100°W  31°S - 60°S 200360 0.5-23.0 8.7 8.7 48-24.1 12.7 11.7
6. 171°W -180°W 15°S-14°N 123328 0.6-15.6 8.2 8.2 26.2-30.4 284 28.2
7. 31°W - 50°W  10°N —29°N 90640 0.3-20.0 8.8 9.0 20.1-27.9 24.9 25.3
8. 140°W - 160°W 20°S - 30°S 50040 0.5-16.3 6.8 6.7 22.2-29.1 26.3 26.6
9. 140°W - 160°W 40°S - 50°S 41840 0.1-20.6 6.9 6.5 9.3-18.2 13.2 13.1
10. 0°W - 30°W 40°S - 50°S 133080 0.5-26.4 9.4 9.3 3.2-16.7 9.6 9.3
11. 50°E-70°E 40°S -50°S 50784 0.5-21.6 9.6 9.6 3.2-174 9.6 9.5
12. 180° E - 180°W 60°S - 90°S 576576 0.2-20.9 7.0 6.7 -1.9-8.0 1.8 1.4

* For January 2006.
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Region Lon. Lat. wind

Number of speed™*

samples [msY

SST*[°C]
Range Mean Median Range Mean Median

1. 86°W — 95°W 23°N-28°N 13848.4-10.0 4.5 4.4 28.7-30.5 29.5 294
2. 1°W - 15°W 1°S - 30°S 189600.2-14.0 6.6 6.6 17.7-27.1 23.2 23.7
3. 75°E-89°E 1°S -30°S 195428.6-15.4 8.0 8.1 18.8-30.0 254 25.9
4. 11°W - 20°W  30°N - 44°N 43040 0.7-14.0 6.7 6.6 16.9-23.3 204 20.5
5. 86°W -100°W 31°S - 60°S 257496 0.7-22.7 9.8 9.6 2.5-19.1 9.3 8.3
6. 171°W -180°W 15°S-14°N 133096 0.1-14.8 6.0 6.0 26.9-29.7 28.8 29.0
7. 31°W - 50°W  10°N — 29°N 88304 0.4-13.6 7.4 7.4 23.6-28.0 26.0 26.1
8. 140°W - 160°W 20°S - 30°S 47504 0.7-24.7 6.9 6.2 18.8-27.0 23.2 234
9. 140°W - 160°W 40°S - 50°S 52736 0.5-21.0 10.1 10.3 8.2-14.1 10.9 10.8
10. 0°W - 30°W 40°S - 50°S 160192 0.9-28.9 10.8 10.8 1.8-14.6 8.3 8.3
11. 50°E-70°E 40°S -50°S 49344 1.1-28.2 12.9 12.7 2.1-16.1 8.3 7.8
12. 180° E — 180°W 60°S — 90°S 177240 0.8-29.1 11.7 119 -1.3-4.3 1.7 1.7

** For July 2006
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Figure captions

Figure 1Satellite retrieved 37 GH&/ data for 11 March 2006. a) Map (©8.5%) of
ascending and descending passe¥\fat 37 GHz; b/ at 10 and 37 GHz (green and
magenta symbols, respectively) compared to histbpliotographic data including total
(diamonds) and active whitecap fractiia (squares). ParameterizatidffU;o) of Monahan
and O’Muircheartaigh (1980, MOMB8O0) (purple line)sisown for reference.

Figure 2. Selected regions to determine regionatrans of\W(U1).

Figure 3.Seasonal cycle for 2006 in different regions asneef in Fig. 2 and Table 1: a)
wind speedUio; b) Sea surface temperature (SST)The regions represent-flemperate
zone in Northern hemisphere:Bemperate zone in Southern hemispher®ddrums along

the Equator; 12l owest SST.

Figure 4. Scatter plot for March 2006 of (a) globadecmwe versusJigoscarand (b) globall
from ECMWEF versusl from GDAS. In both figures the colors indicate tmount of data
points per hexabin. The black lines are linear. tite dashed line represents unrestricted fit
and the solid line a fit forced through zero. Timear regressions and respectiveare listed

in each panel.

Figure 5.Global W as function olU;o from QuikSCAT for March 2006 wheM is obtained
with 10 GHz (a) and 37 GHz (b) measurement frequenlke red line indicates the Monahan
and O’Muircheartaigh (1980 MOMS8O0) relationship (E€8&)). The colors indicate the amount

of data points per hexabin.

Figure 6.Global VW as function ofUio from QuikSCAT for March 2006, whergW is
obtained with 10 GHz (a) and 37 GHz (b) measurerfrequency. The black line (in both
panels) indicates the best linear fit through thedThe red line in Fig. 6b equals the black

line in Fig. 6a. The colors indicate the amoundlata points per hexabin.
Figure 7. Scatter plot ofw versusJ;oecmwefor March 2006.

Figure 8. Linear fits o'W versusUy, for: region 1 for January 2006 at 10 GHz (a) aid 3
GHz (b); region 5 for all months at 10 GHz (c) &®WGHz (d); regions 1-12 for March 2006
at 10 GHz (e) and 37 GHz (f).
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Figure 9. Seasonal cycle for 2006 of regressiorffictnts in the VW(U.o) linear fits for
different regions as defined in Fig. 2 and Tabla)lslopem; b) y-interceptc.. The regions
represent: 4Temperate zone in Northern hemisphere{T&mperate zone in Southern

hemisphere; €Doldrums along the Equator; 4Powest SST.

Figure 10. Regional and seasonal variations: a)dRally averaged values for each month
with error bars £ one standard deviation) representing the regivaaability; b) Annually

averaged values for each region with error bars represgritie seasonal variability.

Figure 11. Sea surface temperature dependencg¢soéficienta (slope) and b) coefficiert
(intercept) in theWw(Uy0) dependence. Each point is annual mean for differegion. The
error bars indicate 1 standard deviation for SST (horizontal bars) eoelfficients (vertical
bars). Panel c) shows the monthly means of coeffisb for each region that form one data
point in panel b). Regions in Northern hemisphé\tel) are show with squares; regions in
Southern hemisphere (SH) are shown with circlee @tamonds are for region 6 at the

Equator.

Figure 12. a) Comparison of the new gloW4lJ,o) parameterization (based on the global
data set) to parameterizations from different gssdSAL13 (10 GHz) and SAL13 (37 GHz)
are parameterizations from Salisbury et al. (20E). (1)), CALO8 are parameterizations
derived by Callaghan et al. (2008) (Eqg. (2)); an@MBO is the parameterization of Monahan
and O’Muircheartaigh (1980) (Eq. (3)).

b) Comparison of the new quadratic parameterizatifd,o, T) (Eqs. 13-14) at three
fixed SST valuesT(= 20°C, red line;T = 12°C, green lineT = 2°C, blue line) to the global
quadratic parameterizatiodU,0) (Eq. 11, black solid line) and the parametermadi of
Salisbury et al. (2013) (Eq. (1)) for 10 GHz (dakdited line) and 37 GHz (dashed line).

c) Comparison of the neW(U;o, T) parameterizations with quadratic (Egs. 13-14,
purple line) and cubic (red line) wind speed expusatT = 20°C to the parameterizations
of Salisbury et al. (2013, SAL13) (Eq. (1)) for &Hz (dashed line) and Monahan and
O’Muircheartaigh (1980, MOMS80) (blue solid line).

Figure 13. a) As Fig. 1b witkV values added froriMU;g) for 10 and 37 GHz (black lines,
Egs. (10-11)) and(U4q, T) for 10 (red) and 37 GHz (cyan, Eqgs. (13-14)). @vapeed and
sea surface temperature from the whitecap datavasssed for the calculations.
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b) Difference map of annual avera@¢ distribution for 2006 calculated from the
Monahan and O’Muircheartaigh (1980, MOM80)U,0) parameterization (Eq. (3)) minus
W(U1p, T) from Egs. (13-14) The calculations use wind spdeglis from QuikSCAT in the
whitecap database.

Figure 14. a) Annual average super-micron mass sionisrate for 2006 img m? s’
calculated from from Eq. (). b) Difference map between the annual averagersonicron
SSA mass emission rate calculated from the Monataa. (1986) SSSF and the annual
average super-micron SSA mass emission rate ctdufeom the Monahan et al. (1986)
SSSF wherd&V is replaced with Eqgs. (13-14). The calculations wind speedJyg is e from
QUikSCAT in the whitecap database.
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