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Abstract 

Emissions inventories of black carbon (BC), which are traditionally constructed 

using a “bottom-up” approach based on activity data and emissions factors, 

are considered to contain a large level of uncertainty. In this paper, an 

ensemble optimal interpolation (EnOI) data assimilation technique is used to 

investigate the possibility of optimally recovering the spatially resolved 

emissions bias of BC. An inverse modeling system for emissions is established 

for an atmospheric chemistry aerosol model and two key problems related to 

ensemble data assimilation in the top-down emissions estimation are 

discussed: 1) how to obtain reasonable ensembles of prior emissions; and 2) 

establishing a scheme to localize the background-error matrix. An experiment 

involving a one month simulation cycle with EnOI inversion of BC emissions is 

performed for January 2008. The bias of the BC emissions intensity in China at 

each grid point is corrected by this inverse system. The inversed emission over 

China in January is 240.1 Gg, and annual emission is about  2539.3 Gg, 

which is about 1.8 times of bottom-up emission inventory. The results show 

that, even though only monthly mean BC measurements are employed to 

inverse the emissions, the accuracy of the daily model simulation improves. 

Using top-down emissions, the average root-mean-square error of simulated 

daily BC is decreased by nearly 30%. These results are valuable and 



promising for a better understanding of aerosol emissions and distributions, as 

well as aerosol forecasting. 

 

1. Introduction 

Black carbon (BC) refers to light-absorbing carbon aerosols produced by 

all kinds of incomplete combustion processes (Bond and Bergstrom, 2006). It 

is an important component of atmospheric particulate matter, affecting weather, 

climate and air quality, and therefore attracts much attention among the 

scientific community. Its absorptive nature, which directly causes reductions in 

incoming shortwave solar radiation, is a key contributor to climate forcing by 

aerosols (Liousse et al., 1993; Menon et al., 2002; Hansen et al., 2005; 

Ramanathan and Carmichael, 2008). BC aerosols have been shown to act as 

cloud condensation nuclei when they become hydrophilic, affecting cloud 

microphysical properties and rainfall processes (Lary et al., 1997; Bond et al, 

2013). The lifetime of BC is about 3–10 days, and it can be transported far 

from its source to affect remote and pristine areas (Hansen et al., 1988; Hara 

et al., 2008). Its light-absorbing properties reduce atmospheric visibility (Wolff, 

1981). Qiu and Yang (2000) showed that BC contributes to the considerable 

degradation in optical depths and visibility noted in northern China. 

Furthermore, from the human health perspective, these particles, which are 

generally sub-micron in size, contribute greatly to the threat of pulmonary 

diseases, as they can penetrate into the lungs while also carrying a variety of 

toxic elements with them. Therefore, an accurate picture of the distribution and 

variation of BC is crucial to our understanding of climate change and pollutant 

dynamics, and ultimately helps us to develop better policies to tackle 

associated environmental problems. 

However, there is considerable uncertainty involved in the estimation of 

the distribution of BC and its contribution  BC emissions inventory, which is 

traditionally constructed from the “bottom up” approach based on activity data 

and emissions factors, is considered to have large uncertainty (Cao et al, 



2006). The overall uncertainty of BC over all of Asia is estimated at about 360% 

(Streets et al., 2003). Emissions of BC are difficult to determine under the best 

of circumstances, largely because of the uncertainty in quantifying the fraction 

of total particulate matter that is elemental carbon of less than approximately 

1m in diameter. This fraction is highly sensitive to the fuel type and 

combustion conditions (Wehner et al., 1999), necessitating a detailed 

treatment of emission factors by fuel, sector, and the degree of emissions 

control. Such problems are particularly compounded in China, where no 

statistics are available on the types of combustor and particulate controls, 

neither in terms of the prevalence, nor the performance, of each type of device. 

Inverse modeling is a powerful approach to observation-based inferences 

about atmospheric model inputs (e.g. emissions). Hakami et al (2005) 

developed a 4DVar inverse modeling method for the recovery of BC emissions, 

and sizable improvements were found at sub-regional levels. However, the 

domain-wide emissions inventory did not change significantly because 

measurements at four observation sites only were used to inverse and 

assimilate. Employing a multiple linear regression model, Fu et al. (2012) 

derived a "top-down" emissions estimate of annual BC and organic carbon 

(OC). They discovered that, when emissions of BC increased from 1.92 to 3.05 

Tg/yr, the average model simulation of annual mean BC increased from 1.1 to 

1.9 μg/m3, which showed better agreement with the observed amount (2.5 

μg/m3). 

The ensemble Kalman filter (EnKF), introduced by Evensen (1994), a 

technology based on ensemble forecasting and Kalman filter theory, has been 

successfully employed in atmospheric chemistry analyses, such as dust storm 

and aerosol data assimilation (Lin et al., 2008; Sekiyama et al., 2010). EnKF 

has some advantages over 4DVar insofar as it does not require the 

reconstruction of an adjoint model, which is technically difficult and 

cumbersome for the complex chemical transport model. However, the 

algorithm is highly sensitive to ensemble size (Mitchell et al., 2002), and 



therefore tends to be computationally demanding and has limited use in 

large-scale and on-line atmospheric chemical transport models. Moreover, the 

EnKF method assumes that the probability density functions (PDFs) of the 

initial conditions, emissions and observations are Gaussian in their 

distributions. When there is large bias, problems such as filer-divergence will 

lead to analysis failure. 

In this paper, an ensemble optimal interpolation (EnOI) data assimilation 

method is used to investigate the possibility of optimally correcting the spatially 

resolved emissions bias of BC. The background-error covariances are 

estimated using the ensemble, but the model only needs a single forecast, 

allowing the use of a larger ensemble than EnKF. The preliminary results for 

the inversed emissions for BC are presented in this paper. The details of the 

methodology are described in Section 2, followed by a description of the model 

and the observations used in Section 3. The inverse modeling results are 

presented in Section 4, and a summary and discussion is provided in Section 

5. 

 

2. Methodology 

2.1 Inverse theory and formulation 

Air quality models can be generally written as 

)t,()t,()1-t,(t,( xqxQxCxC  M）      (1) 

where C is the vector of pollutant concentrations, x is the spatial location, Q 

represents emissions, M  is the model time forward operator (could be 

nonlinear), and q is the model error, a random variable. 

The observations are assumed to be also available at time t: 

             
  rxCy  )t,()t( H       (2) 

where r represents observation errors. The operator H in (2) is the projection 

from the whole model domain to observation locations. 

Without observations, we can carry out a simulation with a given initial 



concentration, emission inventory, and ignore model error to solve (1) and to 

obtain a numerical solution )t,(xC b . The estimation problem discussed here 

is that, given observations (2), can we determine a better estimation of )t,(xC  

and )t,(xQ  than )t,(b xC  and )t,(b xQ , which the superscript b represents 

the background or the first guess. Generally, this problem can be approached 

from the perspective of how to find the PDFs of the emissions )t,(xQ  and 

associated model (1) solution )t,(xC , given observations )t(y . 

Zhu and Wang (2006) introduced the formulation of this estimation theory 

given the PDFs of the initial condition, emissions and observations are 

Gaussian distributed. The inverse method seeks an optimal estimate of the 

emission that is consistent with both the observation and priori constraints of 

source by minimizing the following cost function: 
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where, WC is the error covariance matrix of concentration between 

different grids, WCQ is the error covariance matrix of concentration and  

emission, and R is the error covariance matrix of observation, respectively. 

Based on the Kalman filter, we have the following analysis equations to 

minimizing the cost function: 
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2.2 Ensemble approach 



To solve (4), we can use the ensemble method. First, we generate the N 

ensemble of emission, and then integrate model (1) N times from t -1 to t. The 

resulting N model outputs b
iC  and N emission ensembles b

iQ  form a joint 

state emissions ensemble, 
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This joint ensemble can be used to construct the joint error covariance  
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where A  denotes the ensemble anomaly referenced to the ensemble mean. 

The analysis includes updating each a
iC  and a

iQ  in ensemble form as 

follows: 
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where Nj ,,1,i y  are the ensembles of perturbed observation samples. 

Then, the estimated emission is 
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2.3 Ensemble Optimal Interpolation (EnOI) 

The EnOI analysis is computed by solving an equation similar to (4), 

written as 
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where the analysis is computed in the stationary ensemble of model states and 

emissions sampled during a long-term integration. Once the ensemble is 



created, only one single model state and emission are updated. The method 

greatly reduces the computation cost and provides a sub-optimal solution 

compared to the EnKF approach.

 

 

3 Model description and BC measurements 

The model used in this study is an online-coupled chemical weather 

forecasting system, GRAPES/CUACE, which consists of two components: 1) 

GRAPES, which refers to a mesoscale meteorological model, the 

Global/Regional Assimilation and Prediction System, developed by the China 

Meteorological Administration (CMA). It produces meteorological fields (winds, 

turbulence, precipitation etc.) to drive the CUACE chemistry model. 2) CUACE, 

the Chinese Unified Atmospheric Chemistry Environment model, which 

includes emissions, transport, dry and wet depositions, and removal both in 

and below clouds of both gases and aerosols (Gong et al., 2008; Wang et al., 

2009; Zhou et al., 2012). These two parts are coupled online. Using the 

national official basic information of emission sources published in 2005 based 

on the bottom-up inventory developed by Cao et al. (2005), the Emission 

Subsystem (EMIS) provides hourly gridded offline emission intensities of 32 

species, including seven categories of aerosol species (sea salt, sand/dust, 

BC, OC, sulfates, nitrates, and ammonium salts) in the aerosol modules over 

the model domain. The basic gridded BC emissions inventory is based on 

energy consumption and activity information for various emission sectors: 

industry, residential, transport, power generation, agriculture, biomass burning, 

and others. 

The model domain for this study is approximately (70°–140°, 17°–57°E), 

as shown in Figure 1. The computational domain consists of 140 × 80 × 32 grid 

cells, with a horizontal resolution of 0.5°, and 31 vertical layers from the ground 

to 200 hPa. The simulation period is the month of January, 2008. 

The near-real time (NRT) data used in this work are the surface daily and 



hourly BC concentrations collected from over 30 CMA Atmosphere Watch 

Network (CAWNET) stations. The locations of these sites are shown in Figure 

1. Observations considered for assimilation are shown as red circles, and 

observations considered for verification are shown as blue stars. Information 

on the stations is presented in Table 1. The rural stations are typically located 

some 100 km away from local pollutant sources or nearby major cities, and at 

moderate height above the area’s local elevation. At the urban stations, the 

sampling heights are 50–100 m higher than the ground level. This enables the 

production of samples that are representative of the region, rather than the 

immediate locality. 

The BC observations are obtained using Aethalometer (Model AE-31, 

Magee Scientific, Berkeley, California, USA) instruments, which measure 

optically-absorbing filterable aerosol material at a 5 min time  interval (Zhang 

et al., 2008) at seven wavelengths of 370, 470, 520, 590, 660, 880 and 950 nm. 

The BC concentrations used in this study are derived from the optical 

absorption at 880 nm. 

 

4 Inverse modeling of BC emissions over China 

4.1 Experiment design 

We conducted one year long simulation using bottom-up emission for 

2008. NCEP 1×1° Reanalysis data was employed for the model’s initial and 6 h 

meteorological lateral boundary input field and forecast time was every 24h 

throughout every month to ensure the model's fair ability to simulation of 

meteorological field ( Wang et al., 2015). The monthly mean of simulated BC is 

put into the equation as C, and the y also uses the monthly mean of the BC 

observations. To obtain the ensemble for calculating the K, we make 

perturbations of the emissions (30 members), put them in the model, and run 

the model for 24 hours using monthly mean meteorological field. Subsequently, 

we obtain 24 × 30 ensembles. The reason we use monthly mean data is to 

reduce the effects of other factors of model error. 



 

4.2 Ensemble strategy  

A good ensemble system should satisfy at least two conditions: 1) the 

ensemble mean should be close to the truth; 2) the ensemble spread should 

be a reasonable representation of the root-mean-square error (RMSE) 

between the ensemble and the truth. Because the atmospheric components 

are usually log-normal distributed, we produced N ensembles of the emissions 

according to the formula below: 

     )
2

)log(
)log()(exp()t,()t,(

2
' 

  xxQxQ ii       
 (10) 

where i=1,2,..., N, x is the spatial location, )t,(xQ represents bottom-up 

emission, )t,(' xQi is emission ensembles, )(xi  is two-dimensional 

pseudorandom fields, and  is standard deviation of the emission. Here, we 

use the procedure proposed by Evensen (2004) to generate the 

pseudorandom fields )(xi , which is able to compute them with the mean 

equating to zero, variance equating to one, and a specified covariance that 

determines the smoothness of the fields. Using the two-dimensional fast 

Fourier transform (FFT), we obtain two-dimensional perturbations of the 

emissions, and then use singular vector decomposition (SVD) to obtain the 

optimal ensembles. In this paper, we compare two schemes: Scheme A, which 

only considers the spatial correlation as (10), and Scheme B, which considers 

both the spatial and temporal correlation,  

          )t,(1)t,()t,( 2 xxx iii                   (11)   

where α  is time correlation coefficient. To test whether the sample 

strategies are good, we compare the ensemble of the emissions and BC 

concentrations. Figure 2 shows the ensemble of the emissions for the two 

schemes. Although the two schemes produce the perturbations of the 

emissions with the same variance, the ensemble of the emissions by Scheme 



B has a much larger spread then Scheme A. Figure 3 shows the ensemble of 

BC concentration simulations computed by the corresponding emissions, with 

the red dots representing the observations. It is clear that the ensemble 

simulation of Scheme B can include the observation more reasonably. 

 

4.3 Localization in the inverse modeling 

The inverse modeling of the BC emissions in this study uses the ensemble 

member to calculate the background-error covariance matrix between the 

concentrations and emissions. The accuracy of the matrix is a very important 

factor for the inverse result. Since we cannot obtain as many ensembles as 

model dimensions, we should employ appropriate techniques that eliminate 

the effects of sample error and that localize the impact of an observation to a 

subset of the model state variables. Figure 4a shows the correlation of the 

background-error between the sites concentrations and emissions. The figure 

shows that the site concentration is highly correlated with the emissions near 

the site, which is expected. However, there are some emissions from remote 

regions that are also correlated with the site concentration, i.e., spurious 

correlations. Localization is an essential tool for an ensemble-based 

assimilation to adequately span the model sub-space. 

Usually, a typical implementation of localization involves the multiplication 

of the ensemble-based covariance by a correlation function, so the gain matrix 

is re-expressed as (12). We use the distance-dependent covariance 

localization scheme,                 

               
-1TT R]P)H[H(CP)H(CK                (12)  

where C is a correlation matrix and the operation denoted by the open circle is 

an element-by-element matrix multiplication (also called a Schur product). 

Here, we use an elliptic function with e-folding scales of La (major axis) and 

Lb (minor axis). When the distance-dependent covariance localization scheme 

is used, these covariances are artificially reduced to near zero with e-folding 



length-scales of La and Lb. The localization scales are set by calculating the 

shape of the covariance matrix. 

Figure 4c shows the correlation of the background-error between the site 

concentrations and emissions. Using this localization scheme, the spurious 

correlations far away from the site concentration is reduced, but the pattern of 

correlation around the site remains. Therefore, the inversion provides a more 

accurate estimation of emissions. 

 

4.4 Results of BC emissions bias correction 

An one year long simulation was conducted, driven by the current Chinese 

bottom-up emissions inventories for BC, and the results were compared with 

surface-observed BC concentrations (Fig. 5). The comparison of model results 

to observations evaluates the bottom-up inventories. Fig.5a compares the 

seasonal variation of observed and simulated surface BC. The simulated 

concentrations were significantly lower than the observed throughout the year. 

This indicates a region wide underestimate in monthly and annual bottom-up 

emission inventory. The average simulated annual mean BC concentration 

was 1.19 µg/m3, much lower than the observed 3.92 µg/m3. BC observations 

were higher in Winter than summer, suggesting strong emission associated 

heating. Fig. 5 b-e compared the spatial distribution of monthly mean observed 

and simulated BC concentrations for January and July. The model showed 

higher BC concentrations in January than in July, which is similar to the 

observation. The simulated BC concentration had much higher values in east 

than west with highest concentration over northern China, corresponding to 

the strong emission there. However, the model simulations not only 

underestimated BC concentration at urban sites but also significantly 

underestimated at rural sites such as TaZhong, Hami, Dunhong, Gaolanshan 

in northwest China where the bottom-up emission have very little emissions 

both for January and July. Fig.7 shows the daily BC concentrations variation in 

January at background, rural and urban sites. At background site AkeDala and 



WLG, the model still produces the relatively low concentration indicating 

underestimation of BC emission in northwest China. Little bias presented in 

simulation at background site ZhuZhang showed that emission around that 

region in Yunnan province is relatively accurate. The simulated BC 

concentration at background site SD was a little higher than the observation. 

That is because SD located in northwest China where is the densely populated 

and industrialized area, and the emission rate around the SD were relatively 

high. Besides these four background sites, the model performance of daily BC 

concentration based on bottom-up inventory at rural and urban was very poor 

largely because the underestimation in emission. This suggests that the 

bottom-up emission was very low and misrepresented in space and time. 

We use the 27 BC monthly observations to inverse the emissions. Figure 6 

shows the bottom-up or prior emissions (E1) and inversed emissions (E2) for 

January and July. There are significant increases in the E2 emissions over 

most regions of China, including eastern China, central china, Sichuan Basin, 

and western China. Only region around Beijing and northeast part of Heibei 

province presents a bit of decrease in E2, because model simulation at the 

assimilated site SD is lower than the observation. The results show that the 

basic emissions produced by the bottom-up method are underestimated and 

have been corrected by EnOI in most regions of China in January, not only in 

eastern China and central china where the rural population density and 

economic level are high, but also in northwestern China which have lower rural 

population densities and lower economic level.  

Table 2 compare our inversed provincial and national emission of BC with 

bottom-up inventories. The five largest contributions by province in E1 for 

January are from Hebei, Shangdong, Henan, shanxi and Sichuan. In E2 by the 

inversion, the five largest BC emission province are same with E1, but 

emissions are greatly enhanced in many provinces. We find emission from half 

of provinces in China as to be enhanced by a factor of over 2 for January. The 

resulting estimate emission over China in January and July is 240.1 Gg, 



169.5Gg respectively. Fig 9 shows the seasonality of BC emission in China. 

The emissions in every month had been enhanced after the inversion. The 

annual emission of bottom-up inventory is about 1449.6 Gg, and inversed 

inventory is about 2539.3 Gg.  

While inverse modeling can provide a simplified solution, the processes 

contributing to the model bias and error go beyond emission. Therefore, 

emission inversing is likely to lump up uncertainties from other processes into 

emission. Although we had used monthly mean concentration to eliminate the 

effect, it is still important to evaluate the inversed emission estimation and 

uncertainty of the result. Table 3 lists the monthly mean BC concentrations at 

the observation sites. It shows that there are large errors between the monthly 

BC concentration simulations driven by the bottom-up emissions (E1) and 

observations. Most of them feature a negative bias. After EnOI inversion, the 

model simulation for most observation sites in China is much closer to the 

observation, even for the verification sites. The error percentage decreases 

from 78.97% to 39.54%, which is an almost 50% decrease. 

Figure 7 shows the variations in daily BC concentrations in January 2008. 

The red line shows the observations; the blue line is the model simulation 

driven by prior emissions (E1); and the green line is the model simulation 

driven by inversed emissions (E2). Even though we only employ the monthly 

mean BC measurements to inverse the emissions, the accuracy of the daily 

model simulation is also improved. Take Zhengzhou site (ZZ) for example, 

driven by inversed emission inventory, the daily simulation concentration and 

its variation are more consistent with observation. Observations in ZZ site 

exhibited a peak during 2-8 January, the simulation with E1 does not present, 

whereas simulation with E2 does. We calculate the RMSE between the daily 

model simulation and observation (Fig. 8). The blue bar is the RMSE between 

the daily model simulation driven by prior emissions (E1) and the observation, 

and the red bar is the RMSE between the daily model simulation driven by the 

inversed emissions (E2) and the observation. As we can see, all of the RMSEs 



decrease, with the average RMSE dropping from 5.08 to 3.47, which is a 

decrease of about 31.56%. Because there were large region wide 

underestimation in the bottom-up emission, not only in the densely populated 

and industrialized areas such as northern China, the Yangtze River Delta and 

the Sichuan basin, but also in northwest China which have lower population 

densities and lower economic level, the model performance of daily BC 

concentration was very poor. The simulation at rural and urban sites were 

significantly lower than the observations. With inversion by EnOI, the emission 

low bias had been corrected, the simulated concentration were increased and 

improved. However, there were still large difference between the daily 

observations and simulation, because there are some other source of 

uncertainties such as meteorology and other factors of model error. We had 

used monthly mean data in the inversion process to reduce these effects, but 

when come to hourly and daily simulation, these effects should be considered 

reasonably which is the future work we plan to work on. 

From the Figures and tables above, it is apparent that the biases of the BC 

emission intensities in China at each grid point are corrected by the EnOI 

inversion system. Where the bias is large, the RMSE decreases significantly. 

However, if there is small bias, such as in the ZhuZhang (XG) site, the 

correction is tiny, and the RMSE decreases only slightly. We also find that, 

near Beijing, emissions are overestimated, and this is because the observation 

in the SD site has negative bias. However, after the inversion, the BC 

concentration at the verification site (BJ) also increases, that reason is the 

emission around Beijing was underestimated, and been corrected. The 

accuracy of the SD site changes negligibly. We believe that the reason is that 

the horizontal grid resolution of 50 km not high enough to distinguish between 

two very close observation sites with different variation. This problem could be 

solved if we use a model and emissions inventory with higher resolution. 

   We also conducted the Monte Carlo simulation to quantify the uncertainty 

of the total bottom-up emission and the inversed emission inventory in China . 



The lognormal distribution was assumed, and the standard deviation was 

calculated by combining the root-mean-square error between observation and 

simulation with standard deviation of the inventory. Monte Carlo simulations 

with randomly selected values within the PDFs were repeatedly implemented 

for 10000 times. The uncertainty in Chinese BC bottom-up emission and 

inversed emission inventory at the 95% were obtained, as shown in Fig. 10. 

The mean value, 2.5th percentile value, and 97.5th percentile value were 1570, 

321, and 5138 Gg (bottom-up) and 2650, 1114, 5471 Gg (inversed emission), 

respectively. Therefore, the uncertainty of these two emission inventory were 

about [-80%, 227% ], and [-58, 102%], correspondingly. Using the ensemble 

inversion modeling, the uncertainty of BC emission inventory decreased 

significantly . We also compare our estimation with results from previous study. 

Streets et al (2003) estimated the 1.05Tg BC emission in China for the year 

2000 with ±360% uncertainty measured as 95% confidence intervals. Zhang et 

al (2009) estimation of the China BC emission is 1.61Tg. Qin and Xie (2012) 

estimated the 1.57Tg BC emission in China for the year 2005 with [-51%, 148] 

uncertainty. Our estimation are nearly 40%-100% higher than these bottom-up 

inventories. One reason is there was very little emissions for the northwest 

China and northeast China in all of these emission inventory. They are so 

similar low in these regions probably because these bottom-up inventories are 

based on the same statics data source. Based on top-down regression method, 

Fu et al (2012) estimated the annual BC emission is 3.05±0.78Tg which is 

higher than our estimation. One possible reason is that their estimation was 

produced by applying domain-wide scaling factors and may be biased high in 

central China which had been pointed out in their paper. 

 

5. Summary and discussion 

An inverse modeling system is developed for BC emissions in an online 

coupled chemical weather forecasting system, GRAPES/CUACE, using the 

inexpensive EnOI methodology. The emissions sampling strategy is discussed 



and improved. With its time correlation strategy, the ensemble forecast can 

have a larger spread to include the observations. The effect of localization in 

the analysis is also studied. With reasonable localization, the effects of sample 

error and spurious correlations are reduced. 

BC aerosols in China are simulated and compared to surface 

measurements, with the goal of deriving top-down BC emissions bias 

estimates. We conduct a month-long simulation for January 2008, driven by 

the current Chinese bottom-up BC emissions inventories. Comparison of the 

model results to observations at background and rural sites evaluates the 

bottom-up inventories. The simulated average monthly mean BC 

concentration in January for all rural and background sites is 1.152 µg/m3, 

which is 78 % lower than the observed amount (5.238 µg/m3), indicating the 

BC source is underestimated on a national scale, likely due to uncertainties in 

emissions from small-scale industrial activity, domestic combustion, and 

transportation (Qin and Xie, 2011). There is a missing source in western China, 

likely associated with the use of biofuels or other low-quality fuels for heating. 

This indicates that the bottom-up BC emissions are too low and 

spatiotemporally misrepresented. The monthly mean eliminates the 

meteorological factors and other uncertainties, so the underestimation comes 

mainly from the emissions, which explains the low biases in the simulated 

concentrations. The monthly mean of the simulated BC is put into the equation 

(9) as the background forecast, and the monthly mean of the BC observations 

is considered as the observation. With the inversion of EnOI, the bias of the 

BC emissions intensity in China at each grid point is corrected by the inverse 

system. We find emission from provinces in China as to be enhanced by a 

factor of 1.8. The emission over China in January by our estimation is 240.1 

Gg, and annual BC emission is about 2539.3 Gg. 

Applying top-down emissions estimates, the simulated average annual 

mean concentration at rural and background sites for January is improved to 

3.282µg/m3. Despite only employing the monthly mean BC measurements to 



inverse the emissions, the accuracy of the daily model simulation also 

improves. The average RMSE drops from 5.08 to 3.47 (a decrease of 

approximately 31.56%), showing that where the bias is large, the RMSE 

decreases significantly. It is also found that the performance of EnOI may fail 

under two circumstances: where the bias is small, such as in the ZhuZhang 

(XG) site; and where the horizontal grid resolution is not high enough to 

distinguish between two very close observation sites with different variations. 

This problem could be solved if we use a model and emissions inventory with 

higher resolution. Our study finds that EnOI is a useful and computation-free 

method to correct the bias of aerosol emissions. These results are valuable 

and promising for a better understanding of aerosol emissions and 

distributions, as well as aerosol forecasting. We plan to explore the use of 

other data, such as satellite-derived aerosol optical depth observations, to 

evaluate our results. We suggest that EnOI may provide a practical and 

cost-effective alternative to the EnKF for correction of the aerosol emissions 

bias where computational cost is a limiting factor. In future work, we intend to 

employ EnKF and Ensemble Kalman smoother to optimally recover temporally 

resolved (e.g. daily timescale) emissions inventories of BC and other aerosols.  
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Fig. 1 The GRAPES_CUACE model domain and BC observation sites used 

in this study. Observations considered for assimilation are shown as red points, 

whil observations considered for verification are shown as blue stars. 

Information about stations is shown i

 

 

 

 

 

 

 

 

 

 

The GRAPES_CUACE model domain and BC observation sites used 

in this study. Observations considered for assimilation are shown as red points, 

whil observations considered for verification are shown as blue stars. 

stations is shown in Table 1. 

 

The GRAPES_CUACE model domain and BC observation sites used 

in this study. Observations considered for assimilation are shown as red points, 

whil observations considered for verification are shown as blue stars. 



 
 

Fig. 2 Emission ensembles at grid (116.5°N, 40°E): sample strategy with no 

time correlation (left); sample strategy with time correlation α=0.9 (right) (units: 

mg/s·m2). 

 

 

 

Fig.3  The ensembles of BC model simulation at grid 116.5°N, 40°E. The left 

one uses sample strategy with no time correlation. The right one uses sample 

strategy with time correlation α=0.9. The red points is the daily variation of BC 

observations (units: μg/m3).  

 

 



 

 

 

Fig. 4 BC emissions inversed by observations from site Zhengzhou (ZZ):  (a) 

back-ground error correlation between site ZZ and other grids without 

localization; (b) BC emissions inversed by observations from site ZZ without 

localization; (c) background-error correlation between site ZZ and other grids 

with localization; (d) BC emissions inversed by observations from site ZZ with 

localization. 
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Fig. 5 BC monthly mean concentrations (units: 

concentration; (b) model simulation with bottom

model simulation with bottom

model simulation and observation

simulation and observation for

using the bottom-up emissions inventory; pink bars show the observed surface 

BC concentrations. 

 

 

BC monthly mean concentrations (units: μg/m3). (a) Seasonality of 

(b) model simulation with bottom-up emission for

model simulation with bottom-up emission for July; (d) comparison between 

model simulation and observation for January; (e) comparison between mod

simulation and observation for July, Green bars show the model-

up emissions inventory; pink bars show the observed surface 
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Fig. 6 BC emissions from China inversed by 27 observation sites (units: µg 

/s·m2): (a) bottom-up emissions E1 for January; (b) inversed emissions E2 for 

January; (c) bottom-up emissions E1 for July; (d) inversed emissions E2 for 

July. 

 



 

 

 



Fig. 7 BC daily concentrations in January 2008 (units: μg/m3). The red dotted 

line shows the observation; the blue line is the model simulation driving by 

prior emissions (E1); and the green line is the model simulation driven by 

inversed emissions (E2). 

 

Fig. 8 The root-mean-square error (RMSE) between the daily model 

simulation and observation. The blue bars show the RMSE between the daily 

model simulation driven by prior emissions (E1) and observations, and the red 

bars show the RMSE between the daily model simulation driven by inversed 

emissions (E2) and observations. (units: μg/m3) 

 

 

 

   Fig. 9 Seasonality of BC emission in China  (units: Gg) 
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Fig. 10 Uncertainty analysis for annual Chinese BC bottom-up and inversed 

emission inventory 
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Table 1 Observation site information 

num observation sites LON LAT ALT description

1 AKeDaLa (AK) 87.97 47.12 562 background site

2 TaZhong (TZ) 83.67 39 1099.3 rural site

3 HaMi (HM) 93.52 42.82 737.2 rural site

4 EJiNaQi (EJ) 101.07 41.95 940.5 urban site

5 DunHuang (DH) 94.68 40.15 1140 rural site

6 WaLiGan (WL) 100.92 36.28 3816 background site

7 ZhuRiHe (ZR) 112.9 42.4 1151.9 rural site

8 YuLin (YL) 109.2 38.43 1105 urban site

9 YuShe (YS) 112.98 37.07 1041.4 urban site

10 LongFengShan (LF) 127.6 44.73 330.5 rural site

11 XiLinHaoTe (XL) 116.12 43.95 1003 rural site

12 TongLiao (TL) 122.27 43.6 178.7 urban site

13 FuShun (FS) 123.95 41.88 163 urban site

14 GuCheng (GC) 115.8 39.13 11 urban site

15 DaLian (DL) 121.63 38.9 91.5 urban site

16 ChengDu (CDu) 104.04 30.65 553 urban site

17 ZhuZhang (XG) 99.73 28.02 3580 background site

18 ZhengZhou (ZZ) 113.68 34.78 110 urban site

19 XiAn (XA) 108.97 34.43 410 urban site

20 GuiLin (GL) 110.3 25.32 164.4 rural site

21 LinAN (LA) 119.73 30.3 138.6 rural site

22 LuShan (LS) 115.99 29.57 1165 rural site

23 NanNing (NN) 108.35 22.82 172 urban site

24 PanYu (PY) 113.35 23 131 urban site

25 GaoLanShan (GLs) 105.85 36 2161.5 rural site

26 ChangDe (CD) 111.71 29.17 565 rural site

27 ShangDianZi (SD) 117.12 40.65 293.3 background site

28 ShenYang(SY) 123.41 41.76 110 urban site

29 Beijing (BJ) 116.47 39.8 31.3 urban site

30 HuiMin (HM) 117.53 37.48 11.7 urban site

31 JinSha (JS) 114.2 29.63 330.5 rural site  
 

 

 

 

 

 

 

 

 

 

 

 



Table 2 Estimates of provincial BC emission (Gg) by bottom-up and inversed 

method  

 

Province E1 E2 E2/E1 E1 E2 E2/E1

Hebei 12.1 22.3 1.8 9.5 14.2 1.5

Shanxi 11.0 17.8 1.6 7.8 11.8 1.5

ShangDong 10.3 13.6 1.3 8.2 11.5 1.4

Henan 9.9 19.3 1.9 6.9 10.7 1.5

Sichuan 6.4 16.4 2.6 4.5 13.6 3.0

Liaoning 6.3 13.1 2.1 4.6 10.2 2.2

Nei Mongol 6.2 11.9 1.9 4.3 7.5 1.7

Jiangsu 5.5 13.2 2.4 4.3 8.4 2.0

Hubei 5.3 11.3 2.1 4.7 7.1 1.5

Anhui 4.8 8.2 1.7 4.4 7.5 1.7

Heilongjiang 4.5 6.5 1.4 3.8 4.5 1.2

Hunan 4.1 10.8 2.6 3.7 5.4 1.4

Guizhou 4.1 5.0 1.2 3.4 4.9 1.4

Yunnan 3.5 4.0 1.1 2.9 3.2 1.1

Guangxi 3.2 6.4 2.0 2.7 5.6 2.1

Shannxi 3.1 7.7 2.5 2.2 5.7 2.6

Jilin 3.9 7.8 2.0 3.1 5.3 1.7

Zhejiang 1.8 4.7 2.6 1.6 3.2 2.0

Fujian 1.4 2.3 1.6 1.0 1.9 1.9

Jiangxi 1.9 3.7 1.9 1.9 3.2 1.7

Guangdong 2.7 5.0 1.9 2.2 4.4 2.0

hainan 0.2 0.2 1.0 0.1 0.1 1.0

Xizang 0.3 0.3 1.0 0.2 0.2 1.0

Gansu 3.1 8.1 2.6 2.8 5.8 2.1

Qinhai 0.5 0.9 1.8 0.5 0.8 1.7

Ningxia 1.1 2.8 2.5 0.7 1.6 2.2

Xinjiang 3.2 9.4 2.9 2.4 6.1 2.6

Chongqin 1.8 2.9 1.6 1.3 2.4 1.9

Beijing 2.8 2.6 0.9 1.9 1.5 0.8

Tianjin 1.1 1.3 1.2 0.8 1.0 1.2

Shanghai 0.3 0.7 2.3 0.2 0.4 1.7

China 126.4 240.1 1.9 98.5 169.7 1.7

January July

 
 

 

 

 

 

 

 

 



Table 3 Model simulations and surface observations of monthly mean BC 

concentrations at assimilation sites and verification sites (units: μg/m3) and the 

relative error percentage ( =(|model − obs| / obs) × 100% ).  

AK 0.07 0.44 0.51 0.29 86.9 13.0

TZ 0.04 1.08 2.20 0.38 98.4 51.1

HMi 0.06 2.21 4.90 1.74 98.9 54.9

EJ 0.05 2.67 7.84 2.85 99.4 66.0

DH 0.06 1.02 3.55 1.14 98.4 71.4

WL 0.13 1.03 0.94 0.76 85.7 9.3

ZR 0.14 1.00 3.37 1.01 95.7 70.2

YL 0.31 0.89 1.88 2.98 83.6 52.9

YS 2.70 5.56 6.94 2.75 61.1 19.9

LF 0.58 2.23 5.16 2.49 88.8 56.8

XL 0.14 0.37 0.93 0.52 84.7 59.8

TL 0.47 2.97 7.42 2.24 93.6 59.9

FS 2.00 4.82 7.06 1.73 71.7 31.6

GC 3.79 7.60 14.24 7.02 73.4 46.7

DL 1.74 4.13 4.85 2.44 64.1 14.8

CDu 1.45 7.14 9.71 8.87 85.0 26.5

XG 0.20 0.21 0.30 3.79 34.8 29.2

ZZ 3.28 10.68 10.89 6.27 69.9 2.0

XA 1.02 3.57 3.66 1.20 72.1 2.5

GLs 0.26 1.92 4.99 6.20 94.8 61.5

LA 1.00 4.19 6.19 5.57 83.8 32.3

LS 0.73 2.69 2.08 1.35 65.0 29.4

NN 0.55 2.26 6.36 4.35 91.3 64.5

PY 0.55 2.15 8.69 6.21 93.6 75.2

GL 0.46 1.82 4.11 1.08 88.8 55.8

CD 0.71 3.02 4.38 3.69 83.7 31.0

SD 1.39 1.38 0.81 0.61 71.8 70.5

BJ 3.45 8.68 11.96 5.26 71.2 27.4

HM 4.27 6.41 8.06 7.30 47.0 20.4

JS 3.20 4.47 5.35 3.74 40.1 16.4

SY 0.89 3.14 3.05 2.29 70.7 2.8

Assi_sites mean 0.88 2.93 4.96 2.95 82.2 42.9

Veri_sites mean 2.95 5.67 7.10 4.65 57.2 16.8

All_sites mean 1.15 3.28 5.24 3.17 79.0 39.5

site
observation

std

Relative

error

percentage

(E1)

Relative

error

percentage

(E2)

Model

(E1)
observationModel (E2)

 


