

Reviewer 1

1. You define the TTL as tropical transition layer, but should also define it in terms of altitude, and maybe also theta, space since you provide specific results that are in the TTL, both regionally and globally.

Yes – we somehow made no mention of TTL in the introduction. We have now added a paragraph in the introduction which gives a brief summary of the important features of the TTL for this work, and made a couple of other minor changes with the same aim in mind.

2. Your point that aircraft measurements from a particular region, when used to calculate global emissions, may bias those calculations is reasonable. However they could also help refine the regional emissions from a given area, which could then be used to improve the global emission estimates.

Good point as long as there are enough measurements. We have added a sentence to this effect at the end of the 2nd para of the discussion.

3. In the Introduction, on page 20657, line 28 you first mention coarse resolution but don't define it until line 10 on the next page, 20658. Also on p. 20658, line 18 you mention high resolution and define it later. It would be helpful to define both course and high resolutions when they are first mentioned.

This is a valid point but tricky to deal with given how we have structured the paper. We prefer to leave it as it is given that the first use of coarse and of high are general and we define them for our work when we describe our methodology.

4. P. 20659, lines 13 and 14 please provide references for the photolysis and OH reactions for your CH₃Br tracer.

References added.

5. Also on p. 20659, lines 24 and 26 you mention “sigma-height hybrid levels”. It would be useful to define these for those that do not regularly use global models.

We have included a short explanation in para 4 of Methodology.

6. Section 4.2.2; P. 20663, line 26 and 27 you note that the contribution of extratropical emissions to the total TTL mixing ratio is small. How was this determined, e.g. did your CH₃Br tracer have identifiers for tropical and extratropical emissions?

Yes. By using separate tracers for tropical and extratropical emissions we found that the extratropical contribution to the total TTL mixing ratio was small (~10% for the Uniform tracer in the HR model). We therefore note that the effect of extratropical emissions on CHBr₃ TTL mixing ratios can, to first order, be discounted. We did not include this explanation in the manuscript, but could do so if requested.

7. P. 20664, lines 20-22, you discuss mixing ratio levels between 365 and 370K. This is the first mention of theta levels and it is important to relate those to the km altitude levels you have previously been referring to.

This paragraph has been split in two with the second one now focussing on the distribution in potential temperature. This can be inferred from Figs 4 and 5 since potential temperature contours are shown in Figs 4a and 5a.

The text implies that the maximum mixing ratio is above 15.7 km, which would then imply that there would be vertical as well as horizontal transport from the location of convection.

The calculated maximum is below 15.7 km (see panels c & d in Figs 4 and 5). We have removed the statement about horizontal transport which we feel is confusing the main point.

8. Section 5, p. 20667, lines 10-11, please provide references for your comments on dibromomethane, e.g. 2-3 month tropical lifetime and dominant open ocean sources.

We have added references and this sentence now reads:

On the other hand, the calculated TTL mixing ratio of the other major short-lived contributor to stratospheric bromine, dibromomethane (CH_2Br_2), will be relatively unaffected by the model resolution as it has a ~3 month tropical lifetime (Carpenter et al., 2014) and dominant open ocean sources (Ziska et al., 2013).

We have also added a reference to the recent paper on iodine by Saiz-Lopez et al.

Reviewer 2

1. The authors use geometric height to describe the distribution of bromoform. I would suggest to use a physical more meaningful coordinate like potential temperature (or pressure). As I mentioned above, it may change the view on at least the horizontal distribution of bromoform in the TTL.

We have added some introductory text in part 1 to provide better context on the TTL and the vertical coordinate. We did look into the distributions on other levels and did not find significant differences. Contours for potential temperature are included in Figs 4+5 panels a+b to allow the reader to judge the impact for themselves. We have now mentioned this in the figure caption having omitted to do so previously!

2. In section 4.2.2 the contribution of extra-tropical emissions to the TTL mixing ratio is mentioned to be small. How do you distinguish between tropical and extra-tropical contributions?

Yes. By using separate tracers for tropical and extratropical emissions we found that the extratropical contribution to the total TTL mixing ratio was small (~10% for the Uniform tracer in the HR model). We therefore note that the effect of extratropical emissions on CHBr₃ TTL mixing ratios can, to first order, be discounted. We did not include this explanation in the manuscript, but could do so if requested.

3. In Fig. 3d and 5d the maximum value of the bromoform tracer near the surface is not shown. Maybe this value can be mentioned in the figure caption.

The primary author is on maternity leave and unfortunately we do not have access to the data. Given that this does not seem to be a major issue, we hope that the review process can continue without this.

4. All vertical profiles for the Maritime Continent feature a small peak at about 5 km height. Can you comment on this?

We think it is a result of low level convection near coastlines and have added a short paragraph to that effect at the end of Section 4.

5. The contour lines for potential temperature in Figure 4 and 5 are not described in the figure caption.

Now added. We apologise for the confusion caused.

1 **On the emissions and transport of bromoform: sensitivity to model
2 resolution and emission location**

3 **M. R. Russo^{1,2}, M. J. Ashfold^{1,3}, N. R. P. Harris¹, J. A. Pyle^{1,2}**

4 ¹ Department of Chemistry, University of Cambridge, Cambridge, UK

5 ² National Centre for Atmospheric Science (NCAS), Cambridge, UK

6 ³ School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500

7 Semenyih, Selangor, Malaysia

8 **Abstract**

9 Bromoform (CHBr_3) is a short-lived species with an important but poorly quantified ocean
10 source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid,
11 deep convective lifting, from where it can influence the global stratospheric ozone budget.
12 In a modelling study, we investigate the importance of the regional distribution of the
13 emissions and of model resolution for the transport of bromoform to the TTL. We use two
14 idealised CHBr_3 emission fields (one coastal, one uniformly distributed across the oceans)
15 implemented in high and coarse resolution (HR and CR) versions of the same global
16 model and focus on February as the period of peak convection in the West Pacific. Using
17 outgoing long-wave radiation and precipitation as metrics, the HR version of the model is
18 found to represent convection better. In the more realistic HR model version, the coastal
19 emission scenario leads to 15-20% more CHBr_3 in the global TTL, and up to three times
20 more CHBr_3 in the TTL over the Maritime Continent, than when uniform emissions of the
21 same tropical magnitude are employed. Using the uniform emission scenario in both
22 model versions, the distribution of CHBr_3 at 15.7 km (approximately the level of zero net
23 radiative heating) is qualitatively consistent with the differing geographic distributions of
24 convection. However, averaged over the whole tropics, the amount of CHBr_3 in the TTL in
25 the two model versions is similar. Using the coastal scenario, in which emissions are
26 particularly high in the Maritime Continent because of its long coastlines, the mixing ratio
27 of CHBr_3 in the TTL is enhanced over the Maritime Continent in both model versions. The
28 enhancement is larger, and the peak in CHBr_3 mixing ratio occurs at a higher altitude, in
29 the HR model version. Our regional-scale results indicate that using aircraft measurements
30 and coarse global models to infer CHBr_3 emissions will be very difficult, particularly if (as is
31 possible) emissions are distributed heterogeneously and in regions of strong convective
32 activity. In contrast, the global-scale agreement between our CR and HR calculations
33 suggests model resolution is less vital for studies focussed on the transport of bromine into
34 the global stratosphere.

35 **1. Introduction**

36 Very short-lived halogenated substances (VSLS) are thought to make a significant but
37 uncertain contribution to bromine in the stratosphere (5 ± 3 ppt [i.e. ~10-40%] Br,
38 Carpenter, Reimann et al., 2014). Much of this uncertainty is linked to the contribution of
39 bromoform (CHBr_3), which has both the shortest lifetime and the largest emissions of the
40 commonly observed brominated VSLS.

41 The short lifetime of CHBr₃ (~15 days in the tropical boundary layer; Carpenter, Reimann
42 et al., 2014) means that measurements in a particular location can only be used to
43 constrain emissions over relatively small areas of the globe (e.g., Ashfold et al., 2014), and
44 inventories are therefore uncertain (Quack and Wallace, 2003). To illustrate, recent
45 estimates of total global emissions, constructed using various methodologies, range
46 between 120-200 Gg Br yr⁻¹ (Ziska et al., 2013) and ~800 Gg Br yr⁻¹ (Yokouchi et al.,
47 2005; Butler et al., 2007; O'Brien et al., 2009). Emissions from the oceans are believed to
48 be the major source, but the relative importance of coastal and open ocean emissions is
49 unclear, with uncertainty here linked to the lack of information on the distribution and
50 relative strength of the dominant macro- and micro-algal sources (Ordonez et al., 2012;
51 Stemmler et al., 2015).

52 Model estimates of the contribution that CHBr₃ makes to Br in the stratosphere vary due to
53 the assumed emission distribution (Hossaini et al., 2013), and also due to the treatment of
54 chemical transformations of so-called product gases (e.g., Aschmann and Sinnhuber,
55 2013). A further source of uncertainty of Br injection into the stratosphere, again important
56 because of the short CHBr₃ lifetime, is its sensitivity to model representations of
57 convective transport (e.g., Liang et al., 2014). This is likely to be particularly important
58 when emissions and convective transport are spatially heterogeneous, and possibly co-
59 located (e.g., Tegtmeier et al., 2012).

60 The peak outflow of convection occurs at altitudes around 12-13 km (corresponding to a
61 potential temperature of ~340 K and a pressure of ~200hPa), and the tropical tropopause
62 layer (TTL) is the transition zone between these altitudes and the stratified stratosphere at
63 ~18 km (~380 K, ~90 hPa) (Levine et al., 2007; Randel and Jensen, 2013). During
64 northern hemisphere winter the strongest convection is found over the West Pacific and
65 Maritime Continent, above the warm waters of the Tropical Warm Pool (Gettelman et al.,
66 2002). This is thought to be the region of strongest transport of short-lived species from
67 the ocean surface to the TTL (e.g. Levine et al., 2007).

68 Inherent to uncertainty around modelled convective transport is the spatial resolution of a
69 model. The horizontal distribution of convection is less realistic in models with a coarse
70 resolution (e.g., Russo et al., 2011; Chemel et al. 2015). In particular, coarse resolution
71 models fail to correctly represent geographical features around the Maritime Continent,
72 where CHBr₃ emissions might be large (Pyle et al., 2011), such as coastlines (Schiemann
73 et al., 2014) and orography (Kirshbaum and Smith, 2009). As a consequence, they fail to
74 resolve small-scale dynamical features such as sea breezes which often drive local
75 circulation and convective development in coastal areas (Qian, 2008). In contrast, the
76 vertical extent of convection and the associated vertical transport appears to depend more
77 strongly on the convection parameterisation rather than the model horizontal resolution
78 (e.g. Hoyle et al., 2011).

79 Thus far, global model studies related to CHBr₃ emissions and convective transport have
80 generally employed coarse (> 2°) horizontal grids, the resolution used in most climate
81 model studies. Given the sensitivity of convection to resolution outlined above, can we
82 trust these low resolution models when they are used to construct 'top-down' emission
83 inventories (e.g. Warwick et al., 2006)? Are low resolution models suitable for evaluation of

Matt 30/10/15 12:04
Deleted: TTL and
Neil Harris 27/10/15 15:07
Deleted: the
Neil Harris 27/10/15 15:06
Deleted: of Br injection into the stratosphere

Matt 30/10/15 12:07
Deleted: 3
Matt 30/10/15 12:06
Deleted: atmospheric
Matt 30/10/15 12:11
Deleted: clearly
Matt 30/10/15 12:10
Deleted: T
Matt 30/10/15 12:10
Deleted: in January/February
Matt 30/10/15 12:10
Deleted: (TWP)
Neil Harris 27/10/15 15:27
Formatted: Font:(Default) Arial

Neil Harris 27/10/15 15:19
Deleted: -

94 the accuracy of those inventories against observations (e.g., Hossaini et al., 2013), or for
95 simulating transport of CHBr₃ towards the stratosphere in convectively active regions?

96 To begin to address these issues, in this study we employ a conventional, coarse
97 resolution version and a high resolution version of the same global model to address two
98 main questions: (i) to what extent does transport of CHBr₃ to the TTL depend on model
99 resolution, and ii) how does the efficiency of transport of CHBr₃ in the two model versions
100 differ when the tropical oceanic emissions are either spatially heterogeneous, being
101 concentrated along shallow coastlines or are uniform across all oceans?

Matt 30/10/15 12:03

Deleted: tropical tropopause layer (

Matt 30/10/15 12:03

Deleted:)

102 In section 2 (Methodology), the model set-up is described. The idealised CHBr₃ emission
103 scenarios used are then discussed in Section 3, and the results regarding the quality of the
104 model convection and its effect on CHBr₃ transport are given in Section 4. Finally in
105 Section 5, we summarise the main findings and discuss the implications, particularly for
106 current estimates of global CHBr₃ emissions.

107 2. Methodology

108 Model integrations are performed using the UK Chemistry and Aerosols (UKCA) model
109 (Telford et al., 2010; Archibald et al., 2011; O'Connor et al., 2014), coupled to an
110 atmosphere-only version of the UK Met Office Unified Model (UM version 7.3) (Hewitt et
111 al., 2011).

112 A tropospheric chemistry scheme, described in Telford et al. (2010) and O'Connor et al.
113 (2014), is used to represent chemical cycles of Ox, HOx and NOx as well as the oxidation
114 of CO and other non-methane hydrocarbons as previously described in Zeng and Pyle
115 (2003). The oxidation of isoprene is included by implementation of the condensed Mainz
116 Isoprene Mechanism (MIM) as described in Pöschl et al. (2000). Photolysis rates for
117 photochemical reactions are calculated using the fast-JX photolysis scheme (Neu et al.,
118 2007; Telford et al., 2013). For this study, a bromoform tracer has been added to the
119 existing chemistry scheme. Its oxidation is determined by photolysis (Sander et al., 2006)
120 and reaction with the model-calculated OH (De More et al., 1997). After oxidation, the
121 bromine atoms are ignored, playing no further part in the model chemistry.

122 Present day surface emissions for the chemical species are generated from the emission
123 data set of Lamarque et al. (2010), as developed for the IPCC fifth assessment report.
124 Isoprene emissions are taken from the POET database (Granier et al., 2005; Olivier et al.,
125 2003). The general circulation for the periods under analysis is forced by prescribing
126 monthly mean sea surface temperatures and sea ice cover from the AMIP data set
127 (<http://www-pcmdi.llnl.gov/projects/amip>).

128 The model is run in two different configurations. Firstly, coarse resolution (CR) integrations
129 are performed at a horizontal resolution of 3.75° in longitude × 2.5° in latitude (gridbox size
130 ~300 km) with 60 sigma-height hybrid levels (~80 km top). These levels follow earth's
131 surface in the lower troposphere and transition to constant pressure surfaces in the
132 stratosphere and above. Secondly, high resolution (HR) integrations are carried out at a
133 horizontal resolution of 0.56° × 0.375° (gridbox size ~ 40 km) with 63 sigma-height hybrid
134 levels (~40 km top). Horizontally, the area of an HR gridbox is ~40 times smaller than a

137 CR gridbox, while vertically the average resolution in the troposphere is 600 m for CR
138 compared to 360 m for HR. Note that the two model configurations are typically optimised
139 for climate and weather forecast integrations respectively; therefore the impact of these
140 further differences, which is difficult to disentangle from the simple effect of grid resolution,
141 will also be reflected in our analysis.

142 One CR integration is performed spanning 10 years (1996-2005) following a 1-year spinup
143 period while there are five separate HR timeslice integrations for the month of February
144 and the years 1996, 1998, 2000, 2002 and 2005. A 4 month HR spin-up run is performed
145 to initialise chemical fields (including bromoform tracers) prior to the February runs. A
146 summary of the model integrations can be found in Table 1. Each integration is run with
147 both a uniform ocean emission distribution and a coastal emission distribution, as
148 discussed in the next section.

149 Table 1 – Characteristics of models and simulations.

Name	Horizontal	Vertical	Run period	Tracers	Tropical emissions (Gg/yr)
CR	3.75°x2.5°	60 levels (80 km top)	1996-2005	Uniform	280
				Coastal	200
HR	0.56°x0.375°	63 levels (40 km top)	Feb '96, '98, '00, '02, '05	Uniform	280
				Coastal	200
				Uniform_50	200

150

151 3. Bromoform emissions

152 In order to address the sensitivity of bromoform transport to model resolution, we designed
153 two idealised bromoform emission datasets, both with a total of 400 Gg/yr of bromoform
154 emitted. The two idealised emission datasets are prescribed as follows:

- 155 a) *Uniform* – emissions are uniformly distributed in model ocean gridboxes with 70% of
156 the emissions in the tropics and the rest in the extra-tropics, in accordance with
157 Scenario 3 in Warwick et al. (2006). For the purpose of this paper we define the
158 tropics as the region between 20°S-20°N and the extra-tropics as the region
159 between 20-50°N/S.
- 160 b) *Coastal* – the Smith and Sandwell Global Seafloor Topography (Smith and
161 Sandwell, 1997) was used to identify shallow sea areas (defined as having a depth
162 less or equal to 200m) on the HR model grid. Emissions were distributed equally in
163 all shallow-sea gridboxes between 50°S and 50°N, which resulted in 50% of
164 emissions in the tropics and 50% in the extra-tropics. These emissions were then
165 interpolated on the CR grid with an area-averaging technique, ensuring that the
166 total amount emitted in similar domains (i.e. in the tropics and extra-tropics) is the
167 same at both resolutions. Coastal emissions in the Maritime Continent are 29% of
168 the total coastal emissions and 57% of the tropical coastal emissions.

169 The distribution of coastal and uniform emissions at both model resolutions is presented in
170 Figure 1. A third tracer was also used for comparative purposes:

171 c) since the amount of bromoform emitted in the tropics is different in the coastal and
172 uniform tracers, an additional uniform bromoform tracer was used in HR runs
173 (*Uniform_50*), with only 50% of emissions distributed in the tropics. This allows us
174 to compare directly the coastal and uniform_50 concentrations in the Tropics and
175 therefore investigate the sensitivity of model convective transport on the spatial
176 location of emissions.

177 **4. Results**

178 **4.1 Convection characteristics**

179 Monthly mean maps of Tropical Rainfall Measuring Mission (TRMM) observations of
180 precipitation and from the Atmospheric InfraRed Sounder (AIRS) observations of out-going
181 long-wave radiation (OLR) are shown in Figure 2 for February 2005 chosen as a
182 representative February (see below) for which an HR run was available. Equivalent
183 quantities for the coarse and high resolution model runs are also shown. The most obvious
184 differences compared to the observations are with the CR integration and are: (a) the
185 misplaced location of the convection in the CR run in the West Pacific with the maximum
186 being incorrectly restricted to a narrow band associated with the Inter-Tropical
187 Convergence Zone (ITCZ); and (b) the overly strong continental convection in the CR
188 model over S. America and S. Africa. This can be explained by differences in low level
189 circulation and surface moisture fluxes between CR and HR. With its larger grid box size,
190 CR integrations fail to properly represent the sharp gradients between land and sea
191 around the islands in the Maritime Continent and this leads to a poor representation of
192 wind convergence and sea breezes. Over large continents, precipitation is often
193 overestimated in CR, which leads to a positive feedback cycle of moister surface and
194 further enhanced convection. Using either precipitation or OLR as a measure of model
195 performance, it is evident that the high resolution integrations perform better.

196 In the rest of this study, we concentrate on February 2005 to study differences in TTL
197 bromoform concentrations arising from the different model resolutions or different
198 distributions of emissions. OLR was anomalously low over much of the Maritime Continent
199 and northern Australia in February 2005, which was in the declining phase of a weak
200 ENSO event (Oceanic Nino Index of 0.4 –
201 http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).
202 Nevertheless, a comparison of the 5 year average of the different high resolution runs and
203 the 10 year average from the coarse resolution run shows broadly similar results (not
204 shown), so the choice of year is not crucial. A comparison with the multi-year averages is
205 given at the end of Section 4.2.2 to illustrate the relative magnitude of the variability
206 calculated with the different model resolutions and emission scenarios.

207 **4.2 Bromoform transport**

208 In this section we first use the more realistic HR model to compare the cases with coastal
209 emissions and uniform emissions. We then look at the effect of the model resolution.

210 **4.2.1 Coastal versus uniform emissions at high resolution**

211 Figure 3 shows the mixing ratio of CHBr₃, comparing the Uniform_50 and Coastal tracers,
212 at 15.7 km altitude in February 2005 calculated using the high resolution model. An
213 altitude of 15.7 km is used as it is the model level close to, but above, the level of zero net
214 radiative heating above which air will ascend into the stratosphere (see Russo et al. (2011)
215 for a detailed discussion about the height of the zero radiative heating level). Figure 3(a)
216 shows the case where the emissions of CHBr₃ are uniformly distributed across the tropical
217 oceans, while Figure 3(b) shows the case for an equal amount of emissions concentrated
218 in the shallow coastal regions. The mixing ratios in the TTL around the Maritime Continent
219 are noticeably greater for the coastal emissions. This can be seen more clearly in the
220 panels (c) and (d) where the average vertical profiles are shown for the Tropics and for the
221 Maritime Continent (indicated by the rectangle in the top two plots). The peak values for
222 the Coastal tracer at ~15 km are over twice as large as for the Uniform-50 tracer over the
223 Maritime Continent. This is consistent with the enhanced emissions in this region due to
224 the long coastlines (and hence large area with low ocean depth) associated with the
225 islands (see Fig 1) combined with the enhanced upward transport in convection over this
226 region. Globally, the CHBr₃ mixing ratio in the TTL is approximately 15-20% higher when
227 the coastal emissions are used. This is again due to a shorter time between emission and
228 lofting into the TTL when the coastal emissions are collocated with the convection, leading
229 to less chemical degradation of CHBr₃ in the low and middle troposphere. These results,
230 for February 2005, are robust across the 5 different years studies in the HR integrations.

231 The large local differences between CHBr₃ calculated in the TTL for the different model
232 emission distributions (but with the same magnitude of emissions across the tropics) has
233 important implications for emissions derived from aircraft measurements. We discuss this
234 further in Section 5.

235 4.2.2 High resolution versus coarse resolution.

236 One aim of this study is to explore the effect of model resolution on the transport of CHBr₃
237 into the TTL following emissions in tropics. Accordingly from now on, we use the Uniform
238 CHBr₃ tracers (Figure 1 (a) and (c)), rather than Uniform-50, at the two different model
239 resolutions. Recall that, at either resolution, the Uniform tracer has 70% of its emissions in
240 the tropics. We note that the contribution of extratropical emissions to the total TTL mixing
241 ratio is found to be small (~10% for the Uniform tracer) so that the effect of extra-tropical
242 emissions on the CHBr₃ TTL mixing ratios can, to first order, be discounted.

243 Figure 4 (a) and (b) show the 15.7 km CHBr₃ field for February 2005 modelled with
244 Uniform emissions from the high and coarse resolution model runs, respectively. The
245 overall mixing ratio patterns are consistent with the different distributions in convection
246 over the oceanic source regions for CHBr₃. There is a sharp peak in bromoform mixing
247 ratios along the ITCZ in the CR calculation, associated with the unrealistic peak in
248 convection discussed in Section 4.1. When averaged over the whole of the Tropics, the
249 vertical profiles shown in the panels (c) and (d) show little difference. However, we do find
250 ~10-15% higher mixing ratios at 15.7 km in the coarse resolution run over the Maritime
251 Continent.

252 Larger differences are seen between the coarse and high resolution runs for the Coastal
253 CHBr₃ tracer (Figure 5), with noticeably more CHBr₃ lofted into the TTL in the high

254 resolution run and with the peak value at a slightly higher altitude (Figure 5d). This feature,
255 with the peak at higher altitudes, is particularly prominent over the Maritime Continent. The
256 maximum in the CHBr₃ field on the 15.7 km surface does not coincide with the minimum in
257 potential temperature in either the coarse or high resolution runs, as might be expected
258 purely on the basis of the strength of convection. Rather the maximum tracer fields are
259 seen to the south and west of the main convection.

260 These features are similar when considered in potential temperature coordinates, as can
261 be seen from the potential temperature contours shown in Figures 4a and 5a. The highest
262 mixing ratios are found at levels between 365 and 370 K, which are well above the main
263 level of zero net radiative heating; air at this level will be transported to the stratosphere
264 either vertically or along isentropic surfaces into the extratropical lower stratosphere.

265 When the emission sources are heterogeneous as is the case with the Coastal tracer
266 emissions, the magnitude of the vertical transport for a short-lived gas will depend on the
267 coincidence between source region and convective activity. In Section 4.1 we showed that
268 the HR run captures the strong convection over the Maritime Continent better than at the
269 coarser resolution (Figure 2). This strong convection combined with the large coastal
270 source around the Maritime Continent leads to the higher peak mixing ratios in bromoform,
271 at higher altitudes (Figure 5d), with enhanced transport likely into the stratosphere.

272 The representativeness of February 2005 can be examined by comparing the 5 years of
273 the high resolution run (1996, 1998, 2000, 2002, 2005) with (a) the same 5 years (Figure
274 6) and (b) all 10 years from the 10 year CR run (not shown). The same result was found
275 for each comparison. Figure 6 shows the vertical profiles (mean and variability) of the
276 CHBr₃ tracer for 4 cases: the Uniform tracer averaged over (a) the whole Tropics and (b)
277 the Maritime Continent; and (c) and (d) the Coastal tracer for the same two cases. With the
278 Uniform tracer emissions, the tropical average profiles and associated variability for CR
279 and HR shown in Fig 6(a) are similar. The variability is greater over the Maritime Continent
280 (Fig 6b), as might be expected for a region whose convection is strongly influenced by
281 ENSO events, though the difference between CR and HR versions is still small. The
282 variability found with the Coastal tracer is enhanced compared with the Uniform tracer in
283 both HR and CR runs. This enhancement is most noticeable over the Maritime Continent
284 where there is additionally a 10-15% increase in the peak CHBr₃ tracer amount in the high
285 resolution run, indicating that the effect in February 2005 is typical, though larger than in
286 other years.

287 It is also worth noting the small maximum in CHBr₃ at 5 km over the Maritime Continent.
288 This feature is present in the 5-year average as well as in 2005. We ascribe this to low
289 level convection around the coast-lines in the Maritime Continent as previously reported
290 for Borneo (Robinson et al., 2012). It is not apparent in the latitude band average.

291 5. Discussion and Conclusions

292 We use high and coarse resolution versions of the UKCA model to investigate the impact
293 that model resolution and the geographical distribution of emissions have on CHBr₃ mixing
294 ratios in the TTL. The study focuses on February 2005, with its representativeness
295 checked through comparisons with Februaries from other years. Comparing the OLR and

Neil Harris 27/10/15 18:10

Deleted: Highest

Neil Harris 27/10/15 18:15

Deleted: suggesting horizontal transport
following the initial convection. The 365-370 K
potential temperature surfaces

Neil Harris 27/10/15 18:48

Formatted: Subscript

300 the precipitation from the two model runs with observations shows that the HR model
301 captures the convection more realistically than the CR run in terms of both strength and
302 location. We ascribe this difference mainly to the HR model's better description of the low
303 level circulation and sea breezes associated with the larger islands of the Maritime
304 Continent.

305 The HR model produces significant differences between how coastal and uniform
306 emissions affect the CHBr₃ mixing ratios in the TTL (Figure 3). The effect varies regionally
307 with, for example, over twice as much CHBr₃ over the Maritime Continent for the coastal
308 emission case. When averaged over the global TTL there is 15-20% more CHBr₃ in the
309 TTL with the Coastal emissions. Several of the CHBr₃ emission estimates currently used in
310 global models are based, at least in part, on aircraft measurements made in the free
311 troposphere and TTL (e.g., Warwick et al., 2006; Liang et al., 2010; Ordóñez et al., 2012).
312 The inhomogeneity in Figure 3(b) shows that estimates based on aircraft measurements
313 are sensitive to (a) the location of the measurements; (b) the description of convection in
314 the model used; and (c) the assumed ratio of coastal and open ocean emissions. Many of
315 the aircraft measurements used to derive global emissions are located in or around the
316 Pacific Ocean (e.g., Liang et al., 2010; [Navarro et al., 2015](#)), where our calculations
317 indicate higher than average TTL mixing ratios for CHBr₃. It seems likely that global
318 emission estimates based on these aircraft measurements could be biased high, which
319 could offer an explanation for some of the current discrepancies between the various
320 estimates (Carpenter, Reimann et al, 2014). The larger the relative contribution of coastal
321 emissions, the more important this factor will be. Conversely, aircraft measurements can
322 likely be used to improve regional (and hence global) emission estimates. Such a region-
323 by-region approach would probably require more measurements than our currently
324 available.

325 The transport of short-lived species into the TTL and on to the stratosphere depends on
326 the location of the emissions and on the location of the major vertical ascent occurring in
327 convection. A maximum flux into the TTL would occur when the region of emission and
328 convection exactly coincide. On the other hand, if emission is far from convection then it is
329 likely that substantial chemical loss could occur before any rapid vertical transport; the
330 overall flux into the TTL would then be low. Convection is modelled better at higher
331 resolution so the difference between TTL CHBr₃ calculated for the Uniform or Coastal
332 tracers can be large in some regions, as discussed above. For our CR integrations, the
333 difference in the global TTL mixing ratios of CHBr₃ due to emission distribution is smaller
334 (compare figure 4c, d with Figure 5c, d). Other models run at coarse resolution might also
335 be expected to underestimate the amount of short-lived tracer lifted to TTL regionally, with
336 the underestimation differing from year-to-year (Figure 6).

337 The differences are largest for short-lived species, and so the major effect on the
338 stratospheric Br_y budget will be felt through CHBr₃ with its tropical lifetime of ~15 days and a
339 potentially large proportion of emissions in coastal regions. Similarly, if iodine-containing
340 species play a role in upper tropospheric and stratospheric chemistry ([Saiz-Lopez et al.,](#)
341 [2015](#)), understanding their precise emission locations will be important and high resolution
342 modelling will be required to capture their local impact. On the other hand, the calculated
343 TTL mixing ratio of the other major short-lived contributor to stratospheric bromine,
344 dibromomethane (CH₂Br₂), will be relatively unaffected by the model resolution as it has a

Neil Harris 4/11/15 09:27

Deleted: of

Matt 30/10/15 15:28

Deleted: the geographic inhomogeneity of the

Matt 30/10/15 15:28

Deleted: could

Matt 30/10/15 15:28

Deleted: A

Matt 30/10/15 15:29

Deleted: an

Neil Harris 27/10/15 18:21

Formatted: Font:(Default) Arial, 12 pt

350 | ~3 month tropical lifetime (Carpenter et al., 2014) and dominant open ocean sources
351 | (Ziska et al., 2013).

352 | We have not examined differences in the impact on the stratosphere for the different
353 | model resolutions and emission distributions. This would require a complete model
354 | calculation, where the degradation products of bromoform are modelled in a fully
355 | interactive chemistry scheme. We note that the multi-year averages of the CHBr₃ mixing
356 | ratios in the global TTL are similar for the CR and HR models implying that the large-scale
357 | performance of the two models is reasonably similar when the total emissions are the
358 | same. This suggests that the resolution of the models currently used in multi-annual
359 | integrations to study the transport of bromine into the global stratosphere is acceptable
360 | (although unacceptable if the aim is to compare model results with observed chemical
361 | distributions in the TTL or to infer emissions). However because the details of the
362 | convection do change with resolution, any changes in the preferred transport pathways
363 | with climate change may not be accurately modelled.

364 | Acknowledgements. This work was supported through the ERC ACCI project (project no.
365 | 267760), and by NERC through grant nos. NE/J006246/1 and NE/F1016012/1. N. R. P.
366 | Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1).

367 | References

368 | Archibald, A., Levine, J., Abraham, N., Cooke, M., Edwards, P., Heard, D., Jenkin, M.,
369 | Karunaharan, A., Pike, R., Monks, P., Shallcross, D., Telford, P., Whalley, L., and Pyle, J.:
370 | Impacts of HO_x regeneration and recycling in the oxidation of isoprene: Consequences for
371 | the composition of past, present and future atmospheres, *Geophys. Res. Lett.*, 38,
372 | L05804, doi:10.1029/2010GL046520, 2011.

373 | Aschmann, J. and Sinnhuber, B.-M.: Contribution of very short-lived substances to
374 | stratospheric bromine loading: uncertainties and constraints, *Atmos. Chem. Phys.*, 13,
375 | 1203–1219, doi:10.5194/acp-13-1203-2013, 2013.

376 | Ashfold, M. J., Harris, N. R. P., Manning, A. J., Robinson, A. D., Warwick, N. J., and Pyle,
377 | J. A.: Estimates of tropical bromoform emissions using an inversion method, *Atmos.*
378 | *Chem. Phys.*, 14, 979–994, doi:10.5194/acp-14-979-2014, 2014.

379 | Butler, J. H., King, D. B., Lobert, J. M., Montzka, S. A., Yvon-Lewis, S. A., Hall, B. D.,
380 | Warwick, N. J., Mondeel, D. J., Aydin, M., and Elkins, J. W.: Oceanic distributions and
381 | emissions of short-lived halocarbons, *Glob. Biogeochem. Cyc.*, 21, GB1023,
382 | doi:10.1029/2006GB002732, 2007.

383 | Carpenter, L. J., Reimann, S. (Lead Authors), Burkholder, J. B., Clerbaux, C., Hall, B. D.,
384 | Hossaini, R., Laube, J. C., and Yvon-Lewis, S. A.: Ozone-Depleting Substances (ODSs)
385 | and Other Gases of Interest to the Montreal Protocol, Chapter 1 in *Scientific Assessment*
386 | of Ozone Depletion: 2014, Update on Global Ozone Research and Monitoring Project –
387 | Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.

388 | Chemel, C., Russo, M. R., Hosking, J. S., Telford, P. J., and Pyle, J. A.: Sensitivity of
389 | tropical deep convection in global models: effects of horizontal resolution, surface

Neil Harris 27/10/15 18:20

Deleted: On the other hand, the amount of the other major short-lived contributor to stratospheric bromine, dibromomethane (CH₂Br₂), with its 2–3 month tropical lifetime and dominant open ocean sources in the TTL will be relatively insensitive to the model resolution.

Neil Harris 4/11/15 09:22

Formatted: Line spacing: at least 1.15 pt

396 constraints, and 3D atmospheric nudging, *Atmos. Sci. Lett.*, 16, 148–154,
397 doi:10.1002/asl2.540, 2015.

398 [DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, 1997.](#)

399 400 401

402 Granier, C., Guenther, A., Lamarque, J., Mieville, A., Muller, J., Olivier, J., Orlando, J.,
403 Peters, J., Petron, G., Tyndall, G., and Wallens, S.: POET, a database of surface
404 emissions of ozone precursors, available at: <http://www.pole-ether.fr/eccad> (last
405 access: May 2013), ECCAD-Ether Database, 2005.

406 Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B.,
407 McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of
408 HadGEM3: the next-generation Met Office climate modelling system, *Geosci. Model Dev.*,
409 4, 223–253, doi:10.5194/gmd-4-223-2011, 2011.

410 Hossaini, R., Mantle, H., Chipperfield, M. P., Montzka, S. A., Hamer, P., Ziska, F., Quack,
411 B., Kruger, K., Tegtmeier, S., Atlas, E., Sala, S., Engel, A., Bonisch, H., Keber, T., Oram,
412 D., Mills, G., Ordonez, C., Saiz-Lopez, A., Warwick, N., Liang, Q., Feng, W., Moore, F.,
413 Miller, B. R., Marecal, V., Richards, N. A. D., Dorf, M., and Pfeilsticker, K.: Evaluating
414 global emission inventories of biogenic bromocarbons, *Atmos. Chem. Phys.*, 13, 11 819–
415 11 838, doi:10.5194/acp-13-11819-2013, 2013.

416 Hoyle, C. R., Marécal, V., Russo, M. R., Allen, G., Arteta, J., Chemel, C., Chipperfield, M.
417 P., D'Amato, F., Dessens, O., Feng, W., Hamilton, J. F., Harris, N. R. P., Hosking, J. S.,
418 Lewis, A. C., Morgenstern, O., Peter, T., Pyle, J. A., Redmann, T., Richards, N. A. D.,
419 Telford, P. J., Tian, W., Viciani, S., Volz-Thomas, A., Wild, O., Yang, X., and Zeng, G.:
420 Representation of tropical deep convection in atmospheric models Part 2: Tracer transport,
421 *Atmos. Chem. Phys.*, 11, 8103–8131, doi:10.5194/acp-11-8103-2011, 2011.

422 Kirshbaum, D. J. and Smith, R. B.: Orographic precipitation in the tropics: large-eddy
423 simulations and theory, *J. Atmos. Sci.*, 66, 2559–2578, doi:10.1175/2009JAS2990.1, 2009.

424 Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
425 Lioussse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E.,
426 Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., Mc-Connell, J. R., Naik, V.,
427 Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and
428 biomass burning emissions of reactive gases and aerosols: methodology and application,
429 *Atmos. Chem. Phys.*, 10, 7017–7039, doi:10.5194/acp-10-7017-2010, 2010.

430 Levine, J. G., Braesicke, P., Harris, N. R. P., Savage, N. H., and Pyle, J. A.: Pathways and
431 timescales for troposphere-to-stratosphere transport via the tropical tropopause layer and
432 their relevance for very short lived substances, *J. Geophys. Res.*, 112, D04308,
433 doi:10.1029/2005JD006940, 2007.

434 Liang, Q., Stolarski, R. S., Kawa, S. R., Nielsen, J. E., Douglass, A. R., Rodriguez, J. M.,
435 Blake, D. R., Atlas, E. L., and Ott, L. E.: Finding the missing stratospheric Bry: a global
436 modeling study of CHBr_3 and CH_2Br_2 , *Atmos. Chem. Phys.*, 10, 2269–2286,

Neil Harris 4/11/15 09:22

Formatted: Normal (Web), Space After: 10 pt, Line spacing: at least 1.15 pt

Neil Harris 4/11/15 09:22

Formatted: Line spacing: at least 1.15 pt

437 doi:10.5194/acp-10-2269-2010, 2010.

438 Liang, Q., Atlas, E., Blake, D., Dorf, M., Pfeilsticker, K., and Schauffler, S.: Convective
439 transport of very short lived bromocarbons to the stratosphere, *Atmos. Chem. Phys.*, 14,
440 5781–5792, doi:10.5194/acp-14-5781-2014, 2014.

441 [Navarro, M. A.](#), [Atlas, E.](#), [Saiz-Lopez, A.](#), [Rodriguez-Llovera, X.](#), [Kinnison, D. E.](#),
442 [Lamarque, J.-F.](#), [Tilmes, S.](#), [Filius, M.](#), [Harris, N. R. P.](#), [Meneguz, E.](#), [Ashfold, M. J.](#),
443 [Manning, A. J.](#), [Cuevas, C. A.](#), [Schauffler, S. M.](#) and [Donets, V.](#): Airborne measurements of
444 organic bromine compounds in the Pacific tropical tropopause layer, *Proc. Nat. Acad. Sci.*,
445 doi:10.1073/pnas.1511463112, 2015.

446 Neu, J. L., Prather, M. J., and Penner, J. E.: Global atmospheric chemistry: Integrating
447 over fractional cloud cover, *J. Geophys. Res.*, 112, D11306, doi:10.1029/2006JD008007,
448 2007.

449 O'Brien, L. M., Harris, N. R. P., Robinson, A. D., Gostlow, B., Warwick, N., Yang, X., and
450 Pyle, J. A.: Bromocarbons in the tropical marine boundary layer at the Cape Verde
451 Observatory — measurements and modelling, *Atmos. Chem. Phys.*, 9, 9083–9099, 2009.

452 O'Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi,
453 M., Folberth, G. A., Sanderson, M. G., Telford, P. J., Voulgarakis, A., Young, P. J., Zeng,
454 G., Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model
455 – Part 2: The Troposphere, *Geosci. Model Dev.*, 7, 41–91, doi:10.5194/gmd-7-41-2014,
456 2014.

457 Olivier, J., Peters, J., Granier, C., Petron, G., Muller, J., and Wallens, S.: Present and
458 future surface emissions of atmospheric compounds, pOET Report 2, EU project EVK2-
459 1999-00011, 2003.

460 Ordóñez, C., Lamarque, J.-F., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake, D. R., Sousa
461 Santos, G., Brasseur, G., and Saiz-Lopez, A.: Bromine and iodine chemistry in a global
462 chemistry-climate model: description and evaluation of very short-lived oceanic sources,
463 *Atmos. Chem. Phys.*, 12, 1423–1447, doi:10.5194/acp- 12-1423-2012, 2012.

464 Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P.: Development and
465 intercomparison of condensed isoprene oxidation mechanisms for global atmospheric
466 modeling, *J. Atmos. Chem.*, 37, 29–52, 2000.

467 Pyle, J. A., Ashfold, M. J., Harris, N. R. P., Robinson, A. D., Warwick, N. J., Carver, G. D.,
468 Gostlow, B., O'Brien, L. M., Manning, A. J., Phang, S. M., Yong, S. E., Leong, K. P., Ung,
469 E. H., and Ong, S.: Bromoform in the tropical boundary layer of the Maritime Continent
470 during OP3, *Atmos. Chem. Phys.*, 11, 529–542, doi:10.5194/acp-11-529-2011, 2011.

471 Qian, J.-H.: Why Precipitation Is Mostly Concentrated over Islands in the Maritime
472 Continent, *J. Atmos. Sci.*, 65, 1428–1441, doi:10.1175/2007JAS2422.1, 2008.

473 Quack, B., and [Wallace, D. W. R.](#): Air-sea flux of bromoform: Controls, rates, and
474 implications, *Glob. Biogeochem. Cyc.*, 17(1), 1023, doi:10.1029/2002GB001890, 2003.

Neil Harris 4/11/15 09:22

Formatted: Line spacing: multiple 1.15 li

Neil Harris 27/10/15 18:36

Moved down [1]: D. W. R.

Neil Harris 27/10/15 18:36

Moved (insertion) [1]

476 | [Randel, W., and Jensen, E.: Physical processes in the tropical tropopause layer and their](#)
 477 | [roles in a changing climate, Nature Geoscience, 6, 169, doi:10.1038/ngeo1733, 2013.](#)

478 | [Robinson, N. H., Allan, J. D., Trembath, J. A., Rosenberg, P. D., Allen, G., and Coe, H.:](#)
 479 | [The lofting of Western Pacific regional aerosol by island thermodynamics as observed](#)
 480 | [around Borneo, Atmos. Chem. Phys., 12, 5963-5983, doi:10.5194/acp-12-5963-2012,](#)
 481 | [2012.](#)

482 | Russo, M. R., Marecal, V., Hoyle, C. R., Arteta, J., Chemel, C., Chipperfield, M. P.,
 483 | Dessens, O., Feng, W., Hosking, J. S., Telford, P. J., Wild, O., Yang, X., and Pyle, J. A.:
 484 | Representation of tropical deep convection in atmospheric models Part 1: Meteorology
 485 | and comparison with satellite observations, Atmos. Chem. Phys., 11, 2765–2786,
 486 | doi:10.5194/acp-11-2765-2011, 2011.

487 | [Saiz-Lopez, A., Baidar, S., Cuevas, C. A., Koenig, T. K., Fernandez, R. P., Dix, B.,](#)
 488 | [Kinnison, D. E., Lamarque, J.-F., Rodriguez-Lloveras, X., Campos, T. L., and Volkamer,](#)
 489 | [R., Injection of iodine to the stratosphere, Geophys. Res. Lett., 42, 16, 6852–6859, 2015.](#)

490 | [Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Keller-](#)
 491 | [Rudek, H., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L.,](#)
 492 | [Ravishankara A. R., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use](#)
 493 | [in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion](#)
 494 | [Laboratory, Pasadena, 2006.](#)

495 | Schiemann, R., Demory, M.-E., Mzielinski, M., Roberts, M., Shaffrey, L., Strachan, J., and ▪
 496 | Vidale, P.: The sensitivity of the tropical circulation and Maritime Continent precipitation to
 497 | climate model resolution, Climate Dynamics, 42, 2455–2468, doi:10.1007/s00382-013-
 498 | 1997-0, 2014.

499 | Smith, W. H. F., and D. T. Sandwell: Global seafloor topography from satellite altimetry
 500 | and ship depth soundings, Science, 277, 1957-1962, 26 Sept., 1997.

501 | Stemmler, I., Hense, I., and Quack, B.: Marine sources of bromoform in the global open
 502 | ocean – global patterns and emissions, Biogeosciences, 12, 1967–1981, doi:10.5194/bg-
 503 | 12-1967-2015, 2015.

504 | Tegtmeier, S., Krüger, K., Quack, B., Atlas, E. L., Pisso, I., Stohl, A., and Yang, X.:
 505 | Emission and transport of bromocarbons: from the West Pacific ocean into the
 506 | stratosphere, Atmos. Chem. Phys., 12, 10633–10648, doi:10.5194/acp-12-10633-2012,
 507 | 2012.

508 | Telford, P. J., Lathière, J., Abraham, N. L., Archibald, A. T., Braesicke, P., Johnson, C. E.,
 509 | Morgenstern, O., O'Connor, F. M., Pike, R. C., Wild, O., Young, P. J., Beerling, D. J.,
 510 | Hewitt, C. N., and Pyle, J.: Effects of climate-induced changes in isoprene emissions after
 511 | the eruption of Mount Pinatubo, Atmos. Chem. Phys., 10, 7117–7125, doi:10.5194/acp-10-
 512 | 7117-2010, 2010.

513 | Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P., Dalvi, M., Morgenstern, O.,
 514 | O'Connor, F. M., Richards, N. A. D., and Pyle, J. A.: Implementation of the Fast-JX
 515 | Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate
 516 | model (v7.3), Geosci. Model Dev., 6, 161–177, doi:10.5194/gmd-6-161-2013, 2013.

Neil Harris 27/10/15 18:55
Deleted:
Neil Harris 27/10/15 18:57
Formatted: Font:(Default) Arial
Neil Harris 4/11/15 09:21
Formatted: Line spacing: at least 1.15 pt
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Matt 30/10/15 12:18
Deleted: et al
Matt 30/10/15 12:17
Deleted: ical
Matt 30/10/15 12:17
Deleted: 28 August
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Matt 30/10/15 12:17
Deleted: earch
Matt 30/10/15 12:17
Deleted: ers
Matt 30/10/15 12:17
Deleted: Volume
Matt 30/10/15 12:17
Deleted: pages
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Neil Harris 27/10/15 18:35
Formatted: Font:(Default) Arial, 12 pt
Matt 30/10/15 12:18
Deleted: Issue
Neil Harris 4/11/15 09:21
Formatted: Space After: 10 pt, Line spacing: at least 1.15 pt
Neil Harris 4/11/15 09:21
Formatted: Line spacing: at least 1.15 pt

526 Warwick, N. J., Pyle, J. A., Carver, G. D., Yang, X., Savage, N. H., O'Connor, F. M., and
527 Cox, R. A.: Global modeling of biogenic bromocarbons, *J. Geophys. Res.*, 111, D24305,
528 doi:10.1029/2006JD007264, 2006.

529 Yokouchi, Y., Hasebe, F., Fujiwara, M., Takashima, H., Shiotani, M., Nishi, N., Kanaya, Y.,
530 Hashimoto, S., Fraser, P., Toom-Sauntry, D., Mukai, H., and Nojiri, Y.: Correlations and
531 emission ratios among bromoform, dibromochloromethane, and dibromomethane in the
532 atmosphere, *J. Geophys. Res.*, 110, D23 309, doi:10.1029/2005JD006303, 2005.

533 Zeng, G. and Pyle, J.: Changes in tropospheric ozone between 2000 and 2100 modeled in
534 a chemistry-climate model, *Geophys. Res. Lett.*, 30, 1392, doi:10.1029/2002GL016708,
535 2003.

536 Ziska, F., Quack, B., Abrahamsson, K., Archer, S. D., Atlas, E., Bell, T., Butler, J. H.,
537 Carpenter, L. J., Jones, C. E., Harris, N. R. P., Hepach, H., Heumann, K. G., Hughes, C.,
538 Kuss, J., Kruger, K., Liss, P., Moore, R. M., Orlikowska, A., Raimund, S., Reeves, C. E.,
539 Reifenhauser, W., Robinson, A. D., Schall, C., Tanhua, T., Tegtmeier, S., Turner, S.,
540 Wang, L., Wallace, D., Williams, J., Yamamoto, H., Yvon-Lewis, S., and Yokouchi, Y.:
541 Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide,
542 *Atmos. Chem. Phys.*, 13, 8915–8934, doi:10.5194/acp-13-8915-2013, 2013.

543

545 Figure 1. Tracer emission fields of CHBr₃ used in the model runs described here: (a)
546 Uniform tracer and (b) Coastal tracer in high resolution run; (c) Uniform tracer and (d)
547 Coastal tracer in coarse resolution run.

548 Figure 2. Observed and modelled fields for February 2005: (a) Outgoing Longwave
549 Radiation (OLR) from AIRS in W m⁻²; (b) precipitation from TRMM in mm day⁻¹; (c) OLR
550 and (d) precipitation for the high resolution run; and (e) OLF and (f) precipitation for the
551 coarse resolution run.

552 Figure 3. The monthly average mixing ratios at 15.7 km in February 2005 are shown for (a)
553 the Uniform_50 tracer; and (b) the Coastal tracer. Average vertical profiles of the mixing
554 ratios for the two tracers are shown for (c) the Tropics (20°S-20°N) and (d) the Maritime
555 Continent (20°S-10°N; 90°E-160°E, as shown in (a) and (b)).

556 Figure 4. The monthly average mixing ratios for the Uniform tracer at 15.7 km in February
557 2005 are shown for (a) the high resolution run; and (b) the coarse resolution run. [Contours](#)
558 [of monthly average potential temperature are shown in \(a\) and \(b\)](#). Average vertical
559 profiles of the mixing ratios for the two runs are shown for (c) the Tropics (20°S-20°N) and
560 (d) the Maritime Continent (20°S-10°N; 90°E-160°E). High resolution run is shown in blue;
561 the coarse resolution run is shown in pink.

562 Figure 5. As for Figure 4, except that these plots are for the Coastal Tracer

563 Figure 6. Average vertical profiles of the mixing ratios for the Uniform tracer in five
564 representative Februaries (1996, 1998, 2000, 2002, 2005) are shown for (a) the Tropics
565 (20°S-20°N) and (b) the Maritime Continent (20°S-10°N; 90°E-160°E). Equivalent plots for
566 the Coastal tracer are shown in panels (c) and (d). High resolution run is shown in blue;
567 the coarse resolution run is shown in pink. Dashed lines indicate 2 standard deviations
568 from the mean (solid).