

Supplement of

Forty years of improvements in European air quality: the role of EU policy-industry interplay

M. Crippa et al.

Correspondence to: M. Crippa (monica.crippa@alice.it) and G. Janssens-Maenhout (greet.maenhout@jrc.ec.europa.eu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

SI-1 Comparison of reference 2010 emissions and retrospective scenarios

Table SI-1.1 shows the ratios between STAG FUEL and REF global and European emissions. With the exception of NH₃, global ratios of STAG_FUEL to REF emissions for energy are 0.15-0.36, for industry between 0.49 and 0.70, and for road-transport between 0.14 and 0.33. For Europe these ratios are much higher (energy 0.25-1.18, industry 1.15-3.96, road transport 0.17-0.68), indicating the impact of cleaner fuels (e.g. for SO₂) on pollutant emissions. Similarly to Table SI-1.1, Table SI-1.2 reports the STAG_TECH to REF emission ratios for global and European scale. These ratios range from 1.06 to 2.40 for the energy and industrial sectors at global scale, corresponding to a change in technology and implementation of abatement measures; a much higher ratio of 8.5 is indeed obtained for SO_2 for road transport, reflecting the use of lower sulfur content fuels for vehicles. Much higher ratios are associated with Europe, due to the strongest impact of the implementation of European legislation. Without considering NH₃, ratios of 1-3.2 and 6.2-8 are found for the energy sector for gaseous and particulate matter pollutants, respectively; lower ratios ranging from 1.2 to 2.6 are obtained for industry, while higher ratios are found for road transport (ranging from 2.5 to 165 for gaseous components and around 4 for PM). Further discussion on these ratios at sector level is reported in paragraphs 3.2, 3.3 and 3.4 of the manuscript.

Table SI-1.1: Effect of fuel consumption stagnation at year 1970 on 2010 pollutant emissions at global and European scales. The ratio between STAG_FUEL and REF scenarios for the year 2010 is reported for each emission sector. EU27 emission ratios are reported in brackets.

	Emission ratio: STAG_FUEL to REF (2010) – Globe (EU27)								
Emission sector	SO ₂	NOx	СО	NMVOC	NH ₃	PM ₁₀	PM _{2.5}	BC	OC
Energy	0.36 (1.18)	0.28 (0.86)	0.25 (0.37)	0.24 (0.25)	0.96 (0.60)	0.17 (0.82)	0.15 (0.74)	0.22 (1.03)	0.17 (0.82)
Industry	0.64 (3.96)	0.70 (2.65)	0.44 (1.90)	0.52 (1.83)	1.17 (0.46)	0.48 (2.23)	0.51 (2.25)	0.47 (3.27)	0.45 (1.53)
Road Transport	0.16 (0.51)	0.21 (0.24)	0.33 (0.68)	0.30 (0.68)	0.77 (0.52)	0.14 (0.20)	0.14 (0.20)	0.14 (0.17)	0.16 (0.22)

Table SI-1.2: Coupled effect of EU legislation and constant Emission Factor (EF) on pollutant emissions at global and European scales (year 2010). The ratio between STAG_TECH and REF scenarios for the year 2010 is reported for each emission sector. EU27 emission ratios are reported in brackets.

	Emission ratio: STAG_TECH to REF (2010) – Globe (EU27)								
Emission sector	SO_2	NOx	СО	NMVOC	NH ₃	PM ₁₀	PM _{2.5}	BC	OC
Energy	1.39	1.07	1.50	1.07	1.24	1.23	1.21	1.68	1.27
	(3.19)	(1.70)	(1.00)	(1.10)	(2.72)	(6.28)	(6.49)	(6.18)	(7.99)
Industry	1.28	1.06	2.40	1.15	1.28	1.21	1.17	1.52	1.11
	(2.02)	(1.23)	(1.63)	(1.32)	(3.87)	(1.72)	(1.58)	(2.60)	(2.42)
Road Transport	8.55	1.57	1.75	1.62	0.70	2.09	2.09	1.98	2.11
	(164.76)	(2.46)	(6.05)	(5.54)	(0.18)	(4.51)	(4.50)	(4.11)	(4.48)

SI-2 Scenarios overview: emissions comparison (2010)

In this section, from Table SI-2.1 to Table SI-2.9 2010 pollutant emissions are reported for the three scenarios, in decreasing order of magnitude of STAG_FUEL for 24 world regions. All emission sectors are considered, with the exception of international shipping and aviation, and the sum of regional emissions corresponds to the world totals. China, India and USA are the countries contributing most to today's gaseous emissions (SO₂, NOx and CO for the REF case), as well as to the STAG_FUEL scenario, due to their high consumption. In addition to China and India, also Africa contributes significantly to actual global PM emissions, while industrialized countries as contributing less due to the deployment of cleaner technologies and particulate abatement measures. Among all world regions, Europe shows the strongest differences between the STAG_TECH and REF scenarios due to the role played by European legislation and abatement measures included in the STAG_TECH scenario.

SO2 - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	10.2	37.8	31.6
USA	7.8	20.8	10.1
OECD Europe	5.8	8.7	3.2
Russia +	5.1	4.2	2.7
India +	3.0	11.5	10.9
Central Europe	3.0	5.5	3.0
Ukraine +	2.6	1.3	1.2
Asia-Stan	1.7	1.9	1.8
Rest South America	1.7	2.5	2.2
Japan	1.6	1.7	1.1
Southern Africa	1.4	2.8	2.7
Middle East	1.3	8.3	7.5
Southeastern Asia	1.1	2.8	2.5
Korea	1.0	1.8	1.6
Brazil	0.9	1.6	1.2
Canada	0.7	1.3	1.0
Rest Central America	0.7	1.4	1.3
Oceania	0.7	1.6	1.1
Mexico	0.6	1.6	1.3
Turkey	0.6	1.6	1.5
Indonesia +	0.5	2.2	2.0
Northern Africa	0.5	1.7	1.5
Western Africa	0.3	0.6	0.5
Eastern Africa	0.2	0.4	0.4
Globe	53.0	125.6	93.7

Table SI-2.1 Comparison of SO₂ emission scenarios per world region (year 2010). Emissions are expressed in Tg SO₂/yr and include all emission sectors.

NOx - 2010	STAG_FUEL	STAG_TECH	REF_2010
USA	9.7	13.4	12.5
China +	7.2	27.2	25.1
OECD Europe	6.2	13.0	7.2
India +	3.1	10.3	9.9
Russia +	3.0	4.9	3.9
Central Europe	2.1	3.2	2.3
Japan	2.0	3.8	2.2
Brazil	1.5	3.6	3.1
Rest South America	1.4	3.1	2.9
Southeastern Asia	1.4	4.1	3.3
Ukraine +	1.2	1.1	0.9
Canada	1.1	1.7	1.7
Asia-Stan	1.0	1.1	0.9
Southern Africa	0.9	2.2	1.8
Middle East	0.9	8.2	6.1
Indonesia +	0.8	2.5	2.2
Oceania	0.7	2.1	1.4
Western Africa	0.7	1.5	1.3
Korea	0.5	1.7	1.7
Mexico	0.5	2.2	2.1
Rest Central America	0.5	1.1	1.1
Eastern Africa	0.4	0.8	0.7
Turkey	0.3	1.1	0.9
Northern Africa	0.3	1.9	1.5
Globe	47.5	115.7	96.9

Table SI-2.2 Comparison of NOx emission scenarios per world region (year 2010).Emissions are expressed in Tg NOx/yr and include all emission sectors.

CO - 2010	STAG_FUEL STAG_TECH		REF_2010
China +	132.1	218.5	165.5
India +	75.3	108.1	96.2
Southeastern Asia	38.3	59.4	48.3
USA	36.4	48.2	47.7
Western Africa	33.3	55.6	38.2
Brazil	23.9	30.7	27.8
Indonesia +	21.8	47.0	36.2
Eastern Africa	19.5	24.0	20.5
Rest South America	16.6	27.5	25.8
Southern Africa	16.2	23.5	17.5
OECD Europe	14.2	42.6	15.4
Central Europe	7.6	11.2	7.7
Russia +	7.0	14.2	9.0
Rest Central America	6.0	8.7	8.0
Japan	3.7	21.7	5.4
Canada	3.6	5.2	5.1
Mexico	3.6	9.8	9.6
Turkey	3.5	4.8	4.4
Ukraine +	3.3	3.8	3.0
Korea	3.2	5.4	4.9
Oceania	2.7	7.3	3.2
Middle East	2.7	25.2	15.3
Asia-Stan	2.6	3.1	2.2
Northern Africa	1.6	6.0	3.3
Globe	478.8	811.6	620.0

Table SI-2.3 Comparison of CO emission scenarios per world region (year 2010). Emissions are expressed in Tg CO/yr and include all emission sectors.

NMVOC - 2010	STAG_FUEL STAG_TECH		REF_2010
China +	19.3	27.1	24.2
India +	12.4	15.5	15.0
Western Africa	10.5	11.5	11.5
Southeastern Asia	9.0	11.0	10.3
Middle East	7.8	13.5	11.1
Eastern Africa	7.6	7.8	7.8
Southern Africa	7.5	8.2	7.8
USA	7.1	8.2	7.9
Brazil	4.4	6.2	5.4
OECD Europe	4.3	8.7	4.5
Rest South America	3.8	5.5	5.0
Indonesia +	3.3	5.1	4.7
Russia +	3.2	5.3	4.1
Korea	1.9	2.2	2.1
Rest Central America	1.7	2.1	2.0
Northern Africa	1.6	2.4	2.1
Central Europe	1.5	2.1	1.5
Japan	1.2	2.1	1.5
Canada	1.1	1.3	1.2
Mexico	1.0	2.1	2.1
Asia-Stan	0.9	1.0	0.9
Ukraine +	0.7	0.8	0.7
Oceania	0.7	1.3	0.8
Turkey	0.5	0.7	0.6
Globe	112.7	151.7	134.8

Table SI-2.4 Comparison of NMVOC emission scenarios per world region (year 2010).Emissions are expressed in Tg NMVOC/yr and include all emission sectors.

NH3 - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	14.1	14.1	14.1
India +	8.5	8.6	8.6
OECD Europe	4.2	4.3	4.2
USA	3.8	4.0	3.9
Southeastern Asia	2.8	2.8	2.8
Brazil	2.8	2.9	2.9
Rest South America	2.1	2.2	2.2
Indonesia +	1.9	1.9	1.9
Western Africa	1.8	1.8	1.8
Eastern Africa	1.6	1.7	1.7
Central Europe	1.4	1.4	1.4
Russia +	1.1	1.1	1.1
Southern Africa	1.0	1.0	1.0
Middle East	1.0	1.0	1.0
Oceania	0.9	0.9	0.9
Mexico	0.9	0.9	0.9
Turkey	0.8	0.8	0.8
Northern Africa	0.8	0.8	0.8
Canada	0.7	0.7	0.7
Rest Central America	0.6	0.6	0.6
Ukraine +	0.5	0.5	0.5
Asia-Stan	0.5	0.5	0.5
Japan	0.4	0.4	0.4
Korea	0.3	0.3	0.3
Globe	54.2	54.8	54.8

Table SI-2.5 Comparison of NH₃ emission scenarios per world region (year 2010). Emissions are expressed in Tg NH₃/yr and include all emission sectors.

PM ₁₀ - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	14.11	19.96	19.37
India +	9.55	12.12	11.72
Western Africa	5.04	5.33	5.20
Southeastern Asia	4.50	5.03	4.86
Eastern Africa	2.91	2.99	2.96
Indonesia +	2.81	3.15	3.06
Brazil	2.77	3.31	3.25
Southern Africa	2.37	2.57	2.50
USA	2.30	2.32	2.16
OECD Europe	1.57	2.43	1.45
Rest South America	1.19	1.40	1.36
Central Europe	1.10	1.51	1.05
Russia +	0.75	0.64	0.61
Rest Central America	0.60	0.62	0.61
Turkey	0.42	0.52	0.50
Mexico	0.39	0.44	0.43
Canada	0.33	0.43	0.37
Korea	0.31	0.53	0.48
Ukraine +	0.30	0.28	0.26
Oceania	0.30	0.37	0.32
Japan	0.29	0.47	0.26
Asia-Stan	0.28	0.24	0.22
Middle East	0.25	0.46	0.41
Northern Africa	0.22	0.31	0.28
Globe	54.7	67.4	63.7

Table SI-2.6 Comparison of PM₁₀ emission scenarios per world region (year 2010). Emissions are expressed in Tg PM₁₀/yr and include all emission sectors.

PM _{2.5} - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	9.17	13.65	13.18
India +	6.24	8.21	7.98
Southeastern Asia	3.1	3.51	3.4
Western Africa	2.47	2.67	2.62
Brazil	2.1	2.57	2.38
Indonesia +	1.92	2.19	2.14
USA	1.66	1.4	1.32
Eastern Africa	1.37	1.42	1.41
Southern Africa	1.14	1.27	1.23
OECD Europe	1.04	1.69	0.93
Rest South America	0.82	1.00	0.95
Central Europe	0.67	0.94	0.63
Russia +	0.46	0.4	0.38
Rest Central America	0.31	0.34	0.32
Turkey	0.31	0.38	0.37
Oceania	0.24	0.28	0.24
Mexico	0.23	0.27	0.26
Canada	0.22	0.28	0.25
Asia-Stan	0.22	0.17	0.16
Ukraine +	0.21	0.18	0.17
Korea	0.19	0.35	0.32
Japan	0.18	0.33	0.15
Middle East	0.15	0.32	0.27
Northern Africa	0.11	0.19	0.16
Globe	34.7	44.1	41.4

Table SI-2.7 Comparison of PM_{2.5} emission scenarios per world region (year 2010). Emissions are expressed in Tg PM_{2.5}/yr and include all emission sectors.

BC - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	1.26	1.72	1.59
India +	0.65	1.01	0.89
Western Africa	0.31	0.37	0.36
Southeastern Asia	0.21	0.32	0.27
Eastern Africa	0.17	0.19	0.19
USA	0.15	0.2	0.15
Southern Africa	0.14	0.17	0.15
Indonesia +	0.13	0.2	0.18
OECD Europe	0.12	0.52	0.16
Brazil	0.11	0.27	0.17
Rest South America	0.06	0.12	0.09
Central Europe	0.05	0.12	0.07
Rest Central America	0.03	0.05	0.04
Russia +	0.03	0.04	0.03
Japan	0.02	0.06	0.03
Asia-Stan	0.02	0.02	0.02
Canada	0.02	0.05	0.03
Ukraine +	0.02	0.01	0.01
Turkey	0.02	0.04	0.03
Mexico	0.01	0.03	0.03
Oceania	0.01	0.04	0.02
Korea	0.01	0.04	0.04
Northern Africa	0.01	0.05	0.03
Middle East	0.01	0.09	0.06
Globe	3.7	5.9	4.7

Table SI-2.8 Comparison of BC emission scenarios per world region (year 2010). Emissions are expressed in Tg BC/yr and include all emission sectors.

OC - 2010	STAG_FUEL	STAG_TECH	REF_2010
China +	3.16	4.00	3.91
India +	2.58	2.84	2.82
Southeastern Asia	1.10	1.21	1.17
Western Africa	1.05	1.09	1.09
Indonesia +	0.67	0.76	0.74
Brazil	0.59	0.69	0.65
Eastern Africa	0.58	0.59	0.59
Southern Africa	0.43	0.45	0.45
USA	0.43	0.30	0.28
Rest South America	0.25	0.29	0.28
OECD Europe	0.22	0.47	0.25
Central Europe	0.19	0.24	0.20
Turkey	0.12	0.14	0.13
Rest Central America	0.11	0.11	0.11
Russia +	0.09	0.09	0.09
Mexico	0.07	0.09	0.08
Oceania	0.06	0.08	0.06
Korea	0.04	0.06	0.05
Ukraine +	0.04	0.04	0.04
Canada	0.04	0.05	0.04
Asia-Stan	0.04	0.04	0.03
Middle East	0.03	0.07	0.06
Northern Africa	0.03	0.06	0.05
Japan	0.01	0.05	0.02
Globe	11.9	13.8	13.2

Table SI-2.9 Comparison of OC emission scenarios per world region (year 2010). Emissions are expressed in Tg OC/yr and include all emission sectors.

SI-3 Comparison of STAG_FUEL scenario and the reference case outside Europe

Figure SI 3.1 shows the impact of fuel consumption and fuel mix stagnating at 1970 levels outside Europe (STAG_FUEL scenario), thus complementing results shown in Figs. 3 and 4 where the global and European trends are represented. USA reflects the trend of industrialized countries, characterized by lower emissions moving from 1970 to 2010 due to use of cleaner technologies and fuels, while increasing trend is observed for China, representative of emerging countries, due to enhanced consumptions and activities. Interestingly, USA decreased its industrial emissions by a factor of 4 in 2010 compared to STAG_FUEL for SO₂ and by 2-3 times for NOx, CO and PM₁₀ due to the shift to cleaner fuels and shift of some industrial activities to emerging countries. Conversely, Chinese industrial emissions drastically increased due to the enhanced activities compared to 1970. This increase couples both the Chinese economic growth and the shift of manufacturing production of industrialized countries to the developing ones (e.g. to China, Southeastern Asia, etc.).

Figure SI 3.1 – Impact of stagnant fuel consumption and mix as in 1970 outside Europe (STAG_FUEL scenario).

presented.

SI-4 Impact of EU policy and EoP technologies on the energy and road transport sector

Figure SI 4.1 – Effect of the implementation of European legislation and of keeping emission factors constant (STAG_TECH) since 1970 on power generation emissions (EU27). SO₂ (upper panel) and PM₁₀ (lower panel) annual emissions time series are

Figure SI 4.2 – Effect of the implementation of European legislation and of keeping emission factors constant since 1970 (STAG_TECH) on road transport emissions (EU27). SO₂ (upper panel) and PM₁₀ (lower panel) annual emissions time series are presented.

SI-5 Comparison of EDGAR4.3 reference emission scenario with other reported emissions

In order to evaluate the consistency of the EDGARv4.3 reference scenario, a comparison with other official and science based national/regional emission inventories and regional databases is performed (see Figs. SI-5.1 and SI-5.2). In the following, we show the good agreement obtained for SO₂ and BC, but similar results can be extended for all gaseous and particulate matter pollutants. Here we represent the comparison at regional level, although this was performed at sector level for specific regions of interest. Considering Europe, USA, China and India, the agreement of regional emissions between EDGARv4.3 and HTAP_v2 is quite good. Differences between EDGARv4.3 and HTAP_v2 are between -4% and +4% for SO₂, -20% and +20% for NOx, -13% and 26% for CO, -48% and 6% for NMVOC, while they range from -53% to 14% for PM (including its components).

Figure SI 5.1 – Comparison of 2010 SO₂ emission data from EDGAR v4.3, HTAP_v2, MACCity and literature works at regional level.

Figure SI 5.2 – Comparison of 2010 BC emission data from EDGAR v4.3 and MACCity at regional level.

16

Figures SI-5.3, SI-5.4 and SI-5.5 show the comparison of the emission time series for selected pollutants (SO₂, NOx, CO, BC and OC) provided by the EDGARv4.3 and MACCity databases for groups of regions. The relative difference between these two inventories is calculated for each year as VAR = (EDGARv4.3-MACCity)/MACCity and then averaged over time. Table SI-5.1 summarizes the averaged relative difference (VAR) between the emissions estimated by MACCity and EDGARv4.3 over time (1970-2010). At global level, the relative difference of these two sets of emission estimates is lower than considering specific regions. Groups of regions are defined as following: emerging countries include China, India, other Asian countries, Russia, Turkey and Middle East, developing countries include Central and South America and Africa, while the industrialized ones account for Oceania, USA, Canada, Easter and Western Europe. In general, the two emission inventories have a similar trend over time, although specific differences can be observed in some regions. Our uncertainty evaluation is consistent with the estimates for the year 2010 provided by Janssens-Maenhout et al. (submitted) using the HTAP_v2.2 database, where they estimate an uncertainty of 8% for SO₂, 4-5% for NOx and CO and larger values for BC (29%).

Figure SI 5.3 – MACCity vs EDGARv4.3 time series comparison (industrialized countries).

Figure SI 5.4 – MACCity vs EDGARv4.3 time series comparison (emerging countries).

Figure SI 5.5 – MACCity vs EDGARv4.3 time series comparison (developing countries).

VAR %	SO ₂	NOx	СО	BC	OC
Globe	-8.5 ± 6.0 %	-5.2 ± 6.0 %	1.8 ± 2.0 %	-18.1 ± 4.0 %	-1.6 ± 5.0 %
Industrialized	-27.8 ± 20.6 %	-7.9 ± 4.9 %	-7.6 ± 13.0 %	-29.3 ± 12.8 %	-13.4 ± 23.9 %
Emerging	14.7 ± 10.0 %	7.7 ± 13.0 %	0.8 ± 20.4 %	-15.2 ± 34.6 %	3.9 ± 46.0 %
Developing	-31.9 ± 10.2 %	$-22.3 \pm 31.4\%$	36.8 ± 69.3 %	-3.1 ± 16.1 %	-10.9 ± 8.7 %

Table SI-5.1 – Relative difference between MACCity and EDGARv4.3 time series for groups of regions (industrialized, emerging and developing countries).

SI-6 EDGARv4.3 emitting sector specifications and regions classification

In this section some details about the EDGARv4.3 database are provided, focusing on the three emission sectors included in our scenarios (energy, industry and road transport).

SI-6.1: Power generation (ENE)

Table SI-6.1.1 summarizes the processes and technologies considered in the power generation sector by the EDGARv4.3 database, while from Table SI-6.1.2.1 to Table SI-6.1.2.3 pollutant specific abatement measures are reported. Numerical codes reported in Figs. SI-6.1.1 and SI-6.1.2 refer to applied abatement measures for NOx, PM and SO₂ (e.g. 000 means that no abatements are applied for the three pollutants, while increasing numbers correspond to more advanced abatement measures).

Power industry (ENE)										
Process	Description	Technology	Description							
ENE.PEL	public electricity production	NSF	Non-specified							
			technology							
ENE.CHP	public cogeneration of heat and electricity	GF0	grate firing							
ENE.DHE	public district heating	PW0	Pulverized coal wet							
			bottom							
ENE.AEL	Autoproduced electricity	PD0	Pulverized coal dry							
			bottom							
ENE.AHP	Autoproduced cogeneration of heat and	FB0	Fluidized bed							
	electricity									
ENE.AHE	Autoproducer heat plants	BO0	Boiler for gas/liquids							
ENE.POW	own of electricity and heat (no emission)	IC0	Internal combustion							
			engine							
ENE.PUM	pumped storage of electricity (no	GT0	Gas turbine							
	emission)									

Table S1-6.1.1: Processes and technologies

Figure SI 6.1.1 – Penetration of technologies applied to the energy sector (e.g. public electricity production with bituminous coal = ENE.PEL.BTC.PD0) at global and European scales.

Figure SI 6.1.2 – Penetration of technologies applied to the energy sector (e.g. public electricity production with natural gas = ENE.PEL.NGS.GT0) at global and European scales.

Table SI-6.1.2: NOx abatements

NOx abatement measures also influences NH_3 emissions, increasing them by a factor of 5.5 and 11.2 for SC1/SC2 and SN1/SN2, respectively.

Abbrev.	Description	Reduction	EOP_code EDGARv4	Emission reduction
CLN	Combustion modification: low nox burners	30 %	NO1	30%
CL0	Combustion modification: low excess air	20 %	NO1	30%
CAF	Combustion modification: air staging in furnace	20 %	NO1	30%
CFF	Combustion modification: flue gas recirculation - in furnace	40 %	NO1	30%
CR0	Combustion modification: reduced air preheat	20 %	NO1	30%
CSF	Combustion modification: fuel staging (burn or low nox	30 %	NO1	30%
SC1	Secondary: selective catalytic reduction	70 %	NO2	60%
SC2	Secondary: selective catalytic reduction+ combustion modification	90 %	NO3	90%
SN1	Secondary: selective non-catalytic reduction	30 %	NO4	30%
SN2	Secondary: selective non-catalytic reduction+ combustion modification	50 %	NO5	60%
NSN	SOxNOx combined measures	95 %	NO6	90%
NSF	Non-specified	0 %	NO0	0 %
NOC	No control	0 %	NO0	0 %

Table SI-6.1.3: SOx abatements

SOx abatement measures have no impact on other component emissions (e.g. NOx, NH₃, and primary PM).

Abbrev.	Description	Reduction	EOP_code EDGARv4	Emission reduction
SND	Non-regenerative-dry (dry FGD)	50 %	SO2	50%
SNS	Non-regenerative semidry	90 %	SO3	90%
SNW	Non-regenerative wet (wet FGD)	90 %	SO3	90%
SRN	Regenerative	95 %	SO3	90%
NSN	SOxNOx	95 %	SO3	90%
NSF	Non-specified	0 %	SO0	0 %
NOC	No control	0 %	S00	0 %

Reduction measures of $PM_{2.5}$ are derived from the PM_{10} ones, while for BC and OC they are assumed equal to the $PM_{2.5}$ ones.

Abbrev.	Description	Reduction PM10	Reduction PM2.5
ESP	Electrostatic precipitator	99.95 %	98.30 %
FBF	Fabric filter	99.95 %	99.60 %
CYC	Cyclone	90 %	0 %
SCR	Wet scrubber	99.90 %	99.50 %
СОМ	Combination of measures	99.95 %	98.30 %
NSF	Non specified	0 %	0 %
NOC	No control	0 %	0 %

SI-6.2: Manufacturing industry and construction (IND)

Table SI-6.2.1 summarizes the processes and technologies considered in the industrial sector of the EDAGRv4.3 database.

Manufacturing industries and						
	construction (IND)					
Process	Description					
CHE	chemical					
CON	construction					
FOO	food and tobacco					
IRO	iron and steel					
MAC	machinery					
MIN	mining					
NFE	non-ferrous metals					
NMM	non-metallic minerals					
PAP	paper, pulp, print					
TEQ	transport equipment					
TEX	textiles					
WOO	wood and wood products					
INO	non-specified industry					

Table SI-6.2.1: Processes and technologies

SI-6.3: Road transport (TRO.ROA)

In this section details concerning the road transport sector as implemented in the EDGARv4.3 database are reported (refer to Table SI-6.3.1 for the processes and technologies and Table SI-6.3.2 for the abatement measures). In our work we only consider exhaust emissions, while break wear and re-suspension of road-dust are not taken into account.

Table SI-6.3.1: Processes and technologies

Road transport (TRO.ROA)										
Process	Description	Technology	Description							
TRO.ROA.AVG	Aviation Gasoline	BS0	Buses							
TRO.ROA.BDS	Biodiesel	HD0	Heavy Duty vehicles							
TRO.ROA.BGL	Biogasoline	LD0	Light Duty vehicles							
TRO.ROA.DIE	Gas/Diesel Oil	PC0	Passenger cars							
TRO.ROA.OKE	Kerosene	MC0	Motorcycles							
TRO.ROA.LPG	Liquefied Petroleum Gases (LPG)	MP0	Mopeds (Scooters)							
TRO.ROA.MOG	Motor Gasoline									
TRO.ROA.NGS	Natural Gas									
TRO.ROA.OPR	Non-specified Petroleum Products									

TRO.ROA.OLB	Other liquid biofuels	
TRO.ROA.SBI	Primary Solid Biomass	
TRO.ROA.HFO	Residual Fuel Oil	

Table SI-6.3.2: Abatement measures

Abatement	Description
measures (EU)	
NOC	Non controlled or conventional
PEU	Pre Euro standards (combined impact of
	EU technologies before 1990)
EU1	Euro standard 1
EU2	Euro standard 2
EU3	Euro standard 3
EU4	Euro standard 4
EU5	Euro standard 5
EU6	Euro standard 6
For b	ises using natural gas (globally)
PEU	Pre Euro standards
EU1	Euro standard 1
EU2	Euro standard 2
EU3	Euro standard 3
EEV	Standard for Enhanced Environmental
	Vehicles

American standards for passenger cars are also reported in Figs. SI-6.3.1 and SI-6.3.2, like UT1, UT2, UT3 (US Tier1-Tier3). Analogous standards are also available for heavy duty vehicles (PH1 and PH2, US Phase Tier 1 and 2 used for HDV).

Figure SI 6.3.1 – Penetration of technologies applied to the road sector (e.g. motor gasoline for passenger cars = TRO.ROA.MOG.PC0) at global and European scales.

Figure SI 6.3.2 – Penetration of technologies applied to the road sector (e.g. diesel for heavy duty vehicles = TRO.ROA.DIE.HD0) at global and European scales.

SI-6.4: Regions classification in EDGARv4.3

In the present work emission data are often grouped by 24 emission regions, representing single geographical or political entities. However, in some cases, emissions from small countries have been added to bigger countries, like for Ukraine + (including also Moldova and Belarus), Indonesia + (including also Papua New Guinea), China + (including also Hong Kong, Taiwan, Macao, Mongolia), Russia + (including also Armenia, Georgia, Arzebaijan), India + (including also Afghanistan, Nepal, Pakistan, etc.).

Figure SI 6.4.1 – Classification of world regions in the EDGARv4.3 database.

SI-7 European legislation

Table SI-7.1 Overview of historical European legislations regulating air pollutant emissions

	Policy/Pollutant	PM	SOx	NOx	СО	heavy metals	VOCs
	70/220/EEC	Х	Х	Х			
	80/779/EEC	Х	Х	X			
	85/203/EEC	Х	Х	Х			
	96/62/EC	Х	Х	Х	Х	Х	Х
	1999/30/EC	Х	х	Х		Х	
Air quality directives	99/13/EC						Х
	2004/107/EC					Х	
	CAFE directive	v	V	V			V
	COM(2005)446-447	λ	Х	Х			Х
	2008/50/EC	Х	x	x	Х	х	х
	2000/76/EC	v	v	v			v
	(waste incineration)	Х	Х	X			Х
	2001/81/EC						
Directives regulating air pollutant emissions from anthropogenic	and 2010 revision						
	(national emission		X	X			Х
	ceilings)						
activities	2010/75/EU						
	(large combustion	Х	х	х	Х	х	Х
	plants)						
	2010/75/EU	v	v	v	v		v
	(industry)	Λ	А.	Λ	Λ		Λ
FU standards on road	94/63/EC	Х		X	Х		Х
vehicle emissions	1999/13/EC	Х		х	Х		Х
air pollutant emissions from anthropogenic activities EU standards on road vehicle emissions Fuel quality directives	2009/126/EC	Х		X	Х		Х
	93/12/EC		X				
	98/70/EC		X				
Fuel quality directives	1999/32/EC		X				
	2003/17/EC		Х			X	Х
	2009/30/EC		Х				
	CLRTAP (1979,						
	1987/94 and	Х	Х	Х	Х	Х	Х
	1997/98)						
International	Gothenburg						
conventions	protocol (1999 and			x	Х		
	2012)	х					х
	IPPC directive						
	(2008/1/EC)	X					

Depending on the considered regulation, emission limits can be defined as sector specific annual emissions for selected pollutants, as total annual emissions per country (refer to 2010/75 EU), and as concentrations at the stack or in ambient air or.

Table SI-7.2 Implementation of European standards on vehicle emissions with PM limits (mg/km) over time.

Standard PM																					
limit in																					
mg/km	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Busses	PEU	PEU	EU1	EU1	EU1	EU1	EU2	EU2	EU2	EU2	EU3	EU3	EU3	EU3	EU3	EU4	EU4	EU4	EU4	EU5	EU5
			250	250	250	250	170	170	170	170	100	100	100	100	100	60	60	60	60	5	5
Heavy duty	PEU	PEU	EU1	EU1	EU1	EU1	EU2	EU2	EU2	EU2	EU3	EU3	EU3	EU3	EU3	EU4	EU4	EU4	EU4	EU5	EU5
			250	250	250	250	170	170	170	170	100	100	100	100	100	60	60	60	60	5	5
Light duty	PEU	PEU	EU1	EU1	EU1	EU1	EU2	EU2	EU2	EU2	EU3	EU3	EU3	EU3	EU3	EU4	EU4	EU4	EU4	EU5	EU5
			190	190	190	190	120	120	120	120	70	70	70	70	70	40	40	40	40	5	5
Passenger car	PEU	PEU	EU1	EU1	EU1	EU1	EU2	EU2	EU2	EU3	EU3	EU3	EU3	EU3	EU3	EU4	EU4	EU4	EU4	EU5	EU5
			140	140	140	140	80	80	80	50	50	50	50	50	50	25	25	25	25	5	5
Moped/	PEU	EU1	EU1	EU1	EU2	EU2	EU2	EU2	EU3	EU3	EU3	EU3	EU3								
Motorcycle																					

SI-8 TM5-FASST results: impacts on concentrations, health and crops

Figure SI-8.1 Change in PM_{2.5} and O₃ modeled concentrations comparing STAG_TECH with the reference scenario (REF) for the year 2010.

Figure SI-8.2 Change in regional PM_{2.5} chemical composition and concentration comparing STAG_TECH and REF scenarios. The comparison between the power generation, road transport and manufacturing industry sectors is reported for the year 2010.

Figure SI-8.3 Impacts of PM_{2.5} and O₃ concentrations on human health and crop yields. Changes in life expectancy and crop yield are obtained comparing the STAG_TECH scenario and the reference case (REF) for the year 2010.

References

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Klimont, Z., and and Frost, G.: HTAP_v2: a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., acp-2015-214, submitted.