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Abstract. Elevated tropospheric ozone concentrations are considered a toxic threat to plants, respon-
sible for global crop losses with associated economic costs of several billion dollars per year. Plant
injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the
internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake
of ozone and therefore reduce its detrimental effects to plants?

In this laboratory study we could show that semi-volatile organic compounds exuded by the glan-
dular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant
surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety
dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Sur-
face reactions of ozone were accompanied by a prompt release of oxygenated volatile organic com-
pounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol
(Co9H340) — a diterpenoid with two exocyclic double bonds — caused emissions of formaldehyde
(HCHO) and methyl vinyl ketone (C4HgO). The ring-structured cembratrien-diols (CogH3402) with
three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as
4-oxopentanal (C5HgOs), which we could observe in the gas phase, too.

Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf
boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradi-
ents in the vicinity of stomatal pores are changed in such a way, that the ozone flux through the open
stomata is strongly reduced.

Our results show that unsaturated semi-volatile compounds at the plant surface should be consid-
ered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well

as efficient ozone sink improving the ozone tolerance of plants.
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1 Introduction

Tropospheric ozone (O3) is formed as a product of photochemical reactions involving nitrogen ox-
ides (NO,) and volatile organic compounds (VOC) as precursors (Jenkin and Clemitshaw, 2000).
Increasing anthropogenic precursor emissions from fossil fuel and biomass burning have led to ele-
vated ambient ozone concentrations over large portions of the earth’s surface. Today, many regions
experience near-ground ozone background levels greater than 40 parts per billion volume (ppbv)
(Vingarzan, 2004), levels which may be responsible for cellular damage inside leaves (Hewitt et al.,
1990; Wohlgemuth et al., 2002) adversely affecting photosynthesis and plant growth (Ashmore,
2005). Toxic ozone concentrations cause visible leaf injury, plant damage and reduction in crop
yields with associated economic costs of several billion dollars per annum worldwide (Wang and
Maugzerall, 2004; Van Dingenen et al., 2009). Future trends of tropospheric ozone strongly depend
on the emission factors of the corresponding precursor compounds (i.e. VOC and NO,,) and indi-
rectly also on land cover and characteristics of the vegetation (Dentener et al., 2006; IPCC, 2013; Fu
and Tai, 2015). Some recent studies revealed a stabilization or even a lowering of the tropospheric
background ozone concentrations in parts of the industrialized western countries since the turn of
the millennium (Logan et al., 2012; Parrish et al., 2012; Oltmans et al., 2013; IPCC, 2013). This
is likely a result of preventive measures reducing ozone precursor emissions (Granier et al., 2011).
In contrast, ozone background concentrations are still rising in parts of Asia experiencing high eco-
nomic growth and a concomitant increase in NO,, emissions (Granier et al., 2011; Fu and Tai, 2015).
Land cover and land use changes, often determined by changing climatic conditions, could impact
tropospheric ozone in different ways: A higher leaf area index of the vegetation would enhance dry
deposition of ozone (Fu and Tai, 2015). In low NO,, regions enhanced emissions of isoprene emit-
ting species could decrease ozone concentrations, while they would lead to an ozone increase in high
NO,, regions (Fu and Tai, 2015).

Traditionally, the risk of ozone damage to plants is estimated on the basis of the accumulated
ozone exposure above 40 ppbv (AOT 40) (Felzer et al., 2005). However, the negative effects of
ozone on vegetation have been observed to be more closely related to the effective dose, i.e. the
stomatal flux x time minus the portion of ozone which can be detoxicated by the plant defence
system (Massman, 2004). In the expected CO5 richer and warmer future atmosphere (IPCC, 2013),
plants may reduce stomatal conductance and thus indirectly alleviate ozone damage (Sitch et al.,
2007).

However, accurate experimental quantification of the stomatal uptake of ozone is complicated by
the presence of other ozone sinks, either in the gas phase or on the plant surface (Fruekilde et al.,
1998; Cape et al., 2009). In previous studies the ozone flux through the stomata was calculated by
multiplying the stomatal ozone conductance with the ambient ozone concentration (see e.g. Kurpius
and Goldstein, 2003; Cieslik, 2004; Goldstein et al., 2004; Fares et al., 2012), assuming similar

gradient profiles of ozone and H2O close to the stomata. As we will show, for ozone-reactive leaf
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surfaces this approach is not fully correct and may lead to an overestimation of stomatal ozone
uptake in the case of very reactive surfaces.

We present results from ozone fumigation experiments, in which intact leaves of different varieties

of tobacco (Nicotiana tabacum) were exposed to elevated ozone levels (20—150 ppbv) under light
and dark conditions in an exceptionally clean plant enclosure system (see Materials and methods
section for experimental details). The Nicotiana tabacum species is famous for large differences in
the ozone tolerance of the different varieties. For example, the Bel W3 is known to be very ozone
sensitive (Heggestad, 1991; Loreto et al., 2001) and has therefore been used as an ozone indicator
plant in earlier times (see Heggestad, 1991, and references therein). Conversely, the Bel B variety
is known to be non-sensitive (Heggestad, 1991). The high ozone tolerance of this variety has been
attributed to wider epidermal cells and more spongy mesophyll cell layers (Borowiak et al., 2010)
and to differences in the plant’s ability to cope with oxidative stress once ozone has entered the
stomata (Schraudner et al., 1998; Eltayeb et al., 2007).
Several studies were investigating the possibility to increase the ozone tolerance of plants by external
application of ozone-scavenging compounds (Gilbert et al., 1977; Loreto et al., 2001; Vickers et al.,
2009a; Singh and Agrawal, 2010; Agathokleous et al., 2014) or by enabling the emission of volatile
terpenoids in transgenic plants (Vickers et al., 2009b; Palmer-Young et al., 2015). We show here
that some of the tobacco varieties investigated in our experiments are intrinsically equipped with
ozone scavenging compounds located on their leaf cuticula. As is the case for many other plant
species (Fahn, 1988), tobacco leaves possess glandular trichomes. In tobacco, various diterpenoids
are the major compounds exuded by these secretory structures at the leaf surface (Sallaud et al.,
2012). The exudates cover the plant leaves as a defence barrier, for example against arthropod pests
(Wagner, 1991; Lin and Wagner, 1994); they were shown to have an anti-fungal (Kennedy et al.,
1992) and insecticidal action (Kennedy et al., 1995). We show that in a tobacco variety secreting the
diterpenoid cis-abienol, the exudates have a beneficial side-effect: they act as a powerful chemical
protection shield against stomatal ozone uptake by depleting ozone at the leaf surface.

Surface-assisted ozonolysis not only protects plants from uptake of phytotoxic ozone through
stomata, but also acts as a source of volatile carbonyls into the atmosphere, impacting atmospheric
chemistry. To our knowledge, our study reports for the first time on detailed measurements of plant

surface-assisted ozonolysis of semi-volatile diterpenoids forming volatile carbonyl products.

2 Materials and methods
2.1 Plant material

We used the following four tobacco cultivars: Ambalema, secreting only the diterpenoid cis-abienol

(Co0H340, see Fig. 1), BYBA secreting a- and [-cembratrien-diols (CBTdiols, CogH3405, see
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Fig. 1) and Basma Drama, secreting all these compounds (Sallaud et al., 2012). The new 3HO02
line does not exude diterpenoids at all (see Appendix A).

Seeds of the tobacco cultivars were obtained from the Leibniz Institute of Plant Biochemistry,
Department of Cell and Metabolic Biology, Halle. The plants were grown in the green houses of the
Institute of Ecology of the University of Innsbruck for 8-10 weeks in standard soil.

Before being used in the experiments the sample plants were allowed to adapt 1-4 weeks in the
laboratory, obtaining light from the same true light lamp type as used during the measurements (see
Setup section).

Plants were installed into the plant enclosure used for ozone fumigation the evening before the
actual experiment, so they could adapt to the system and recover from possible stress during in-
stallation. The sample plants were well watered and in a good physiological condition and showed
no visible signs of damage. At the beginning of the experiments, when no ozone was added, no
significant stress signals in form of green leaf volatiles were detected.

In total, combined dark and light ozone fumigation experiments were conducted with five Am-
balema, two Basma Drama, one BYBA and three 3H02 samples. Moreover, experiments under solely
light conditions were conducted with eight Ambalema, four Basma Drama, four BYBA and two 3H02

plants. Each sample plant was tested only once.
2.2 Setup

In the present ozone experiments we used only inert materials such as Teflon®, PEEK® or Duran®
glass in order to minimise artificial side-reactions of ozone with unsaturated compounds, present
in e.g. sealing materials like rubber. Moreover, special care was taken to avoid fingerprints, which
could result in side reactions of ozone with skin oils (Wisthaler and Weschler, 2010). Ozone loss,
estimated from measured ozone concentrations at the inlet and outlet of the empty plant enclosure,
was typically less than 5%.

For plant fumigation, synthetic air 5.0 grade was mixed with CO4 4.8 grade (both Messer Aus-
tria GmbH, Gumpoldskirchen, Austria). By bubbling the air in distilled water and passing it by
a subsequent thermoelectric cooler (TEC) the relative humidity was set. Before entering the plant
enclosure, the air was flushed through an ozone generator (UVP, Upland (CA), USA). The enclosure
system consisted of a desiccator (Schott Duran®) of 17.3L volume, turned upside-down, and two
end-matched PTFE® ground plates. A central hole served as feed-through for the plant stem, pos-
sible gaps were sealed with Teflon® tape. The (single-sided) leaf area enclosed was typically in the
range of 250-850 cm?.

An ozone detector (Model 491, Thermo Fisher Scientific Inc. Franklin (MA), USA) and an infra-
red gas analyser (LI-840A CO3/H20 Analyzer, LI-COR® inc., Lincoln (NE), USA) were sampling
at 2 min intervals from either the inlet or outlet of the enclosure. Plant enclosure inlet ozone concen-

trations were typically kept constant throughout each experiment and were adjusted to obtain real-
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istic ambient ozone concentrations at the enclosure outlet during light conditions (e.g. ~ 60 ppbv in
Fig. 3). Relative humidity in the plant enclosure ranged from typically ~ 55 % in dark experiments
up to ~ 95% in light experiments.

VOC were quantitatively detected at the enclosure outlet by a Selective Reagent Ionization Time-
of-Flight Mass Spectrometer (SRI-ToF-MS, see next section) which was switched every 6 min be-
tween H3OT and NO™ reagent ion mode.

Sample plants were illuminated by a true light lamp (Dakar, MT/HQI-T/D, Lanzini Illuminazione,
Brescia, Italy). Infra-red light was shielded off by a continuously flushed water bath in order to
prevent heating of the plant enclosure. Photosynthetically active radiation (PAR) was measured with
a sunshine sensor (model BF3, Delta T Devices Ltd, Cambridge, UK) and temperature on the outer

plant enclosure surface with K-type thermocouples.
2.3 SRI-ToF-MS

The UIBK Advanced SRI-ToF-MS (University of Innsbruck Advanced Selective Reagent Ioniza-
tion Time-of-Flight Mass Spectrometer, Breitenlechner and Hansel, 2015) combines the high mass
resolution of PTR-ToF-MS (Graus et al., 2010) with the capability to separate isomeric compounds
having specific functional groups. For this purpose, the SRI-ToF-MS makes use of different chemi-
cal ionization pathways of a set of fast switchable primary ions (here: H3O" and NO™). Moreover,
the employment of different primary ions could help to differentiate molecules suffering from frag-
mentation onto the same mass to charge ratio in the standard H3O1 mode (Karl et al., 2012).

Examples of differentiable isomers are aldehydes and ketones. In the H3O™ reagent ion mode,
aldehydes and ketones both exhibit proton transfer and thus e.g. methyl vinyl ketone (MVK) and
methacrolein (MACR) are both detected as C4.H7O™ (m/271.050). In NO* reagent ion mode, most
aldehydes exhibit hydride ion transfer and ketones clustering reactions, comparable to the ionization
mechanisms in a SIFT instrument (gpanél et al., 1997). Thus MVK is detected as C4,HgO . NOT
(m/z 100.040), whereas MACR is detected as C4H5;Ov (m /2 69.034).

In addition to isomeric separation, the high flow through the drift tube (here: ~ 500 mL min~!
compared to 1020 mL min~"! in a standard instrument) allows for the first time the detection of
semi-volatile compounds such as the diterpenoid cis-abienol (CogH340).

The SRI-ToF-MS was operated under standard conditions, 60 °C drift tube temperature, 540 or
350V drift voltage and 2.3 mbar drift pressure, corresponding to an E/N of 120 or 78 Td (E be-
ing the electric field strength and N the gas number density; 1Td = 10717V cm?) in H3O% or
NOT™ reagent ion mode, respectively. The instrument was calibrated approximately once a week by
dynamic dilution of VOC using 2 different gas standards (Apel Riemer Environmental Inc., Broom-
field (CO), USA), containing ca. 30 different VOC of different functionality distributed over the mass
range of 30-204 amu. Full SRI-ToF-MS mass spectra were recorded up to m/z 315 with a 1 s time
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resolution. Raw data analysis was performed using the PTR-ToF Data Analyzer v3.36 and v4.17
(Miiller et al., 2013).

2.4 cis-abienol identification

For the identification of cis-abienol a pure standard was acquired (Toronto Research Chemicals,
Toronto, Canada). The powder was dissolved in n-hexane and applied on the surface of a glass
container, which was put into the enclosure system and treated like the plant samples. In H3O™
reagent ion mode, the major cis-abienol derived signal was detected on m/z 273.258 (CooH,); like
many other alcohols, cis-abienol is losing Hy O after the protonation reaction. Minor fragment signals
in the range of a few percent were detected at m/z 191.180 (CMH;E), m/z163.149 (ClgHTQ) and
m/z217.196 (C16H3y), respectively.
In NO™ reagent ion mode, the major cis-abienol derived signals were detected at m/z272.250
(CaoHi,) and m/z 178.172 (C13H,). Minor signals were measured at m/z 163.149 (C12H],) and
m/z134.101 (C1oH{,), respectively.

Ozonolysis of the pure cis-abienol standard yielded the same primary ozonolysis products (see

below) as in the case of Ambalema plants.
2.5 Leaf stripping

In order to relate the observed ozonolysis carbonyls to plant surface reactions, leaf exudates of
untreated tobacco plants were stripped off by dipping leaves (of similar area) of untreated Ambalema,
Basma Drama and 3HO2 plants into n-hexane (~ 100 mL for 1000 cm? leaf area) for ~ 1 min. The n-
hexane — leaf exudate solution was then distributed as evenly as possible onto the inner surface of the
empty desiccator serving as plant enclosure. n-hexane evaporated quickly and was further reduced
by flushing the glass cuvette with pure synthetic air. Afterwards, ozone fumigation experiments were

performed similar to the experiments with intact plants.
2.6 GC-MS analysis

Non-volatile ozonolysis products and unreacted surface compounds were analysed by GC-MS (see
also Supplement). Directly after the ozone fumigation experiments we extracted leaf exudates and
low volatility ozonolysis products from the fresh tobacco leaves (see Leaf Stripping section). 1 pL
portions of the samples were then injected directly into a GC-MS for analysis on a 6890 N gas
chromatograph coupled to a 5973 N mass spectrometer (Agilent Technologies) according to the pro-
cedures described elsewhere (Sallaud et al., 2012).

Tobacco diterpenoids were identified on the basis of their mass spectra, as described in the litera-
ture (Enzell et al., 1984).
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2.7 Calculation of leaf gas exchange parameters

For the calculation of the gas exchange parameters we followed well established procedures by
Caemmerer and Farquhar (1981) and Ball (1987). Transpiration rate F, assimilation rate A, total

ozone flux Fiqt,0, and total water vapour conductance ¢; i,0 were calculated from

Ue Wo — We

<E:4;-TizgfﬂF§,Mmmhnﬂs’ﬂ 6))
Fiot,05 = Uf . {oe - (%) -00] , [nmolm™2s71] 3)
g1,H,0 = 10" -]fu(il_—w?;%?) , [mmolm™?s™] €]

with u. the molar flow of air entering the enclosure in [mols~!], s the leaf area in [m?], we/ce/oe
and we/c,/0, the mole fraction of water vapour/CQOs/0zone entering respectively leaving the plant
enclosure in [mmol mol~!], [umol mol~!] and [nmol mol~!], respectively. w; is the mole fraction
of water vapour inside the leaf in [mmol mol~!] and is typically assumed to be the saturation mole
fraction at leaf temperature (Ball, 1987).

For the calculation of the total ozone conductance we applied a ternary diffusion model as has been
proposed by Caemmerer and Farquhar (1981). Thereby, pairwise interactions between ozone, water
vapour and air are considered (for the sake of simplicity we neglected interactions with CO2). Inter-
actions of ozone molecules with water vapour are important only for that portion of ozone, which is
entering the stomatal pores and not for that lost in reactions at the leaf surface. However, in the latter
case the consideration of binary diffusion between ozone and water leads to an overestimation of the
total ozone conductance in the range of < 1%.

Total ozone conductance g o, is then defined by

—10%- F, + (atoi) . |
9.0y = t?iﬁ %) , [mmolm~2s7"] (5)

with o; and o, the mole fractions of ozone inside the leaf (at the leaf surface for reactive leaf surfaces)
and in the surrounding air, respectively. o, equals the ozone mole fraction o, measured at the outlet of
the plant enclosure. Typically, we consider o; ~ 0 (Laisk et al., 1989) and therefore Eq. (5) simplifies

further to

-10*- Fit,0, + % - E

9,05 = (6)
0a

2.8 Quantification of the ozone depletion capability of individual plants

In our fumigation experiments the ozone concentrations in the plant enclosure varied between the
different experiments and within experiments switching from light to dark conditions. In order to

compare the ozone depletion capability (i.e. surface plus stomatal sinks) of different plants or of
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the same plant under dark and light conditions, it is therefore important to use a concentration in-
dependent measure. As for a given ozone conductance the ozone flux increases with the ambient
ozone concentration (cf. Egs. 3+6), we follow others (see e.g. Wohlfahrt et al., 2009) and use the
ozone conductance values instead. In experiments with plants having an ozone reactive surface, the
total ozone conductance g o, (Eq. 6) comprises boundary layer conductance, stomatal conductance
and cuticular conductance. Stomatal and boundary layer ozone conductances can be calculated from
those of water vapour by correcting for the different diffusivities of the two gases. The boundary
layer water vapour conductance could be determined by measuring temperature and evaporation rate
from leaf models made of chromatography paper (see Ball 1987). However, in our experiments this
was not really practical for all sample plants which were all complexly and differently shaped. Con-
sequently, also the stomatal water vapour and ozone conductances could not be inferred from the
calculated total water vapour conductance (Eq. 4).

As we show in the Supplement, even if stomatal and boundary layer ozone conductances are known,
for semi-reactive leaf surfaces the calculation of stomatal and non-stomatal parts of the total ozone
flux is not feasible.

For these reasons we report here only total ozone conductance values (Eq. 6), normalized to the
single-sided leaf area or to the area of the enclosure covered with leaf exudates in experiments with

pure leaf surface compounds (see Sec. 2.5).
2.9 Fluid dynamic calculations

In order to visualise the ozone concentration gradients caused by plant ozone uptake, two idealised
setups were simulated: a macroscopic plant model in an ambient air flow and a microscopic model
for the stomatal gas exchange. The simulations were done using the open source CFD code Open-
FOAM (www.openfoam.com).

In the microscopic model the air flow was neglected and a pure diffusion process was simulated.
Stomata were modelled as 100 um long and 40 pm wide eye-shaped openings recessed 20 um deep
into the leaf surface. The simulation domain with 500000 cells covered an area of 300 pm square
around the stoma and extended 2 mm from the leaf surface into the surrounding gas. A single stoma
with cyclic boundaries was used to represent a whole leaf with stomata spread repeatedly over its
surface. The ozone-reactive bottom of the stomata was modelled as 100 % efficient sink (Laisk et al.,
1989) with a constant ozone concentration of zero, while the side walls of the stomata were assumed
not to absorb ozone and set to zero gradient. The top of the measurement domain acting as ozone inlet
from the surrounding was set to one. The leaf surface around the stomata was set to zero gradient
or to a fixed concentration of zero, representing two idealised plant types with either non-reactive or
reactive leaf surface. “scalarTransportFoam” was run on this grid with a uniform zero velocity field

until a steady state was reached.
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For the macroscopic model (see Supplement) a laminar flow around the plant was simulated using
the steady state Reynolds averaged Navier—Stokes solver “simpleFoam”, the transport of ozone in
the resulting flow velocity field was studied using the “scalarTransportFoam” solver. The simulated
gas volume consisted of a cube with 20 cm edge length with the shape of an exemplary tobacco plant
cut out of its volume (see Fig. S3). The resulting simulation domain was divided into a hexahedron-
dominant grid of 3.7 million cells with the finest granularity around the stomata and the leaf surfaces
with the OpenFOAM tool “snappyHexMesh”. The domain was divided into eight subdomains for
parallel computation. Stomata were represented by small patches spread equally over the leaf sur-
faces, covering 10% of the total leaf area. The boundary conditions for the gas flow simulation
consisted of an inlet with 2mm s~ velocity entering on one face of the cube and a constant pres-
sure boundary condition outlet on the opposite face. The gas velocity on the plant surface was set
to zero. Initial conditions for the flow simulation were calculated with “potentialFoam” to speed
up convergence of the “simpleFoam” solver. The simulation was run until the flow velocity field
reached a steady state. For the diffusion calculations a relative initial concentration of ozone was set
to one at the inlet and to zero on the stomata patches. Like in the microscopic model calculations,
the leaf surface was either a zero concentration gradient boundary (for an idealised 3H02 plant type)
or a fixed concentration value of zero (for an idealised Ambalema plant type). In the previously

calculated velocity field the ozone transport was simulated until a steady state was reached, too.

3 Results and discussion
3.1 Expected ozonolysis products of cis-abienol and cembratrien-diols

Apart from the 3HO2 variety, the investigated tobacco varieties secrete different unsaturated diter-
penoids (see Sec. 2.1). According to the Criegee mechanism (Criegee, 1975), ozone attacks the
carbon double bonds of alkenes forming primary carboyls and so-called Criegee Intermediates (see
Supplement). Criegee Intermediates are, however, expected to be too short-lived to be detected di-
rectly by the instruments used in our experiments (see Supplement). We were therefore interested
primarily in the stable, volatile ozonolysis carbonyls, which could be detected in real-time by our
SRI-ToF-MS.

For the semi-volatile diterpenoid cis-abienol with two exocyclic double bonds, exuded by the Am-
balema and Basma Drama varieties, we expected the formation of formaldehyde (HCHO) and
methyl vinyl ketone (MVK, C4H4O, see Fig. 1).

In the case of the ring structured CBTdiols with three endocyclic double bonds, produced by the
Basma Drama and BYBA plants, at least two ozonolysis steps are needed to form volatile carbonyls.
The three smallest carbonyl products are shown in Fig. 1, whereby 4-oxopentanal (C5HgO3) is ex-

pected to be the most volatile one (Goldstein and Galbally, 2007).
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3.2 Ozone fumigation experiments with pure leaf surface compounds

In order to relate a release of carbonyls to surface chemistry only and to exclude stimulated emis-
sions caused, e.g. by the plant ozone defence system, we investigated ozone reactions with pure leaf
surface extracts. Leaf surface compounds were extracted with n-hexane and subsequently applied
onto the inner surface of an empty plant enclosure and fumigated with ozone (see Materials and
methods section).

Ambalema leaf extracts showed a weak signal of cis- abienol (we refer to the Materials and methods
section for the identification of this compound), which disappeared during ozone fumigation while
MVK and formaldehyde were prominently observed. These carbonyls are produced by surface-
assisted ozonolysis of cis-abienol (see Fig. 1). MVK was detected at m/z71.050 (C4H,O™) and
m/z 100.040 (C4HgO - NO™) in the H3O™ respectively NO™ reagent ion mode of the SRI-ToF-
MS. Formaldehyde was detected only using H3O™ as reagent ion at m/z31.018 (CH30™), taking
into account the humidity dependent sensitivity (Hansel et al., 1997). In the NO* reagent ion mode
formaldehyde cannot be ionized (Spanél et al., 1997), consequently we detected no signal.

In the ozone fumigation experiments using Basma Drama leaf extracts, besides MVK and formalde-
hyde as ozonolysis products of cis-abienol, also the most volatile CBTdiol ozonolysis product —
4-oxopentanal — was detected in the gas phase by SRI-ToF-MS. 4-oxopentanal was detected at
m/z101.060 (C5sHoOF) in H30F and m/299.045 (C5H;0F) in NO*reagent ion mode, respec-
tively.

No significant amount of volatile carbonyls was observed from ozonolysis of 3H02 leaf extracts.
Consistently, the total ozone conductance was far less than in experiments with extracts from
diterpenoid-exuding tobacco varieties (see Fig. 2). This is in line with the results from the corre-
sponding experiments with intact plants (see below). The ozone depletion efficiency of the 3H02
exudates was decreasing fast, while the presence of cis-abienol in Ambalema leaf exudates kept the

ozone conductance at elevated levels for many hours (cf. Fig. 2).
3.3 Ozone fumigation experiments with diterpenoid exuding tobacco varieties

Also in experiments with intact plants we observed a prompt release of volatile carbonyls as soon as
the tobacco leaves were fumigated with ozone. The Ambalema and Basma Drama varieties released
MVK and formaldehyde. In addition, we detected sclaral, a non-volatile compound, in surface ex-
tracts obtained from ozone fumigated plants of the same varieties (see Materials and methods and
Supplement). Sclaral is an isomerisation product of the C,¢ carbonyl formed in cis-abienol ozonoly-
sis (cf. Fig. 1). All these compounds can therefore be attributed again to surface-assisted ozonolysis
of cis-abienol (see Fig. 1).

In experiments using Basma Drama and BYBA plants we detected the CBTdiol ozonolysis product

10
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4-oxopentanal, similar to the ozone fumigation experiments with leaf surface extracts (see previous
section).

Figure 3 shows a typical result of an ozonolysis experiment using Ambalema plants. Immediately
after starting the ozone fumigation, the cis-abienol signal decreased, while initial bursts of MVK
and formaldehyde were detected. These initial bursts can be attributed to surface ozonolysis of cis-
abienol deposited on all surfaces (i.e. surfaces of the whole plant, the enclosure and the enclosure
outlet tubing) during plant acclimatisation under ozone free conditions lasting > 12 h (see Sec. 3.5
and Supplement).

In plant experiments using diterpenoid exuding tobacco varieties, the carbonyl emission and conse-
quently the total ozone conductance and flux (under constant light) eventually reached a steady state,
when the diterpenoid production by the trichomes (leading to a permanent deposition of those onto
the plant surface) and plant surface reactions were in equilibrium (cf. Fig. 3). This is in contrast to
experiments with pure leaf surface compounds, in which the diterpenoids were slowly consumed as
ozone fumigation progressed (see Sec. 3.2).

Simulating diurnal ozone variations over two days in experiments with Ambalema and Basma Drama
plants, we could show that the reactive layer at the plant surface is a large pool and not quickly con-
sumed (see Supplement and Fig. S2). We therefore assume that the diterpenoids released are likely

to represent a long term ozone protection for these varieties.
3.4 Variety specific ozone depletion during dark and light phases

In further experiments we investigated the ozone depletion by different tobacco varieties under dark
and light conditions.
In dark experiments, when stomatal pores are almost closed, the Ambalema variety showed the
highest total ozone conductance under steady-state conditions (cf. Fig. 4a). This is a direct indication
for the high ozone depletion capacity of the surface of this variety.
Due to the lack of reactive diterpenoids on the leaf surface of 3H02 plants, the surface ozone sink
plays a minor role for this tobacco line. However, we cannot totally exclude the presence of other
unsaturated compounds at the surface of this variety.
The low surface reactivity of the Basma Drama and BYBA varieties correlates with the lower amount
of detected ozonolysis carbonyls compared to that of the Ambalema variety in dark conditions. This
might be related to a lower diterpenoid surface coverage of these two varieties and the expected
lower reactivity of the CBTdiols having endocyclic double bonds (Atkinson and Arey, 2003).

The Ambalema variety also shows a higher g 11,0 and dark respiration than the other varieties (cf.
Fig. 4b+c). g1 1,0 linearly correlates with the stomatal water vapour conductance and therefore also
with the stomatal ozone conductance. However, higher stomatal conductance during dark conditions

cannot explain the large differences in g o, between the plant types. While g 11,0 of the Ambalema
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variety in dark conditions is about twice as high as that of the 3HO2 variety, the corresponding g o,
is four times as high.

When switching from dark to light conditions we assume cuticular conductance not to change sig-
nificantly and thus an increase in the calculated gy o, is attributable mainly to an increasing stomatal
ozone conductance. In the case of Ambalema, switching the light on increased the total conductance
by ~ 55% (see Fig. 4). In contrast, in the 3H02 case, switching on the light triggered an substantial
increase in the total ozone conductance by ~ 340 % (cf. Fig. 4).

During light conditions the total ozone conductances of the different tobacco varieties were in a com-
parable range; slightly higher values were observed for the diterpenoid exuding lines Ambalema,

Basma Drama and BYBA.
3.5 Separation of ozone surface and gas phase reactions

In order to qualify the measured total ozone fluxes for the calculation of g, o, values, we had to take
into account the possibility of homogeneous gas phase ozonolysis of the semi-volatile diterpenoids
exuded by the tobacco varieties.

To assess the significance of gas phase ozonolysis to our results, we connected the plant enclosure
containing a diterpenoid emitting tobacco plant with a second empty enclosure downstream and
added ozone only to the second enclosure. Only negligible carbonyl signals were observed once the
initial burst from deposited diterpenoids faded away (see Supplement and Fig. S1). This result indi-
cates that with our setup gas-phase reactions of the diterpenoids were not significant.

This observation can be explained theoretically, too. The air in our enclosure system was exchanged
every ~ 5 min. Therefore, only extremely fast gas phase ozone — alkene reactions have to be consid-
ered. For an ozone concentration of 100 ppbv, a reaction rate of 1.35 x 10715 cm?® s~ results in an
alkene ozonolysis lifetime of 5 min. Such fast ozonolysis rates have only been measured for a few
very reactive sesquiterpenes (Atkinson and Arey, 2003). We found no reaction rates of cis-abienol
and CBTdiols with ozone in the literature to exclude the possibility of a gas phase contribution to
total ozone loss in our experiments a priori. Nonetheless, taking into account the estimated vapour
pressures of cis-abienol (~ 10~ bar) and CBTdiol (~ 10~'2 bar) (Goldstein and Galbally, 2007) we
can state that the bulk of the exuded diterpenoids stayed at the leaf surface and that other surfaces
(e.g. the inner surface of the plant enclosure and the tubing system) were very slowly covered by
condensed diterpenoids. This is also the explanation for the bursts of volatile ozonolysis products
at the beginning of every ozone fumigation (see e.g. Fig. 3). We therefore assume that gas phase

reactions are unlikely to have played a major role in our experiments.
3.6 Fluid dynamic model calculations

Microscopic fluid dynamic model calculations (see Materials and methods) revealed the principles

responsible for the strong variety-dependent partitioning between stomatal and non-stomatal ozone
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loss (see Sct. 3.4). The mixed convective and diffusive ozone transport from the surrounding atmo-
sphere to the plant surface and into the stomata was simulated for two idealised plant types under
light conditions when the leaf stomata are open. The stomatal pores were exemplarily modelled as
small patches uniformly spread over the entire leaf surface. For one model plant we assumed stom-
atal ozone uptake only, corresponding to an idealised 3HO2 variety plant lacking any reactive surface
compounds. The second model plant was representing an idealised Ambalema variety. The surface
acted as a perfect ozone sink with every ozone molecule reaching it being lost, either on the leaf
surface or through the stomata.

Figure 5a and b show the resistance schemes used to describe the ozone flux to the leaves in the two

scenarios, which were the basis for our simulations. Ambient ozone has to overcome the boundary
layer resistance Ry, and the stomatal resistance s before being destroyed in the stomatal cavity (for
the sake of simplicity we neglected here the mesophyl resistance, which comprises diffusion through
inner air spaces and dissolution of the gas in the cell wall water, followed by losses in the aqueous
phase, penetration of plasmalemma or chemical reactions in the cell, cf. Neubert et al., 1993). In the
case of a non-reactive leaf surface, ozone depletion within the stomata is the sole ozone sink (see
Fig. 5a).
In the case of an ozone-reactive leaf surface, an additional surface chemical resistance R has to
be introduced, which is parallel to the stomatal resistance (see Fig. 5b). Ry inversely correlates
with the reactive uptake coefficient of ozone at the leaf surface. In the case of the model plant having
a non-reactive surface, R, is very large (R2sc — 00) and ozone flux to the leaf surface can be omitted.
Conversely, Ry is small for reactive surfaces.

The porous leaf surface architecture has special relevance for the gas uptake of plants. For gases

having a negligible leaf surface sink (or source) — like e.g. CO2 — steep concentration gradients
parallel and perpendicular to the surface develop in close proximity to the stomata. These gradients
enhance the gas transport in the diffusive leaf boundary layer towards the pores. This effect is exten-
sively described in the literature as the “paradox of pores” (see e.g. Monson and Baldocchi, 2014). It
enables plants to effectively harvest COs for photosynthesis, but in the same manner also “funnels”
phytotoxic ozone through the stomata into the plant leaves (see Fig. 5c).
In the case of an ozone-reactive leaf surface, Ry is small compared to R and only surface-parallel
ozone concentration isosurfaces develop (black lines in Fig. 5d). Concentration gradients (white
lines) close to the stomata are exclusively perpendicular to the surface. Consequently, the ozone
transport in the diffusive leaf boundary layer is equally distributed over the whole leaf surface and
the ozone concentration in this layer is strongly reduced (see Fig. 5d). Similarly, also macroscopic
model calculations show that this effect broadens the space of reduced ozone concentrations sur-
rounding a plant with opened stomata (see Supplement and Fig. S3).

The surface-parallel concentration isosurfaces are the reason why we can use the same reference

concentration ¢y for both the stomatal and the surface chemical resistance, (cf. Fig. 5b). How-
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ever, this approach does only hold if the leaf surface is a complete ozone sink (see Supplement and
Fig. S4).

The different ozone concentration patterns in the two modelled scenarios have important implica-
tions for the stomatal ozone uptake. Typically, the stomatal conductance of ozone g5 o, is estimated
from that of water gs 11,0, by correcting for the different diffusivity of the two gases (see e.g. Ball,
1987; Neubert et al., 1993). The stomatal ozone flux Fy o, can then be calculated with the following

formula:

F0, = 95,05  (¢1,05 — b,05) (7)

with ¢; o, being the ozone concentration in the leaf intercellular space and cy, o, the ozone con-
centration in the leaf boundary layer. For high ambient ozone concentrations ¢; o, was found to be
positive (Moldau and Bichele, 2002; Loreto and Fares, 2007), but typically it is assumed to be close
to zero (Laisk et al., 1989). Therefore, Eq. (7) simplifies to

Fy.05 = —0s,05 " Cb,04 (8)

If now surface reactions drastically reduce cy, o, (cf. Fig. 5b+d), the effective stomatal ozone flux
and with that the effective ozone dose are also reduced, which eventually determine the phytotoxic
effects of ozone to plants (Massman, 2004). At this point, it is important to note that the uptake of
non surface-reactive gases such as COs is not affected by the altered ozone gradients.

Thus, whenever surface loss plays a role, both surface and stomatal ozone uptake by plants have to
be considered together. Previous studies might therefore have overestimated stomatal ozone uptake
(e.g. Kurpius and Goldstein, 2003; Cieslik, 2004; Goldstein et al., 2004; Fares et al., 2012). Hence,
their reported stomatal ozone flux values should be considered as upper limits.

In future studies investigating the ozone depositions to vegetation, it might be worth to analyse
also the surface composition of the plants. If the surfaces are covered with substantial amounts
of unsaturated organic compounds, surface loss has to be considered right from the beginning in
order not to overestimate stomatal ozone uptake. Due to the fact that surface reactions reduce ozone
concentrations in the leaf boundary layer, it is not correct to calculate stomatal ozone loss applying
the resistance scheme shown in Fig. 5a and to eventually define the surface loss of ozone as that
portion of the total loss which is not explainable by gas phase reactions and stomatal uptake.

For real plants the altered ozone gradient profile shown in Fig. 5d is less pronounced depending on
stomata depth, which reduces the total stomatal uptake, and reactive surface compounds, which show
smaller surface reaction rates than assumed for the idealised 100 % efficient ozone depleting surface
(see Supplement). In the case of such a semi-reactive leaf surfaces a more sophisticated resistance
scheme has to be used, which strongly complicates the calculation of stomatal and non-stomatal
ozone fluxes (see Supplement and Fig. S4). Nonetheless, the simulations explain the experimentally

observed behaviour of different tobacco plants very well.
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3.7 Atmospheric implications

Large downward ozone fluxes (Kurpius and Goldstein, 2003; Goldstein et al., 2004) and high lev-
els of oxidized VOC (Holzinger et al., 2005) have been taken as evidence for “unconventional in-
canopy chemistry” of unknown precursors in a Ponderosa pine forest site. We speculate that to a
certain extent these unknown precursors could be reactive compounds emitted or deposited onto
the vegetation surfaces. Most recent results support this speculation. A large number of compounds
with diterpenoid backbones were recently observed for the first time also in a Ponderosa pine forest
site during the BEACHON-RoMBAS campaign 2011 (Chan et al., 2015). These unsaturated diter-
penoids contain the same backbone as abietic acid, a primary component of resin acids. The observed
temporal variations in concentrations were similar to those of sesquiterpernoids, suggesting they are
directly emitted from the local vegetation.

Resins contain high amounts of sesqui-, di- and triterpenoids (Dell and McComb, 1979; Langen-
heim, 2003); di- and triterpenoids are also known constituents of surface waxes (Estell et al., 1994a,
b; Altimir et al., 2008; Thimmappa et al., 2014). Moreover, it is estimated that about 30 % of vascular
plants have glandular trichomes, which often exude higher terpenoid compounds, too (Wagner et al.,
2004).

All these terpenoid classes contain carbon-carbon double bonds and are therefore reactive with Os,
OH and NOg. Our results support the speculation that reaction rates of ozone with semi-volatiles
adsorbed at the surfaces are far higher than corresponding gas-phase ozonolysis rates. Thus, the frac-
tion of volatile carbonyls produced in surface assisted ozonolysis of adsorbed semi-volatiles could
compete with their respective gas-phase production rate from OH chemistry.

To some extend this source of carbonyls in form of exudates or resins at the surface of particular
plants might be obscured by the immediate uptake of the volatile ozonolysis products by the plants
themselves (Karl et al., 2010; Niinemets et al., 2014).

Reactive surface compounds might also contribute to the varying ozone sensitivity of different
conifer species (Schnitzler et al., 1999; Landolt et al., 2000) when exposed to the same cumulative
ozone concentrations under light conditions. We anticipate therefore that surface ozonolysis plays
an important role for the ozone tolerance of certain conifer species, too.

Our results also have relevance for other ozone-initiated processes that occur in the indoor and
outdoor environment. Semi-volatile, unsaturated organic species are common on various surfaces
including soil with plant litter (Weiss, 2000; Isidorov et al., 2003; Ormefio et al., 2009), aerosols
(Rogge et al., 1993; D’ Anna et al., 2009; Baduel et al., 2011), man-made structures (Wisthaler et al.,
2005; Weschler et al., 2007; Shi and Zhao, 2015) and plant surfaces (Dell and McComb, 1979;
Langenheim, 1994). These are therefore potential ozone sinks and sources of oxygenated VOC in
ozone rich environments (see e.g. Wisthaler et al., 2005; Weschler et al., 2007; D’ Anna et al., 2009;
Baduel et al., 2011).
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4 Conclusions

Our results reveal for the first time a powerful ozone protection mechanism of plants having an
ozone reactive leaf surface. This opportunistic defence mechanism, which is a beneficial side effect
of semi-volatile terpenoids emitted onto the leaf surface, takes place before the phytotoxic gas en-
ters the stomata. Plants emitting unsaturated semi-volatile compounds could have an advantageous
effect for neighbouring plants as well: either directly by reducing overall ozone concentrations (see
Supplement) or indirectly through the deposition of the semi-volatile compounds onto unprotected
neighbouring leaves (Schmid et al., 1992; Himanen et al., 2010; Chan et al., 2015).

Our findings have relevance not only for plants, but also for additional ozone-initiated processes
that occur in the atmospheric boundary layer. The surface-assisted chemistry that we have eluci-
dated for specific diterpenoids, linking for the first time volatile and non-volatile carbonyl products
to semi-volatile precursors at the plant surface, is likely to occur also for other semi-volatile organic
compounds on different surfaces, e.g. soil with plant litter, aerosols, man-made structures and even
human skin, as has been shown previously (Wisthaler and Weschler, 2010). We speculate that some
of the ozonolysis-derived products may play important roles in atmospheric processes, influencing
the budgets of OH radicals and ozone. Conversely, in our experiments we had no indication that
surface ozonolysis itself releases detectable amounts of OH radicals into the gas phase (see Supple-
ment). In order to assess the global impact of surface-assisted ozonolysis on atmospheric chemistry
a more complete knowledge about the nature of reactive, semi- and low-volatile compounds at plant
surfaces as well as the mechanisms triggering their release (e.g. constitutive vs. biotic and mechani-

cal stress induced emission) is needed.

Appendix A: Generation of the 3H02 variety — a Nicotiana tabacum line without diterpenoids

The Ambalema variety which produces only cis-abienol and the Colorado variety which produces
only CBTdiols (Sallaud et al., 2012) were crossed to produce hybrid F1 plants which produce both
diterpenoids. Because the genetic loci responsible for the absence of CBTdiols and the absence of
cis-abienol are distinct and unlinked, recombinant plants which produce neither diterpenoids could
be recovered by analysing the leaf surface extracts by GC-MS in the selfed progeny of the F1 plants.
One of these plants was selected, propagated over 2 generations by single seed descent and named

line 3HO2.

The Supplement related to this article is available online at
doi:10.5194/acp-0-1-2015-supplement.
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Figure 1. Ozonolysis of diterpenoids exuded by the trichomes of the investigated tobacco plants. The BYBA
variety releases a- and [-cembratrien-diols (C20Hz4O2), the Ambalema variety cis-abienol (C20H340); the
Basma Drama variety exudes all these compounds. Ozonolysis of the cembratriendiols requires at least two
ozonolysis steps to form short-chained, volatile carbonyls, like e.g. 4-oxopentanal (C5sHgO32). Ozonolysis of
cis-abienol leads to the formation of volatile formaldehyde (HCHO) and methyl vinyl ketone (C4HgO).

The background image shows glandular trichomes on a tobacco leaf.
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Figure 2. Ozonolysis experiments with pure leaf exudates extracted from non ozone fumigated, unimpaired

plants. The leaf extracts containing the surface compounds were applied to the inner surface of the empty plant

enclosure system (see Materials and methods section). During ozone fumigation (grey shaded area), the total

ozone conductance gi,0, to the enclosure surface was much higher for Ambalema leaf extracts (containing large

amounts of the diterpenoid cis-abienol) than for 3H02 extracts. Moreover, it remained high for many hours.
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Figure 3. Temporal evolution of selected VOC in an ozonolysis experiment with an Ambalema plant and cor-
responding total ozone deposition flux Fiot,05. The yellow shaded area denotes time ranges, in which the
sample plant was illuminated. Starting the fumigation with ~ 60 ppbv ozone (indicated by the black arrow)
the cis-abienol signal decreased quickly. At the same time, the carbonyl products of cis-abienol ozonolysis,
formaldehyde and MVK (measured in H3O™ respectively NO* reagent ion mode of the SRI-ToF-MS), started
to rise. The large scattering of the formaldehyde signal derives from the strongly reduced sensitivity of the
SRI-ToF-MS under high humidity conditions towards this compound. Two hours after the start of the ozone
fumigation an equilibrium between actual diterpenoid production and loss due to surface reactions was estab-

lished, resulting in stable signals of the oxygenated VOC.
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Figure 4. Total ozone conductance gi,0 (), total water vapour conductance g1 1,0 (b) and assimilation rates
A (c) of different tobacco varieties during dark and light conditions. Error bars denote the standard error of
5(13),2 (6), 1 (5) and 3 (5) replicates of Ambalema, Basma Drama, BYBA respectively 3H02 in dark (light)
experiments. Under dark conditions stomatal ozone conductance is generally low and consequently surface
reactions are the major ozone sink. The surface sink is high for the Ambalema tobacco line, which exudes

cis-abienol and lower for the other lines, exuding less reactive or no diterpenoids.
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Figure 5. Fluid dynamic calculations of ozone uptake by stomata and leave surface. (a and b) show the resis-
tance schemes for ozone uptake of leaves with non-reactive (nr) and reactive (r) surfaces. ci, cc, cp and ¢, denote
ozone concentrations in the stomatal cavity, at the leaf surface, in the boundary layer and in ambient air, respec-
tively. Rs and R}, denote the stomatal and boundary layer resistances. The surface chemical resistance R is
infinite (Ry = 00) on a non-reactive surface. Fluid dynamic calculations reveal ozone concentration gradients
(white lines indicate their orientation) evolving parallel and perpendicular to the leaf surface around the stoma
(located at the coordinate (0,0)) in this case (c). If the leaf surface is covered with ozone-reactive substances, the
parallel fraction of the ozone gradients vanishes, resulting in isosurfaces of ozone concentration (black lines)

parallel to the leaf surface and stronger ozone depletion in the leaf boundary layer (d).

28



