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Supporting Material 1 

 2 

1. Sampling set-up 3 

Ambient air was sampled through a PM2.5 cyclone on the rooftop (approximately 3m above ground 4 

level) of an air conditioned sampling shelter at a flow rate of 3.1 L/min, with 0.1 L/min drawn by 5 

the ACSM. The sampled air passed through a Nafion dryer (PD-200T-12MSS, Perma Pure LLC) 6 

before going into the ACSM. Ionization efficiency (IE) calibrations were performed at least once 7 

per month during the first three months with DMA-size-selected (Dm=350nm) pure ammonium 8 

nitrate particles [Jayne et al., 2000; Lee et al., 2015, submitted]. A HEPA filter was installed in-9 

line before the ACSM for one- to three hours (filter time) per month to determine the detection 10 

limits (DL) of the ACSM, which are defined as three times the standard deviations of the 11 

concentrations of all species during the filter period. Data points falling below their corresponding 12 

detection limit were set to zero in our analysis (Table S1). All mass concentrations were 13 

determined at ambient temperature and pressure and presented in local time. 14 

 15 

2. Data Treatment 16 

The ammonium RIE of 4.57 and sulfate RIE of 1.2 were chosen based on the average from five IE 17 

calibrations, while the default RIE values of 1.1 for nitrate, 1.3 for chloride and 1.4 for organics 18 

were used [Allan et al., 2003; Jimenez et al., 2003]. The influence of RH in this study is considered 19 

minor as a Nafion dryer was used to keep the sampling line RH consistently below 30%. 20 

Middlebrook et al. [2012] developed an equation based to aerosol composition to estimate the 21 

collection efficiency (CE). Under the dry conditions used in our sampling, the Middlebrook 22 

parameterization suggests a CE of ~45-50% based on the measured inorganic constituents 23 

(Middlebrook et al., 2012). However, the NR-PM1 concentration of the majority of data points 24 

(~83%), if calculated with a CE of 0.45, would exceed the PM2.5 concentration measured by TEOM 25 

which indicates an underestimation of CE.  Therefore, the Middlebrook result does not seem 26 

appropriate for this study as the dominance of organic compounds (58.2% of NR-PM1) at the 27 

measurement site could hinder the complete efflorescence of particles in the drier and reduce the 28 

particle bounce effect, thus increasing the particle collection efficiency.  29 



A CE of 0.8 was chosen based on the comparison of the NR-PM1 measurements and PM2.5 30 

measured independently by HKEPD. The average ratio of NR-PM1 to PM2.5 (0.59; Figure S1) is 31 

consistent with the results in previous studies that NR-PM1 contributes 56%-64% of PM2.5 32 

assuming that NR-PM1 approximately equals the difference between PM2.5 and elemental carbon 33 

(EC) in PM2.5 [Cheng et al., 2006; Lee et al., 2006].  34 

3. PMF analysis on Organic Spectra 35 

In this study, PMF input mass spectra were limited to a maximum m/z of 110 because the signal 36 

uncertainty at higher m/z values was large due to low ion transmission efficiency and significant 37 

interferences from the internal standard of naphthalene at m/z 127-129 [Ng et al., 2011; Sun et al., 38 

2013]. PMF was run in “exploration” mode with fpeak changing from -1 to 1 in steps of 0.2 and 39 

the P value (the number of factor) from 1 to 6. PMF analysis procedures followed those in Zhang 40 

et al. [2005, 2011]. 41 

A 4-factor solution is thought to be optimal. First, a 3-factor solution resolves hydrocarbon-like 42 

OA (HOA) incorrectly (Figure S2) with excess m/z 44 fractional intensity (f44=5%) and a rather 43 

poor correlation with NOx, with a Pearson’s R value (Rpr) of 0.43 (Table S2). On the other hand, 44 

a 5-factor solution resolves one unknown factor (Factor 1) which shows very similar variations in 45 

time series as Factor 4 (Rpr=0.80; Figure S3). The 4-factor solution yields Q/Qexp=0.8 and better 46 

differentiation among the factor time series (Rpr <0.6; Figure S4). The four factors also correlate 47 

well with associated inorganics and external tracers [NO3, SO4, NH4,  NOx; Zhang et al., 2005a, 48 

2011; Ulbrich et al., 2009], e.g. HOA with NOx, SV-OOA with NO3, LV-OOA with SO4
 and NH4 49 

(Table S4). Furthermore, the mass spectra of the four factors are similar (all un-centered R 50 

(Ruc) >0.80) to corresponding reference mass spectra from the AMS MS database [Ulbrich, I. M., 51 

Lechner, M., and Jimenez, J. L., AMS Spectral Database, url: http://cires.colorado.edu/jimenez-52 

group/AMSsd; Ulbrich et al., 2009], as shown in next section. With the 4-factor solution, the 53 

variation of fpeak had little impact on the value of Q/Qexp, while HOA and low-volatile OOA at 54 

fpeak=0 showed the highest correlations with both NOx and SO4, when compared with solutions 55 

using other rotational values (Table S5). Therefore, a 4-factor solution with fpeak=0 was chosen. 56 

Hydrocarbon-like Organic Aerosol (HOA) 57 

http://cires.colorado.edu/jimenez-group/AMSsd
http://cires.colorado.edu/jimenez-group/AMSsd


The mass spectrum of HOA (Figure 4) is dominated by a homologous series of alkyl fragments 58 

separated by a CH2 (m/z 14) unit: the CnH2n-1
+ ion series (m/z 27, 41, 55, 69, 83, 97), typical of 59 

cycloalkanes or unsaturated hydrocarbon, which account for 27% of total peak intensity in the 60 

HOA spectrum. The other prominent group is the CnH2n+1
+ ion series (m/z 29, 43, 57, 71, 85, 99), 61 

typical of alkanes and accounting for 26% of the total peak intensity [McLafferty and Turecek, 62 

1993; Ng et al., 2011; Li et al., 2012]. This mass spectrum is very similar to the standard HOA 63 

spectrum with Ruc of 0.92, and its fractions of CnH2n-1
+ and CnH2n+1

+ (27%, 26%) are consistent 64 

with standard ones (=28%, 27%) [Ng et al., 2011]. This HOA spectrum is also consistent with that 65 

resolved by HR-ToF-AMS at the HKUST Supersite on the dominance of saturated CxHy-type 66 

ions, most notably at m/z 43 and 57 [Lee et al., 2013].  67 

Cooking Organic Aerosol (COA) 68 

The most prominent ions of the resolved COA profile at MK were m/z 41 (mainly C2HO+, C3H5
+) 69 

and m/z 55 (mainly C3H3O
+, C4H7

+). Ratios of m/z 41/43 =1.8 and m/z 55/57=2.2, which are 70 

distinctly larger than that of HOA at 0.73 and 0.76 respectively (Figure 4); such ratios have been 71 

widely reported for COA in AMS and ACSM studies. For example, Lanz et al. [2010] reported 72 

ratios of m/z 41/43 and m/z 55/57 of 0.5 and 0.4 in HOA, and 1.2 and 1.2 in COA, respectively, 73 

while Sun et.al [2013] reported 0.5 for these two ratios in HOA and 2.3 for those in COA, 74 

respectively.  75 

Oxygenated Organic Aerosol 76 

LV-OOA is characterized by the prominent m/z 44 ion (mainly CO2
+) and minor CnH2n-1 and 77 

CnH2n+1 ion series generated by saturated alkanes, alkenes and cycloalkanes. The LVOOA spectra 78 

correlated well with the standard spectra of LV-OOA (Figure 4) with a Ruc of 0.97. Furthermore, 79 

its time series is comparable to that of SO4
2- with a Rpr of 0.86 (Figure 1), consistent with reports 80 

in the literature [DeCarlo et al., 2010; He et al., 2011; Zhang et al., 2014; Tiitta et al., 2014]. SV-81 

OOA, which is less oxidized than LV-OOA, is marked by the dominant ions of m/z 43 and m/z 44 82 

mainly contributed by C2H3O+ and CO2
+,  The mass spectrum of SV-OOA closely resembles that of 83 

‘standard’ SV-OOA with a Ruc of 0.87 (Figure 3). Its time series also follows that of nitrate 84 

(Rpr=0.63, Figure 1), another secondary and semi-volatile species. 85 

  86 



Tables 87 

 88 

Table S1. Summary for monthly detection limits of NR-PM1 species (SO4, NO3, NH4, Chl and Org) 89 

Species  µg/m3 September October November December 

SO4 0.22 0.04 0.05 0.07 

NO3 0.04 0.01 0.02 0.05 

NH4 0.07 0.06 0.12 0.11 

Chl 0.02 0.03 0.02 0.02 

Org 0.69 0.17 0.28 0.34 

 90 

Table S2. Correlation coefficients (Rpr) between resolved factors and SO4, NO3, NH4 and NOx under solution of 3 91 

factors with fPeak=0. 92 

Pearson R  SO4 NO3 NH4 NOx 

Factor1 0.80 0.66 0.85 0.25 

Factor2 0.07 0.13 0.08 0.55 

Factor3 0.40 0.67 0.57 0.43 

 93 

Table S3. Correlation coefficients (Rpr) between resolved factors and SO4, NO3, NH4 and NOx under solution of 5 94 

factors with fPeak=0. 95 

Pearson R  SO4 NO3 NH4 NOx 

Factor1 0.28 0.48 0.38 0.31 

Factor2 0.85 0.57 0.86 0.25 

Factor3 -0.01 0.13 0.04 0.48 

Factor4 0.54 0.71 0.70 0.30 

Factor5 0.16 0.33 0.25 0.68 

 96 



Table S4. Correlation coefficients (Rpr) between resolved factors and SO4, NO3, NH4 and NOx under solution of 4 97 

factors with fPeak=0. 98 

 99 

Table S5. Correlation coefficients between resolved factors and associated tracer (SO4, NO3 and NOx) on time series, 100 

and corresponding standard mass spectra. 101 

fPeak -0.4 -0.2 0 +0.2 +0.4 

Correlation with associated tracer (Rpr) 

HOA & NOx 0.64 0.65 0.70 0.63 0.63 

LV-OOA & SO4 0.82 0.85 0.86 0.84 0.80 

SV-OOA & NO3 0.64 0.63 0.63 0.64 0.64 

 Correlation with standard mass spectra (Ruc) 

HOA 0.94 0.94 0.92 0.90 0.88 

COA 0.77 0.77 0.84 0.76 0.75 

LV-OOA 0.98 0.98 0.97 0.97 0.97 

SV-OOA 0.83 0.85 0.87 0.78 0.84 

 102 

Table S6. Correlation coefficients (Rpr) between HOA concentration and NOx, CO and VOCs (n-Pentane, i-Pentane, 103 

Toluene, Benzene). 104 

Gas/VOCs     Rpr with HOA 

NOx                         

CO                           

n-Pentane                

i-Pentane                  

Toluene 

Benzene 

0.69 

0.62                  

0.61 

0.57 

0.55 

0.56 

  105 

  106 

Pearson R  SO4 NO3 NH4 NOx 

LV-OOA 0.86 0.63 0.88 0.21 

SV-OOA 0.39 0.63 0.55 0.39 

COA 0.05 0.11 0.06 0.42 

HOA 0.25 0.48 0.38 0.70 



Figures 107 

 108 

Figure S1. (y) NR-PM1 concentration measured by ACSM versus (x) PM2.5 measured by TEOM during the entire 109 

study period. 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

Figure 2S. The mass spectra, time series and diurnal pattern for 3 factors with fPeak=0  118 

 119 

 120 
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  123 

Figure 3S. (a) The mass spectra, time series, and diurnal pattern for 5 factors with fPeak=0, (b) correlation between 124 

mass spectra profile or time series profiles of each two factors, and (c) Q/Qexp variation as a function of number of 125 

factors. 126 

(a) 
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 127 

Figure 4S. (a) The mass spectra, time series and diurnal pattern for 4 factors with fPeak=0, (b) correlation between 128 

mass spectra profile or time series profiles of each two factors, and (c) Q/Qexp variation as a function of number of 129 

factors. 130 

 131 
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 134 

Figure 5S. PMF diagnostics for 4 factors with fPeak=0. 135 
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 137 

Figure S6. The mass spectra and time series resolved by PMF based on data with little COA (0:00 -6:00). 138 

 139 

Figure S7.Variation of average concentration of SV-OOA binned by LV-OOA concentration with a step of 2 µg/m3 140 

as a function of binned LV-OOA concentration. 141 
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 143 

Figure S8. Overview of temporal variation of (a) meteorological factors (Relative humidity, Temperature and 144 

Precipitation) and (b) non-refractory PM1 species (Org, SO4, NO3, NH4  and Chl) and organic aerosol components 145 

(LVOOA, SVOOA, HOA and COA) during haze period 1 (H1) and haze period 2 (H2). 146 
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